// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018, 2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023-2024, Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_QCOM_LMH_STAT) #include #include #endif #if IS_ENABLED(CONFIG_SEC_PM_LOG) #include #endif #define CREATE_TRACE_POINTS #include #include #define LUT_MAX_ENTRIES 40U #define LUT_SRC GENMASK(31, 30) #define LUT_L_VAL GENMASK(7, 0) #define LUT_CORE_COUNT GENMASK(18, 16) #define LUT_VOLT GENMASK(11, 0) #define CLK_HW_DIV 2 #define LUT_TURBO_IND 1 #define MAX_FN_SIZE 20 #define GT_IRQ_STATUS BIT(2) #define CYCLE_CNTR_OFFSET(core_id, m, acc_count) \ (acc_count ? ((core_id + 1) * 4) : 0) struct cpufreq_counter { u64 total_cycle_counter; u32 prev_cycle_counter; spinlock_t lock; }; static struct cpufreq_counter qcom_cpufreq_counter[NR_CPUS]; struct qcom_cpufreq_soc_data { u32 reg_enable; u32 reg_domain_state; u32 reg_dcvs_ctrl; u32 reg_freq_lut; u32 reg_volt_lut; u32 reg_intr_clr; u32 reg_current_vote; u32 reg_perf_state; u32 reg_cycle_cntr; u32 lut_max_entries; u8 lut_row_size; bool accumulative_counter; bool turbo_ind_support; bool perf_lock_support; }; struct qcom_cpufreq_data { void __iomem *base; void __iomem *pdmem_base; struct resource *res; const struct qcom_cpufreq_soc_data *soc_data; /* * Mutex to synchronize between de-init sequence and re-starting LMh * polling/interrupts */ struct mutex throttle_lock; int hw_clk_domain; int throttle_irq; char irq_name[15]; bool cancel_throttle; struct delayed_work throttle_work; struct cpufreq_policy *policy; unsigned long last_non_boost_freq; bool per_core_dcvs; unsigned long dcvsh_freq_limit; struct device_attribute freq_limit_attr; #if IS_ENABLED(CONFIG_QCOM_LMH_STAT) unsigned long long last_time; unsigned int state_num; unsigned int max_state; unsigned int last_index; u64 *time_in_state; unsigned int *freq_table; struct device_attribute time_in_state_attr; #endif #if IS_ENABLED(CONFIG_SEC_PM_LOG) unsigned long lowest_freq; bool limiting; ktime_t start_time; ktime_t limited_time; unsigned long accu_time; #endif }; #if IS_ENABLED(CONFIG_QCOM_LMH_STAT) static int freq_table_get_index(struct qcom_cpufreq_data *data, unsigned int freq) { int i; for (i = 0; i < data->max_state; i++) if (data->freq_table[i] == freq) return i; return -1; } static int freq_table_highest_index(struct qcom_cpufreq_data *data) { int i, high_idx = -1; unsigned int high_freq = 0; if (data->max_state == 0) return high_idx; for (i = 0; i < data->max_state; i++) { if (data->freq_table[i] > high_freq) { high_idx = i; high_freq = data->freq_table[i]; } } return high_idx; } static void throttle_stats_update(struct qcom_cpufreq_data *data, unsigned long long time) { unsigned long long cur_time = local_clock(); data->time_in_state[data->last_index] += cur_time - time; data->last_time = cur_time; } static void time_in_state_update(struct qcom_cpufreq_data *data, unsigned long throttled_freq) { int new_index, old_index; if (data->max_state == 0) return; old_index = data->last_index; new_index = freq_table_get_index(data, throttled_freq); if (old_index == -1 || new_index == -1) return; throttle_stats_update(data, data->last_time); data->last_index = new_index; } static ssize_t time_in_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct qcom_cpufreq_data *data = container_of(attr, struct qcom_cpufreq_data, time_in_state_attr); unsigned long long time; ssize_t len = 0; int i; if (data->max_state == 0) return 0; for (i = 0; i < data->state_num; i++) { time = data->time_in_state[i]; if (i == data->last_index) time += local_clock() - data->last_time; len += sprintf(buf + len, "%u %llu\n", data->freq_table[i], div_u64(time, NSEC_PER_MSEC)); } return len; } static int time_in_state_attr_init(struct qcom_cpufreq_data *data, struct device *cpu_dev) { struct cpufreq_frequency_table *pos; unsigned int i = 0, count; unsigned int alloc_size; count = cpufreq_table_count_valid_entries(data->policy); if (!count) return -1; alloc_size = sizeof(u64) * count + sizeof(unsigned int) * count; data->time_in_state = kzalloc(alloc_size, GFP_KERNEL); if (!data->time_in_state) return -1; data->freq_table = (unsigned int *)(data->time_in_state + count); cpufreq_for_each_valid_entry(pos, data->policy->freq_table) if (freq_table_get_index(data, pos->frequency) == -1) data->freq_table[i++] = pos->frequency; data->state_num = i; sysfs_attr_init(&data->time_in_state_attr.attr); data->time_in_state_attr.attr.name = "dcvsh_state_ms"; data->time_in_state_attr.show = time_in_state_show; data->time_in_state_attr.attr.mode = 0444; if (device_create_file(cpu_dev, &data->time_in_state_attr)) { kfree(data->time_in_state); return -1; } /* policy->cpuinfo.max_freq == 0 at this time */ data->max_state = count; data->last_index = freq_table_highest_index(data); data->last_time = local_clock(); pr_err("%s : cpu[%d] max_state %lu, last_time %llu, last_index %d\n", __func__, data->policy->cpu, data->max_state, data->last_time, data->last_index); return 0; } #endif static unsigned long cpu_hw_rate, xo_rate; static bool icc_scaling_enabled; /* * show_hw_clk_domain - the HW clock domain per policy */ static ssize_t show_hw_clk_domain(struct cpufreq_policy *policy, char *buf) { struct qcom_cpufreq_data *data; data = policy->driver_data; if (data) return scnprintf(buf, sizeof(int), "%u\n", data->hw_clk_domain); return -EIO; } cpufreq_freq_attr_ro(hw_clk_domain); static int qcom_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz) { unsigned long freq_hz = freq_khz * 1000; struct dev_pm_opp *opp; struct device *dev; int ret; dev = get_cpu_device(policy->cpu); if (!dev) return -ENODEV; opp = dev_pm_opp_find_freq_exact(dev, freq_hz, true); if (IS_ERR(opp)) return PTR_ERR(opp); ret = dev_pm_opp_set_opp(dev, opp); dev_pm_opp_put(opp); return ret; } static int qcom_cpufreq_update_opp(struct device *cpu_dev, unsigned long freq_khz, unsigned long volt) { unsigned long freq_hz = freq_khz * 1000; int ret; /* Skip voltage update if the opp table is not available */ if (!icc_scaling_enabled) return dev_pm_opp_add(cpu_dev, freq_hz, volt); ret = dev_pm_opp_adjust_voltage(cpu_dev, freq_hz, volt, volt, volt); if (ret) { dev_err(cpu_dev, "Voltage update failed freq=%ld\n", freq_khz); return ret; } return dev_pm_opp_enable(cpu_dev, freq_hz); } u64 qcom_cpufreq_get_cpu_cycle_counter(int cpu) { const struct qcom_cpufreq_soc_data *soc_data; struct cpufreq_counter *cpu_counter; struct qcom_cpufreq_data *data; struct cpufreq_policy *policy; u64 cycle_counter_ret; unsigned long flags; u16 offset; u32 val; policy = cpufreq_cpu_get_raw(cpu); if (!policy) return 0; data = policy->driver_data; soc_data = data->soc_data; cpu_counter = &qcom_cpufreq_counter[cpu]; spin_lock_irqsave(&cpu_counter->lock, flags); offset = CYCLE_CNTR_OFFSET(topology_core_id(cpu), policy->related_cpus, soc_data->accumulative_counter); val = readl_relaxed(data->base + soc_data->reg_cycle_cntr + offset); if (val < cpu_counter->prev_cycle_counter) { /* Handle counter overflow */ cpu_counter->total_cycle_counter += UINT_MAX - cpu_counter->prev_cycle_counter + val; cpu_counter->prev_cycle_counter = val; } else { cpu_counter->total_cycle_counter += val - cpu_counter->prev_cycle_counter; cpu_counter->prev_cycle_counter = val; } cycle_counter_ret = cpu_counter->total_cycle_counter; spin_unlock_irqrestore(&cpu_counter->lock, flags); pr_debug("CPU %u, core-id 0x%x, offset %u\n", cpu, topology_core_id(cpu), offset); return cycle_counter_ret; } EXPORT_SYMBOL(qcom_cpufreq_get_cpu_cycle_counter); static void __cpufreq_hw_target_index_call_notifier_chain(struct cpufreq_policy *policy, unsigned int index); static int qcom_cpufreq_hw_target_index(struct cpufreq_policy *policy, unsigned int index) { struct qcom_cpufreq_data *data = policy->driver_data; const struct qcom_cpufreq_soc_data *soc_data = data->soc_data; unsigned long freq = policy->freq_table[index].frequency; unsigned int i; __cpufreq_hw_target_index_call_notifier_chain(policy, index); if (soc_data->perf_lock_support) { if (data->pdmem_base) writel_relaxed(index, data->pdmem_base); } writel_relaxed(index, data->base + soc_data->reg_perf_state); if (data->per_core_dcvs) for (i = 1; i < cpumask_weight(policy->related_cpus); i++) writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4); if (icc_scaling_enabled) qcom_cpufreq_set_bw(policy, freq); return 0; } static unsigned long qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data) { unsigned int lval; if (data->soc_data->reg_current_vote) lval = readl_relaxed(data->base + data->soc_data->reg_current_vote) & 0x3ff; else lval = readl_relaxed(data->base + data->soc_data->reg_domain_state) & 0xff; return lval * xo_rate; } /* Get the frequency requested by the cpufreq core for the CPU */ static unsigned int qcom_cpufreq_get_freq(unsigned int cpu) { struct qcom_cpufreq_data *data; const struct qcom_cpufreq_soc_data *soc_data; struct cpufreq_policy *policy; unsigned int index; policy = cpufreq_cpu_get_raw(cpu); if (!policy) return 0; data = policy->driver_data; soc_data = data->soc_data; index = readl_relaxed(data->base + soc_data->reg_perf_state); index = min(index, soc_data->lut_max_entries - 1); return policy->freq_table[index].frequency; } static unsigned int qcom_cpufreq_hw_get(unsigned int cpu) { struct qcom_cpufreq_data *data; struct cpufreq_policy *policy; policy = cpufreq_cpu_get_raw(cpu); if (!policy) return 0; data = policy->driver_data; if (data->throttle_irq >= 0) return qcom_lmh_get_throttle_freq(data) / HZ_PER_KHZ; return qcom_cpufreq_get_freq(cpu); } static unsigned int qcom_cpufreq_hw_fast_switch(struct cpufreq_policy *policy, unsigned int target_freq) { struct qcom_cpufreq_data *data = policy->driver_data; const struct qcom_cpufreq_soc_data *soc_data = data->soc_data; unsigned int index; unsigned int i; index = policy->cached_resolved_idx; writel_relaxed(index, data->base + soc_data->reg_perf_state); if (data->per_core_dcvs) for (i = 1; i < cpumask_weight(policy->related_cpus); i++) writel_relaxed(index, data->base + soc_data->reg_perf_state + i * 4); return policy->freq_table[index].frequency; } static int qcom_cpufreq_hw_read_lut(struct device *cpu_dev, struct cpufreq_policy *policy) { u32 data, src, lval, i, core_count, prev_freq = 0, freq; u32 volt, max_cc = 0; struct cpufreq_frequency_table *table; struct dev_pm_opp *opp; unsigned long rate; int ret; struct qcom_cpufreq_data *drv_data = policy->driver_data; const struct qcom_cpufreq_soc_data *soc_data = drv_data->soc_data; table = kcalloc(soc_data->lut_max_entries + 1, sizeof(*table), GFP_KERNEL); if (!table) return -ENOMEM; ret = dev_pm_opp_of_add_table(cpu_dev); if (!ret) { /* Disable all opps and cross-validate against LUT later */ icc_scaling_enabled = true; for (rate = 0; ; rate++) { opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate); if (IS_ERR(opp)) break; dev_pm_opp_put(opp); dev_pm_opp_disable(cpu_dev, rate); } } else if (ret != -ENODEV) { dev_err(cpu_dev, "Invalid