// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, The Linux Foundation. All rights reserved. * Copyright (c) 2021-2024, Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static LIST_HEAD(adc_tm_device_list); #define ADC5_GEN3_HS 0x45 #define ADC5_GEN3_HS_BUSY BIT(7) #define ADC5_GEN3_HS_READY BIT(0) #define ADC5_GEN3_STATUS1 0x46 #define ADC5_GEN3_STATUS1_CONV_FAULT BIT(7) #define ADC5_GEN3_STATUS1_THR_CROSS BIT(6) #define ADC5_GEN3_STATUS1_EOC BIT(0) #define ADC5_GEN3_TM_EN_STS 0x47 #define ADC5_GEN3_TM_HIGH_STS 0x48 #define ADC5_GEN3_TM_LOW_STS 0x49 #define ADC5_GEN3_EOC_STS 0x4a #define ADC5_GEN3_EOC_CHAN_0 BIT(0) #define ADC5_GEN3_EOC_CLR 0x4b #define ADC5_GEN3_TM_HIGH_STS_CLR 0x4c #define ADC5_GEN3_TM_LOW_STS_CLR 0x4d #define ADC5_GEN3_CONV_ERR_CLR 0x4e #define ADC5_GEN3_CONV_ERR_CLR_REQ BIT(0) #define ADC5_GEN3_SID 0x4f #define ADC5_GEN3_SID_MASK GENMASK(3, 0) #define ADC5_GEN3_PERPH_CH 0x50 #define ADC5_GEN3_CHAN_CONV_REQ BIT(7) #define ADC5_GEN3_TIMER_SEL 0x51 #define ADC5_GEN3_TIME_IMMEDIATE 0x1 #define ADC5_GEN3_DIG_PARAM 0x52 #define ADC5_GEN3_DIG_PARAM_CAL_SEL_MASK GENMASK(5, 4) #define ADC5_GEN3_DIG_PARAM_CAL_SEL_SHIFT 4 #define ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_MASK GENMASK(3, 2) #define ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_SHIFT 2 #define ADC5_GEN3_FAST_AVG 0x53 #define ADC5_GEN3_FAST_AVG_CTL_EN BIT(7) #define ADC5_GEN3_FAST_AVG_CTL_SAMPLES_MASK GENMASK(2, 0) #define ADC5_GEN3_ADC_CH_SEL_CTL 0x54 #define ADC5_GEN3_DELAY_CTL 0x55 #define ADC5_GEN3_HW_SETTLE_DELAY_MASK 0xf #define ADC5_GEN3_CH_EN 0x56 #define ADC5_GEN3_LOW_THR0 0x57 #define ADC5_GEN3_LOW_THR1 0x58 #define ADC5_GEN3_HIGH_THR0 0x59 #define ADC5_GEN3_HIGH_THR1 0x5a #define ADC5_GEN3_CH0_DATA0 0x5c #define ADC5_GEN3_CH0_DATA1 0x5d #define ADC5_GEN3_CH1_DATA0 0x5e #define ADC5_GEN3_CH1_DATA1 0x5f #define ADC5_GEN3_CH2_DATA0 0x60 #define ADC5_GEN3_CH2_DATA1 0x61 #define ADC5_GEN3_CH3_DATA0 0x62 #define ADC5_GEN3_CH3_DATA1 0x63 #define ADC5_GEN3_CH4_DATA0 0x64 #define ADC5_GEN3_CH4_DATA1 0x65 #define ADC5_GEN3_CH5_DATA0 0x66 #define ADC5_GEN3_CH5_DATA1 0x67 #define ADC5_GEN3_CH6_DATA0 0x68 #define ADC5_GEN3_CH6_DATA1 0x69 #define ADC5_GEN3_CH7_DATA0 0x6a #define ADC5_GEN3_CH7_DATA1 0x6b #define ADC5_GEN3_CONV_REQ 0xe5 #define ADC5_GEN3_CONV_REQ_REQ BIT(0) #define ADC5_GEN3_SID_OFFSET 0x8 #define ADC5_GEN3_CHANNEL_MASK 0xff #define V_CHAN(x) (((x).sid << ADC5_GEN3_SID_OFFSET) | (x).channel) #define ADC_TM5_GEN3_LOWER_MASK(n) ((n) & GENMASK(7, 0)) #define ADC_TM5_GEN3_UPPER_MASK(n) (((n) & GENMASK(15, 8)) >> 8) enum adc5_cal_method { ADC5_NO_CAL = 0, ADC5_RATIOMETRIC_CAL, ADC5_ABSOLUTE_CAL }; enum adc_time_select { MEAS_INT_DISABLE = 0, MEAS_INT_IMMEDIATE, MEAS_INT_50MS, MEAS_INT_100MS, MEAS_INT_1S, MEAS_INT_NONE, }; enum adc_tm_type { ADC_TM_NONE = 0, ADC_TM, ADC_TM_IIO, ADC_TM_NON_THERMAL, ADC_TM_INVALID, }; static struct adc_tm_reverse_scale_fn adc_tm_rscale_fn[] = { [SCALE_R_ABSOLUTE] = {adc_tm_absolute_rthr_gen3}, }; struct adc5_base_data { u16 base_addr; const char *irq_name; int irq; }; /** * struct adc5_channel_prop - ADC channel property. * @channel: channel number, refer to the channel list. * @cal_method: calibration method. * @decimation: sampling rate supported for the channel. * @sid: slave id of PMIC owning the channel, for PMIC5 Gen2 and above. * @prescale: channel scaling performed on the input signal. * @hw_settle_time: the time between AMUX being configured and the * start of conversion. * @avg_samples: ability to provide single result from the ADC * that is an average of multiple measurements. * @sdam_index: Index for which SDAM this channel is on. * @scale_fn_type: Represents the scaling function to convert voltage * physical units desired by the client for the channel. * @datasheet_name: Channel name used in device tree. * @chip: pointer to top-level ADC device structure. * @adc_tm: indicates TM type if the channel is used for TM measurements. * @tm_chan_index: TM channel number used (ranging from 1-7). * @timer: time period of recurring TM measurement. * @tzd: pointer to thermal device corresponding to TM channel. * @high_thr_en: TM high threshold crossing detection enabled. * @low_thr_en: TM low threshold crossing detection enabled. * @high_thr_triggered: indicates if high TM threshold has been triggered. * @low_thr_triggered: indicates if low TM threshold has been triggered. * @high_thr_voltage: upper threshold voltage for TM. * @low_thr_voltage: lower threshold voltage for TM. * @last_temp: last temperature that caused threshold violation, * or a thermal TM channel. * @last_temp_set: indicates if last_temp is stored. * @req_wq: workqueue holding queued notification tasks for a non-thermal * TM channel. * @work: scheduled work for handling non-thermal TM client notification. * @thr_list: list of client thresholds configured for non-thermal TM channel. * @adc_rscale_fn: reverse scaling function to convert voltage to raw code * for non-thermal TM channels. */ struct adc5_channel_prop { unsigned int channel; enum adc5_cal_method cal_method; unsigned int decimation; unsigned int sid; unsigned int prescale; unsigned int hw_settle_time; unsigned int avg_samples; unsigned int sdam_index; enum vadc_scale_fn_type scale_fn_type; const char *datasheet_name; struct adc5_chip *chip; /* TM properties */ int adc_tm; unsigned int tm_chan_index; unsigned int timer; struct thermal_zone_device *tzd; int high_thr_en; int low_thr_en; bool high_thr_triggered; bool low_thr_triggered; int64_t high_thr_voltage; int64_t low_thr_voltage; int last_temp; bool last_temp_set; struct workqueue_struct *req_wq; struct work_struct work; struct list_head thr_list; enum adc_tm_rscale_fn_type adc_rscale_fn; }; /** * struct adc5_chip - ADC private structure. * @regmap: SPMI ADC5 peripheral