// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 - Google Inc * Author: Andrew Scull */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../sys_regs.h" DEFINE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params); void __kvm_hyp_host_forward_smc(struct kvm_cpu_context *host_ctxt); static bool (*default_host_smc_handler)(struct kvm_cpu_context *host_ctxt); static bool (*default_trap_handler)(struct kvm_cpu_context *host_ctxt); int __pkvm_register_host_smc_handler(bool (*cb)(struct kvm_cpu_context *)) { /* * Paired with smp_load_acquire(&default_host_smc_handler) in * handle_host_smc(). Ensure memory stores happening during a pKVM module * init are observed before executing the callback. */ return cmpxchg_release(&default_host_smc_handler, NULL, cb) ? -EBUSY : 0; } int __pkvm_register_default_trap_handler(bool (*cb)(struct kvm_cpu_context *)) { return cmpxchg(&default_trap_handler, NULL, cb) ? -EBUSY : 0; } static int pkvm_refill_memcache(struct pkvm_hyp_vcpu *hyp_vcpu) { struct pkvm_hyp_vm *hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); u64 nr_pages = VTCR_EL2_LVLS(hyp_vm->kvm.arch.vtcr) - 1; struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; return refill_memcache(&hyp_vcpu->vcpu.arch.pkvm_memcache, nr_pages, &host_vcpu->arch.pkvm_memcache); } typedef void (*hyp_entry_exit_handler_fn)(struct pkvm_hyp_vcpu *); static void handle_pvm_entry_wfx(struct pkvm_hyp_vcpu *hyp_vcpu) { if (vcpu_get_flag(hyp_vcpu->host_vcpu, INCREMENT_PC)) { vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ); kvm_incr_pc(&hyp_vcpu->vcpu); } } static void handle_pvm_entry_psci(struct pkvm_hyp_vcpu *hyp_vcpu) { u32 psci_fn = smccc_get_function(&hyp_vcpu->vcpu); u64 ret = READ_ONCE(hyp_vcpu->host_vcpu->arch.ctxt.regs.regs[0]); switch (psci_fn) { case PSCI_0_2_FN_CPU_ON: case PSCI_0_2_FN64_CPU_ON: /* * Check whether the cpu_on request to the host was successful. * If not, reset the vcpu state from ON_PENDING to OFF. * This could happen if this vcpu attempted to turn on the other * vcpu while the other one is in the process of turning itself * off. */ if (ret != PSCI_RET_SUCCESS) { unsigned long cpu_id = smccc_get_arg1(&hyp_vcpu->vcpu); struct pkvm_hyp_vcpu *target_vcpu; struct pkvm_hyp_vm *hyp_vm; hyp_vm = pkvm_hyp_vcpu_to_hyp_vm(hyp_vcpu); target_vcpu = pkvm_mpidr_to_hyp_vcpu(hyp_vm, cpu_id); if (target_vcpu && READ_ONCE(target_vcpu->power_state) == PSCI_0_2_AFFINITY_LEVEL_ON_PENDING) WRITE_ONCE(target_vcpu->power_state, PSCI_0_2_AFFINITY_LEVEL_OFF); ret = PSCI_RET_INTERNAL_FAILURE; } break; default: break; } vcpu_set_reg(&hyp_vcpu->vcpu, 0, ret); } static void handle_pvm_entry_hvc64(struct pkvm_hyp_vcpu *hyp_vcpu) { u32 fn = smccc_get_function(&hyp_vcpu->vcpu); switch (fn) { case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_MAP_FUNC_ID: pkvm_refill_memcache(hyp_vcpu); break; case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID: fallthrough; case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID: fallthrough; case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID: vcpu_set_reg(&hyp_vcpu->vcpu, 0, SMCCC_RET_SUCCESS); break; default: handle_pvm_entry_psci(hyp_vcpu); break; } } static void handle_pvm_entry_sys64(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; /* Exceptions have priority on anything else */ if (vcpu_get_flag(host_vcpu, PENDING_EXCEPTION)) { /* Exceptions caused by this should be undef exceptions. */ u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT); __vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr; kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC); return; } if (vcpu_get_flag(host_vcpu, INCREMENT_PC)) { vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ); kvm_incr_pc(&hyp_vcpu->vcpu); } if (!esr_sys64_to_params(hyp_vcpu->vcpu.arch.fault.esr_el2).is_write) { /* r0 as transfer register between the guest and the host. */ u64 rt_val = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]); int rt = kvm_vcpu_sys_get_rt(&hyp_vcpu->vcpu); vcpu_set_reg(&hyp_vcpu->vcpu, rt, rt_val); } } static void handle_pvm_entry_iabt(struct pkvm_hyp_vcpu *hyp_vcpu) { unsigned long cpsr = *vcpu_cpsr(&hyp_vcpu->vcpu); u32 esr = ESR_ELx_IL; if (!vcpu_get_flag(hyp_vcpu->host_vcpu, PENDING_EXCEPTION)) return; /* * If the host wants to inject an exception, get syndrom and * fault address. */ if ((cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t) esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT); else esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT); esr |= ESR_ELx_FSC_EXTABT; __vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr; __vcpu_sys_reg(&hyp_vcpu->vcpu, FAR_EL1) = kvm_vcpu_get_hfar(&hyp_vcpu->vcpu); /* Tell the run loop that we want to inject something */ kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC); } static void