opp table in device tree\n"); kfree(table); return ret; } else { policy->fast_switch_possible = true; icc_scaling_enabled = false; } for (i = 0; i < soc_data->lut_max_entries; i++) { data = readl_relaxed(drv_data->base + soc_data->reg_freq_lut + i * soc_data->lut_row_size); src = FIELD_GET(LUT_SRC, data); lval = FIELD_GET(LUT_L_VAL, data); core_count = FIELD_GET(LUT_CORE_COUNT, data); if (i == 0) max_cc = core_count; data = readl_relaxed(drv_data->base + soc_data->reg_volt_lut + i * soc_data->lut_row_size); volt = FIELD_GET(LUT_VOLT, data) * 1000; if (src) freq = xo_rate * lval / 1000; else freq = cpu_hw_rate / 1000; if (core_count == LUT_TURBO_IND && soc_data->turbo_ind_support) table[i].frequency = CPUFREQ_ENTRY_INVALID; else if (freq != prev_freq) { if (!qcom_cpufreq_update_opp(cpu_dev, freq, volt)) { table[i].frequency = freq; if (core_count < max_cc) table[i].flags = CPUFREQ_BOOST_FREQ; dev_dbg(cpu_dev, "index=%d freq=%d, core_count %d\n", i, freq, core_count); } else { dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq); table[i].frequency = CPUFREQ_ENTRY_INVALID; } } /* * Two of the same frequencies with the same core counts means * end of table */ if (i > 0 && prev_freq == freq) { struct cpufreq_frequency_table *prev = &table[i - 1]; /* * Only treat the last frequency that might be a boost * as the boost frequency */ if (prev->frequency == CPUFREQ_ENTRY_INVALID) { if (!qcom_cpufreq_update_opp(cpu_dev, prev_freq, volt)) { prev->frequency = prev_freq; prev->flags = CPUFREQ_BOOST_FREQ; } else { dev_warn(cpu_dev, "failed to update OPP for freq=%d\n", freq); } } break; } prev_freq = freq; } table[i].frequency = CPUFREQ_TABLE_END; policy->freq_table = table; for (i = 0; i < soc_data->lut_max_entries && table[i].frequency != CPUFREQ_TABLE_END; i++) { if (table[i].flags == CPUFREQ_BOOST_FREQ) break; drv_data->last_non_boost_freq = table[i].frequency; } dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus); return 0; } static void qcom_get_related_cpus(int index, struct cpumask *m) { struct device_node *cpu_np; struct of_phandle_args args; int cpu, ret; for_each_possible_cpu(cpu) { cpu_np = of_cpu_device_node_get(cpu); if (!cpu_np) continue; ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain", "#freq-domain-cells", 0, &args); of_node_put(cpu_np); if (ret < 0) continue; if (index == args.args[0]) cpumask_set_cpu(cpu, m); } } static ssize_t dcvsh_freq_limit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct qcom_cpufreq_data *c = container_of(attr, struct qcom_cpufreq_data, freq_limit_attr); return scnprintf(buf, PAGE_SIZE, "%lu\n", c->dcvsh_freq_limit); } static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data) { struct cpufreq_policy *policy = data->policy; int cpu = cpumask_first(policy->related_cpus); struct device *dev = get_cpu_device(cpu); unsigned long freq_hz, throttled_freq, thermal_pressure; struct dev_pm_opp *opp; unsigned long trace_freq; char lmh_debug[8] = {0}; if (!dev) return; /* * Get the h/w throttled frequency, normalize it using the * registered opp table and use it to calculate thermal pressure. */ freq_hz = qcom_lmh_get_throttle_freq(data); opp = dev_pm_opp_find_freq_floor(dev, &freq_hz); if (IS_ERR(opp) && PTR_ERR(opp) == -ERANGE) opp = dev_pm_opp_find_freq_ceil(dev, &freq_hz); if (IS_ERR(opp)) dev_warn(dev, "Can't find the OPP for throttling: %pe!