// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011, 2013-2021, The Linux Foundation. All rights reserved. * Linux Foundation chooses to take subject only to the GPLv2 license terms, * and distributes only under these terms. * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved. * * This code also borrows from drivers/usb/gadget/u_serial.c, which is * Copyright (C) 2000 - 2003 Al Borchers (alborchers@steinerpoint.com) * Copyright (C) 2008 David Brownell * Copyright (C) 2008 by Nokia Corporation * Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2000 Peter Berger (pberger@brimson.com) * * f_cdev_read() API implementation is using borrowed code from * drivers/usb/gadget/legacy/printer.c, which is * Copyright (C) 2003-2005 David Brownell * Copyright (C) 2006 Craig W. Nadler */ #ifdef pr_fmt #undef pr_fmt #endif #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEVICE_NAME "at_usb" #define MODULE_NAME "msm_usb_bridge" #define NUM_INSTANCE 4 #define MAX_CDEV_INST_NAME 15 #define MAX_CDEV_FUNC_NAME 5 #define BRIDGE_RX_QUEUE_SIZE 8 #define BRIDGE_RX_BUF_SIZE 2048 #define BRIDGE_TX_QUEUE_SIZE 8 #define BRIDGE_TX_BUF_SIZE 2048 #define GS_LOG2_NOTIFY_INTERVAL 5 /* 1 << 5 == 32 msec */ #define GS_NOTIFY_MAXPACKET 10 /* notification + 2 bytes */ struct cserial { struct usb_function func; struct usb_ep *in; struct usb_ep *out; struct usb_ep *notify; struct usb_request *notify_req; struct usb_cdc_line_coding port_line_coding; u8 pending; u8 q_again; u8 data_id; u16 serial_state; u16 port_handshake_bits; /* control signal callbacks*/ unsigned int (*get_dtr)(struct cserial *p); unsigned int (*get_rts)(struct cserial *p); /* notification callbacks */ void (*connect)(struct cserial *p); void (*disconnect)(struct cserial *p); int (*send_break)(struct cserial *p, int duration); unsigned int (*send_carrier_detect)(struct cserial *p, unsigned int val); unsigned int (*send_ring_indicator)(struct cserial *p, unsigned int val); int (*send_modem_ctrl_bits)(struct cserial *p, int ctrl_bits); /* notification changes to modem */ void (*notify_modem)(void *port, int ctrl_bits); }; struct f_cdev { struct cdev fcdev_cdev; struct device dev; unsigned int port_num; char name[sizeof(DEVICE_NAME) + 2]; int minor; spinlock_t port_lock; wait_queue_head_t open_wq; wait_queue_head_t read_wq; struct list_head read_pool; struct list_head read_queued; struct list_head write_pool; /* current active USB RX request */ struct usb_request *current_rx_req; /* number of pending bytes */ size_t pending_rx_bytes; /* current USB RX buffer */ u8 *current_rx_buf; /* function suspend status */ bool func_is_suspended; bool func_wakeup_allowed; struct cserial port_usb; #define ACM_CTRL_DTR 0x01 #define ACM_CTRL_RTS 0x02 #define ACM_CTRL_DCD 0x01 #define ACM_CTRL_DSR 0x02 #define ACM_CTRL_BRK 0x04 #define ACM_CTRL_RI 0x08 unsigned int cbits_to_modem; bool cbits_updated; struct workqueue_struct *fcdev_wq; bool is_connected; bool port_open; unsigned long nbytes_from_host; unsigned long nbytes_to_host; unsigned long nbytes_to_port_bridge; unsigned long nbytes_from_port_bridge; struct dentry *debugfs_root; /* To test remote wakeup using debugfs */ u8 debugfs_rw_enable; }; struct f_cdev_opts { struct usb_function_instance func_inst; struct f_cdev *port; char *func_name; u8 port_num; u8 proto; }; static int major, minors; struct class *fcdev_classp; static DEFINE_IDA(chardev_ida); static DEFINE_MUTEX(chardev_ida_lock); static int usb_cser_alloc_chardev_region(void); static void usb_cser_chardev_deinit(void); static void usb_cser_read_complete(struct usb_ep *ep, struct usb_request *req); static int usb_cser_connect(struct f_cdev *port); static void usb_cser_disconnect(struct f_cdev *port); static struct f_cdev *f_cdev_alloc(char *func_name, int portno); static void usb_cser_free_req(struct usb_ep *ep, struct usb_request *req); static void usb_cser_debugfs_exit(struct f_cdev *port); static struct usb_interface_descriptor cser_interface_desc = { .bLength = USB_DT_INTERFACE_SIZE, .bDescriptorType = USB_DT_INTERFACE, /* .bInterfaceNumber = DYNAMIC */ .bNumEndpoints = 3, .bInterfaceClass = USB_CLASS_VENDOR_SPEC, .bInterfaceSubClass = USB_SUBCLASS_VENDOR_SPEC, /* .bInterfaceProtocol = DYNAMIC */ /* .iInterface = DYNAMIC */ }; static struct usb_cdc_header_desc