// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* QUSB2PHY_PWR_CTRL1 register related bits */ #define PWR_CTRL1_POWR_DOWN BIT(0) #define CLAMP_N_EN BIT(1) /* QUSB2PHY_PLL_COMMON_STATUS_ONE register related bits */ #define CORE_READY_STATUS BIT(0) /* Get TUNE value from efuse bit-mask */ #define TUNE_VAL_MASK(val, pos, mask) ((val >> pos) & mask) /* QUSB2PHY_INTR_CTRL register related bits */ #define DMSE_INTR_HIGH_SEL BIT(4) #define DPSE_INTR_HIGH_SEL BIT(3) #define CHG_DET_INTR_EN BIT(2) #define DMSE_INTR_EN BIT(1) #define DPSE_INTR_EN BIT(0) /* QUSB2PHY_PLL_CORE_INPUT_OVERRIDE register related bits */ #define CORE_PLL_RATE BIT(0) #define CORE_PLL_RATE_MUX BIT(1) #define CORE_PLL_EN BIT(2) #define CORE_PLL_EN_MUX BIT(3) #define CORE_PLL_EN_FROM_RESET BIT(4) #define CORE_RESET BIT(5) #define CORE_RESET_MUX BIT(6) #define QUSB2PHY_1P8_VOL_MIN 1800000 /* uV */ #define QUSB2PHY_1P8_VOL_MAX 1800000 /* uV */ #define QUSB2PHY_1P8_HPM_LOAD 30000 /* uA */ #define QUSB2PHY_3P3_VOL_MIN 3075000 /* uV */ #define QUSB2PHY_3P3_VOL_MAX 3200000 /* uV */ #define QUSB2PHY_3P3_HPM_LOAD 30000 /* uA */ #define QUSB2PHY_REFGEN_VOL_MIN 1200000 /* uV */ #define QUSB2PHY_REFGEN_VOL_MAX 1200000 /* uV */ #define QUSB2PHY_REFGEN_HPM_LOAD 30000 /* uA */ #define LINESTATE_DP BIT(0) #define LINESTATE_DM BIT(1) #define BIAS_CTRL_2_OVERRIDE_VAL 0x28 #define DEBUG_CTRL1_OVERRIDE_VAL 0x09 /* PERIPH_SS_PHY_REFGEN_NORTH_BG_CTRL register bits */ #define BANDGAP_BYPASS BIT(0) /* DEBUG_CTRL2 register value to program VSTATUS MUX for PHY status */ #define DEBUG_CTRL2_MUX_PLL_LOCK_STATUS 0x4 /* STAT5 register bits */ #define VSTATUS_PLL_LOCK_STATUS_MASK BIT(0) /* DEBUG_CTRL4 register bits */ #define FORCED_UTMI_DPPULLDOWN BIT(2) #define FORCED_UTMI_DMPULLDOWN BIT(3) enum qusb_phy_reg { PORT_TUNE1, PLL_COMMON_STATUS_ONE, PWR_CTRL1, INTR_CTRL, PLL_CORE_INPUT_OVERRIDE, TEST1, BIAS_CTRL_2, DEBUG_CTRL1, DEBUG_CTRL2, DEBUG_CTRL3, DEBUG_CTRL4, STAT5, USB2_PHY_REG_MAX, }; struct qusb_phy { struct usb_phy phy; struct mutex lock; void __iomem *base; void __iomem *efuse_reg; void __iomem *refgen_north_bg_reg; void __iomem *eud_enable_reg; struct clk *ref_clk_src; struct clk *ref_clk; struct clk *cfg_ahb_clk; struct reset_control *phy_reset; struct regulator *vdd; struct regulator *vdda33; struct regulator *vdda18; struct regulator *refgen; int vdd_levels[3]; /* none, low, high */ int init_seq_len; int *qusb_phy_init_seq; int host_init_seq_len; int *qusb_phy_host_init_seq; unsigned int *phy_reg; int qusb_phy_reg_offset_cnt; u32 tune_val; int efuse_bit_pos; int efuse_num_of_bits; bool cable_connected; bool suspended; bool dpdm_enable; struct regulator_desc dpdm_rdesc; struct regulator_dev *dpdm_rdev; /* emulation targets specific */ void __iomem *emu_phy_base; bool emulation; int *emu_init_seq; int emu_init_seq_len; int *phy_pll_reset_seq; int phy_pll_reset_seq_len; int *emu_dcm_reset_seq; int emu_dcm_reset_seq_len; /* override TUNEX registers value */ struct dentry *root; u8 tune[5]; u8 bias_ctrl2; bool override_bias_ctrl2; bool power_enabled; bool clocks_enabled; }; static void qusb_phy_enable_clocks(struct qusb_phy *qphy, bool on) { dev_dbg(qphy->phy.dev, "%s(): on:%d\n", __func__, on); if (qphy->clocks_enabled == on) return; if (on) { clk_prepare_enable(qphy->ref_clk_src); if (qphy->ref_clk) clk_prepare_enable(qphy->ref_clk); if (qphy->cfg_ahb_clk) clk_prepare_enable(qphy->cfg_ahb_clk); } else { if (qphy->cfg_ahb_clk) clk_disable_unprepare(qphy->cfg_ahb_clk); if (qphy->ref_clk) clk_disable_unprepare(qphy->ref_clk); clk_disable_unprepare(qphy->ref_clk_src); } qphy->clocks_enabled = on; } static int qusb_phy_config_vdd(struct qusb_phy *qphy, int high) { int min, ret; min = high ? 