\n", opp); else dev_pm_opp_put(opp); trace_freq = throttled_freq = thermal_pressure = freq_hz / HZ_PER_KHZ; /* * In the unlikely case policy is unregistered do not enable * polling or h/w interrupt */ mutex_lock(&data->throttle_lock); if (data->cancel_throttle) goto out; /* * If h/w throttled frequency is higher than what cpufreq has requested * for, then stop polling and switch back to interrupt mechanism. */ if (throttled_freq >= qcom_cpufreq_get_freq(cpu)) { trace_freq = thermal_pressure = policy->cpuinfo.max_freq; enable_irq(data->throttle_irq); trace_dcvsh_throttle(cpu, 0); #if IS_ENABLED(CONFIG_SEC_PM_LOG) if (data->limiting == true) { data->limiting = false; data->limited_time = (ktime_get() - data->start_time); data->accu_time += ktime_to_ms(data->limited_time); ss_thermal_print("Fin. lmh cpu%d, lowest %lu, f_lim %lu, dcvsh %lu, accu %d\n", cpu, (data->lowest_freq / 1000), (throttled_freq / 1000), (qcom_cpufreq_hw_get(cpu) / 1000), data->accu_time); data->lowest_freq = UINT_MAX; } #endif } else { /* * If the frequency is at least the highest, non-boost * frequency, then the delta vs. what's requested is likely due * to core-count boost limitations and shouldn't be * communicated as thermal pressure. */ if (throttled_freq >= data->last_non_boost_freq) thermal_pressure = policy->cpuinfo.max_freq; #if IS_ENABLED(CONFIG_SEC_PM_LOG) if (data->limiting == false) { ss_thermal_print("Start lmh cpu%d @%lu\n", cpu, (thermal_pressure / 1000)); data->lowest_freq = thermal_pressure; data->limiting = true; data->start_time = ktime_get(); } else { if (thermal_pressure < data->lowest_freq) data->lowest_freq = thermal_pressure; } #endif mod_delayed_work(system_highpri_wq, &data->throttle_work, msecs_to_jiffies(10)); } trace_dcvsh_freq(cpu, qcom_cpufreq_get_freq(cpu), throttled_freq, thermal_pressure); /* Update thermal pressure (the boost frequencies are accepted) */ arch_update_thermal_pressure(policy->related_cpus, thermal_pressure); data->dcvsh_freq_limit = thermal_pressure; snprintf(lmh_debug, sizeof(lmh_debug), "lmh_%d", cpu); trace_clock_set_rate(lmh_debug, trace_freq, raw_smp_processor_id()); #if IS_ENABLED(CONFIG_QCOM_LMH_STAT) time_in_state_update(data, trace_freq); #endif out: mutex_unlock(&data->throttle_lock); } static void qcom_lmh_dcvs_poll(struct work_struct *work) { struct qcom_cpufreq_data *data; data = container_of(work, struct qcom_cpufreq_data, throttle_work.work); qcom_lmh_dcvs_notify(data); } static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data) { struct qcom_cpufreq_data *c_data = data; struct cpufreq_policy *policy = c_data->policy; /* Disable interrupt and enable polling */ disable_irq_nosync(c_data->throttle_irq); trace_dcvsh_throttle(cpumask_first(policy->cpus), 1); schedule_delayed_work(&c_data->throttle_work, 0); if (c_data->soc_data->reg_intr_clr) writel_relaxed(GT_IRQ_STATUS, c_data->base + c_data->soc_data->reg_intr_clr); return IRQ_HANDLED; } static const struct qcom_cpufreq_soc_data qcom_soc_data = { .reg_enable = 0x0, .reg_dcvs_ctrl = 0xbc, .reg_freq_lut = 0x110, .reg_volt_lut = 0x114, .reg_current_vote = 0x704, .reg_perf_state = 0x920, .reg_cycle_cntr = 0x9c0, .lut_row_size = 32, .lut_max_entries = LUT_MAX_ENTRIES, .accumulative_counter = false, .turbo_ind_support = true, }; static const struct qcom_cpufreq_soc_data epss_soc_data = { .reg_enable = 0x0, .reg_domain_state = 0x20, .reg_dcvs_ctrl = 0xb0, .reg_freq_lut = 0x100, .reg_volt_lut = 0x200, .reg_intr_clr = 0x308, .reg_perf_state = 0x320, .reg_cycle_cntr = 0x3c4, .lut_row_size = 4, .lut_max_entries = LUT_MAX_ENTRIES, .accumulative_counter = true, .turbo_ind_support = false, .perf_lock_support = false, }; static const struct qcom_cpufreq_soc_data epss_pdmem_soc_data = { .reg_enable = 0x0, .reg_domain_state = 0x20, .reg_dcvs_ctrl = 0xb0, .reg_freq_lut = 0x100, .reg_volt_lut = 0x200, .reg_intr_clr = 0x308, .reg_perf_state = 0x320, .reg_cycle_cntr = 0x3c4, .lut_row_size = 4, .lut_max_entries = LUT_MAX_ENTRIES, .accumulative_counter = true, .turbo_ind_support = false, .perf_lock_support = true, }; static const struct qcom_cpufreq_soc_data rimps_soc_data = { .reg_enable = 0x0, .reg_domain_state = 0x20, .reg_dcvs_ctrl = 0xb0, .reg_freq_lut = 0x100, .reg_volt_lut = 0x200, .reg_intr_clr = 0x308, .reg_perf_state = 0x320, .reg_cycle_cntr = 0x3c4, .lut_row_size = 4, .lut_max_entries = 12, .accumulative_counter = true, .turbo_ind_support = false, .perf_lock_support = false, }; static const struct qcom_cpufreq_soc_data rimps_pdmem_soc_data = { .reg_enable = 0x0, .reg_domain_state = 0x20, .reg_dcvs_ctrl = 0xb0, .reg_freq_lut = 0x100, .reg_volt_lut = 0x200, .reg_intr_clr = 0x308, .reg_perf_state = 0x320, .reg_cycle_cntr = 0x3c4, .lut_row_size = 4, .lut_max_entries = 12, .accumulative_counter = true, .turbo_ind_support = false, .perf_lock_support = true, }; static const struct of_device_id qcom_cpufreq_hw_match[] = { { .compatible = "qcom,cpufreq-hw", .data = &qcom_soc_data }, { .compatible = "qcom,cpufreq-epss", .data = &epss_soc_data }, { .compatible = "qcom,cpufreq-epss-pdmem", .data = &epss_pdmem_soc_data }, { .compatible = "qcom,cpufreq-rimps", .data = &rimps_soc_data }, { .compatible = "qcom,cpufreq-rimps-pdmem", .data = &rimps_pdmem_soc_data }, {} }; MODULE_DEVICE_TABLE(of, qcom_cpufreq_hw_match); static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index, struct device *cpu_dev) { struct qcom_cpufreq_data *data = policy->driver_data; struct platform_device *pdev = cpufreq_get_driver_data(); int ret; /* * Look for LMh interrupt. If no interrupt line is specified / * if there is an error, allow cpufreq to be enabled as usual. */ data->throttle_irq = platform_get_irq_optional(pdev, index); if (data->throttle_irq == -ENXIO) return 0; if (data->throttle_irq < 0) return data->throttle_irq; data->cancel_throttle = false; data->policy = policy; mutex_init(&data->throttle_lock); INIT_DELAYED_WORK(&data->throttle_work, qcom_lmh_dcvs_poll); snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu); ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq, IRQF_ONESHOT | IRQF_NO_AUTOEN, data->irq_name, data); if (ret) { dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret); return 0; } ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus); if (ret) dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n", data->irq_name, data->throttle_irq); sysfs_attr_init(&data->freq_limit_attr.attr); data->freq_limit_attr.attr.name = "dcvsh_freq_limit"; data->freq_limit_attr.show = dcvsh_freq_limit_show; data->freq_limit_attr.attr.mode = 0444; data->dcvsh_freq_limit = U32_MAX; device_create_file(cpu_dev, &data->freq_limit_attr); #if IS_ENABLED(CONFIG_SEC_PM_LOG) data->accu_time = 0; #endif #if IS_ENABLED(CONFIG_QCOM_LMH_STAT) if (time_in_state_attr_init(data, cpu_dev)) pr_err("QCOM LMH clock state init error\n"); #endif return 0; } static int qcom_cpufreq_hw_cpu_online(struct cpufreq_policy *policy) { struct qcom_cpufreq_data *data = policy->driver_data; struct platform_device *pdev = cpufreq_get_driver_data(); int ret; if (data->throttle_irq <= 0) return 0; mutex_lock(&data->throttle_lock); data->cancel_throttle = false; mutex_unlock(&data->throttle_lock); ret = irq_set_affinity_and_hint(data->throttle_irq, policy->cpus); if (ret) dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n", data->irq_name, data->throttle_irq); return ret; } static int qcom_cpufreq_hw_cpu_offline(struct cpufreq_policy *policy) { struct qcom_cpufreq_data *data = policy->driver_data; if (data->throttle_irq <= 0) return 