// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. * Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved. */ #define pr_fmt(fmt) "AMOLED: %s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include /* Register definitions */ #define PERIPH_REVISION4 0x03 #define IBB_PERIPH_TYPE 0x20 #define AB_PERIPH_TYPE 0x24 #define OLEDB_PERIPH_TYPE 0x2C #define PERIPH_SUBTYPE 0x05 /* AB */ #define AB_LDO_PD_CTL(chip) (chip->ab_base + 0x78) /* AB_LDO_PD_CTL */ #define PULLDN_EN_BIT BIT(7) /* IBB */ #define IBB_PD_CTL(chip) (chip->ibb_base + 0x47) /* IBB_PD_CTL */ #define ENABLE_PD_BIT BIT(7) #define IBB_DUAL_PHASE_CTL(chip) (chip->ibb_base + 0x70) /* IBB_DUAL_PHASE_CTL */ #define IBB_DUAL_PHASE_CTL_MASK GENMASK(2, 0) #define AUTO_DUAL_PHASE_BIT BIT(2) #define FORCE_DUAL_PHASE_BIT BIT(1) #define FORCE_SINGLE_PHASE_BIT BIT(0) /* IBB SPUR FSM/SQM CTL */ #define IBB_SPUR_CTL(chip) (chip->ibb_base + 0xB6) #define SPUR_FSM_EN BIT(7) #define SPUR_SQM_EN BIT(6) #define IBB_SPUR_FREQ_CTL(chip) (chip->ibb_base + 0xB7) #define FREQ_RES_SEL BIT(0) #define IBB_SPUR_FREQ_THRESH_HIGH(i) (chip->ibb_base + 0xB8 + i*2) #define IBB_SPUR_FREQ_THRESH_LOW(i) (chip->ibb_base + 0xB9 + i*2) #define MAX_SPUR_FREQ_BANDS 3 #define MAX_SPUR_FREQ_KHZ 248 #define AMOLED_SDAM_OFFSET 0xB8 #define SQM_TIMER_LOWER_LIMIT_MS 100 #define SQM_TIMER_UPPER_LIMIT_MS 10000 enum { SPUR_MITIGATION_DISABLED, SPUR_MITIGATION_ENABLED_WITHOUT_SQM, SPUR_MITIGATION_ENABLED_WITH_SQM, }; struct amoled_regulator { struct regulator_desc rdesc; struct regulator_dev *rdev; struct device_node *node; unsigned int mode; bool enabled; }; struct oledb_regulator { struct amoled_regulator vreg; /* DT params */ bool swire_control; }; struct ab_regulator { struct amoled_regulator vreg; /* DT params */ bool swire_control; bool pd_control; }; struct ibb_regulator { struct amoled_regulator vreg; u8 subtype; u8 rev4; /* DT params */ bool swire_control; bool pd_control; bool single_phase; /* ibb_spur_mitigation params */ u32 spur_mitigation_level; u32 spur_sqm_timer_ms; u32 spur_freq_thresh_high[MAX_SPUR_FREQ_BANDS]; u32 spur_freq_thresh_low[MAX_SPUR_FREQ_BANDS]; bool spur_freq_res_sel; }; struct qpnp_amoled { struct device *dev; struct regmap *regmap; struct oledb_regulator oledb; struct ab_regulator ab; struct ibb_regulator ibb; struct nvmem_cell *nvmem_cell; /* DT params */ u32 oledb_base; u32 ab_base; u32 ibb_base; }; enum reg_type { OLEDB, AB, IBB, }; enum ibb_subtype { PM8150A_IBB = 0x03, PM8350B_IBB = 0x04, }; enum ibb_rev4 { IBB_ANA_MAJOR_V1 = 0x01, IBB_ANA_MAJOR_V2 = 0x02, }; static inline bool is_spur_mitigation_supported(struct ibb_regulator *ibb) { if ((ibb->subtype == PM8350B_IBB) && (ibb->rev4 >= IBB_ANA_MAJOR_V2)) return true; return false; } static inline bool is_phase_ctrl_supported(struct ibb_regulator *ibb) { if (ibb->subtype == PM8350B_IBB) return true; return false; } static int qpnp_amoled_read(struct qpnp_amoled *chip, u16 addr, u8 *value, u8 count) { int rc = 0; rc = regmap_bulk_read(chip->regmap, addr, value, count); if (rc < 0) pr_err("Failed to read from addr=0x%02x rc=%d\n", addr, rc); return rc; } static int qpnp_amoled_write(struct qpnp_amoled *chip, u16 addr, u8 *value, u8 count) { int rc; rc = regmap_bulk_write(chip->regmap, addr, value, count); if (rc < 0) pr_err("Failed to write to addr=0x%02x rc=%d\n", addr, rc); return rc; } static int qpnp_amoled_masked_write(struct qpnp_amoled *chip, u16 addr, u8 mask, u8 