1 : 0; /* low or none? */ ret = regulator_set_voltage(qphy->vdd, qphy->vdd_levels[min], qphy->vdd_levels[2]); if (ret) { dev_err(qphy->phy.dev, "unable to set voltage for qusb vdd\n"); return ret; } dev_dbg(qphy->phy.dev, "min_vol:%d max_vol:%d\n", qphy->vdd_levels[min], qphy->vdd_levels[2]); return ret; } static int qusb_phy_disable_power(struct qusb_phy *qphy) { int ret = 0; mutex_lock(&qphy->lock); if (!qphy->power_enabled) { mutex_unlock(&qphy->lock); return 0; } dev_dbg(qphy->phy.dev, "%s:req to turn off regulators\n", __func__); ret = regulator_disable(qphy->refgen); if (ret) dev_err(qphy->phy.dev, "Unable to disable refgen:%d\n", ret); if (!regulator_is_enabled(qphy->refgen)) { ret = regulator_set_voltage(qphy->refgen, 0, QUSB2PHY_REFGEN_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for refgen:%d\n", ret); ret = regulator_set_load(qphy->refgen, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set (0) HPM of refgen\n"); } ret = regulator_disable(qphy->vdda33); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret); if (!regulator_is_enabled(qphy->vdda33)) { ret = regulator_set_voltage(qphy->vdda33, 0, QUSB2PHY_3P3_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda33:%d\n", ret); ret = regulator_set_load(qphy->vdda33, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n"); } ret = regulator_disable(qphy->vdda18); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret); if (!regulator_is_enabled(qphy->vdda18)) { ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda18:%d\n", ret); ret = regulator_set_load(qphy->vdda18, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n"); } ret = regulator_disable(qphy->vdd); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n", ret); if (!regulator_is_enabled(qphy->vdd)) { ret = qusb_phy_config_vdd(qphy, false); if (ret) dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n", ret); } pr_debug("%s(): QUSB PHY's regulators are turned OFF.\n", __func__); qphy->power_enabled = false; mutex_unlock(&qphy->lock); return ret; } static int qusb_phy_enable_power(struct qusb_phy *qphy) { int ret = 0; mutex_lock(&qphy->lock); if (qphy->power_enabled) { mutex_unlock(&qphy->lock); return 0; } dev_dbg(qphy->phy.dev, "%s:req to turn on regulators\n", __func__); ret = qusb_phy_config_vdd(qphy, true); if (ret) { dev_err(qphy->phy.dev, "Unable to config VDD:%d\n", ret); goto err_vdd; } ret = regulator_enable(qphy->vdd); if (ret) { dev_err(qphy->phy.dev, "Unable to enable VDD\n"); goto unconfig_vdd; } ret = regulator_set_load(qphy->vdda18, QUSB2PHY_1P8_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda18:%d\n", ret); goto disable_vdd; } ret = regulator_set_voltage(qphy->vdda18, QUSB2PHY_1P8_VOL_MIN, QUSB2PHY_1P8_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda18:%d\n", ret); goto put_vdda18_lpm; } ret = regulator_enable(qphy->vdda18); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda18:%d\n", ret); goto unset_vdda18; } ret = regulator_set_load(qphy->vdda33, QUSB2PHY_3P3_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of vdda33:%d\n", ret); goto disable_vdda18; } ret = regulator_set_voltage(qphy->vdda33, QUSB2PHY_3P3_VOL_MIN, QUSB2PHY_3P3_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for vdda33:%d\n", ret); goto put_vdda33_lpm; } ret = regulator_enable(qphy->vdda33); if (ret) { dev_err(qphy->phy.dev, "Unable to enable vdda33:%d\n", ret); goto unset_vdd33; } ret = regulator_set_load(qphy->refgen, QUSB2PHY_REFGEN_HPM_LOAD); if (ret < 0) { dev_err(qphy->phy.dev, "Unable to set HPM of refgen:%d\n", ret); goto disable_vdd33; } ret = regulator_set_voltage(qphy->refgen, QUSB2PHY_REFGEN_VOL_MIN, QUSB2PHY_REFGEN_VOL_MAX); if (ret) { dev_err(qphy->phy.dev, "Unable to set voltage for refgen:%d\n", ret); goto put_refgen_lpm; } ret = regulator_enable(qphy->refgen); if (ret) { dev_err(qphy->phy.dev, "Unable to enable refgen\n"); goto unset_refgen; } pr_debug("%s(): QUSB PHY's regulators are turned ON.