0; mutex_lock(&data->throttle_lock); data->cancel_throttle = true; mutex_unlock(&data->throttle_lock); cancel_delayed_work_sync(&data->throttle_work); irq_set_affinity_and_hint(data->throttle_irq, NULL); disable_irq_nosync(data->throttle_irq); arch_update_thermal_pressure(policy->related_cpus, U32_MAX); trace_dcvsh_throttle(cpumask_first(policy->related_cpus), 0); return 0; } static void qcom_cpufreq_hw_lmh_exit(struct qcom_cpufreq_data *data) { if (data->throttle_irq <= 0) return; free_irq(data->throttle_irq, data); } static int qcom_cpufreq_hw_cpu_init(struct cpufreq_policy *policy) { struct platform_device *pdev = cpufreq_get_driver_data(); struct device *dev = &pdev->dev; struct of_phandle_args args; struct device_node *cpu_np; struct device *cpu_dev; struct resource *res; void __iomem *base; struct qcom_cpufreq_data *data; char pdmem_name[MAX_FN_SIZE] = {}; int ret, index; cpu_dev = get_cpu_device(policy->cpu); if (!cpu_dev) { pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu); return -ENODEV; } cpu_np = of_cpu_device_node_get(policy->cpu); if (!cpu_np) return -EINVAL; ret = of_parse_phandle_with_args(cpu_np, "qcom,freq-domain", "#freq-domain-cells", 0, &args); of_node_put(cpu_np); if (ret) return ret; index = args.args[0]; data = policy->driver_data; if (!data) { res = platform_get_resource(pdev, IORESOURCE_MEM, index); if (!res) { dev_err(dev, "failed to get mem resource %d\n", index); return -ENODEV; } if (!devm_request_mem_region(dev, res->start, resource_size(res), res->name)) { dev_err(dev, "failed to request resource %pR\n", res); return -EBUSY; } base = devm_ioremap(dev, res->start, resource_size(res)); if (!base) { dev_err(dev, "failed to map resource %pR\n", res); return -ENOMEM; } data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); if (!data) { return -ENOMEM; } ret = sysfs_create_file(&policy->kobj, &hw_clk_domain.attr); if (ret) { pr_err("%s: cannot register HW clock domain sysfs file\n", __func__); return ret; } data->soc_data = of_device_get_match_data(&pdev->dev); data->base = base; data->res = res; data->hw_clk_domain = index; } base = data->base; /* HW should be in enabled state to proceed */ if (!(readl_relaxed(base + data->soc_data->reg_enable) & 0x1)) { dev_err(dev, "Domain-%d cpufreq hardware not enabled\n", index); ret = -ENODEV; goto error; } if (readl_relaxed(base + data->soc_data->reg_dcvs_ctrl) & 0x1) data->per_core_dcvs = true; qcom_get_related_cpus(index, policy->cpus); if (cpumask_empty(policy->cpus)) { dev_err(dev, "Domain-%d failed to get related CPUs\n", index); ret = -ENOENT; goto error; } policy->driver_data = data; policy->dvfs_possible_from_any_cpu = true; ret = qcom_cpufreq_hw_read_lut(cpu_dev, policy); if (ret) { dev_err(dev, "Domain-%d failed to read LUT\n", index); goto error; } if (data->soc_data->perf_lock_support) { snprintf(pdmem_name, sizeof(pdmem_name), "pdmem-domain%d", index); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, pdmem_name); if (!res) dev_err(dev, "PDMEM domain-%d failed\n", index); base = devm_ioremap_resource(dev, res); if (IS_ERR(base)) dev_err(dev, "Failed to map PDMEM domain-%d\n", index); else data->pdmem_base = base; } ret = dev_pm_opp_get_opp_count(cpu_dev); if (ret <= 0) { dev_err(cpu_dev, "Failed to add OPPs\n"); ret = -ENODEV; goto error; } if (policy_has_boost_freq(policy)) { ret = cpufreq_enable_boost_support(); if (ret) dev_warn(cpu_dev, "failed to enable boost: %d\n", ret); } ret = qcom_cpufreq_hw_lmh_init(policy, index, cpu_dev); if (ret) goto error; return 0; error: policy->driver_data = NULL; return ret; } static int qcom_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy) { struct device *cpu_dev = get_cpu_device(policy->cpu); qcom_cpufreq_hw_lmh_exit(policy->driver_data); dev_pm_opp_remove_all_dynamic(cpu_dev); dev_pm_opp_of_cpumask_remove_table(policy->related_cpus); kfree(policy->freq_table); return 0; } static void qcom_cpufreq_ready(struct cpufreq_policy *policy) { struct qcom_cpufreq_data *data = policy->driver_data; if (data->throttle_irq >= 0) enable_irq(data->throttle_irq); } static struct freq_attr *qcom_cpufreq_hw_attr[] = { &cpufreq_freq_attr_scaling_available_freqs, &cpufreq_freq_attr_scaling_boost_freqs, NULL }; static struct cpufreq_driver cpufreq_qcom_hw_driver = { .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK | CPUFREQ_HAVE_GOVERNOR_PER_POLICY | CPUFREQ_IS_COOLING_DEV, .verify = cpufreq_generic_frequency_table_verify, .target_index = qcom_cpufreq_hw_target_index, .get = qcom_cpufreq_hw_get, .init = qcom_cpufreq_hw_cpu_init, .exit = qcom_cpufreq_hw_cpu_exit, .online = qcom_cpufreq_hw_cpu_online, .offline = qcom_cpufreq_hw_cpu_offline, .register_em = cpufreq_register_em_with_opp, .fast_switch = qcom_cpufreq_hw_fast_switch, .name = "qcom-cpufreq-hw", .attr = qcom_cpufreq_hw_attr, .ready = qcom_cpufreq_ready, .boost_enabled = true, }; static int qcom_cpufreq_hw_driver_probe(struct platform_device *pdev) { struct device *cpu_dev; struct clk *clk; int ret, cpu; clk = clk_get(&pdev->dev, "xo"); if (IS_ERR(clk)) return PTR_ERR(clk); xo_rate = clk_get_rate(clk); clk_put(clk); clk = clk_get(&pdev->dev, "alternate"); if (IS_ERR(clk)) return PTR_ERR(clk); cpu_hw_rate = clk_get_rate(clk) / CLK_HW_DIV; clk_put(clk); cpufreq_qcom_hw_driver.driver_data = pdev; /* Check for optional interconnect paths on CPU0 */ cpu_dev = get_cpu_device(0); if (!cpu_dev) return -EPROBE_DEFER; ret = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL); if (ret) return ret; for_each_possible_cpu(cpu) spin_lock_init(&qcom_cpufreq_counter[cpu].lock); ret = cpufreq_register_driver(&cpufreq_qcom_hw_driver); if (ret) dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n"); else dev_dbg(&pdev->dev, "QCOM CPUFreq HW driver initialized\n"); return ret; } static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev) { return cpufreq_unregister_driver(&cpufreq_qcom_hw_driver); } static struct platform_driver qcom_cpufreq_hw_driver = { .probe = qcom_cpufreq_hw_driver_probe, .remove = qcom_cpufreq_hw_driver_remove, .driver = { .name = "qcom-cpufreq-hw", .of_match_table = qcom_cpufreq_hw_match, }, }; static int __init qcom_cpufreq_hw_init(void) { return platform_driver_register(&qcom_cpufreq_hw_driver); } postcore_initcall(qcom_cpufreq_hw_init); static void __exit qcom_cpufreq_hw_exit(void) { platform_driver_unregister(&qcom_cpufreq_hw_driver); } module_exit(qcom_cpufreq_hw_exit); MODULE_DESCRIPTION("QCOM CPUFREQ HW Driver"); MODULE_LICENSE("GPL v2"); #if IS_ENABLED(CONFIG_SEC_QC_SMEM) static ATOMIC_NOTIFIER_HEAD(target_index_notifier_list); int qcom_cpufreq_hw_target_index_register_notifier(struct notifier_block *nb) { return atomic_notifier_chain_register(&target_index_notifier_list, nb); } EXPORT_SYMBOL(qcom_cpufreq_hw_target_index_register_notifier); int qcom_cpufreq_hw_target_index_unregister_notifier(struct notifier_block *nb) { return atomic_notifier_chain_unregister(&target_index_notifier_list, nb); } EXPORT_SYMBOL(qcom_cpufreq_hw_target_index_unregister_notifier); static void __cpufreq_hw_target_index_call_notifier_chain(struct cpufreq_policy *policy, unsigned int index) { atomic_notifier_call_chain(&target_index_notifier_list, index, policy); } #else static void __cpufreq_hw_target_index_call_notifier_chain(struct cpufreq_policy *policy, unsigned int index) {} #endif