register map field. * @dev: SPMI ADC5 device. * @base: pointer to array of ADC peripheral base and interrupt. * @debug_base: base address for the reserved ADC peripheral, * to dump for debug purposes alone. * @num_sdams: number of SDAMs being used. * @nchannels: number of ADC channels. * @chan_props: array of ADC channel properties. * @iio_chans: array of IIO channels specification. * @complete: ADC result notification after interrupt is received. * @lock: ADC lock for access to the peripheral. * @data: software configuration data. * @n_tm_channels: number of ADC channels used for TM measurements. * @list: list item, used to add this device to gloal list of ADC_TM devices. * @device_list: pointer to list of ADC_TM devices. * @tm_handler_work: scheduled work for handling TM threshold violation. */ struct adc5_chip { struct regmap *regmap; struct device *dev; struct adc5_base_data *base; u16 debug_base; unsigned int num_sdams; unsigned int nchannels; struct adc5_channel_prop *chan_props; struct iio_chan_spec *iio_chans; struct completion complete; struct mutex lock; const struct adc5_data *data; /* TM properties */ unsigned int n_tm_channels; struct list_head list; struct list_head *device_list; struct work_struct tm_handler_work; struct minidump_data *adc_md; }; static int adc5_read(struct adc5_chip *adc, unsigned int sdam_index, u16 offset, u8 *data, int len) { int ret; ret = regmap_bulk_read(adc->regmap, adc->base[sdam_index].base_addr + offset, data, len); if (ret < 0) pr_err("adc read to register 0x%x of length:%d failed, ret=%d\n", offset, len, ret); return ret; } static int adc5_write(struct adc5_chip *adc, unsigned int sdam_index, u16 offset, u8 *data, int len) { int ret; ret = regmap_bulk_write(adc->regmap, adc->base[sdam_index].base_addr + offset, data, len); if (ret < 0) pr_err("adc write to register 0x%x of length:%d failed, ret=%d\n", offset, len, ret); return ret; } static int adc5_hw_settle_time_from_dt(u32 value, const unsigned int *hw_settle) { unsigned int i; for (i = 0; i < VADC_HW_SETTLE_SAMPLES_MAX; i++) { if (value == hw_settle[i]) return i; } return -ENOENT; } static int adc5_avg_samples_from_dt(u32 value) { if (!is_power_of_2(value) || value > ADC5_AVG_SAMPLES_MAX) return -EINVAL; return __ffs(value); } static int adc5_decimation_from_dt(u32 value, const unsigned int *decimation) { unsigned int i; for (i = 0; i < ADC5_DECIMATION_SAMPLES_MAX; i++) { if (value == decimation[i]) return i; } return -ENOENT; } #if IS_ENABLED(CONFIG_QCOM_SPMI_ADC5_GEN3_DEBUG_LOGGING) #define NUM_BYTES 8 #define REG_COUNT 32 static void adc5_gen3_dump_register(struct regmap *regmap, unsigned int offset) { int i, rc; u8 buf[NUM_BYTES]; for (i = 0; i < REG_COUNT; i++) { rc = regmap_bulk_read(regmap, offset, buf, sizeof(buf)); if (rc < 0) { pr_err("debug register dump failed with rc=%d\n", rc); return; } pr_err("%#04x: %*ph\n", offset, sizeof(buf), buf); offset += NUM_BYTES; } pr_err("\n"); } static void adc5_gen3_dump_regs_debug(struct adc5_chip *adc) { u32 i; for (i = 0; i < adc->num_sdams; i++) { pr_err("ADC SDAM%d DUMP\n", i); adc5_gen3_dump_register(adc->regmap, adc->base[i].base_addr); } if (adc->debug_base) { pr_err("ADC DEBUG BASE DUMP\n"); adc5_gen3_dump_register(adc->regmap, adc->debug_base); } BUG_ON(1); } #else static inline void adc5_gen3_dump_regs_debug(struct adc5_chip *adc) {} #endif static int adc5_gen3_read_voltage_data(struct adc5_chip *adc, u16 *data, u8 sdam_index) { int ret; u8 rslt[2]; ret = adc5_read(adc, sdam_index, ADC5_GEN3_CH0_DATA0, rslt, 2); if (ret < 0) return ret; *data = (rslt[1] << 8) | rslt[0]; if (*data == ADC5_USR_DATA_CHECK) { pr_err("Invalid data:%#x\n", *data); return -EINVAL; } pr_debug("voltage raw code:0x%x\n", *data); return 0; } static void adc5_gen3_update_dig_param(struct adc5_chip *adc, struct adc5_channel_prop *prop, u8 *data) { /* Update calibration select */ *data &= ~ADC5_GEN3_DIG_PARAM_CAL_SEL_MASK; *data |= (prop->cal_method << ADC5_GEN3_DIG_PARAM_CAL_SEL_SHIFT); /* Update decimation ratio select */ *data &= ~ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_MASK; *data |= (prop->decimation << ADC5_GEN3_DIG_PARAM_DEC_RATIO_SEL_SHIFT); } static int adc5_gen3_configure(struct adc5_chip *adc, struct adc5_channel_prop *prop) { int ret; u8 conv_req = 0, buf[7]; u8 sdam_index = prop->sdam_index; /* Reserve channel 0 of first SDAM for immediate conversions */ if (prop->adc_tm) sdam_index = 0; ret = adc5_read(adc, sdam_index, ADC5_GEN3_SID, buf, sizeof(buf)); if (ret < 0) return ret; /* Write SID */ buf[0] = prop->sid & ADC5_GEN3_SID_MASK; /* * Use channel 0 by default for immediate conversion and * to indicate there is an actual conversion request */ buf[1] = ADC5_GEN3_CHAN_CONV_REQ | 0; buf[2] = ADC5_GEN3_TIME_IMMEDIATE; /* Digital param selection */ adc5_gen3_update_dig_param(adc, prop, &buf[3]); /* Update fast average sample value */ buf[4] &= (u8) ~ADC5_GEN3_FAST_AVG_CTL_SAMPLES_MASK; buf[4] |= prop->avg_samples | ADC5_GEN3_FAST_AVG_CTL_EN; /* Select ADC channel */ buf[5] = prop->channel; /* Select HW settle delay for channel */ buf[6] &= (u8) ~ADC5_GEN3_HW_SETTLE_DELAY_MASK; buf[6] |= prop->hw_settle_time; reinit_completion(&adc->complete); ret = adc5_write(adc, sdam_index, ADC5_GEN3_SID, buf, sizeof(buf)); if (ret < 0) return ret; conv_req = ADC5_GEN3_CONV_REQ_REQ; ret = adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &conv_req, 1); return ret; } #define ADC5_GEN3_HS_DELAY_MIN_US 100 #define ADC5_GEN3_HS_DELAY_MAX_US 110 #define ADC5_GEN3_HS_RETRY_COUNT 150 static int adc5_gen3_poll_wait_hs(struct adc5_chip *adc, unsigned int sdam_index) { int ret, count; u8 status = 0, conv_req = ADC5_GEN3_CONV_REQ_REQ; for (count = 0; count < ADC5_GEN3_HS_RETRY_COUNT; count++) { ret = adc5_read(adc, sdam_index, ADC5_GEN3_HS, &status, 1); if (ret < 0) return ret; if (status == ADC5_GEN3_HS_READY) { ret = adc5_read(adc, sdam_index, ADC5_GEN3_CONV_REQ, &conv_req, 1); if (ret < 0) return ret; if (!conv_req) break; } usleep_range(ADC5_GEN3_HS_DELAY_MIN_US, ADC5_GEN3_HS_DELAY_MAX_US); } if (count == ADC5_GEN3_HS_RETRY_COUNT) { pr_err("Setting HS ready bit timed out, status:%#x\n", status); return -ETIMEDOUT; } return 0; } #define ADC5_GEN3_CONV_TIMEOUT_MS 50 #define ADC5_GEN3_POLL_ATTEMPTS 10 static int adc5_gen3_do_conversion(struct adc5_chip *adc, struct adc5_channel_prop *prop, u16 *data_volt) { int ret, i; bool poll_eoc = false; unsigned long rc; unsigned int time_pending_ms; u8 val, eoc_status, sdam_index = prop->sdam_index; /* Reserve channel 0 of first SDAM for immediate conversions */ if (prop->adc_tm) sdam_index = 0; mutex_lock(&adc->lock); ret = adc5_gen3_poll_wait_hs(adc, 0); if (ret < 0) goto unlock; ret = adc5_gen3_configure(adc, prop); if (ret < 0) { pr_err("ADC configure failed with %d\n", ret); goto unlock; } for (i = 0; i < ADC5_GEN3_POLL_ATTEMPTS; i++) { /* Trying both polling and waiting for interrupt */ rc = wait_for_completion_timeout(&adc->complete, msecs_to_jiffies(ADC5_GEN3_CONV_TIMEOUT_MS)); if (rc) { pr_debug("Got EOC interrupt after %d polling attempts\n", i); break; } /* CHAN0 is the preconfigured channel for immediate conversion */ ret = adc5_read(adc, 0, ADC5_GEN3_EOC_STS, &eoc_status, 1); if (ret < 0) { pr_err("adc read eoc status failed with %d\n", ret); goto unlock; } if (eoc_status & ADC5_GEN3_EOC_CHAN_0) { poll_eoc = true; break; } } if (!rc && !poll_eoc) { pr_err("Reading ADC channel %s timed out\n", prop->datasheet_name); adc5_gen3_dump_regs_debug(adc); ret = -ETIMEDOUT; goto unlock; } time_pending_ms = jiffies_to_msecs(rc); pr_debug("ADC channel %s EOC took %u ms\n", prop->datasheet_name, (i + 1) * ADC5_GEN3_CONV_TIMEOUT_MS - time_pending_ms); ret = adc5_gen3_read_voltage_data(adc, data_volt, sdam_index); if (ret < 0) goto unlock; val = BIT(0); ret = adc5_write(adc, sdam_index, ADC5_GEN3_EOC_CLR, &val, 1); if (ret < 0) goto unlock; /* To indicate conversion request is only to clear a status */ val = 0; ret = adc5_write(adc, sdam_index, ADC5_GEN3_PERPH_CH, &val, 1); if (ret < 0) goto unlock; val = ADC5_GEN3_CONV_REQ_REQ; ret = adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &val, 1); unlock: mutex_unlock(&adc->lock); return ret; } static int get_sdam_from_irq(struct adc5_chip *adc, int irq) { int i; for (i = 0; i < adc->num_sdams; i++) { if (adc->base[i].irq == irq) return i; } return -ENOENT; } static irqreturn_t adc5_gen3_isr(int irq, void *dev_id) { struct adc5_chip *adc = dev_id; u8 status, tm_status[2], eoc_status, val; int ret, sdam_num; sdam_num = get_sdam_from_irq(adc, irq); if (sdam_num < 0) { pr_err("adc irq %d not associated with an sdam\n", irq); goto handler_end; } ret = adc5_read(adc, sdam_num, ADC5_GEN3_EOC_STS, &eoc_status, 1); if (ret < 0) { pr_err("adc read eoc status failed with %d\n", ret); goto handler_end; } /* CHAN0 is the preconfigured channel for immediate conversion */ if (eoc_status & ADC5_GEN3_EOC_CHAN_0) complete(&adc->complete); ret = adc5_read(adc, sdam_num, ADC5_GEN3_TM_HIGH_STS, tm_status, 2); if (ret < 0) { pr_err("adc read TM status failed with %d\n", ret); goto handler_end; } if (tm_status[0] || tm_status[1]) schedule_work(&adc->tm_handler_work); ret = adc5_read(adc, sdam_num, ADC5_GEN3_STATUS1, &status, 1); if (ret < 0) { pr_err("adc read status1 failed with %d\n", ret); goto handler_end; } pr_debug("Interrupt status:%#x, EOC status:%#x, high:%#x, low:%#x\n", status, eoc_status, tm_status[0], tm_status[1]); if (status & ADC5_GEN3_STATUS1_CONV_FAULT) { pr_err_ratelimited("Unexpected conversion fault, status:%#x, eoc_status:%#x\n", status, eoc_status); adc5_gen3_dump_regs_debug(adc); val = ADC5_GEN3_CONV_ERR_CLR_REQ; ret = adc5_write(adc, sdam_num, ADC5_GEN3_CONV_ERR_CLR, &val, 1); if (ret < 0) goto handler_end; /* To indicate conversion request is only to clear a status */ val = 0; ret = adc5_write(adc, sdam_num, ADC5_GEN3_PERPH_CH, &val, 1); if (ret < 0) goto handler_end; val = ADC5_GEN3_CONV_REQ_REQ; ret = adc5_write(adc, sdam_num, ADC5_GEN3_CONV_REQ, &val, 1); if (ret < 0) goto handler_end; } return IRQ_HANDLED; handler_end: return IRQ_NONE; } static void tm_handler_work(struct work_struct *work) { struct adc5_channel_prop *chan_prop; u8 tm_status[2] = {0}; u8 buf[16] = {0}; u8 val; int ret, i, sdam_index = -1; struct adc5_chip *adc = container_of(work, struct adc5_chip, tm_handler_work); for (i = 0; i < adc->nchannels; i++) { bool upper_set = false, lower_set = false; u8 data_low = 0, data_high = 0; u16 code = 0; int temp, offset; chan_prop = &adc->chan_props[i]; offset = chan_prop->tm_chan_index; if (chan_prop->adc_tm != ADC_TM && chan_prop->adc_tm != ADC_TM_NON_THERMAL) continue; mutex_lock(&adc->lock); if (chan_prop->sdam_index != sdam_index) { sdam_index = chan_prop->sdam_index; ret = adc5_read(adc, sdam_index, ADC5_GEN3_TM_HIGH_STS, tm_status, 2); if (ret < 0) { pr_err("adc read TM status failed with %d\n", ret); goto work_unlock; } ret = adc5_write(adc, sdam_index, ADC5_GEN3_TM_HIGH_STS_CLR, tm_status, 2); if (ret < 0) { pr_err("adc write TM status failed with %d\n", ret); goto work_unlock; } /* To indicate conversion request is only to clear a status */ val = 0; ret = adc5_write(adc, sdam_index, ADC5_GEN3_PERPH_CH, &val, 1); if (ret < 0) { pr_err("adc write status clear conv_req failed with %d\n", ret); goto work_unlock; } val = ADC5_GEN3_CONV_REQ_REQ; ret = adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &val, 1); if (ret < 0) { pr_err("adc write conv_req failed with %d\n", ret); goto work_unlock; } ret = adc5_read(adc, sdam_index, ADC5_GEN3_CH0_DATA0, buf, sizeof(buf)); if (ret < 0) { pr_err("adc read data failed with %d\n", ret); goto work_unlock; } } if ((tm_status[0] & BIT(offset)) && (chan_prop->high_thr_en)) upper_set = true; if ((tm_status[1] & BIT(offset)) && (chan_prop->low_thr_en)) lower_set = true; mutex_unlock(&adc->lock); if (!