value) { int rc = 0; rc = regmap_update_bits(chip->regmap, addr, mask, value); if (rc < 0) pr_err("Failed to write addr=0x%02x value=0x%02x rc=%d\n", addr, value, rc); return rc; } /* AB regulator */ static int qpnp_ab_regulator_is_enabled(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); return chip->ab.vreg.enabled; } static int qpnp_ab_regulator_enable(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); chip->ab.vreg.enabled = true; return 0; } static int qpnp_ab_regulator_disable(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); chip->ab.vreg.enabled = false; return 0; } /* IBB regulator */ static int qpnp_ibb_regulator_is_enabled(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); return chip->ibb.vreg.enabled; } static int qpnp_ibb_regulator_enable(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); chip->ibb.vreg.enabled = true; return 0; } static int qpnp_ibb_regulator_disable(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); chip->ibb.vreg.enabled = false; return 0; } /* common to AB and IBB */ static int qpnp_ab_ibb_regulator_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); /* HW controlled */ if (chip->ab.swire_control || chip->ibb.swire_control) return 0; return 0; } static int qpnp_ab_ibb_regulator_get_voltage(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); /* HW controlled */ if (chip->ab.swire_control || chip->ibb.swire_control) return 0; return 0; } static int qpnp_ab_pd_control(struct qpnp_amoled *chip, bool en) { u8 val = en ? PULLDN_EN_BIT : 0; return qpnp_amoled_write(chip, AB_LDO_PD_CTL(chip), &val, 1); } static int qpnp_ibb_pd_control(struct qpnp_amoled *chip, bool en) { u8 val = en ? ENABLE_PD_BIT : 0; return qpnp_amoled_masked_write(chip, IBB_PD_CTL(chip), ENABLE_PD_BIT, val); } static int qpnp_ab_ibb_regulator_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); int rc = 0; if (mode != REGULATOR_MODE_NORMAL && mode != REGULATOR_MODE_STANDBY && mode != REGULATOR_MODE_IDLE) { pr_err("Unsupported mode %u\n", mode); return -EINVAL; } if (mode == chip->ab.vreg.mode || mode == chip->ibb.vreg.mode) return 0; pr_debug("mode: %d\n", mode); if (mode == REGULATOR_MODE_NORMAL || mode == REGULATOR_MODE_STANDBY) { if (chip->ibb.pd_control) { rc = qpnp_ibb_pd_control(chip, true); if (rc < 0) goto error; } if (chip->ab.pd_control) { rc = qpnp_ab_pd_control(chip, true); if (rc < 0) goto error; } } else if (mode == REGULATOR_MODE_IDLE) { if (chip->ibb.pd_control) { rc = qpnp_ibb_pd_control(chip, false); if (rc < 0) goto error; } if (chip->ab.pd_control) { rc = qpnp_ab_pd_control(chip, false); if (rc < 0) goto error; } } chip->ab.vreg.mode = chip->ibb.vreg.mode = mode; error: if (rc < 0) pr_err("Failed to configure for mode %d\n", mode); return rc; } static unsigned int qpnp_ab_ibb_regulator_get_mode(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); return chip->ibb.vreg.mode; } #define SINGLE_PHASE_ILIMIT_UA 30000 static int qpnp_ibb_regulator_set_load(struct regulator_dev *rdev, int load_uA) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); u8 ibb_phase; if (!is_phase_ctrl_supported(&chip->ibb)) return 0; /* For IBB single phase, it's configured only once. */ if (chip->ibb.single_phase) return 0; if (load_uA < 0) return -EINVAL; else if (load_uA <= SINGLE_PHASE_ILIMIT_UA) ibb_phase = AUTO_DUAL_PHASE_BIT; else ibb_phase = FORCE_DUAL_PHASE_BIT; return qpnp_amoled_masked_write(chip, IBB_DUAL_PHASE_CTL(chip), IBB_DUAL_PHASE_CTL_MASK, ibb_phase); } static