\n", __func__); qphy->power_enabled = true; mutex_unlock(&qphy->lock); return ret; unset_refgen: ret = regulator_set_voltage(qphy->refgen, 0, QUSB2PHY_REFGEN_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for refgen:%d\n", ret); put_refgen_lpm: ret = regulator_set_load(qphy->refgen, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set (0) HPM of refgen\n"); disable_vdd33: ret = regulator_disable(qphy->vdda33); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda33:%d\n", ret); unset_vdd33: ret = regulator_set_voltage(qphy->vdda33, 0, QUSB2PHY_3P3_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda33:%d\n", ret); put_vdda33_lpm: ret = regulator_set_load(qphy->vdda33, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set (0) HPM of vdda33\n"); disable_vdda18: ret = regulator_disable(qphy->vdda18); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdda18:%d\n", ret); unset_vdda18: ret = regulator_set_voltage(qphy->vdda18, 0, QUSB2PHY_1P8_VOL_MAX); if (ret) dev_err(qphy->phy.dev, "Unable to set (0) voltage for vdda18:%d\n", ret); put_vdda18_lpm: ret = regulator_set_load(qphy->vdda18, 0); if (ret < 0) dev_err(qphy->phy.dev, "Unable to set LPM of vdda18\n"); disable_vdd: ret = regulator_disable(qphy->vdd); if (ret) dev_err(qphy->phy.dev, "Unable to disable vdd:%d\n", ret); unconfig_vdd: ret = qusb_phy_config_vdd(qphy, false); if (ret) dev_err(qphy->phy.dev, "Unable unconfig VDD:%d\n", ret); err_vdd: mutex_unlock(&qphy->lock); return ret; } static void qusb_phy_get_tune1_param(struct qusb_phy *qphy) { u8 reg; u32 bit_mask = 1; pr_debug("%s(): num_of_bits:%d bit_pos:%d\n", __func__, qphy->efuse_num_of_bits, qphy->efuse_bit_pos); /* get bit mask based on number of bits to use with efuse reg */ bit_mask = (bit_mask << qphy->efuse_num_of_bits) - 1; /* * For 8nm zero is treated as a valid efuse value and driver * should program the tune1 reg based on efuse value */ qphy->tune_val = readl_relaxed(qphy->efuse_reg); pr_debug("%s(): bit_mask:%d efuse based tune1 value:%d\n", __func__, bit_mask, qphy->tune_val); qphy->tune_val = TUNE_VAL_MASK(qphy->tune_val, qphy->efuse_bit_pos, bit_mask); reg = readb_relaxed(qphy->base + qphy->phy_reg[PORT_TUNE1]); reg = reg & 0x0f; reg |= (qphy->tune_val << 4); qphy->tune_val = reg; } static void qusb_phy_write_seq(void __iomem *base, u32 *seq, int cnt, unsigned long delay) { int i; pr_debug("Seq count:%d\n", cnt); for (i = 0; i < cnt; i = i+2) { pr_debug("write 0x%02x to 0x%02x\n", seq[i], seq[i+1]); writel_relaxed(seq[i], base + seq[i+1]); if (delay) usleep_range(delay, (delay + 2000)); } } static void msm_usb_write_readback(void __iomem *base, u32 offset, const u32 mask, u32 val) { u32 write_val, tmp = readl_relaxed(base + offset); tmp &= ~mask; /* retain other bits */ write_val = tmp | val; writel_relaxed(write_val, base + offset); /* Read back to see if val was written */ tmp = readl_relaxed(base + offset); tmp &= mask; /* clear other bits */ if (tmp != val) pr_err("%s: write: %x to QSCRATCH: %x FAILED\n", __func__, val, offset); } static void qusb_phy_reset(struct qusb_phy *qphy) { int ret; ret = reset_control_assert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "%s: phy_reset assert failed\n", __func__); usleep_range(100, 150); ret = reset_control_deassert(qphy->phy_reset); if (ret) dev_err(qphy->phy.dev, "%s: phy_reset deassert failed\n", __func__); } static bool qusb_phy_pll_locked(struct qusb_phy *qphy) { u32 val; writel_relaxed(DEBUG_CTRL2_MUX_PLL_LOCK_STATUS, qphy->base + qphy->phy_reg[DEBUG_CTRL2]); val = readl_relaxed(qphy->base + qphy->phy_reg[STAT5]); return (val & VSTATUS_PLL_LOCK_STATUS_MASK); } static void qusb_phy_host_init(struct usb_phy *phy) { u8 reg; int p_index; struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qusb_phy_write_seq(qphy->base, qphy->qusb_phy_host_init_seq, qphy->host_init_seq_len, 0); if (qphy->efuse_reg) { if (!qphy->tune_val) qusb_phy_get_tune1_param(qphy); } else { /* For non fused chips we need to write the TUNE1 param as * specified in DT otherwise we will end up writing 0 to * TUNE1 */ qphy->tune_val = readb_relaxed(qphy->base + qphy->phy_reg[PORT_TUNE1]); } writel_relaxed(qphy->tune_val | BIT(7), qphy->base + qphy->phy_reg[PORT_TUNE1]); pr_debug("%s(): Programming TUNE1 parameter as:%x\n", __func__, readb_relaxed(qphy->base + qphy->phy_reg[PORT_TUNE1])); writel_relaxed(DEBUG_CTRL1_OVERRIDE_VAL, qphy->base + qphy->phy_reg[DEBUG_CTRL1]); /* if debugfs based tunex params are set, use that value. */ for (p_index = 0; p_index < 5; p_index++) { if (qphy->tune[p_index]) writel_relaxed(qphy->tune[p_index], qphy->base + qphy->phy_reg[PORT_TUNE1] + (4 * p_index)); } if (qphy->refgen_north_bg_reg && qphy->override_bias_ctrl2) if (readl_relaxed(qphy->refgen_north_bg_reg) & BANDGAP_BYPASS) writel_relaxed(BIAS_CTRL_2_OVERRIDE_VAL, qphy->base + qphy->phy_reg[BIAS_CTRL_2]); if (qphy->bias_ctrl2) writel_relaxed(qphy->bias_ctrl2, qphy->base + qphy->phy_reg[BIAS_CTRL_2]); /* Ensure above write is completed before turning ON ref clk */ wmb(); /* Require to get phy pll lock successfully */ usleep_range(150, 160); reg = readb_relaxed(qphy->base + qphy->phy_reg[PLL_COMMON_STATUS_ONE]); dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg); if (!(reg & CORE_READY_STATUS)) dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg); } static int qusb_phy_init(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int p_index; u8 reg; if (qphy->eud_enable_reg && readl_relaxed(qphy->eud_enable_reg)) { dev_err(qphy->phy.dev, "eud is enabled\n"); return 0; } qusb_phy_enable_power(qphy); qusb_phy_enable_clocks(qphy, true); qusb_phy_reset(qphy); if (qphy->qusb_phy_host_init_seq && qphy->phy.flags & PHY_HOST_MODE) { qusb_phy_host_init(phy); return 0; } if (qphy->emulation) { if (qphy->emu_init_seq) qusb_phy_write_seq(qphy->emu_phy_base + 0x8000, qphy->emu_init_seq, qphy->emu_init_seq_len, 10000); if (qphy->qusb_phy_init_seq) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq, qphy->init_seq_len, 0); /* Wait for 5ms as per QUSB2 RUMI sequence */ usleep_range(5000, 7000); if (qphy->phy_pll_reset_seq) qusb_phy_write_seq(qphy->base, qphy->phy_pll_reset_seq, qphy->phy_pll_reset_seq_len, 10000); if (qphy->emu_dcm_reset_seq) qusb_phy_write_seq(qphy->emu_phy_base, qphy->emu_dcm_reset_seq, qphy->emu_dcm_reset_seq_len, 10000); return 0; } /* Disable the PHY */ writel_relaxed(readl_relaxed(qphy->base + qphy->phy_reg[PWR_CTRL1]) | PWR_CTRL1_POWR_DOWN, qphy->base + qphy->phy_reg[PWR_CTRL1]); if (qphy->qusb_phy_init_seq) qusb_phy_write_seq(qphy->base, qphy->qusb_phy_init_seq, qphy->init_seq_len, 0); if (qphy->efuse_reg) { if (!qphy->tune_val) qusb_phy_get_tune1_param(qphy); pr_debug("%s(): Programming TUNE1 parameter as:%x\n", __func__, qphy->tune_val); writel_relaxed(qphy->tune_val, qphy->base + qphy->phy_reg[PORT_TUNE1]); } /* if debugfs based tunex params are set, use that value. */ for (p_index = 0; p_index < 5; p_index++) { if (qphy->tune[p_index]) writel_relaxed(qphy->tune[p_index], qphy->base + qphy->phy_reg[PORT_TUNE1] + (4 * p_index)); } if (qphy->refgen_north_bg_reg && qphy->override_bias_ctrl2) if (readl_relaxed(qphy->refgen_north_bg_reg) & BANDGAP_BYPASS) writel_relaxed(BIAS_CTRL_2_OVERRIDE_VAL, qphy->base + qphy->phy_reg[BIAS_CTRL_2]); if (qphy->bias_ctrl2) writel_relaxed(qphy->bias_ctrl2, qphy->base + qphy->phy_reg[BIAS_CTRL_2]); /* ensure above writes are completed before re-enabling PHY */ wmb(); /* Enable the PHY */ writel_relaxed(readl_relaxed(qphy->base + qphy->phy_reg[PWR_CTRL1]) & ~PWR_CTRL1_POWR_DOWN, qphy->base + qphy->phy_reg[PWR_CTRL1]); /* Ensure above write is completed before turning ON ref clk */ wmb(); /* Require to get phy pll lock successfully */ usleep_range(150, 160); reg = readb_relaxed(qphy->base + qphy->phy_reg[PLL_COMMON_STATUS_ONE]); dev_dbg(phy->dev, "QUSB2PHY_PLL_COMMON_STATUS_ONE:%x\n", reg); if (!(reg & CORE_READY_STATUS)) { dev_err(phy->dev, "QUSB PHY PLL LOCK fails:%x\n", reg); WARN_ON(1); } return 0; } static void qusb_phy_shutdown(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qusb_phy_disable_power(qphy); } static u32 qusb_phy_get_linestate(struct qusb_phy *qphy) { u32 linestate = 0; if (qphy->cable_connected) { if (qphy->phy.flags & PHY_HSFS_MODE) linestate |= LINESTATE_DP; else if (qphy->phy.flags & PHY_LS_MODE) linestate |= LINESTATE_DM; } return linestate; } /** * Performs QUSB2 PHY suspend/resume functionality. * * @uphy - usb phy pointer. * @suspend - to enable suspend or not. 1 - suspend, 0 - resume * */ static int qusb_phy_set_suspend(struct usb_phy *phy, int suspend) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); u32 linestate = 0, intr_mask = 0; if (qphy->suspended == suspend) { if (qphy->phy.flags & PHY_SUS_OVERRIDE) goto suspend; dev_dbg(phy->dev, "%s: USB PHY is already suspended\n", __func__); return 0; } suspend: if (suspend) { /* Bus suspend case */ /* * The HUB class drivers calls usb_phy_notify_disconnect() upon a device * disconnect. Consider a scenario where a USB device is disconnected without * detaching the OTG cable. phy->cable_connected is marked false due to above * mentioned call path. Now, while entering low power mode (host bus suspend), * we come here and turn off regulators thinking no cable is connected. Prevent * this by not turning off regulators while in host mode. */ if (qphy->cable_connected || (qphy->phy.flags & PHY_HOST_MODE)) { /* Disable all interrupts */ writel_relaxed(0x00, qphy->base + qphy->phy_reg[INTR_CTRL]); linestate = qusb_phy_get_linestate(qphy); /* * D+/D- interrupts are level-triggered, but we are * only interested if the line state changes, so enable * the high/low trigger based on current state. In * other words, enable the triggers _opposite_ of what * the current D+/D- levels are. * e.g. if currently D+ high, D- low (HS 'J'/Suspend), * configure the mask to trigger on D+ low OR D- high */ intr_mask = DPSE_INTR_EN | DMSE_INTR_EN; if (!(linestate & LINESTATE_DP)) /* D+ low */ intr_mask |= DPSE_INTR_HIGH_SEL; if (!(linestate & LINESTATE_DM)) /* D- low */ intr_mask |= DMSE_INTR_HIGH_SEL; writel_relaxed(intr_mask, qphy->base + qphy->phy_reg[INTR_CTRL]); if (linestate & (LINESTATE_DP | LINESTATE_DM)) { /* enable phy auto-resume */ writel_relaxed(0x91, qphy->base + qphy->phy_reg[TEST1]); /* Delay recommended between TEST1 writes */ usleep_range(10, 20); writel_relaxed(0x90, qphy->base + qphy->phy_reg[TEST1]); } dev_dbg(phy->dev, "%s: intr_mask = %x\n", __func__, intr_mask); /* Makes sure that above write goes through */ wmb(); qusb_phy_enable_clocks(qphy, false); } else { /* Cable disconnect case */ /* Disable all interrupts */ dev_dbg(phy->dev, "%s: phy->flags:0x%x\n", __func__, qphy->phy.flags); if (!(qphy->phy.flags & EUD_SPOOF_DISCONNECT)) { dev_dbg(phy->dev, "turning off clocks/ldo\n"); writel_relaxed(0x00, qphy->base + qphy->phy_reg[INTR_CTRL]); qusb_phy_reset(qphy); qusb_phy_enable_clocks(qphy, false); qusb_phy_disable_power(qphy); } } qphy->suspended = true; } else { /* Bus resume case */ if (qphy->cable_connected) { qusb_phy_enable_clocks(qphy, true); /* Clear all interrupts on resume */ writel_relaxed(0x00, qphy->base + qphy->phy_reg[INTR_CTRL]); /* Reset PLL if needed */ if (!qusb_phy_pll_locked(qphy)) { dev_dbg(phy->dev, "%s: reset PLL\n", __func__); /* hold core PLL into reset */ writel_relaxed(CORE_PLL_EN_FROM_RESET | CORE_RESET | CORE_RESET_MUX, qphy->base + qphy->phy_reg[PLL_CORE_INPUT_OVERRIDE]); /* Wait for PLL to get reset */ usleep_range(10, 20); /* bring core PLL out of reset */ writel_relaxed(CORE_PLL_EN_FROM_RESET, qphy->base + qphy->phy_reg[PLL_CORE_INPUT_OVERRIDE]); /* Makes sure that above write goes through */ wmb(); } } else { /* Cable connect case */ qusb_phy_enable_power(qphy); qusb_phy_enable_clocks(qphy, true); } qphy->suspended = false; } return 0; } static int qusb_phy_notify_connect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = true; dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } static int qusb_phy_notify_disconnect(struct usb_phy *phy, enum usb_device_speed speed) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); qphy->cable_connected = false; dev_dbg(phy->dev, "QUSB PHY: connect notification cable_connected=%d\n", qphy->cable_connected); return 0; } #define DP_PULSE_WIDTH_MSEC 200 static enum usb_charger_type usb_phy_drive_dp_pulse(struct usb_phy *phy) { struct qusb_phy *qphy = container_of(phy, struct qusb_phy, phy); int ret; ret = qusb_phy_enable_power(qphy); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator enable failed:%d\n", ret); return 0; } qusb_phy_enable_clocks(qphy, true); msm_usb_write_readback(qphy->base, qphy->phy_reg[PWR_CTRL1], PWR_CTRL1_POWR_DOWN, 0x00); msm_usb_write_readback(qphy->base, qphy->phy_reg[DEBUG_CTRL4], FORCED_UTMI_DPPULLDOWN, 