handle_pvm_entry_dabt(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; bool pc_update; /* Exceptions have priority over anything else */ if (vcpu_get_flag(host_vcpu, PENDING_EXCEPTION)) { unsigned long cpsr = *vcpu_cpsr(&hyp_vcpu->vcpu); u32 esr = ESR_ELx_IL; if ((cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t) esr |= (ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT); else esr |= (ESR_ELx_EC_DABT_CUR << ESR_ELx_EC_SHIFT); esr |= ESR_ELx_FSC_EXTABT; __vcpu_sys_reg(&hyp_vcpu->vcpu, ESR_EL1) = esr; __vcpu_sys_reg(&hyp_vcpu->vcpu, FAR_EL1) = kvm_vcpu_get_hfar(&hyp_vcpu->vcpu); /* Tell the run loop that we want to inject something */ kvm_pend_exception(&hyp_vcpu->vcpu, EXCEPT_AA64_EL1_SYNC); /* Cancel potential in-flight MMIO */ hyp_vcpu->vcpu.mmio_needed = false; return; } /* Handle PC increment on MMIO */ pc_update = (hyp_vcpu->vcpu.mmio_needed && vcpu_get_flag(host_vcpu, INCREMENT_PC)); if (pc_update) { vcpu_clear_flag(&hyp_vcpu->vcpu, PC_UPDATE_REQ); kvm_incr_pc(&hyp_vcpu->vcpu); } /* If we were doing an MMIO read access, update the register*/ if (pc_update && !kvm_vcpu_dabt_iswrite(&hyp_vcpu->vcpu)) { /* r0 as transfer register between the guest and the host. */ u64 rd_val = READ_ONCE(host_vcpu->arch.ctxt.regs.regs[0]); int rd = kvm_vcpu_dabt_get_rd(&hyp_vcpu->vcpu); vcpu_set_reg(&hyp_vcpu->vcpu, rd, rd_val); } hyp_vcpu->vcpu.mmio_needed = false; } static void handle_pvm_exit_wfx(struct pkvm_hyp_vcpu *hyp_vcpu) { WRITE_ONCE(hyp_vcpu->host_vcpu->arch.ctxt.regs.pstate, hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK); WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2, hyp_vcpu->vcpu.arch.fault.esr_el2); } static void handle_pvm_exit_sys64(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; u32 esr_el2 = hyp_vcpu->vcpu.arch.fault.esr_el2; /* r0 as transfer register between the guest and the host. */ WRITE_ONCE(host_vcpu->arch.fault.esr_el2, esr_el2 & ~ESR_ELx_SYS64_ISS_RT_MASK); /* The mode is required for the host to emulate some sysregs */ WRITE_ONCE(host_vcpu->arch.ctxt.regs.pstate, hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK); if (esr_sys64_to_params(esr_el2).is_write) { int rt = kvm_vcpu_sys_get_rt(&hyp_vcpu->vcpu); u64 rt_val = vcpu_get_reg(&hyp_vcpu->vcpu, rt); WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[0], rt_val); } } static void handle_pvm_exit_hvc64(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; int n, i; switch (smccc_get_function(&hyp_vcpu->vcpu)) { /* * CPU_ON takes 3 arguments, however, to wake up the target vcpu the * host only needs to know the target's cpu_id, which is passed as the * first argument. The processing of the reset state is done at hyp. */ case PSCI_0_2_FN_CPU_ON: case PSCI_0_2_FN64_CPU_ON: n = 2; break; case PSCI_0_2_FN_CPU_OFF: case PSCI_0_2_FN_SYSTEM_OFF: case PSCI_0_2_FN_SYSTEM_RESET: case PSCI_0_2_FN_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND: n = 1; break; case ARM_SMCCC_VENDOR_HYP_KVM_MEM_SHARE_FUNC_ID: fallthrough; case ARM_SMCCC_VENDOR_HYP_KVM_MEM_UNSHARE_FUNC_ID: fallthrough; case ARM_SMCCC_VENDOR_HYP_KVM_MEM_RELINQUISH_FUNC_ID: n = 4; break; case ARM_SMCCC_VENDOR_HYP_KVM_MMIO_GUARD_MAP_FUNC_ID: n = 3; break; case PSCI_1_1_FN_SYSTEM_RESET2: case PSCI_1_1_FN64_SYSTEM_RESET2: n = 3; break; /* * The rest are either blocked or handled by HYP, so we should * really never be here. */ default: BUG(); } WRITE_ONCE(host_vcpu->arch.fault.esr_el2, hyp_vcpu->vcpu.arch.fault.esr_el2); /* Pass the hvc function id (r0) as well as any potential arguments. */ for (i = 0; i < n; i++) { WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[i], vcpu_get_reg(&hyp_vcpu->vcpu, i)); } } static void handle_pvm_exit_iabt(struct pkvm_hyp_vcpu *hyp_vcpu) { WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2, hyp_vcpu->vcpu.arch.fault.esr_el2); WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.hpfar_el2, hyp_vcpu->vcpu.arch.fault.hpfar_el2); } static void handle_pvm_exit_dabt(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; hyp_vcpu->vcpu.mmio_needed = __pkvm_check_ioguard_page(hyp_vcpu); if (hyp_vcpu->vcpu.mmio_needed) { /* r0 as transfer register between the guest and the host. */ WRITE_ONCE(host_vcpu->arch.fault.esr_el2, hyp_vcpu->vcpu.arch.fault.esr_el2 & ~ESR_ELx_SRT_MASK); if (kvm_vcpu_dabt_iswrite(&hyp_vcpu->vcpu)) { int rt = kvm_vcpu_dabt_get_rd(&hyp_vcpu->vcpu); u64 rt_val = vcpu_get_reg(&hyp_vcpu->vcpu, rt); WRITE_ONCE(host_vcpu->arch.ctxt.regs.regs[0], rt_val); } } else { WRITE_ONCE(host_vcpu->arch.fault.esr_el2, hyp_vcpu->vcpu.arch.fault.esr_el2 & ~ESR_ELx_ISV); } WRITE_ONCE(host_vcpu->arch.ctxt.regs.pstate, hyp_vcpu->vcpu.arch.ctxt.regs.pstate & PSR_MODE_MASK); WRITE_ONCE(host_vcpu->arch.fault.far_el2, hyp_vcpu->vcpu.arch.fault.far_el2 & GENMASK(11, 