const struct regulator_ops qpnp_amoled_ab_ops = { .enable = qpnp_ab_regulator_enable, .disable = qpnp_ab_regulator_disable, .is_enabled = qpnp_ab_regulator_is_enabled, .set_voltage = qpnp_ab_ibb_regulator_set_voltage, .get_voltage = qpnp_ab_ibb_regulator_get_voltage, .set_mode = qpnp_ab_ibb_regulator_set_mode, .get_mode = qpnp_ab_ibb_regulator_get_mode, }; static const struct regulator_ops qpnp_amoled_ibb_ops = { .enable = qpnp_ibb_regulator_enable, .disable = qpnp_ibb_regulator_disable, .is_enabled = qpnp_ibb_regulator_is_enabled, .set_voltage = qpnp_ab_ibb_regulator_set_voltage, .get_voltage = qpnp_ab_ibb_regulator_get_voltage, .set_mode = qpnp_ab_ibb_regulator_set_mode, .get_mode = qpnp_ab_ibb_regulator_get_mode, .set_load = qpnp_ibb_regulator_set_load, }; /* OLEDB regulator */ static int qpnp_oledb_regulator_is_enabled(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); return chip->oledb.vreg.enabled; } static int qpnp_oledb_regulator_enable(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); chip->oledb.vreg.enabled = true; return 0; } static int qpnp_oledb_regulator_disable(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); chip->oledb.vreg.enabled = false; return 0; } static int qpnp_oledb_regulator_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, unsigned int *selector) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); /* HW controlled */ if (chip->oledb.swire_control) return 0; return 0; } static int qpnp_oledb_regulator_get_voltage(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); /* HW controlled */ if (chip->oledb.swire_control) return 0; return 0; } static int qpnp_oledb_regulator_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); chip->oledb.vreg.mode = mode; return 0; } static unsigned int qpnp_oledb_regulator_get_mode(struct regulator_dev *rdev) { struct qpnp_amoled *chip = rdev_get_drvdata(rdev); return chip->oledb.vreg.mode; } static const struct regulator_ops qpnp_amoled_oledb_ops = { .enable = qpnp_oledb_regulator_enable, .disable = qpnp_oledb_regulator_disable, .is_enabled = qpnp_oledb_regulator_is_enabled, .set_voltage = qpnp_oledb_regulator_set_voltage, .get_voltage = qpnp_oledb_regulator_get_voltage, .set_mode = qpnp_oledb_regulator_set_mode, .get_mode = qpnp_oledb_regulator_get_mode, }; static int qpnp_amoled_regulator_register(struct qpnp_amoled *chip, enum reg_type type) { int rc = 0; struct regulator_init_data *init_data; struct regulator_config cfg = {}; struct regulator_desc *rdesc; struct regulator_dev *rdev; struct device_node *node; if (type == OLEDB) { node = chip->oledb.vreg.node; rdesc = &chip->oledb.vreg.rdesc; rdesc->ops = &qpnp_amoled_oledb_ops; rdev = chip->oledb.vreg.rdev; } else if (type == AB) { node = chip->ab.vreg.node; rdesc = &chip->ab.vreg.rdesc; rdesc->ops = &qpnp_amoled_ab_ops; rdev = chip->ab.vreg.rdev; } else if (type == IBB) { node = chip->ibb.vreg.node; rdesc = &chip->ibb.vreg.rdesc; rdesc->ops = &qpnp_amoled_ibb_ops; rdev = chip->ibb.vreg.rdev; } else { pr_err("Invalid regulator type %d\n", type); return -EINVAL; } init_data = of_get_regulator_init_data(chip->dev, node, rdesc); if (!init_data) { pr_err("Failed to get regulator_init_data for type %d\n", type); return -ENOMEM; } if (init_data->constraints.name) { rdesc->owner = THIS_MODULE; rdesc->type = REGULATOR_VOLTAGE; rdesc->name = init_data->constraints.name; cfg.dev = chip->dev; cfg.init_data = init_data; cfg.driver_data = chip; cfg.of_node = node; if (of_get_property(chip->dev->of_node, "parent-supply", NULL)) init_data->supply_regulator = "parent"; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS | REGULATOR_CHANGE_MODE; init_data->constraints.valid_modes_mask |= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE | REGULATOR_MODE_STANDBY; rdev = devm_regulator_register(chip->dev, rdesc, &cfg); if (IS_ERR(rdev)) { rc = PTR_ERR(rdev); rdev = NULL; pr_err("Failed to register amoled regulator for type %d rc = %d\n", type, rc); return rc; } rc = devm_regulator_debug_register(chip->dev, rdev); if (rc) { pr_err("failed to register debug regulator rc=%d\n", rc); rc = 0; } if (type == OLEDB) chip->oledb.vreg.mode = REGULATOR_MODE_NORMAL; else if (type == IBB) chip->ibb.vreg.mode = REGULATOR_MODE_NORMAL; else chip->ab.vreg.mode = REGULATOR_MODE_NORMAL; } else { pr_err("regulator name missing for type %d\n", type); return -EINVAL; } return rc; } static int qpnp_amoled_hw_init(struct qpnp_amoled *chip) { int rc; u8 val; rc = qpnp_amoled_regulator_register(chip, OLEDB); if (rc < 0) { dev_err(chip->dev, "Failed to register OLEDB regulator rc=%d\n", rc); return rc; } rc = qpnp_amoled_regulator_register(chip, AB); if (rc < 0) { dev_err(chip->dev, "Failed to register AB regulator rc=%d\n", rc); return rc; } rc = qpnp_amoled_regulator_register(chip, IBB); if (rc < 0) { dev_err(chip->dev, "Failed to register IBB regulator rc=%d\n", rc); return rc; } if (is_phase_ctrl_supported(&chip->ibb) && chip->ibb.single_phase) { val = FORCE_SINGLE_PHASE_BIT; rc = qpnp_amoled_masked_write(chip, IBB_DUAL_PHASE_CTL(chip), IBB_DUAL_PHASE_CTL_MASK, val); if (rc < 0) return rc; } return 0; } static int qpnp_amoled_ibb_spur_parse_dt(struct qpnp_amoled *chip, struct device_node *node) { int freq_array_len, rc, i; u32 spur_thres[2*MAX_SPUR_FREQ_BANDS]; rc = of_property_read_u32(node, "qcom,ibb-spur-mitigation-level", &chip->ibb.spur_mitigation_level); if (rc < 0 || (chip->ibb.spur_mitigation_level == SPUR_MITIGATION_DISABLED)) { dev_dbg(chip->dev, "ibb spur mitigation DISABLED!"); return rc; } if (chip->ibb.spur_mitigation_level == SPUR_MITIGATION_ENABLED_WITH_SQM) { of_property_read_u32(node, "qcom,ibb-spur-sqm-timer-ms", &chip->ibb.spur_sqm_timer_ms); chip->nvmem_cell = devm_nvmem_cell_get(chip->dev, "ibb_spur_sqm_timer"); if (IS_ERR(chip->nvmem_cell)) { rc = PTR_ERR(chip->nvmem_cell); if (rc != -EPROBE_DEFER) dev_err(chip->dev, "Failed to get nvmem-cells, rc=%d\n", rc); return rc; } } /* * Read the step size - 1khz or 2khz. * * NOTE: Even if this is not defined, step size may still be * set to 2khz indirectly, if any freq1/2/3 thresh limit * is in range: 248khz < f < 496khz. */ chip->ibb.spur_freq_res_sel = of_property_read_bool(node, "qcom,ibb-spur-2khz-step-size"); freq_array_len = of_property_count_elems_of_size(node, "qcom,ibb-spur-freq-thresholds", sizeof(u32)); if (freq_array_len != 2*MAX_SPUR_FREQ_BANDS) { dev_err(chip->dev, "invalid ibb spur freq threshold array size = %d\n", freq_array_len); chip->ibb.spur_mitigation_level = SPUR_MITIGATION_DISABLED; return -EINVAL; } rc = of_property_read_u32_array(node, "qcom,ibb-spur-freq-thresholds", spur_thres, freq_array_len); if (rc < 0) { dev_err(chip->dev, "failed to read thresholds = %d\n", rc); return rc; } for (i = 0; i < MAX_SPUR_FREQ_BANDS; i++) { chip->ibb.spur_freq_thresh_low[i] = spur_thres[2*i]; chip->ibb.spur_freq_thresh_high[i] = spur_thres[(2*i)+1]; } return