(upper_set || lower_set)) continue; data_low = buf[2 * offset]; data_high = buf[2 * offset + 1]; code = ((data_high << 8) | data_low); pr_debug("ADC_TM threshold code:0x%x\n", code); if (chan_prop->adc_tm == ADC_TM_NON_THERMAL) { if (lower_set) { mutex_lock(&adc->lock); chan_prop->low_thr_en = 0; chan_prop->low_thr_triggered = true; mutex_unlock(&adc->lock); queue_work(chan_prop->req_wq, &chan_prop->work); } if (upper_set) { mutex_lock(&adc->lock); chan_prop->high_thr_en = 0; chan_prop->high_thr_triggered = true; mutex_unlock(&adc->lock); queue_work(chan_prop->req_wq, &chan_prop->work); } } else { ret = qcom_adc5_hw_scale(chan_prop->scale_fn_type, chan_prop->prescale, adc->data, code, &temp); if (ret < 0) { pr_err("Invalid temperature reading, ret=%d, code=0x%x\n", ret, code); continue; } pr_debug("notifying thermal, temp:%d\n", temp); chan_prop->last_temp = temp; chan_prop->last_temp_set = true; thermal_zone_device_update(chan_prop->tzd, THERMAL_TRIP_VIOLATED); } } return; work_unlock: mutex_unlock(&adc->lock); } static int adc5_gen3_fwnode_xlate(struct iio_dev *indio_dev, const struct fwnode_reference_args *iiospec) { struct adc5_chip *adc = iio_priv(indio_dev); int i, v_channel; for (i = 0; i < adc->nchannels; i++) { v_channel = V_CHAN(adc->chan_props[i]); if (v_channel == iiospec->args[0]) return i; } return -ENOENT; } static int adc5_gen3_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct adc5_chip *adc = iio_priv(indio_dev); struct adc5_channel_prop *prop; u16 adc_code_volt; int ret; prop = &adc->chan_props[chan->address]; switch (mask) { case IIO_CHAN_INFO_PROCESSED: ret = adc5_gen3_do_conversion(adc, prop, &adc_code_volt); if (ret < 0) return ret; ret = qcom_adc5_hw_scale(prop->scale_fn_type, prop->prescale, adc->data, adc_code_volt, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_RAW: ret = adc5_gen3_do_conversion(adc, prop, &adc_code_volt); if (ret < 0) return ret; *val = (int)adc_code_volt; return IIO_VAL_INT; default: return -EINVAL; } return 0; } static const struct iio_info adc5_gen3_info = { .read_raw = adc5_gen3_read_raw, .fwnode_xlate = adc5_gen3_fwnode_xlate, }; /* Used by thermal clients to read ADC channel temperature */ int adc_tm_gen3_get_temp(struct thermal_zone_device *tz, int *temp) { int ret; struct adc5_channel_prop *prop = tz->devdata; struct adc5_chip *adc; u16 adc_code_volt; if (!prop || !prop->chip) return -EINVAL; adc = prop->chip; if (prop->last_temp_set) { pr_debug("last_temp: %d\n", prop->last_temp); prop->last_temp_set = false; *temp = prop->last_temp; return 0; } ret = adc5_gen3_do_conversion(adc, prop, &adc_code_volt); if (ret < 0) return ret; ret = qcom_adc5_hw_scale(prop->scale_fn_type, prop->prescale, adc->data, adc_code_volt, temp); /* Save temperature data to minidump */ if (prop->chip->adc_md && prop->tzd) thermal_minidump_update_data(prop->chip->adc_md, prop->tzd->type, temp); return ret; } static int adc_tm5_gen3_configure(struct adc5_channel_prop *prop) { int ret; u8 conv_req = 0, buf[12]; u32 mask = 0; struct adc5_chip *adc = prop->chip; ret = adc5_gen3_poll_wait_hs(adc, prop->sdam_index); if (ret < 0) return ret; ret = adc5_read(adc, prop->sdam_index, ADC5_GEN3_SID, buf, sizeof(buf)); if (ret < 0) return ret; /* Write SID */ buf[0] = prop->sid & ADC5_GEN3_SID_MASK; /* * Select TM channel and indicate there is an actual * conversion request */ buf[1] = ADC5_GEN3_CHAN_CONV_REQ | prop->tm_chan_index; buf[2] = prop->timer; /* Digital param selection */ adc5_gen3_update_dig_param(adc, prop, &buf[3]); /* Update fast average sample value */ buf[4] &= (u8) ~ADC5_GEN3_FAST_AVG_CTL_SAMPLES_MASK; buf[4] |= prop->avg_samples | ADC5_GEN3_FAST_AVG_CTL_EN; /* Select ADC channel */ buf[5] = prop->channel; /* Select HW settle delay for channel */ buf[6] &= (u8) ~ADC5_GEN3_HW_SETTLE_DELAY_MASK; buf[6] |= prop->hw_settle_time; buf[7] = prop->high_thr_en << 1 | prop->low_thr_en; mask = lower_32_bits(prop->low_thr_voltage); buf[8] = ADC_TM5_GEN3_LOWER_MASK(mask); buf[9] = ADC_TM5_GEN3_UPPER_MASK(mask); mask = lower_32_bits(prop->high_thr_voltage); buf[10] = ADC_TM5_GEN3_LOWER_MASK(mask); buf[11] = ADC_TM5_GEN3_UPPER_MASK(mask); ret = adc5_write(adc, prop->sdam_index, ADC5_GEN3_SID, buf, sizeof(buf)); if (ret < 0) return ret; conv_req = ADC5_GEN3_CONV_REQ_REQ; return adc5_write(adc, prop->sdam_index, ADC5_GEN3_CONV_REQ, &conv_req, 1); } static int adc_tm5_gen3_set_trip_temp(struct thermal_zone_device *tz, int low_temp, int high_temp) { struct adc5_channel_prop *prop = tz->devdata; struct adc5_chip *adc; struct adc_tm_config tm_config; int ret; if (!prop) return -EINVAL; pr_debug("channel:%s :low_temp(mdegC):%d, high_temp(mdegC):%d\n", prop->datasheet_name, low_temp, high_temp); adc = prop->chip; tm_config.high_thr_temp = tm_config.low_thr_temp = 0; if (high_temp != INT_MAX) tm_config.high_thr_temp = high_temp; if (low_temp != INT_MIN) tm_config.low_thr_temp = low_temp; if ((high_temp == INT_MAX) && (low_temp == INT_MIN)) { pr_err("No trips to set\n"); return -EINVAL; } pr_debug("requested a low temp- %d and high temp- %d\n", tm_config.low_thr_temp, tm_config.high_thr_temp); adc_tm_scale_therm_voltage_100k_gen3(&tm_config); /* * Thresholds are forward scaled to confirm their * temperatures will actually cause a violation, before * being written. */ pr_debug("high_thr:0x%llx, low_thr:0x%llx\n", tm_config.high_thr_voltage, tm_config.low_thr_voltage); mutex_lock(&adc->lock); if (high_temp != INT_MAX) { prop->low_thr_voltage = tm_config.low_thr_voltage; prop->low_thr_en = 1; } else { prop->low_thr_en = 0; } if (low_temp > -INT_MAX) { prop->high_thr_voltage = tm_config.high_thr_voltage; prop->high_thr_en = 1; } else { prop->high_thr_en = 0; } ret = adc_tm5_gen3_configure(prop); if (ret < 0) pr_err("Error during adc-tm configure:%d\n", ret); mutex_unlock(&adc->lock); return ret; } #define MAX_PROP_NAME_LEN 32 struct adc5_chip *get_adc_tm_gen3(struct device *dev, const char *name) { struct platform_device *pdev; struct adc5_chip *chip; struct device_node *node = NULL; char prop_name[MAX_PROP_NAME_LEN]; scnprintf(prop_name, MAX_PROP_NAME_LEN, "qcom,%s-adc_tm", name); node = of_parse_phandle(dev->of_node, prop_name, 0); if (node == NULL) return ERR_PTR(-ENODEV); list_for_each_entry(chip, &adc_tm_device_list, list) { pdev = to_platform_device(chip->dev); if (pdev->dev.of_node == node) { of_node_put(node); return chip; } } of_node_put(node); return ERR_PTR(-EPROBE_DEFER); } EXPORT_SYMBOL(get_adc_tm_gen3); static int32_t adc_tm_add_to_list(struct adc5_chip *chip, uint32_t dt_index, struct adc_tm_param *param) { struct adc_tm_client_info *client_info = NULL; bool client_info_exists = false; list_for_each_entry(client_info, &chip->chan_props[dt_index].thr_list, list) { if (client_info->param->id == param->id) { client_info->low_thr_requested = param->low_thr; client_info->high_thr_requested = param->high_thr; client_info->state_request = param->state_request; client_info->notify_low_thr = false; client_info->notify_high_thr = false; client_info_exists = true; } } if (!client_info_exists) { client_info = devm_kzalloc(chip->dev, sizeof(struct adc_tm_client_info), GFP_KERNEL); if (!client_info) return -ENOMEM; client_info->param->id = (uintptr_t) client_info; client_info->low_thr_requested = param->low_thr; client_info->high_thr_requested = param->high_thr; client_info->state_request = param->state_request; list_add_tail(&client_info->list, &chip->chan_props[dt_index].thr_list); } return 0; } static int32_t adc_tm_gen3_manage_thresholds(struct adc5_channel_prop *prop) { int high_thr = INT_MAX, low_thr = INT_MIN; struct adc_tm_client_info *client_info = NULL; struct list_head *thr_list; uint32_t scale_type = 0; struct adc_tm_config tm_config; prop->high_thr_en = 0; prop->low_thr_en = 0; /* * Reset the high_thr_set and low_thr_set of all * clients since the thresholds will be recomputed. */ list_for_each(thr_list, &prop->thr_list) { client_info = list_entry(thr_list, struct adc_tm_client_info, list); client_info->high_thr_set = false; client_info->low_thr_set = false; } /* Find the min of high_thr and max of low_thr */ list_for_each(thr_list, &prop->thr_list) { client_info = list_entry(thr_list, struct adc_tm_client_info, list); if ((client_info->state_request == ADC_TM_HIGH_THR_ENABLE) || (client_info->state_request == ADC_TM_HIGH_LOW_THR_ENABLE)) if (client_info->high_thr_requested < high_thr) high_thr = client_info->high_thr_requested; if ((client_info->state_request == ADC_TM_LOW_THR_ENABLE) || (client_info->state_request == ADC_TM_HIGH_LOW_THR_ENABLE)) if (client_info->low_thr_requested > low_thr) low_thr = client_info->low_thr_requested; pr_debug("threshold compared is high:%d and low:%d\n", client_info->high_thr_requested, client_info->low_thr_requested); pr_debug("current threshold is high:%d and low:%d\n", high_thr, low_thr); } /* Check which of the high_thr and low_thr got set */ list_for_each(thr_list, &prop->thr_list) { client_info = list_entry(thr_list, struct adc_tm_client_info, list); if ((client_info->state_request == ADC_TM_HIGH_THR_ENABLE) || (client_info->state_request == ADC_TM_HIGH_LOW_THR_ENABLE)) if (high_thr == client_info->high_thr_requested) { prop->high_thr_en = 1; client_info->high_thr_set = true; } if ((client_info->state_request == ADC_TM_LOW_THR_ENABLE) || (client_info->state_request == ADC_TM_HIGH_LOW_THR_ENABLE)) if (low_thr == client_info->low_thr_requested) { prop->low_thr_en = 1; client_info->low_thr_set = true; } } tm_config.high_thr_voltage = (int64_t)high_thr; tm_config.low_thr_voltage = (int64_t)low_thr; scale_type = prop->adc_rscale_fn; if (scale_type >= SCALE_RSCALE_NONE) return -EBADF; adc_tm_rscale_fn[scale_type].chan(&tm_config); prop->low_thr_voltage = tm_config.low_thr_voltage; prop->high_thr_voltage = tm_config.high_thr_voltage; pr_debug("threshold written is high:%d and low:%d\n", high_thr, low_thr); return 0; } /* Used to notify non-thermal clients of threshold crossing */ void notify_adc_tm_fn(struct work_struct *work) { struct adc5_channel_prop *prop = container_of(work, struct adc5_channel_prop, work); struct adc_tm_client_info *client_info = NULL; struct adc5_chip *chip; struct list_head *thr_list; int ret; chip = prop->chip; mutex_lock(&chip->lock); if (prop->low_thr_triggered) { /* adjust thr, calling manage_thr */ list_for_each(thr_list, &prop->thr_list) { client_info = list_entry(thr_list, struct adc_tm_client_info, list); if (client_info->low_thr_set) { client_info->low_thr_set = false; client_info->notify_low_thr = true; if (client_info->state_request == ADC_TM_HIGH_LOW_THR_ENABLE) client_info->state_request = ADC_TM_HIGH_THR_ENABLE; else client_info->state_request = ADC_TM_LOW_THR_DISABLE; } } prop->low_thr_triggered = false; } if (prop->high_thr_triggered) { /* adjust thr, calling manage_thr */ list_for_each(thr_list, &prop->thr_list) { client_info = list_entry(thr_list, struct adc_tm_client_info, list); if (client_info->high_thr_set) { client_info->high_thr_set = false; client_info->notify_high_thr = true; if (client_info->state_request == ADC_TM_HIGH_LOW_THR_ENABLE) client_info->state_request = ADC_TM_LOW_THR_ENABLE; else client_info->state_request = ADC_TM_HIGH_THR_DISABLE; } } prop->high_thr_triggered = false; } ret = adc_tm_gen3_manage_thresholds(prop); if (ret < 0) pr_err("Error in reverse scaling:%d\n", ret); ret = adc_tm5_gen3_configure(prop); if (ret < 0) pr_err("Error during