0)); WRITE_ONCE(host_vcpu->arch.fault.hpfar_el2, hyp_vcpu->vcpu.arch.fault.hpfar_el2); WRITE_ONCE(__vcpu_sys_reg(host_vcpu, SCTLR_EL1), __vcpu_sys_reg(&hyp_vcpu->vcpu, SCTLR_EL1) & (SCTLR_ELx_EE | SCTLR_EL1_E0E)); } static void handle_vm_entry_generic(struct pkvm_hyp_vcpu *hyp_vcpu) { vcpu_copy_flag(&hyp_vcpu->vcpu, hyp_vcpu->host_vcpu, PC_UPDATE_REQ); } static void handle_vm_exit_generic(struct pkvm_hyp_vcpu *hyp_vcpu) { WRITE_ONCE(hyp_vcpu->host_vcpu->arch.fault.esr_el2, hyp_vcpu->vcpu.arch.fault.esr_el2); } static void handle_vm_exit_abt(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; WRITE_ONCE(host_vcpu->arch.fault.esr_el2, hyp_vcpu->vcpu.arch.fault.esr_el2); WRITE_ONCE(host_vcpu->arch.fault.far_el2, hyp_vcpu->vcpu.arch.fault.far_el2); WRITE_ONCE(host_vcpu->arch.fault.hpfar_el2, hyp_vcpu->vcpu.arch.fault.hpfar_el2); WRITE_ONCE(host_vcpu->arch.fault.disr_el1, hyp_vcpu->vcpu.arch.fault.disr_el1); } static const hyp_entry_exit_handler_fn entry_hyp_pvm_handlers[] = { [0 ... ESR_ELx_EC_MAX] = NULL, [ESR_ELx_EC_WFx] = handle_pvm_entry_wfx, [ESR_ELx_EC_HVC64] = handle_pvm_entry_hvc64, [ESR_ELx_EC_SYS64] = handle_pvm_entry_sys64, [ESR_ELx_EC_IABT_LOW] = handle_pvm_entry_iabt, [ESR_ELx_EC_DABT_LOW] = handle_pvm_entry_dabt, }; static const hyp_entry_exit_handler_fn exit_hyp_pvm_handlers[] = { [0 ... ESR_ELx_EC_MAX] = NULL, [ESR_ELx_EC_WFx] = handle_pvm_exit_wfx, [ESR_ELx_EC_HVC64] = handle_pvm_exit_hvc64, [ESR_ELx_EC_SYS64] = handle_pvm_exit_sys64, [ESR_ELx_EC_IABT_LOW] = handle_pvm_exit_iabt, [ESR_ELx_EC_DABT_LOW] = handle_pvm_exit_dabt, }; static const hyp_entry_exit_handler_fn entry_hyp_vm_handlers[] = { [0 ... ESR_ELx_EC_MAX] = handle_vm_entry_generic, }; static const hyp_entry_exit_handler_fn exit_hyp_vm_handlers[] = { [0 ... ESR_ELx_EC_MAX] = handle_vm_exit_generic, [ESR_ELx_EC_IABT_LOW] = handle_vm_exit_abt, [ESR_ELx_EC_DABT_LOW] = handle_vm_exit_abt, }; static void flush_hyp_vgic_state(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; struct vgic_v3_cpu_if *host_cpu_if, *hyp_cpu_if; unsigned int used_lrs, max_lrs, i; host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; max_lrs = (read_gicreg(ICH_VTR_EL2) & 0xf) + 1; used_lrs = READ_ONCE(host_cpu_if->used_lrs); used_lrs = min(used_lrs, max_lrs); hyp_cpu_if->vgic_hcr = READ_ONCE(host_cpu_if->vgic_hcr); /* Should be a one-off */ hyp_cpu_if->vgic_sre = (ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB | ICC_SRE_EL1_SRE); hyp_cpu_if->used_lrs = used_lrs; for (i = 0; i < used_lrs; i++) hyp_cpu_if->vgic_lr[i] = READ_ONCE(host_cpu_if->vgic_lr[i]); } static void sync_hyp_vgic_state(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; struct vgic_v3_cpu_if *host_cpu_if, *hyp_cpu_if; unsigned int i; host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; WRITE_ONCE(host_cpu_if->vgic_hcr, hyp_cpu_if->vgic_hcr); for (i = 0; i < hyp_cpu_if->used_lrs; i++) WRITE_ONCE(host_cpu_if->vgic_lr[i], hyp_cpu_if->vgic_lr[i]); } static void flush_hyp_timer_state(struct pkvm_hyp_vcpu *hyp_vcpu) { if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) return; /* * A hyp vcpu has no offset, and sees vtime == ptime. The * ptimer is fully emulated by EL1 and cannot be trusted. */ write_sysreg(0, cntvoff_el2); isb(); write_sysreg_el0(__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CVAL_EL0), SYS_CNTV_CVAL); write_sysreg_el0(__vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CTL_EL0), SYS_CNTV_CTL); } static void sync_hyp_timer_state(struct pkvm_hyp_vcpu *hyp_vcpu) { if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) return; /* * Preserve the vtimer state so that it is always correct, * even if the host tries to make a mess. */ __vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CVAL_EL0) = read_sysreg_el0(SYS_CNTV_CVAL); __vcpu_sys_reg(&hyp_vcpu->vcpu, CNTV_CTL_EL0) = read_sysreg_el0(SYS_CNTV_CTL); } static void __copy_vcpu_state(const struct kvm_vcpu *from_vcpu, struct kvm_vcpu *to_vcpu) { int i; to_vcpu->arch.ctxt.regs = from_vcpu->arch.ctxt.regs; to_vcpu->arch.ctxt.spsr_abt = from_vcpu->arch.ctxt.spsr_abt; to_vcpu->arch.ctxt.spsr_und = from_vcpu->arch.ctxt.spsr_und; to_vcpu->arch.ctxt.spsr_irq = from_vcpu->arch.ctxt.spsr_irq; to_vcpu->arch.ctxt.spsr_fiq = from_vcpu->arch.ctxt.spsr_fiq; /* * Copy the sysregs, but don't mess with the timer state which * is directly handled by EL1 and is expected to be preserved. */ for (i = 1; i < NR_SYS_REGS; i++) { if (i >= CNTVOFF_EL2 && i <= CNTP_CTL_EL0) continue; to_vcpu->arch.ctxt.sys_regs[i] = from_vcpu->arch.ctxt.sys_regs[i]; } } static void __sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) { __copy_vcpu_state(&hyp_vcpu->vcpu, hyp_vcpu->host_vcpu); } static void __flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) { __copy_vcpu_state(hyp_vcpu->host_vcpu, &hyp_vcpu->vcpu); } static void