rc; } static int qpnp_amoled_parse_dt(struct qpnp_amoled *chip) { struct device_node *temp, *node = chip->dev->of_node; const __be32 *prop_addr; int rc = 0; u32 base; u8 val[3]; for_each_available_child_of_node(node, temp) { prop_addr = of_get_address(temp, 0, NULL, NULL); if (!prop_addr) { pr_err("Couldn't get reg address\n"); return -EINVAL; } base = be32_to_cpu(*prop_addr); rc = qpnp_amoled_read(chip, base + PERIPH_REVISION4, val, 3); if (rc < 0) { pr_err("Couldn't read PERIPH_REVISION4 for base %x\n", base); return rc; } switch (val[1]) { case OLEDB_PERIPH_TYPE: chip->oledb_base = base; chip->oledb.vreg.node = temp; chip->oledb.swire_control = of_property_read_bool(temp, "qcom,swire-control"); break; case AB_PERIPH_TYPE: chip->ab_base = base; chip->ab.vreg.node = temp; chip->ab.swire_control = of_property_read_bool(temp, "qcom,swire-control"); chip->ab.pd_control = of_property_read_bool(temp, "qcom,aod-pd-control"); break; case IBB_PERIPH_TYPE: chip->ibb_base = base; chip->ibb.subtype = val[2]; chip->ibb.rev4 = val[0]; chip->ibb.vreg.node = temp; chip->ibb.swire_control = of_property_read_bool(temp, "qcom,swire-control"); chip->ibb.pd_control = of_property_read_bool(temp, "qcom,aod-pd-control"); chip->ibb.single_phase = of_property_read_bool(temp, "qcom,ibb-single-phase"); if (is_spur_mitigation_supported(&chip->ibb)) { rc = qpnp_amoled_ibb_spur_parse_dt(chip, temp); if (rc < 0) pr_err("Failed to parse ibb_spur_parse_dt\n"); } break; default: pr_err("Unknown peripheral type 0x%x\n", val[0]); return -EINVAL; } } return 0; } static bool is_2khz_step_needed(struct qpnp_amoled *chip) { u8 i; /* * If any of the freq1/2/3 band has valid thresh * (i.e f_high >= f_low) * and freq values is in range of 248khz < f < 496khz * then use step_size = 2khz */ for (i = 0; i < MAX_SPUR_FREQ_BANDS; i++) { if ((chip->ibb.spur_freq_thresh_high[i] > MAX_SPUR_FREQ_KHZ) && (chip->ibb.spur_freq_thresh_high[i] < MAX_SPUR_FREQ_KHZ * 2) && (chip->ibb.spur_freq_thresh_high[i] >= chip->ibb.spur_freq_thresh_low[i])) { return true; } } return false; } static int qpnp_amoled_ibb_spur_set_thresh(struct qpnp_amoled *chip) { int i = 0, rc = 0; u16 low, high, max, temp = 0; if (!chip->ibb.spur_freq_res_sel) chip->ibb.spur_freq_res_sel = is_2khz_step_needed(chip); rc = qpnp_amoled_masked_write(chip, IBB_SPUR_FREQ_CTL(chip), FREQ_RES_SEL, (chip->ibb.spur_freq_res_sel ? FREQ_RES_SEL : 0)); if (rc < 0) { dev_err(chip->dev, "failed to write IBB_SPUR_CTL register!\n"); return rc; } /* Calculate max based on the step size */ max = MAX_SPUR_FREQ_KHZ * (chip->ibb.spur_freq_res_sel ? 2 : 1); for (i = 0; i < MAX_SPUR_FREQ_BANDS; i++) { low = chip->ibb.spur_freq_thresh_low[i]; high = chip->ibb.spur_freq_thresh_high[i]; if (high < low || low > max || high > max) { dev_err(chip->dev, "ibb spur freq band%d threshold invalid!\n", (i+1)); /* Set both thresholds to max to in effect disable it */ chip->ibb.spur_freq_thresh_high[i] = max; chip->ibb.spur_freq_thresh_low[i] = max; low = max; high = max; } /* *For High threshold, roundoff-to-ceiling for odd frequency * with 2khz step */ temp = high / (chip->ibb.spur_freq_res_sel ? 2 : 1); temp += chip->ibb.spur_freq_res_sel ? (high % 2) : 0; rc = qpnp_amoled_write(chip, IBB_SPUR_FREQ_THRESH_HIGH(i), (u8 *)&temp, 1); if (rc < 0) { dev_err(chip->dev, "failed to write IBB_SPUR_FREQ_HIGH register!