adc-tm configure:%d\n", ret); mutex_unlock(&chip->lock); list_for_each_entry(client_info, &prop->thr_list, list) { if (client_info->notify_low_thr && client_info->param->threshold_notification != NULL) { pr_debug("notify kernel with low state for channel 0x%x\n", prop->channel); client_info->param->threshold_notification( ADC_TM_LOW_STATE, client_info->param->btm_ctx); client_info->notify_low_thr = false; } if (client_info->notify_high_thr && client_info->param->threshold_notification != NULL) { pr_debug("notify kernel with high state for channel 0x%x\n", prop->channel); client_info->param->threshold_notification( ADC_TM_HIGH_STATE, client_info->param->btm_ctx); client_info->notify_high_thr = false; } } } /* Used by non-thermal clients to configure an ADC_TM channel */ int32_t adc_tm_channel_measure_gen3(struct adc5_chip *chip, struct adc_tm_param *param) { int ret, i; uint32_t v_channel, dt_index = 0; bool chan_found = false; if (param == NULL) return -EINVAL; if (param->threshold_notification == NULL) { pr_debug("No notification for high/low temp\n"); return -EINVAL; } for (i = 0; i < chip->nchannels; i++) { v_channel = V_CHAN(chip->chan_props[i]); if (v_channel == param->channel) { dt_index = i; chan_found = true; break; } } if (!chan_found) { pr_err("not a valid ADC_TM channel\n"); return -EINVAL; } mutex_lock(&chip->lock); /* add channel client to channel list */ adc_tm_add_to_list(chip, dt_index, param); /* set right thresholds for the sensor */ ret = adc_tm_gen3_manage_thresholds(&chip->chan_props[dt_index]); if (ret < 0) pr_err("Error in reverse scaling:%d\n", ret); /* configure channel */ ret = adc_tm5_gen3_configure(&chip->chan_props[dt_index]); if (ret < 0) { pr_err("Error during adc-tm configure:%d\n", ret); goto fail_unlock; } fail_unlock: mutex_unlock(&chip->lock); return ret; } EXPORT_SYMBOL(adc_tm_channel_measure_gen3); /* Used by non-thermal clients to release an ADC_TM channel */ int32_t adc_tm_disable_chan_meas_gen3(struct adc5_chip *chip, struct adc_tm_param *param) { int ret = 0, i; uint32_t dt_index = 0, v_channel; struct adc_tm_client_info *client_info = NULL; if (param == NULL) return -EINVAL; for (i = 0; i < chip->nchannels; i++) { v_channel = V_CHAN(chip->chan_props[i]); if (v_channel == param->channel) { dt_index = i; break; } } if (i == chip->nchannels) { pr_err("not a valid ADC_TM channel\n"); return -EINVAL; } mutex_lock(&chip->lock); list_for_each_entry(client_info, &chip->chan_props[i].thr_list, list) { if (client_info->param->id == param->id) { client_info->state_request = ADC_TM_HIGH_LOW_THR_DISABLE; ret = adc_tm_gen3_manage_thresholds(&chip->chan_props[i]); if (ret < 0) { pr_err("Error in reverse scaling:%d\n", ret); goto fail; } ret = adc_tm5_gen3_configure(&chip->chan_props[i]); if (ret < 0) { pr_err("Error during adc-tm configure:%d\n", ret); goto fail; } } } fail: mutex_unlock(&chip->lock); return ret; } EXPORT_SYMBOL(adc_tm_disable_chan_meas_gen3); static struct thermal_zone_device_ops adc_tm_ops = { .get_temp = adc_tm_gen3_get_temp, .set_trips = adc_tm5_gen3_set_trip_temp, }; static struct thermal_zone_device_ops adc_tm_ops_iio = { .get_temp = adc_tm_gen3_get_temp, }; static int adc_tm_register_tzd(struct adc5_chip *adc) { unsigned int i, channel; struct thermal_zone_device *tzd; for (i = 0; i < adc->nchannels; i++) { channel = V_CHAN(adc->chan_props[i]); switch (adc->chan_props[i].adc_tm) { case ADC_TM_NONE: continue; case ADC_TM: tzd = devm_thermal_of_zone_register( adc->dev, channel, &adc->chan_props[i], &adc_tm_ops); break; case ADC_TM_IIO: tzd = devm_thermal_of_zone_register( adc->dev, channel, &adc->chan_props[i], &adc_tm_ops_iio); break; case ADC_TM_NON_THERMAL: tzd = NULL; break; default: pr_err("Invalid ADC_TM type:%d for dt_ch:%d\n", adc->chan_props[i].adc_tm, adc->chan_props[i].channel); return -EINVAL; } if (IS_ERR(tzd)) { pr_err("Error registering TZ zone:%ld for dt_ch:%d\n", PTR_ERR(tzd), adc->chan_props[i].channel); return PTR_ERR(tzd); } adc->chan_props[i].tzd = tzd; } return 0; } struct adc5_channels { const char *datasheet_name; unsigned int prescale_index; enum iio_chan_type type; long info_mask; enum vadc_scale_fn_type scale_fn_type; }; /* In these definitions, _pre refers to an index into adc5_prescale_ratios. */ #define ADC5_CHAN(_dname, _type, _mask, _pre, _scale) \ { \ .datasheet_name = _dname, \ .prescale_index = _pre, \ .type = _type, \ .info_mask = _mask, \ .scale_fn_type = _scale, \ }, \ #define ADC5_CHAN_TEMP(_dname, _pre, _scale) \ ADC5_CHAN(_dname, IIO_TEMP, \ BIT(IIO_CHAN_INFO_PROCESSED), \ _pre, _scale) \ #define ADC5_CHAN_VOLT(_dname, _pre, _scale) \ ADC5_CHAN(_dname, IIO_VOLTAGE, \ BIT(IIO_CHAN_INFO_PROCESSED), \ _pre, _scale) \ #define ADC5_CHAN_CUR(_dname, _pre, _scale) \ ADC5_CHAN(_dname, IIO_CURRENT, \ BIT(IIO_CHAN_INFO_PROCESSED), \ _pre, _scale) \ static const struct adc5_channels adc5_chans_pmic[ADC5_MAX_CHANNEL] = { [ADC5_GEN3_OFFSET_REF] = ADC5_CHAN_VOLT("ref_gnd", 0, SCALE_HW_CALIB_DEFAULT) [ADC5_GEN3_1P25VREF] = ADC5_CHAN_VOLT("vref_1p25", 0, SCALE_HW_CALIB_DEFAULT) [ADC5_GEN3_VPH_PWR] = ADC5_CHAN_VOLT("vph_pwr", 1, SCALE_HW_CALIB_DEFAULT) [ADC5_GEN3_VBAT_SNS_QBG] = ADC5_CHAN_VOLT("vbat_sns", 1, SCALE_HW_CALIB_DEFAULT) [ADC5_GEN3_AMUX3_THM] = ADC5_CHAN_TEMP("smb_temp", 9, SCALE_HW_CALIB_PM7_SMB_TEMP) [ADC5_GEN3_AMUX5_THM] = ADC5_CHAN_VOLT("pot_res", 0, SCALE_HW_CALIB_DEFAULT) [ADC5_GEN3_CHG_TEMP] = ADC5_CHAN_TEMP("chg_temp", 0, SCALE_HW_CALIB_PM7_CHG_TEMP) [ADC5_GEN3_USB_SNS_V_16] = ADC5_CHAN_TEMP("usb_sns_v_div_16", 8, SCALE_HW_CALIB_DEFAULT) [ADC5_GEN3_VIN_DIV16_MUX] = ADC5_CHAN_TEMP("vin_div_16", 8, SCALE_HW_CALIB_DEFAULT) [ADC5_GEN3_IIN_FB] = ADC5_CHAN_CUR("iin_fb", 10, SCALE_HW_CALIB_CUR) [ADC5_GEN3_ICHG_SMB] = ADC5_CHAN_CUR("ichg_smb", 13, SCALE_HW_CALIB_CUR) [ADC5_GEN3_IIN_SMB] = ADC5_CHAN_CUR("iin_smb", 