flush_debug_state(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; u64 mdcr_el2 = READ_ONCE(host_vcpu->arch.mdcr_el2); /* * Propagate the monitor debug configuration of the vcpu from host. * Preserve HPMN, which is set-up by some knowledgeable bootcode. * Ensure that MDCR_EL2_E2PB_MASK and MDCR_EL2_E2TB_MASK are clear, * as guests should not be able to access profiling and trace buffers. * Ensure that RES0 bits are clear. */ mdcr_el2 &= ~(MDCR_EL2_RES0 | MDCR_EL2_HPMN_MASK | (MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT) | (MDCR_EL2_E2TB_MASK << MDCR_EL2_E2TB_SHIFT)); vcpu->arch.mdcr_el2 = read_sysreg(mdcr_el2) & MDCR_EL2_HPMN_MASK; vcpu->arch.mdcr_el2 |= mdcr_el2; vcpu->arch.pmu = host_vcpu->arch.pmu; vcpu->guest_debug = READ_ONCE(host_vcpu->guest_debug); if (!kvm_vcpu_needs_debug_regs(vcpu)) return; __vcpu_save_guest_debug_regs(vcpu); /* Switch debug_ptr to the external_debug_state if done by the host. */ if (kern_hyp_va(READ_ONCE(host_vcpu->arch.debug_ptr)) == &host_vcpu->arch.external_debug_state) vcpu->arch.debug_ptr = &host_vcpu->arch.external_debug_state; /* Propagate any special handling for single step from host. */ vcpu_write_sys_reg(vcpu, vcpu_read_sys_reg(host_vcpu, MDSCR_EL1), MDSCR_EL1); *vcpu_cpsr(vcpu) = *vcpu_cpsr(host_vcpu); } static void sync_debug_state(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; if (!kvm_vcpu_needs_debug_regs(vcpu)) return; __vcpu_restore_guest_debug_regs(vcpu); vcpu->arch.debug_ptr = &host_vcpu->arch.vcpu_debug_state; } static void flush_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; hyp_entry_exit_handler_fn ec_handler; u8 esr_ec; if (READ_ONCE(hyp_vcpu->power_state) == PSCI_0_2_AFFINITY_LEVEL_ON_PENDING) pkvm_reset_vcpu(hyp_vcpu); /* * If we deal with a non-protected guest and the state is potentially * dirty (from a host perspective), copy the state back into the hyp * vcpu. */ if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) { if (vcpu_get_flag(host_vcpu, PKVM_HOST_STATE_DIRTY)) __flush_hyp_vcpu(hyp_vcpu); hyp_vcpu->vcpu.arch.iflags = READ_ONCE(host_vcpu->arch.iflags); flush_debug_state(hyp_vcpu); hyp_vcpu->vcpu.arch.hcr_el2 = HCR_GUEST_FLAGS & ~(HCR_RW | HCR_TWI | HCR_TWE); hyp_vcpu->vcpu.arch.hcr_el2 |= READ_ONCE(host_vcpu->arch.hcr_el2); } hyp_vcpu->vcpu.arch.vsesr_el2 = host_vcpu->arch.vsesr_el2; flush_hyp_vgic_state(hyp_vcpu); flush_hyp_timer_state(hyp_vcpu); switch (ARM_EXCEPTION_CODE(hyp_vcpu->exit_code)) { case ARM_EXCEPTION_IRQ: case ARM_EXCEPTION_EL1_SERROR: case ARM_EXCEPTION_IL: break; case ARM_EXCEPTION_TRAP: esr_ec = ESR_ELx_EC(kvm_vcpu_get_esr(&hyp_vcpu->vcpu)); if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) ec_handler = entry_hyp_pvm_handlers[esr_ec]; else ec_handler = entry_hyp_vm_handlers[esr_ec]; if (ec_handler) ec_handler(hyp_vcpu); break; default: BUG(); } hyp_vcpu->exit_code = 0; } static void sync_hyp_vcpu(struct pkvm_hyp_vcpu *hyp_vcpu, u32 exit_reason) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; hyp_entry_exit_handler_fn ec_handler; u8 esr_ec; if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu)) sync_debug_state(hyp_vcpu); /* * Don't sync the vcpu GPR/sysreg state after a run. Instead, * leave it in the hyp vCPU until someone actually requires it. */ sync_hyp_vgic_state(hyp_vcpu); sync_hyp_timer_state(hyp_vcpu); switch (ARM_EXCEPTION_CODE(exit_reason)) { case ARM_EXCEPTION_IRQ: break; case ARM_EXCEPTION_TRAP: esr_ec = ESR_ELx_EC(kvm_vcpu_get_esr(&hyp_vcpu->vcpu)); if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) ec_handler = exit_hyp_pvm_handlers[esr_ec]; else ec_handler = exit_hyp_vm_handlers[esr_ec]; if (ec_handler) ec_handler(hyp_vcpu); break; case ARM_EXCEPTION_EL1_SERROR: case ARM_EXCEPTION_IL: break; default: BUG(); } if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) vcpu_clear_flag(host_vcpu, PC_UPDATE_REQ); else host_vcpu->arch.iflags = hyp_vcpu->vcpu.arch.iflags; hyp_vcpu->exit_code = exit_reason; } static void __hyp_sve_save_guest(struct pkvm_hyp_vcpu *hyp_vcpu) { struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; __sve_save_state(vcpu_sve_pffr(vcpu), &vcpu->arch.ctxt.fp_regs.fpsr); __vcpu_sys_reg(vcpu, ZCR_EL1) = read_sysreg_el1(SYS_ZCR); sve_cond_update_zcr_vq(vcpu_sve_max_vq(vcpu) - 1, SYS_ZCR_EL1); } static void fpsimd_host_restore(void) { sysreg_clear_set(cptr_el2, CPTR_EL2_TZ | CPTR_EL2_TFP, 0); isb(); if (unlikely(is_protected_kvm_enabled())) { struct pkvm_hyp_vcpu *hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); struct kvm_vcpu *vcpu = &hyp_vcpu->vcpu; if (vcpu_has_sve(vcpu)) __hyp_sve_save_guest(hyp_vcpu); else __fpsimd_save_state(&hyp_vcpu->vcpu.arch.ctxt.fp_regs); if (system_supports_sve()) { struct kvm_host_sve_state *sve_state = get_host_sve_state(vcpu); write_sysreg_el1(sve_state->zcr_el1, SYS_ZCR); pkvm_set_max_sve_vq(); __sve_restore_state(sve_state->sve_regs + sve_ffr_offset(kvm_host_sve_max_vl), &sve_state->fpsr); } else { __fpsimd_restore_state(get_host_fpsimd_state(vcpu)); } hyp_vcpu->vcpu.arch.fp_state = FP_STATE_HOST_OWNED; } if (system_supports_sve()) sve_cond_update_zcr_vq(ZCR_ELx_LEN_MASK, SYS_ZCR_EL2); } static void handle___pkvm_vcpu_load(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); DECLARE_REG(unsigned int, vcpu_idx, host_ctxt, 2); DECLARE_REG(u64, hcr_el2, host_ctxt, 3); struct pkvm_hyp_vcpu *hyp_vcpu; int __percpu *last_vcpu_ran; int *last_ran; if (!is_protected_kvm_enabled()) return; hyp_vcpu = pkvm_load_hyp_vcpu(handle, vcpu_idx); if (!hyp_vcpu) return; /* * Guarantee that both TLBs and I-cache are private to each vcpu. If a * vcpu from the same VM has previously run on the same physical CPU, * nuke the relevant contexts. */ last_vcpu_ran = hyp_vcpu->vcpu.arch.hw_mmu->last_vcpu_ran; last_ran = (__force int *) &last_vcpu_ran[hyp_smp_processor_id()]; if (*last_ran != hyp_vcpu->vcpu.vcpu_id) { __kvm_flush_cpu_context(hyp_vcpu->vcpu.arch.hw_mmu); *last_ran = hyp_vcpu->vcpu.vcpu_id; } hyp_vcpu->vcpu.arch.fp_state = FP_STATE_HOST_OWNED; if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) { /* Propagate WFx trapping flags, trap ptrauth */ hyp_vcpu->vcpu.arch.hcr_el2 &= ~(HCR_TWE | HCR_TWI | HCR_API | HCR_APK); hyp_vcpu->vcpu.arch.hcr_el2 |= hcr_el2 & (HCR_TWE | HCR_TWI); } } static void handle___pkvm_vcpu_put(struct kvm_cpu_context *host_ctxt) { struct pkvm_hyp_vcpu *hyp_vcpu; if (!is_protected_kvm_enabled()) return; hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); if (hyp_vcpu) { struct kvm_vcpu *host_vcpu = hyp_vcpu->host_vcpu; if (hyp_vcpu->vcpu.arch.fp_state == FP_STATE_GUEST_OWNED) fpsimd_host_restore(); if (!pkvm_hyp_vcpu_is_protected(hyp_vcpu) && !vcpu_get_flag(host_vcpu, PKVM_HOST_STATE_DIRTY)) { __sync_hyp_vcpu(hyp_vcpu); } pkvm_put_hyp_vcpu(hyp_vcpu); } } static void handle___pkvm_vcpu_sync_state(struct kvm_cpu_context *host_ctxt) { struct pkvm_hyp_vcpu *hyp_vcpu; if (!is_protected_kvm_enabled()) return; hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); if (!hyp_vcpu || pkvm_hyp_vcpu_is_protected(hyp_vcpu)) return; if (hyp_vcpu->vcpu.arch.fp_state == FP_STATE_GUEST_OWNED) fpsimd_host_restore(); __sync_hyp_vcpu(hyp_vcpu); } static struct kvm_vcpu *__get_host_hyp_vcpus(struct kvm_vcpu *arg, struct pkvm_hyp_vcpu **hyp_vcpup) { struct kvm_vcpu *host_vcpu = kern_hyp_va(arg); struct pkvm_hyp_vcpu *hyp_vcpu = NULL; if (unlikely(is_protected_kvm_enabled())) { hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); if (!hyp_vcpu || hyp_vcpu->host_vcpu != host_vcpu) { hyp_vcpu = NULL; host_vcpu = NULL; } } *hyp_vcpup = hyp_vcpu; return host_vcpu; } #define get_host_hyp_vcpus(ctxt, regnr, hyp_vcpup) \ ({ \ DECLARE_REG(struct kvm_vcpu *, __vcpu, ctxt, regnr); \ __get_host_hyp_vcpus(__vcpu, hyp_vcpup); \ }) #define get_host_hyp_vcpus_from_vgic_v3_cpu_if(ctxt, regnr, hyp_vcpup) \ ({ \ DECLARE_REG(struct vgic_v3_cpu_if *, cif, ctxt, regnr); \ struct kvm_vcpu *__vcpu = container_of(cif, \ struct kvm_vcpu, \ arch.vgic_cpu.vgic_v3); \ \ __get_host_hyp_vcpus(__vcpu, hyp_vcpup); \ }) static void handle___kvm_vcpu_run(struct kvm_cpu_context *host_ctxt) { struct pkvm_hyp_vcpu *hyp_vcpu; struct kvm_vcpu *host_vcpu; int ret; host_vcpu = get_host_hyp_vcpus(host_ctxt, 1, &hyp_vcpu); if (!host_vcpu) { ret = -EINVAL; goto out; } if (unlikely(hyp_vcpu)) { flush_hyp_vcpu(hyp_vcpu); ret = __kvm_vcpu_run(&hyp_vcpu->vcpu); sync_hyp_vcpu(hyp_vcpu, ret); if (hyp_vcpu->vcpu.arch.fp_state == FP_STATE_GUEST_OWNED) { /* * The guest has used the FP, trap all accesses * from the host (both FP and SVE). */ u64 reg = CPTR_EL2_TFP; if (system_supports_sve()) reg |= CPTR_EL2_TZ; sysreg_clear_set(cptr_el2, 0, reg); } } else { /* The host is fully trusted, run its vCPU directly. */ ret = __kvm_vcpu_run(host_vcpu); } out: cpu_reg(host_ctxt, 1) = ret; } static void handle___pkvm_host_map_guest(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, pfn, host_ctxt, 1); DECLARE_REG(u64, gfn, host_ctxt, 2); struct pkvm_hyp_vcpu *hyp_vcpu; int ret = -EINVAL; if (!is_protected_kvm_enabled()) goto out; hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); if (!hyp_vcpu) goto out; /* Top-up our per-vcpu memcache from the host's */ ret = pkvm_refill_memcache(hyp_vcpu); if (ret) goto out; if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) ret = __pkvm_host_donate_guest(pfn, gfn, hyp_vcpu); else ret = __pkvm_host_share_guest(pfn, gfn, hyp_vcpu); out: cpu_reg(host_ctxt, 1) = ret; } static void handle___kvm_adjust_pc(struct kvm_cpu_context *host_ctxt) { struct pkvm_hyp_vcpu *hyp_vcpu; struct kvm_vcpu *host_vcpu; host_vcpu = get_host_hyp_vcpus(host_ctxt, 1, &hyp_vcpu); if (!host_vcpu) return; if (hyp_vcpu) { /* This only applies to non-protected VMs */ if (pkvm_hyp_vcpu_is_protected(hyp_vcpu)) return; __kvm_adjust_pc(&hyp_vcpu->vcpu); } else { __kvm_adjust_pc(host_vcpu); } } static void handle___kvm_flush_vm_context(struct kvm_cpu_context *host_ctxt) { __kvm_flush_vm_context(); } static void handle___kvm_tlb_flush_vmid_ipa(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); DECLARE_REG(phys_addr_t, ipa, host_ctxt, 2); DECLARE_REG(int, level, host_ctxt, 3); __kvm_tlb_flush_vmid_ipa(kern_hyp_va(mmu), ipa, level); } static void handle___kvm_tlb_flush_vmid(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); __kvm_tlb_flush_vmid(kern_hyp_va(mmu)); } static void handle___kvm_flush_cpu_context(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm_s2_mmu *, mmu, host_ctxt, 1); __kvm_flush_cpu_context(kern_hyp_va(mmu)); } static void handle___kvm_timer_set_cntvoff(struct kvm_cpu_context *host_ctxt) { __kvm_timer_set_cntvoff(cpu_reg(host_ctxt, 1)); } static void handle___kvm_enable_ssbs(struct kvm_cpu_context *host_ctxt) { u64 tmp; tmp = read_sysreg_el2(SYS_SCTLR); tmp |= SCTLR_ELx_DSSBS; write_sysreg_el2(tmp, SYS_SCTLR); } static void handle___vgic_v3_get_gic_config(struct kvm_cpu_context *host_ctxt) { cpu_reg(host_ctxt, 1) = __vgic_v3_get_gic_config(); } static void handle___vgic_v3_init_lrs(struct kvm_cpu_context *host_ctxt) { __vgic_v3_init_lrs(); } static void handle___kvm_get_mdcr_el2(struct kvm_cpu_context *host_ctxt) { cpu_reg(host_ctxt, 1) = __kvm_get_mdcr_el2(); } static void handle___vgic_v3_save_vmcr_aprs(struct kvm_cpu_context *host_ctxt) { struct pkvm_hyp_vcpu *hyp_vcpu; struct kvm_vcpu *host_vcpu; host_vcpu = get_host_hyp_vcpus_from_vgic_v3_cpu_if(host_ctxt, 1, &hyp_vcpu); if (!host_vcpu) return; if (unlikely(hyp_vcpu)) { struct vgic_v3_cpu_if *hyp_cpu_if, *host_cpu_if; int i; hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; __vgic_v3_save_vmcr_aprs(hyp_cpu_if); host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; host_cpu_if->vgic_vmcr = hyp_cpu_if->vgic_vmcr; for (i = 0; i < ARRAY_SIZE(host_cpu_if->vgic_ap0r); i++) { host_cpu_if->vgic_ap0r[i] = hyp_cpu_if->vgic_ap0r[i]; host_cpu_if->vgic_ap1r[i] = hyp_cpu_if->vgic_ap1r[i]; } } else { __vgic_v3_save_vmcr_aprs(&host_vcpu->arch.vgic_cpu.vgic_v3); } } static void handle___vgic_v3_restore_vmcr_aprs(struct kvm_cpu_context *host_ctxt) { struct pkvm_hyp_vcpu *hyp_vcpu; struct kvm_vcpu *host_vcpu; host_vcpu = get_host_hyp_vcpus_from_vgic_v3_cpu_if(host_ctxt, 1, &hyp_vcpu); if (!host_vcpu) return; if (unlikely(hyp_vcpu)) { struct vgic_v3_cpu_if *hyp_cpu_if, *host_cpu_if; int i; hyp_cpu_if = &hyp_vcpu->vcpu.arch.vgic_cpu.vgic_v3; host_cpu_if = &host_vcpu->arch.vgic_cpu.vgic_v3; hyp_cpu_if->vgic_vmcr = host_cpu_if->vgic_vmcr; /* Should be a one-off */ hyp_cpu_if->vgic_sre = (ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB | ICC_SRE_EL1_SRE); for (i = 0; i < ARRAY_SIZE(host_cpu_if->vgic_ap0r); i++) { hyp_cpu_if->vgic_ap0r[i] = host_cpu_if->vgic_ap0r[i]; hyp_cpu_if->vgic_ap1r[i] = host_cpu_if->vgic_ap1r[i]; } __vgic_v3_restore_vmcr_aprs(hyp_cpu_if); } else { __vgic_v3_restore_vmcr_aprs(&host_vcpu->arch.vgic_cpu.vgic_v3); } } static void handle___pkvm_init(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); DECLARE_REG(unsigned long, size, host_ctxt, 2); DECLARE_REG(unsigned long, nr_cpus, host_ctxt, 3); DECLARE_REG(unsigned long *, per_cpu_base, host_ctxt, 4); DECLARE_REG(u32, hyp_va_bits, host_ctxt, 5); /* * __pkvm_init() will return only if an error occurred, otherwise it * will tail-call in __pkvm_init_finalise() which will have to deal * with the host context directly. */ cpu_reg(host_ctxt, 1) = __pkvm_init(phys, size, nr_cpus, per_cpu_base, hyp_va_bits); } static void handle___pkvm_cpu_set_vector(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(enum arm64_hyp_spectre_vector, slot, host_ctxt, 1); cpu_reg(host_ctxt, 1) = pkvm_cpu_set_vector(slot); } static void handle___pkvm_host_share_hyp(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, pfn, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_host_share_hyp(pfn); } static void handle___pkvm_host_unshare_hyp(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, pfn, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_host_unshare_hyp(pfn); } static void handle___pkvm_reclaim_dying_guest_page(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); DECLARE_REG(u64, pfn, host_ctxt, 2); DECLARE_REG(u64, ipa, host_ctxt, 3); cpu_reg(host_ctxt, 1) = __pkvm_reclaim_dying_guest_page(handle, pfn, ipa); } static void handle___pkvm_create_private_mapping(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); DECLARE_REG(size_t, size, host_ctxt, 2); DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3); /* * __pkvm_create_private_mapping() populates a pointer with the * hypervisor start address of the