0x00); msm_usb_write_readback(qphy->base, qphy->phy_reg[DEBUG_CTRL4], FORCED_UTMI_DMPULLDOWN, FORCED_UTMI_DMPULLDOWN); msm_usb_write_readback(qphy->base, qphy->phy_reg[DEBUG_CTRL3], 0xd1, 0xd1); msm_usb_write_readback(qphy->base, qphy->phy_reg[PWR_CTRL1], CLAMP_N_EN, CLAMP_N_EN); msm_usb_write_readback(qphy->base, qphy->phy_reg[INTR_CTRL], DPSE_INTR_HIGH_SEL, 0x00); msm_usb_write_readback(qphy->base, qphy->phy_reg[INTR_CTRL], DPSE_INTR_EN, DPSE_INTR_EN); msleep(DP_PULSE_WIDTH_MSEC); msm_usb_write_readback(qphy->base, qphy->phy_reg[INTR_CTRL], DPSE_INTR_HIGH_SEL | DPSE_INTR_EN, 0x00); msm_usb_write_readback(qphy->base, qphy->phy_reg[DEBUG_CTRL3], 0xd1, 0x00); msm_usb_write_readback(qphy->base, qphy->phy_reg[DEBUG_CTRL4], FORCED_UTMI_DPPULLDOWN | FORCED_UTMI_DMPULLDOWN, 0x00); msm_usb_write_readback(qphy->base, qphy->phy_reg[PWR_CTRL1], PWR_CTRL1_POWR_DOWN | CLAMP_N_EN, 0x00); msleep(20); qusb_phy_enable_clocks(qphy, false); ret = qusb_phy_disable_power(qphy); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator disable failed:%d\n", ret); } return 0; } static int qusb_phy_dpdm_regulator_enable(struct regulator_dev *rdev) { int ret = 0; struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n", __func__, qphy->dpdm_enable); if (qphy->eud_enable_reg && readl_relaxed(qphy->eud_enable_reg)) { dev_err(qphy->phy.dev, "eud is enabled\n"); return 0; } if (!qphy->dpdm_enable) { ret = qusb_phy_enable_power(qphy); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator enable failed:%d\n", ret); return ret; } qphy->dpdm_enable = true; qusb_phy_reset(qphy); } return ret; } static int qusb_phy_dpdm_regulator_disable(struct regulator_dev *rdev) { int ret = 0; struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s dpdm_enable:%d\n", __func__, qphy->dpdm_enable); if (qphy->dpdm_enable) { ret = qusb_phy_disable_power(qphy); if (ret < 0) { dev_dbg(qphy->phy.dev, "dpdm regulator disable failed:%d\n", ret); return ret; } qphy->dpdm_enable = false; } return ret; } static int qusb_phy_dpdm_regulator_is_enabled(struct regulator_dev *rdev) { struct qusb_phy *qphy = rdev_get_drvdata(rdev); dev_dbg(qphy->phy.dev, "%s qphy->dpdm_enable = %d\n", __func__, qphy->dpdm_enable); return qphy->dpdm_enable; } static const struct regulator_ops qusb_phy_dpdm_regulator_ops = { .enable = qusb_phy_dpdm_regulator_enable, .disable = qusb_phy_dpdm_regulator_disable, .is_enabled = qusb_phy_dpdm_regulator_is_enabled, }; static int qusb_phy_regulator_init(struct qusb_phy *qphy) { struct device *dev = qphy->phy.dev; struct regulator_config cfg = {}; struct regulator_init_data *init_data; init_data = devm_kzalloc(dev, sizeof(*init_data), GFP_KERNEL); if (!init_data) return -ENOMEM; init_data->constraints.valid_ops_mask |= REGULATOR_CHANGE_STATUS; qphy->dpdm_rdesc.owner = THIS_MODULE; qphy->dpdm_rdesc.type = REGULATOR_VOLTAGE; qphy->dpdm_rdesc.ops = &qusb_phy_dpdm_regulator_ops; qphy->dpdm_rdesc.name = kbasename(dev->of_node->full_name); cfg.dev = dev; cfg.init_data = init_data; cfg.driver_data = qphy; cfg.of_node = dev->of_node; qphy->dpdm_rdev = devm_regulator_register(dev, &qphy->dpdm_rdesc, &cfg); return PTR_ERR_OR_ZERO(qphy->dpdm_rdev); } static int qusb_phy_create_debugfs(struct qusb_phy *qphy) { int ret = 0, i; char name[6]; qphy->root = debugfs_create_dir(dev_name(qphy->phy.dev), NULL); if (IS_ERR_OR_NULL(qphy->root)) { dev_err(qphy->phy.dev, "can't create debugfs root for %s\n", dev_name(qphy->phy.dev)); ret = -ENOMEM; goto create_err; } for (i = 0; i < 5; i++) { snprintf(name, sizeof(name), "tune%d", (i + 1)); debugfs_create_x8(name, 0644, qphy->root, &qphy->tune[i]); } debugfs_create_x8("bias_ctrl2", 0644, qphy->root, &qphy->bias_ctrl2); create_err: return ret; } static int qusb2_get_regulators(struct qusb_phy *qphy) { struct device *dev = qphy->phy.dev; qphy->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(qphy->vdd)) { dev_err(dev, "unable to get vdd supply\n"); return PTR_ERR(qphy->vdd); } qphy->vdda33 = devm_regulator_get(dev, "vdda33"); if (IS_ERR(qphy->vdda33)) { dev_err(dev, "unable to get vdda33 supply\n"); return PTR_ERR(qphy->vdda33); } qphy->vdda18 = devm_regulator_get(dev, "vdda18"); if (IS_ERR(qphy->vdda18)) { dev_err(dev, "unable to get vdda18 supply\n"); return PTR_ERR(qphy->vdda18); } qphy->refgen = devm_regulator_get(dev, "refgen"); if (IS_ERR(qphy->refgen)) { dev_err(dev, "unable to get refgen supply\n"); return PTR_ERR(qphy->refgen); } return 0; } static int qusb_phy_probe(struct platform_device *pdev) { struct qusb_phy *qphy; struct device *dev = &pdev->dev; struct resource *res; int ret = 0, size = 0; qphy = devm_kzalloc(dev, sizeof(*qphy), GFP_KERNEL); if (!qphy) return -ENOMEM; qphy->phy.dev = dev; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qusb_phy_base"); qphy->base = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->base)) return PTR_ERR(qphy->base); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "emu_phy_base"); if (res) { qphy->emu_phy_base = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->emu_phy_base)) { dev_dbg(dev, "couldn't ioremap emu_phy_base\n"); qphy->emu_phy_base = NULL; } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "efuse_addr"); if (res) { qphy->efuse_reg = devm_ioremap(dev, res->start, resource_size(res)); if (!IS_ERR_OR_NULL(qphy->efuse_reg)) { ret = of_property_read_u32(dev->of_node, "qcom,efuse-bit-pos", &qphy->efuse_bit_pos); if (!ret) { ret = of_property_read_u32(dev->of_node, "qcom,efuse-num-bits", &qphy->efuse_num_of_bits); } if (ret) { dev_err(dev, "DT Value for efuse is invalid.\n"); return -EINVAL; } } } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "refgen_north_bg_reg_addr"); if (res) qphy->refgen_north_bg_reg = devm_ioremap(dev, res->start, resource_size(res)); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "eud_enable_reg"); if (res) { qphy->eud_enable_reg = devm_ioremap_resource(dev, res); if (IS_ERR(qphy->eud_enable_reg)) { dev_err(dev, "err getting eud_enable_reg address\n"); return PTR_ERR(qphy->eud_enable_reg); } } /* ref_clk_src is needed irrespective of SE_CLK or DIFF_CLK usage */ qphy->ref_clk_src = devm_clk_get(dev, "ref_clk_src"); if (IS_ERR(qphy->ref_clk_src)) { dev_dbg(dev, "clk get failed for ref_clk_src\n"); ret = PTR_ERR(qphy->ref_clk_src); return ret; } /* ref_clk is needed only for DIFF_CLK case, hence make it optional. */ if (of_property_match_string(pdev->dev.of_node, "clock-names", "ref_clk") >= 0) { qphy->ref_clk = devm_clk_get(dev, "ref_clk"); if (IS_ERR(qphy->ref_clk)) { ret = PTR_ERR(qphy->ref_clk); if (ret != -EPROBE_DEFER) dev_dbg(dev, "clk get failed for ref_clk\n"); return ret; } clk_set_rate(qphy->ref_clk, 19200000); } if (of_property_match_string(pdev->dev.of_node, "clock-names", "cfg_ahb_clk") >= 0) { qphy->cfg_ahb_clk = devm_clk_get(dev, "cfg_ahb_clk"); if (IS_ERR(qphy->cfg_ahb_clk)) { ret = PTR_ERR(qphy->cfg_ahb_clk); if (ret != -EPROBE_DEFER) dev_err(dev, "clk get failed for cfg_ahb_clk ret %d\n", ret); return ret; } } qphy->phy_reset = devm_reset_control_get(dev, "phy_reset"); if (IS_ERR(qphy->phy_reset)) return PTR_ERR(qphy->phy_reset); qphy->emulation = of_property_read_bool(dev->of_node, "qcom,emulation"); of_get_property(dev->of_node, "qcom,emu-init-seq", &size); if (size) { qphy->emu_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->emu_init_seq) { qphy->emu_init_seq_len = (size / sizeof(*qphy->emu_init_seq)); if (qphy->emu_init_seq_len % 2) { dev_err(dev, "invalid emu_init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,emu-init-seq", qphy->emu_init_seq, qphy->emu_init_seq_len); } else { dev_dbg(dev, "error allocating memory for emu_init_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,phy-pll-reset-seq", &size); if (size) { qphy->phy_pll_reset_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->phy_pll_reset_seq) { qphy->phy_pll_reset_seq_len = (size / sizeof(*qphy->phy_pll_reset_seq)); if (qphy->phy_pll_reset_seq_len % 2) { dev_err(dev, "invalid phy_pll_reset_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,phy-pll-reset-seq", qphy->phy_pll_reset_seq, qphy->phy_pll_reset_seq_len); } else { dev_dbg(dev, "error allocating memory for phy_pll_reset_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,emu-dcm-reset-seq", &size); if (size) { qphy->emu_dcm_reset_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->emu_dcm_reset_seq) { qphy->emu_dcm_reset_seq_len = (size / sizeof(*qphy->emu_dcm_reset_seq)); if (qphy->emu_dcm_reset_seq_len % 2) { dev_err(dev, "invalid emu_dcm_reset_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,emu-dcm-reset-seq", qphy->emu_dcm_reset_seq, qphy->emu_dcm_reset_seq_len); } else { dev_dbg(dev, "error allocating memory for emu_dcm_reset_seq\n"); } } size = 0; of_get_property(dev->of_node, "qcom,qusb-phy-reg-offset", &size); if (size) { qphy->phy_reg = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->phy_reg) { qphy->qusb_phy_reg_offset_cnt = size / sizeof(*qphy->phy_reg); if (qphy->qusb_phy_reg_offset_cnt != USB2_PHY_REG_MAX) { dev_err(dev, "invalid reg offset count\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-reg-offset", qphy->phy_reg, qphy->qusb_phy_reg_offset_cnt); } else { dev_err(dev, "err mem alloc for qusb_phy_reg_offset\n"); return -ENOMEM; } } else { dev_err(dev, "err provide qcom,qmp-phy-reg-offset\n"); return -EINVAL; } size = 0; of_get_property(dev->of_node, "qcom,qusb-phy-init-seq", &size); if (size) { qphy->qusb_phy_init_seq = devm_kzalloc(dev, size, GFP_KERNEL); if (qphy->qusb_phy_init_seq) { qphy->init_seq_len = (size / sizeof(*qphy->qusb_phy_init_seq)); if (qphy->init_seq_len % 2) { dev_err(dev, "invalid init_seq_len\n"); return -EINVAL; } of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-init-seq", qphy->qusb_phy_init_seq, qphy->init_seq_len); } else { dev_err(dev, "error allocating memory for phy_init_seq\n"); } } qphy->host_init_seq_len = of_property_count_elems_of_size(dev->of_node, "qcom,qusb-phy-host-init-seq", sizeof(*qphy->qusb_phy_host_init_seq)); if (qphy->host_init_seq_len > 0) { qphy->qusb_phy_host_init_seq = devm_kcalloc(dev, qphy->host_init_seq_len, sizeof(*qphy->qusb_phy_host_init_seq), GFP_KERNEL); if (qphy->qusb_phy_host_init_seq) of_property_read_u32_array(dev->of_node, "qcom,qusb-phy-host-init-seq", qphy->qusb_phy_host_init_seq, qphy->host_init_seq_len); else return -ENOMEM; } qphy->override_bias_ctrl2 = of_property_read_bool(dev->of_node, "qcom,override-bias-ctrl2"); ret = of_property_read_u32_array(dev->of_node, "qcom,vdd-voltage-level", (u32 *) qphy->vdd_levels, ARRAY_SIZE(qphy->vdd_levels)); if (ret) { dev_err(dev, "error reading qcom,vdd-voltage-level property\n"); return ret; } ret = qusb2_get_regulators(qphy); if (ret) return ret; mutex_init(&qphy->lock); platform_set_drvdata(pdev, qphy); qphy->phy.label = "msm-qusb-phy-v2"; qphy->phy.init = qusb_phy_init; qphy->phy.set_suspend = qusb_phy_set_suspend; qphy->phy.shutdown = qusb_phy_shutdown; qphy->phy.type = USB_PHY_TYPE_USB2; qphy->phy.notify_connect = qusb_phy_notify_connect; qphy->phy.notify_disconnect = qusb_phy_notify_disconnect; qphy->phy.charger_detect = usb_phy_drive_dp_pulse; ret = usb_add_phy_dev(&qphy->phy); if (ret) return ret; ret = qusb_phy_regulator_init(qphy); if (ret) usb_remove_phy(&qphy->phy); qphy->suspended = true; qusb_phy_create_debugfs(qphy); /* * EUD may be enable in boot loader and to keep EUD session alive across * kernel boot till USB phy driver is initialized based on cable status, * keep LDOs on here. */ if (qphy->eud_enable_reg && readl_relaxed(qphy->eud_enable_reg)) qusb_phy_enable_power(qphy); return ret; } static int qusb_phy_remove(struct platform_device *pdev) { struct qusb_phy *qphy = platform_get_drvdata(pdev); usb_remove_phy(&qphy->phy); qphy->cable_connected = false; qusb_phy_set_suspend(&qphy->phy, true); debugfs_remove_recursive(qphy->root); return 0; } static const struct of_device_id qusb_phy_id_table[] = { { .compatible = "qcom,qusb2phy-v2", }, { }, }; MODULE_DEVICE_TABLE(of, qusb_phy_id_table); static struct platform_driver qusb_phy_driver = { .probe = qusb_phy_probe, .remove = qusb_phy_remove, .driver = { .name = "msm-qusb-phy-v2", .of_match_table = of_match_ptr(qusb_phy_id_table), }, }; module_platform_driver(qusb_phy_driver); MODULE_DESCRIPTION("MSM QUSB2 PHY v2 driver"); MODULE_LICENSE("GPL");