12, SCALE_HW_CALIB_CUR) [ADC5_GEN3_ICHG_FB] = ADC5_CHAN_CUR("ichg_fb", 16, SCALE_HW_CALIB_CUR_RAW) [ADC5_GEN3_DIE_TEMP] = ADC5_CHAN_TEMP("die_temp", 0, SCALE_HW_CALIB_PMIC_THERM_PM7) [ADC5_GEN3_TEMP_ALARM_LITE] = ADC5_CHAN_TEMP("die_temp_lite", 0, SCALE_HW_CALIB_PMIC_THERM_PM7) [ADC5_GEN3_AMUX1_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm1_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX2_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm2_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX3_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm3_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX4_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm4_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX5_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm5_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX6_THM_100K_PU] = ADC5_CHAN_TEMP("amux_thm6_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX1_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux1_gpio_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX2_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux2_gpio_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX3_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux3_gpio_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) [ADC5_GEN3_AMUX4_GPIO_100K_PU] = ADC5_CHAN_TEMP("amux4_gpio_pu2", 0, SCALE_HW_CALIB_THERM_100K_PU_PM7) }; static int adc5_get_dt_channel_data(struct adc5_chip *adc, struct adc5_channel_prop *prop, struct device_node *node, const struct adc5_data *data) { const char *name = node->name, *channel_name; u32 chan, value, varr[2]; u32 sid = 0; int ret, val; struct device *dev = adc->dev; ret = of_property_read_u32(node, "reg", &chan); if (ret < 0) { dev_err(dev, "invalid channel number %s\n", name); return ret; } /* * Value read from "reg" is virtual channel number * virtual channel number = (sid << 8 | channel number). */ sid = (chan >> ADC5_GEN3_SID_OFFSET); chan = (chan & ADC5_GEN3_CHANNEL_MASK); if (chan > ADC5_OFFSET_EXT2 || !data->adc_chans[chan].datasheet_name) { dev_err(dev, "%s invalid channel number %d\n", name, chan); return -EINVAL; } /* the channel has DT description */ prop->channel = chan; prop->sid = sid; channel_name = of_get_property(node, "label", NULL) ? : node->name; if (!channel_name) { pr_err("Invalid channel name\n"); return -EINVAL; } prop->datasheet_name = channel_name; ret = of_property_read_u32(node, "qcom,decimation", &value); if (!ret) { ret = adc5_decimation_from_dt(value, data->decimation); if (ret < 0) { dev_err(dev, "%02x invalid decimation %d\n", chan, value); return ret; } prop->decimation = ret; } else { prop->decimation = ADC5_DECIMATION_DEFAULT; } ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2); if (!ret) { ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]); if (ret < 0) { dev_err(dev, "%02x invalid pre-scaling <%d %d>\n", chan, varr[0], varr[1]); return ret; } prop->prescale = ret; } else { prop->prescale = adc->data->adc_chans[prop->channel].prescale_index; } ret = of_property_read_u32(node, "qcom,hw-settle-time", &value); if (!ret) { ret = adc5_hw_settle_time_from_dt(value, data->hw_settle_1); if (ret < 0) { dev_err(dev, "%02x invalid hw-settle-time %d us\n", chan, value); return ret; } prop->hw_settle_time = ret; } else { prop->hw_settle_time = VADC_DEF_HW_SETTLE_TIME; } ret = of_property_read_u32(node, "qcom,avg-samples", &value); if (!ret) { ret = adc5_avg_samples_from_dt(value); if (ret < 0) { dev_err(dev, "%02x invalid avg-samples %d\n", chan, value); return ret; } prop->avg_samples = ret; } else { prop->avg_samples = VADC_DEF_AVG_SAMPLES; } prop->scale_fn_type = -EINVAL; ret = of_property_read_u32(node, "qcom,scale-fn-type", &value); if (!ret && value < SCALE_HW_CALIB_INVALID) prop->scale_fn_type = value; if (of_property_read_bool(node, "qcom,ratiometric")) prop->cal_method = ADC5_RATIOMETRIC_CAL; else prop->cal_method = ADC5_ABSOLUTE_CAL; prop->timer = MEAS_INT_IMMEDIATE; prop->adc_tm = ADC_TM_NONE; ret = of_property_read_u32(node, "qcom,adc-tm-type", &value); if (!ret && value < ADC_TM_INVALID) prop->adc_tm = value; if (prop->adc_tm == ADC_TM_NON_THERMAL) { ret = of_property_read_u32(node, "qcom,rscale-type", &prop->adc_rscale_fn); if (ret < 0) prop->adc_rscale_fn = SCALE_RSCALE_NONE; } if (prop->adc_tm && prop->adc_tm != ADC_TM_IIO) { adc->n_tm_channels++; if (adc->n_tm_channels > ((adc->num_sdams * 8) - 1)) { pr_err("Number of TM nodes %u greater than channels supported:%u\n", adc->n_tm_channels, (adc->num_sdams * 8) - 1); return -EINVAL; } val = adc->n_tm_channels / 8; prop->sdam_index = val; prop->tm_chan_index = adc->n_tm_channels - (8*val); prop->timer = MEAS_INT_1S; if (prop->adc_tm == ADC_TM_NON_THERMAL) { prop->req_wq = alloc_workqueue( "adc_tm_notify_wq", WQ_HIGHPRI, 0); if (!prop->req_wq) { pr_err("Requesting priority wq failed\n"); return -ENOMEM; } INIT_WORK(&prop->work, notify_adc_tm_fn); } INIT_LIST_HEAD(&prop->thr_list); } dev_dbg(dev, "%02x name %s\n", chan, name); return 0; } static const struct adc5_data adc5_gen3_data_pmic = { .name = "pm-adc5-gen3", .full_scale_code_volt = 0x70e4, .full_scale_code_cur = 0x2ee0, .adc_chans = adc5_chans_pmic, .decimation = (unsigned int [ADC5_DECIMATION_SAMPLES_MAX]) {85, 340, 1360}, .hw_settle_1 = (unsigned int [VADC_HW_SETTLE_SAMPLES_MAX]) {15, 100, 200, 300, 400, 500, 600, 700, 1000, 2000, 4000, 8000, 16000, 32000, 64000, 128000}, }; static const struct of_device_id adc5_match_table[] = { { .compatible = "qcom,spmi-adc5-gen3", .data = &adc5_gen3_data_pmic, }, { } }; MODULE_DEVICE_TABLE(of, adc5_match_table); static int adc5_get_dt_data(struct adc5_chip *adc, struct device_node *node) { const struct adc5_channels *adc_chan; struct iio_chan_spec *iio_chan; struct adc5_channel_prop *chan_props; struct device_node *child; unsigned int index = 0; const struct of_device_id *id; const struct adc5_data *data; int ret; adc->nchannels = of_get_available_child_count(node); if (!adc->nchannels) return -EINVAL; adc->iio_chans = devm_kcalloc(adc->dev, adc->nchannels, sizeof(*adc->iio_chans), GFP_KERNEL); if (!adc->iio_chans) return -ENOMEM; adc->chan_props = devm_kcalloc(adc->dev, adc->nchannels, sizeof(*adc->chan_props), GFP_KERNEL); if (!adc->chan_props) return -ENOMEM; chan_props = adc->chan_props; adc->n_tm_channels = 0; iio_chan = adc->iio_chans; id = of_match_node(adc5_match_table, node); if (id) data = id->data; else data = &adc5_gen3_data_pmic; adc->data = data; for_each_available_child_of_node(node, child) { ret = adc5_get_dt_channel_data(adc, chan_props, child, data); if (ret < 0) { of_node_put(child); return ret; } chan_props->chip = adc; if (chan_props->scale_fn_type == -EINVAL) chan_props->scale_fn_type = data->adc_chans[chan_props->channel].scale_fn_type; adc_chan = &data->adc_chans[chan_props->channel]; iio_chan->channel = chan_props->channel; iio_chan->datasheet_name = chan_props->datasheet_name; iio_chan->extend_name = chan_props->datasheet_name; iio_chan->info_mask_separate = adc_chan->info_mask; iio_chan->type = adc_chan->type; iio_chan->address = index; iio_chan++; chan_props++; index++; } return 0; } static int adc5_gen3_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device *dev = &pdev->dev; struct iio_dev *indio_dev; struct adc5_chip *adc; struct regmap *regmap; int ret, i; u32 reg; char buf[20]; regmap = dev_get_regmap(dev->parent, NULL); if (!regmap) return -ENODEV; indio_dev = devm_iio_device_alloc(dev, sizeof(*adc)); if (!indio_dev) return -ENOMEM; adc = iio_priv(indio_dev); adc->regmap = regmap; adc->dev = dev; ret = of_property_count_u32_elems(node, "reg"); if (ret < 0) return ret; adc->num_sdams = ret; adc->base = devm_kcalloc(adc->dev, adc->num_sdams, sizeof(*adc->base), GFP_KERNEL); if (!adc->base) return -ENOMEM; for (i = 0; i < adc->num_sdams; i++) { ret = of_property_read_u32_index(node, "reg", i, ®); if (ret < 0) return ret; adc->base[i].base_addr = reg; scnprintf(buf, sizeof(buf), "adc-sdam%d", i); ret = of_irq_get_byname(node, buf); if (ret < 0) { pr_err("Failed to get irq for ADC5 GEN3 SDAM%d, ret=%d\n", i, ret); return ret; } adc->base[i].irq = ret; adc->base[i].irq_name = devm_kstrdup(adc->dev, buf, GFP_KERNEL); if (!adc->base[i].irq_name) return -ENOMEM; } if (!of_property_read_u32(node, "qcom,debug-base", ®)) adc->debug_base = reg; platform_set_drvdata(pdev, adc); indio_dev->info = &adc5_gen3_info; init_completion(&adc->complete); mutex_init(&adc->lock); ret = adc5_get_dt_data(adc, node); if (ret < 0) { pr_err("adc get dt data failed\n"); goto fail; } for (i = 0; i < adc->num_sdams; i++) { ret = request_irq(adc->base[i].irq, adc5_gen3_isr, 0, adc->base[i].irq_name, adc); if (ret < 0) goto irq_fail; } ret = adc_tm_register_tzd(adc); if (ret < 0) goto irq_fail; adc->adc_md = thermal_minidump_register("adc5_gen3"); if (adc->n_tm_channels) INIT_WORK(&adc->tm_handler_work, tm_handler_work); indio_dev->dev.parent = dev; indio_dev->dev.of_node = node; indio_dev->name = pdev->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->channels = adc->iio_chans; indio_dev->num_channels = adc->nchannels; list_add_tail(&adc->list, &adc_tm_device_list); adc->device_list = &adc_tm_device_list; ret = devm_iio_device_register(dev, indio_dev); if (!ret) return 0; irq_fail: for (i = 0; i < adc->num_sdams; i++) free_irq(adc->base[i].irq, adc); fail: i = 0; while (i < adc->nchannels) { if (adc->chan_props[i].req_wq) destroy_workqueue(adc->chan_props[i].req_wq); i++; } return ret; } static int adc5_gen3_remove(struct platform_device *pdev) { struct adc5_chip *adc = platform_get_drvdata(pdev); u8 data = 0; int i, sdam_index; if (adc->n_tm_channels) cancel_work_sync(&adc->tm_handler_work); for (i = 0; i < adc->num_sdams; i++) free_irq(adc->base[i].irq, adc); mutex_lock(&adc->lock); for (i = 0; i < adc->nchannels; i++) { if (adc->chan_props[i].req_wq) destroy_workqueue(adc->chan_props[i].req_wq); adc->chan_props[i].timer = MEAS_INT_DISABLE; } /* Disable all available channels */ for (i = 0; i < adc->num_sdams * 8; i++) { sdam_index = i / 8; adc5_gen3_poll_wait_hs(adc, sdam_index); data = MEAS_INT_DISABLE; adc5_write(adc, sdam_index, ADC5_GEN3_TIMER_SEL, &data, 1); /* To indicate there is an actual conversion request */ data = ADC5_GEN3_CHAN_CONV_REQ | (i - (sdam_index*8)); adc5_write(adc, sdam_index, ADC5_GEN3_PERPH_CH, &data, 1); data = ADC5_GEN3_CONV_REQ_REQ; adc5_write(adc, sdam_index, ADC5_GEN3_CONV_REQ, &data, 1); } mutex_unlock(&adc->lock); mutex_destroy(&adc->lock); list_del(&adc->list); thermal_minidump_unregister(adc->adc_md); return 0; } static int adc5_gen3_freeze(struct device *dev) { struct adc5_chip *adc = dev_get_drvdata(dev); int i = 0; mutex_lock(&adc->lock); for (i = 0; i < adc->num_sdams; i++) free_irq(adc->base[i].irq, adc); mutex_unlock(&adc->lock); return 0; } static int adc5_gen3_restore(struct device *dev) { struct adc5_chip *adc = dev_get_drvdata(dev); int i = 0; int ret = 0; for (i = 0; i < adc->num_sdams; i++) { ret = request_irq(adc->base[i].irq, adc5_gen3_isr, 0, adc->base[i].irq_name, adc); if (ret < 0) return ret; } return ret; } static const struct dev_pm_ops adc5_gen3_pm_ops = { .freeze = adc5_gen3_freeze, .restore = adc5_gen3_restore, }; static struct platform_driver adc5_gen3_driver = { .driver = { .name = "qcom-spmi-adc5-gen3", .of_match_table = adc5_match_table, .pm = &adc5_gen3_pm_ops, }, .probe = adc5_gen3_probe, .remove = adc5_gen3_remove, }; module_platform_driver(adc5_gen3_driver); MODULE_ALIAS("platform:qcom-spmi-adc5-gen3"); MODULE_DESCRIPTION("Qualcomm Technologies Inc. PMIC5 Gen3 ADC driver"); MODULE_LICENSE("GPL v2");