allocation. * * However, handle___pkvm_create_private_mapping() hypercall crosses the * EL1/EL2 boundary so the pointer would not be valid in this context. * * Instead pass the allocation address as the return value (or return * ERR_PTR() on failure). */ unsigned long haddr; int err = __pkvm_create_private_mapping(phys, size, prot, &haddr); if (err) haddr = (unsigned long)ERR_PTR(err); cpu_reg(host_ctxt, 1) = haddr; } static void handle___pkvm_prot_finalize(struct kvm_cpu_context *host_ctxt) { cpu_reg(host_ctxt, 1) = __pkvm_prot_finalize(); } static void handle___pkvm_init_vm(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct kvm *, host_kvm, host_ctxt, 1); DECLARE_REG(unsigned long, vm_hva, host_ctxt, 2); DECLARE_REG(unsigned long, pgd_hva, host_ctxt, 3); DECLARE_REG(unsigned long, last_ran_hva, host_ctxt, 4); host_kvm = kern_hyp_va(host_kvm); cpu_reg(host_ctxt, 1) = __pkvm_init_vm(host_kvm, vm_hva, pgd_hva, last_ran_hva); } static void handle___pkvm_init_vcpu(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); DECLARE_REG(struct kvm_vcpu *, host_vcpu, host_ctxt, 2); DECLARE_REG(unsigned long, vcpu_hva, host_ctxt, 3); host_vcpu = kern_hyp_va(host_vcpu); cpu_reg(host_ctxt, 1) = __pkvm_init_vcpu(handle, host_vcpu, vcpu_hva); } static void handle___pkvm_start_teardown_vm(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_start_teardown_vm(handle); } static void handle___pkvm_finalize_teardown_vm(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(pkvm_handle_t, handle, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_finalize_teardown_vm(handle); } static void handle___pkvm_iommu_driver_init(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(struct pkvm_iommu_driver*, drv, host_ctxt, 1); DECLARE_REG(void *, data, host_ctxt, 2); DECLARE_REG(size_t, size, host_ctxt, 3); data = kern_hyp_va(data); cpu_reg(host_ctxt, 1) = __pkvm_iommu_driver_init(drv, data, size); } static void handle___pkvm_iommu_register(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned long, dev_id, host_ctxt, 1); DECLARE_REG(unsigned long, drv_id, host_ctxt, 2); DECLARE_REG(phys_addr_t, dev_pa, host_ctxt, 3); DECLARE_REG(size_t, dev_size, host_ctxt, 4); DECLARE_REG(unsigned long, parent_id, host_ctxt, 5); DECLARE_REG(u8, flags, host_ctxt, 6); DECLARE_REG(void *, mem, host_ctxt, 7); cpu_reg(host_ctxt, 1) = __pkvm_iommu_register(dev_id, drv_id, dev_pa, dev_size, parent_id, flags, mem); } static void handle___pkvm_iommu_pm_notify(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned long, dev_id, host_ctxt, 1); DECLARE_REG(enum pkvm_iommu_pm_event, event, host_ctxt, 2); cpu_reg(host_ctxt, 1) = __pkvm_iommu_pm_notify(dev_id, event); } static void handle___pkvm_iommu_finalize(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(int, err, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_iommu_finalize(err); } static void handle___pkvm_alloc_module_va(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, nr_pages, host_ctxt, 1); cpu_reg(host_ctxt, 1) = (u64)__pkvm_alloc_module_va(nr_pages); } static void handle___pkvm_map_module_page(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, pfn, host_ctxt, 1); DECLARE_REG(void *, va, host_ctxt, 2); DECLARE_REG(enum kvm_pgtable_prot, prot, host_ctxt, 3); cpu_reg(host_ctxt, 1) = (u64)__pkvm_map_module_page(pfn, va, prot, false); } static void handle___pkvm_unmap_module_page(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, pfn, host_ctxt, 1); DECLARE_REG(void *, va, host_ctxt, 2); __pkvm_unmap_module_page(pfn, va); } static void handle___pkvm_init_module(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(void *, ptr, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_init_module(ptr); } static void handle___pkvm_register_hcall(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned long, hfn_hyp_va, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_register_hcall(hfn_hyp_va); } static void handle___pkvm_load_tracing(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned long, pack_hva, host_ctxt, 1); DECLARE_REG(size_t, pack_size, host_ctxt, 2); cpu_reg(host_ctxt, 1) = __pkvm_load_tracing(pack_hva, pack_size); } static void handle___pkvm_teardown_tracing(struct kvm_cpu_context *host_ctxt) { __pkvm_teardown_tracing(); cpu_reg(host_ctxt, 1) = 0; } static void handle___pkvm_enable_tracing(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(bool, enable, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_enable_tracing(enable); } static void handle___pkvm_rb_swap_reader_page(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(int, cpu, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_rb_swap_reader_page(cpu); } static void handle___pkvm_rb_update_footers(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(int, cpu, host_ctxt, 1); cpu_reg(host_ctxt, 1) = __pkvm_rb_update_footers(cpu); } static