\n"); return rc; } /* * For Low threshold, roundoff-to-floor for odd frequency * with 2khz step */ temp = low / (chip->ibb.spur_freq_res_sel ? 2 : 1); rc = qpnp_amoled_write(chip, IBB_SPUR_FREQ_THRESH_LOW(i), (u8 *)&temp, 1); if (rc < 0) { dev_err(chip->dev, "failed to write IBB_SPUR_FREQ_LOW register!\n"); return rc; } } return 0; } static int qpnp_amoled_ibb_spur_set_sqm_timer(struct qpnp_amoled *chip, u16 sqm_timer) { return nvmem_cell_write(chip->nvmem_cell, &sqm_timer, sizeof(sqm_timer)); } static int qpnp_amoled_ibb_spur_init(struct qpnp_amoled *chip) { int rc = 0; switch (chip->ibb.spur_mitigation_level) { case SPUR_MITIGATION_ENABLED_WITH_SQM: /*set SQM mode */ rc = qpnp_amoled_masked_write(chip, IBB_SPUR_CTL(chip), SPUR_SQM_EN, SPUR_SQM_EN); if (rc < 0) { dev_err(chip->dev, "failed to enable spur SQM mode!\n"); return rc; } /*set SQM timer if defined */ if (chip->ibb.spur_sqm_timer_ms > SQM_TIMER_LOWER_LIMIT_MS && chip->ibb.spur_sqm_timer_ms < SQM_TIMER_UPPER_LIMIT_MS) { rc = qpnp_amoled_ibb_spur_set_sqm_timer(chip, (u16)chip->ibb.spur_sqm_timer_ms); if (rc < 0) { if (rc != -EPROBE_DEFER) dev_err(chip->dev, "failed to enable spur SQM timer\n"); return rc; } } fallthrough; case SPUR_MITIGATION_ENABLED_WITHOUT_SQM: rc = qpnp_amoled_ibb_spur_set_thresh(chip); if (rc < 0) { dev_err(chip->dev, "failed to set spur thresholds!\n"); return rc; } rc = qpnp_amoled_masked_write(chip, IBB_SPUR_CTL(chip), SPUR_FSM_EN, SPUR_FSM_EN); if (rc < 0) { dev_err(chip->dev, "failed to enable spur FSM!\n"); return rc; } break; case SPUR_MITIGATION_DISABLED: default: /* disable ibb spur FSM */ rc = qpnp_amoled_masked_write(chip, IBB_SPUR_CTL(chip), SPUR_FSM_EN, 0); if (rc < 0) { dev_err(chip->dev, "failed to disable spur FSM!\n"); return rc; } } return 0; } static int qpnp_amoled_regulator_probe(struct platform_device *pdev) { int rc; struct device_node *node; struct qpnp_amoled *chip; node = pdev->dev.of_node; if (!node) { pr_err("No nodes defined\n"); return -ENODEV; } chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->dev = &pdev->dev; chip->regmap = dev_get_regmap(pdev->dev.parent, NULL); if (!chip->regmap) { dev_err(&pdev->dev, "Failed to get the regmap handle\n"); rc = -EINVAL; goto error; } dev_set_drvdata(&pdev->dev, chip); rc = qpnp_amoled_parse_dt(chip); if (rc < 0) { dev_err(chip->dev, "Failed to parse DT params rc=%d\n", rc); goto error; } rc = qpnp_amoled_hw_init(chip); if (rc < 0) dev_err(chip->dev, "Failed to initialize HW rc=%d\n", rc); if (is_spur_mitigation_supported(&chip->ibb)) { rc = qpnp_amoled_ibb_spur_init(chip); if (rc < 0) dev_err(chip->dev, "Failed to init ibb spur settings rc=%d\n", rc); } error: return rc; } static int qpnp_amoled_regulator_remove(struct platform_device *pdev) { return 0; } static const struct of_device_id amoled_match_table[] = { { .compatible = "qcom,qpnp-amoled-regulator", }, { }, }; static struct platform_driver qpnp_amoled_regulator_driver = { .driver = { .name = "qpnp-amoled-regulator", .of_match_table = amoled_match_table, }, .probe = qpnp_amoled_regulator_probe, .remove = qpnp_amoled_regulator_remove, }; static int __init qpnp_amoled_regulator_init(void) { return platform_driver_register(&qpnp_amoled_regulator_driver); } arch_initcall(qpnp_amoled_regulator_init); static void __exit qpnp_amoled_regulator_exit(void) { platform_driver_unregister(&qpnp_amoled_regulator_driver); } module_exit(qpnp_amoled_regulator_exit); MODULE_DESCRIPTION("QPNP AMOLED regulator driver"); MODULE_LICENSE("GPL");