void handle___pkvm_enable_event(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned short, id, host_ctxt, 1); DECLARE_REG(bool, enable, host_ctxt, 2); cpu_reg(host_ctxt, 1) = __pkvm_enable_event(id, enable); } #ifdef CONFIG_ANDROID_ARM64_WORKAROUND_DMA_BEYOND_POC extern int __pkvm_host_set_stage2_memattr(phys_addr_t phys, bool force_nc); static void handle___pkvm_host_set_stage2_memattr(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(phys_addr_t, phys, host_ctxt, 1); DECLARE_REG(bool, force_nc, host_ctxt, 2); cpu_reg(host_ctxt, 1) = __pkvm_host_set_stage2_memattr(phys, force_nc); } #endif typedef void (*hcall_t)(struct kvm_cpu_context *); #define HANDLE_FUNC(x) [__KVM_HOST_SMCCC_FUNC_##x] = (hcall_t)handle_##x static const hcall_t host_hcall[] = { /* ___kvm_hyp_init */ HANDLE_FUNC(__kvm_get_mdcr_el2), HANDLE_FUNC(__pkvm_init), HANDLE_FUNC(__pkvm_create_private_mapping), HANDLE_FUNC(__pkvm_cpu_set_vector), HANDLE_FUNC(__kvm_enable_ssbs), HANDLE_FUNC(__vgic_v3_init_lrs), HANDLE_FUNC(__vgic_v3_get_gic_config), HANDLE_FUNC(__kvm_flush_vm_context), HANDLE_FUNC(__kvm_tlb_flush_vmid_ipa), HANDLE_FUNC(__kvm_tlb_flush_vmid), HANDLE_FUNC(__kvm_flush_cpu_context), HANDLE_FUNC(__pkvm_alloc_module_va), HANDLE_FUNC(__pkvm_map_module_page), HANDLE_FUNC(__pkvm_unmap_module_page), HANDLE_FUNC(__pkvm_init_module), HANDLE_FUNC(__pkvm_register_hcall), HANDLE_FUNC(__pkvm_prot_finalize), HANDLE_FUNC(__pkvm_host_share_hyp), HANDLE_FUNC(__pkvm_host_unshare_hyp), HANDLE_FUNC(__pkvm_host_map_guest), HANDLE_FUNC(__kvm_adjust_pc), HANDLE_FUNC(__kvm_vcpu_run), HANDLE_FUNC(__kvm_timer_set_cntvoff), HANDLE_FUNC(__vgic_v3_save_vmcr_aprs), HANDLE_FUNC(__vgic_v3_restore_vmcr_aprs), HANDLE_FUNC(__pkvm_init_vm), HANDLE_FUNC(__pkvm_init_vcpu), HANDLE_FUNC(__pkvm_start_teardown_vm), HANDLE_FUNC(__pkvm_finalize_teardown_vm), HANDLE_FUNC(__pkvm_reclaim_dying_guest_page), HANDLE_FUNC(__pkvm_vcpu_load), HANDLE_FUNC(__pkvm_vcpu_put), HANDLE_FUNC(__pkvm_vcpu_sync_state), HANDLE_FUNC(__pkvm_iommu_driver_init), HANDLE_FUNC(__pkvm_iommu_register), HANDLE_FUNC(__pkvm_iommu_pm_notify), HANDLE_FUNC(__pkvm_iommu_finalize), HANDLE_FUNC(__pkvm_load_tracing), HANDLE_FUNC(__pkvm_teardown_tracing), HANDLE_FUNC(__pkvm_enable_tracing), HANDLE_FUNC(__pkvm_rb_swap_reader_page), HANDLE_FUNC(__pkvm_rb_update_footers), HANDLE_FUNC(__pkvm_enable_event), #ifdef CONFIG_ANDROID_ARM64_WORKAROUND_DMA_BEYOND_POC HANDLE_FUNC(__pkvm_host_set_stage2_memattr), #endif }; static void handle_host_hcall(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(unsigned long, id, host_ctxt, 0); unsigned long hcall_min = 0; hcall_t hfn; if (handle_host_dynamic_hcall(host_ctxt) == HCALL_HANDLED) return; /* * If pKVM has been initialised then reject any calls to the * early "privileged" hypercalls. Note that we cannot reject * calls to __pkvm_prot_finalize for two reasons: (1) The static * key used to determine initialisation must be toggled prior to * finalisation and (2) finalisation is performed on a per-CPU * basis. This is all fine, however, since __pkvm_prot_finalize * returns -EPERM after the first call for a given CPU. */ if (static_branch_unlikely(&kvm_protected_mode_initialized)) hcall_min = __KVM_HOST_SMCCC_FUNC___pkvm_prot_finalize; id -= KVM_HOST_SMCCC_ID(0); if (unlikely(id < hcall_min || id >= ARRAY_SIZE(host_hcall))) goto inval; hfn = host_hcall[id]; if (unlikely(!hfn)) goto inval; cpu_reg(host_ctxt, 0) = SMCCC_RET_SUCCESS; hfn(host_ctxt); trace_host_hcall(id, 0); return; inval: trace_host_hcall(id, 1); cpu_reg(host_ctxt, 0) = SMCCC_RET_NOT_SUPPORTED; } static void handle_host_smc(struct kvm_cpu_context *host_ctxt) { DECLARE_REG(u64, func_id, host_ctxt, 0); struct pkvm_hyp_vcpu *hyp_vcpu; bool handled; hyp_vcpu = pkvm_get_loaded_hyp_vcpu(); if (hyp_vcpu && hyp_vcpu->vcpu.arch.fp_state == FP_STATE_GUEST_OWNED) fpsimd_host_restore(); handled = kvm_host_psci_handler(host_ctxt); if (!handled) handled = kvm_host_ffa_handler(host_ctxt); if (!handled && smp_load_acquire(&default_host_smc_handler)) handled = default_host_smc_handler(host_ctxt); trace_host_smc(func_id, !handled); if (!handled) { trace_hyp_exit(); __kvm_hyp_host_forward_smc(host_ctxt); trace_hyp_enter(); } /* SMC was trapped, move ELR past the current PC. */ kvm_skip_host_instr(); } void handle_trap(struct kvm_cpu_context *host_ctxt) { u64 esr = read_sysreg_el2(SYS_ESR); trace_hyp_enter(); switch (ESR_ELx_EC(esr)) { case ESR_ELx_EC_HVC64: handle_host_hcall(host_ctxt); break; case ESR_ELx_EC_SMC64: handle_host_smc(host_ctxt); break; case ESR_ELx_EC_FP_ASIMD: case ESR_ELx_EC_SVE: fpsimd_host_restore(); break; case ESR_ELx_EC_IABT_LOW: case ESR_ELx_EC_DABT_LOW: handle_host_mem_abort(host_ctxt); break; default: BUG_ON(!READ_ONCE(default_trap_handler) || !default_trap_handler(host_ctxt)); } trace_hyp_exit(); }