cser_header_desc = { .bLength = sizeof(cser_header_desc), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_HEADER_TYPE, .bcdCDC = cpu_to_le16(0x0110), }; static struct usb_cdc_call_mgmt_descriptor cser_call_mgmt_descriptor = { .bLength = sizeof(cser_call_mgmt_descriptor), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_CALL_MANAGEMENT_TYPE, .bmCapabilities = 0, /* .bDataInterface = DYNAMIC */ }; static struct usb_cdc_acm_descriptor cser_descriptor = { .bLength = sizeof(cser_descriptor), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_ACM_TYPE, .bmCapabilities = USB_CDC_CAP_LINE, }; static struct usb_cdc_union_desc cser_union_desc = { .bLength = sizeof(cser_union_desc), .bDescriptorType = USB_DT_CS_INTERFACE, .bDescriptorSubType = USB_CDC_UNION_TYPE, /* .bMasterInterface0 = DYNAMIC */ /* .bSlaveInterface0 = DYNAMIC */ }; /* full speed support: */ static struct usb_endpoint_descriptor cser_fs_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(GS_NOTIFY_MAXPACKET), .bInterval = 1 << GS_LOG2_NOTIFY_INTERVAL, }; static struct usb_endpoint_descriptor cser_fs_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_endpoint_descriptor cser_fs_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_OUT, .bmAttributes = USB_ENDPOINT_XFER_BULK, }; static struct usb_descriptor_header *cser_fs_function[] = { (struct usb_descriptor_header *) &cser_interface_desc, (struct usb_descriptor_header *) &cser_header_desc, (struct usb_descriptor_header *) &cser_call_mgmt_descriptor, (struct usb_descriptor_header *) &cser_descriptor, (struct usb_descriptor_header *) &cser_union_desc, (struct usb_descriptor_header *) &cser_fs_notify_desc, (struct usb_descriptor_header *) &cser_fs_in_desc, (struct usb_descriptor_header *) &cser_fs_out_desc, NULL, }; /* high speed support: */ static struct usb_endpoint_descriptor cser_hs_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(GS_NOTIFY_MAXPACKET), .bInterval = GS_LOG2_NOTIFY_INTERVAL+4, }; static struct usb_endpoint_descriptor cser_hs_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_endpoint_descriptor cser_hs_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(512), }; static struct usb_descriptor_header *cser_hs_function[] = { (struct usb_descriptor_header *) &cser_interface_desc, (struct usb_descriptor_header *) &cser_header_desc, (struct usb_descriptor_header *) &cser_call_mgmt_descriptor, (struct usb_descriptor_header *) &cser_descriptor, (struct usb_descriptor_header *) &cser_union_desc, (struct usb_descriptor_header *) &cser_hs_notify_desc, (struct usb_descriptor_header *) &cser_hs_in_desc, (struct usb_descriptor_header *) &cser_hs_out_desc, NULL, }; static struct usb_endpoint_descriptor cser_ss_in_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_endpoint_descriptor cser_ss_out_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = cpu_to_le16(1024), }; static struct usb_ss_ep_comp_descriptor cser_ss_bulk_comp_desc = { .bLength = sizeof(cser_ss_bulk_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, }; static struct usb_endpoint_descriptor cser_ss_notify_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = USB_DIR_IN, .bmAttributes = USB_ENDPOINT_XFER_INT, .wMaxPacketSize = cpu_to_le16(GS_NOTIFY_MAXPACKET), .bInterval = GS_LOG2_NOTIFY_INTERVAL+4, }; static struct usb_ss_ep_comp_descriptor cser_ss_notify_comp_desc = { .bLength = sizeof(cser_ss_notify_comp_desc), .bDescriptorType = USB_DT_SS_ENDPOINT_COMP, /* the following 2 values can be tweaked if necessary */ /* .bMaxBurst = 0, */ /* .bmAttributes = 0, */ .wBytesPerInterval = cpu_to_le16(GS_NOTIFY_MAXPACKET), }; static struct usb_descriptor_header *cser_ss_function[] = { (struct usb_descriptor_header *) &cser_interface_desc, (struct usb_descriptor_header *) &cser_header_desc, (struct usb_descriptor_header *) &cser_call_mgmt_descriptor, (struct usb_descriptor_header *) &cser_descriptor, (struct usb_descriptor_header *) &cser_union_desc, (struct usb_descriptor_header *) &cser_ss_notify_desc, (struct usb_descriptor_header *) &cser_ss_notify_comp_desc, (struct usb_descriptor_header *) &cser_ss_in_desc, (struct usb_descriptor_header *) &cser_ss_bulk_comp_desc, (struct usb_descriptor_header *) &cser_ss_out_desc, (struct usb_descriptor_header *) &cser_ss_bulk_comp_desc, NULL, }; /* string descriptors: */ static struct usb_string cser_string_defs[] = { [0].s = "CDEV Serial", { } /* end of list */ }; static struct usb_gadget_strings cser_string_table = { .language = 0x0409, /* en-us */ .strings = cser_string_defs, }; static struct usb_gadget_strings *usb_cser_strings[] = { &cser_string_table, NULL, }; static inline struct f_cdev *func_to_port(struct usb_function *f) { return container_of(f, struct f_cdev, port_usb.func); } static inline struct f_cdev *cser_to_port(struct cserial *cser) { return container_of(cser, struct f_cdev, port_usb); } static unsigned int convert_acm_sigs_to_uart(unsigned int acm_sig) { unsigned int uart_sig = 0; acm_sig &= (ACM_CTRL_DTR | ACM_CTRL_RTS); if (acm_sig & ACM_CTRL_DTR) uart_sig |= TIOCM_DTR; if (acm_sig & ACM_CTRL_RTS) uart_sig |= TIOCM_RTS; return uart_sig; } static void port_complete_set_line_coding(struct usb_ep *ep, struct usb_request *req) { struct f_cdev *port = ep->driver_data; struct usb_composite_dev *cdev = port->port_usb.func.config->cdev; if (req->status != 0) { dev_dbg(&cdev->gadget->dev, "port(%s) completion, err %d\n", port->name, req->status); return; } /* normal completion */ if (req->actual != sizeof(port->port_usb.port_line_coding)) { dev_dbg(&cdev->gadget->dev, "port(%s) short resp, len %d\n", port->name, req->actual); usb_ep_set_halt(ep); } else { struct usb_cdc_line_coding *value = req->buf; port->port_usb.port_line_coding = *value; } } static void usb_cser_free_func(struct usb_function *f) { /* Do nothing as cser_alloc() doesn't alloc anything. */ } static int usb_cser_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl) { struct f_cdev *port = func_to_port(f); struct usb_composite_dev *cdev = f->config->cdev; struct usb_request *req = cdev->req; int value = -EOPNOTSUPP; u16 w_index = le16_to_cpu(ctrl->wIndex); u16 w_value = le16_to_cpu(ctrl->wValue); u16 w_length = le16_to_cpu(ctrl->wLength); switch ((ctrl->bRequestType << 8) | ctrl->bRequest) { /* SET_LINE_CODING ... just read and save what the host sends */ case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_REQ_SET_LINE_CODING: if (w_length != sizeof(struct usb_cdc_line_coding)) goto invalid; value = w_length; cdev->gadget->ep0->driver_data = port; req->complete = port_complete_set_line_coding; break; /* GET_LINE_CODING ... return what host sent, or initial value */ case ((USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_REQ_GET_LINE_CODING: value = min_t(unsigned int, w_length, sizeof(struct usb_cdc_line_coding)); memcpy(req->buf, &port->port_usb.port_line_coding, value); break; case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8) | USB_CDC_REQ_SET_CONTROL_LINE_STATE: value = 0; port->port_usb.port_handshake_bits = w_value; pr_debug("USB_CDC_REQ_SET_CONTROL_LINE_STATE: DTR:%d RST:%d\n", w_value & ACM_CTRL_DTR ? 1 : 0, w_value & ACM_CTRL_RTS ? 1 : 0); if (port->port_usb.notify_modem) port->port_usb.notify_modem(port, w_value); break; default: invalid: dev_dbg(&cdev->gadget->dev, "invalid control req%02x.%02x v%04x i%04x l%d\n", ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); } /* respond with data transfer or status phase? */ if (value >= 0) { dev_dbg(&cdev->gadget->dev, "port(%s) req%02x.%02x v%04x i%04x l%d\n", port->name, ctrl->bRequestType, ctrl->bRequest, w_value, w_index, w_length); req->zero = 0; req->length = value; value = usb_ep_queue(cdev->gadget->ep0, req, GFP_ATOMIC); if (value < 0) pr_err("port response on (%s), err %d\n", port->name, value); } /* device either stalls (value < 0) or reports success */ return value; } static int usb_cser_set_alt(struct usb_function *f, unsigned int intf, unsigned int alt) { struct f_cdev *port = func_to_port(f); struct usb_composite_dev *cdev = f->config->cdev; int rc = 0; if (port->port_usb.notify->driver_data) { dev_dbg(&cdev->gadget->dev, "reset port(%s)\n", port->name); usb_ep_disable(port->port_usb.notify); } if (!port->port_usb.notify->desc) { if (config_ep_by_speed(cdev->gadget, f, port->port_usb.notify)) { port->port_usb.notify->desc = NULL; return -EINVAL; } } rc = usb_ep_enable(port->port_usb.notify); if (rc) { dev_err(&cdev->gadget->dev, "can't enable %s, result %d\n", port->port_usb.notify->name, rc); return rc; } port->port_usb.notify->driver_data = port; if (port->port_usb.in->driver_data) { dev_dbg(&cdev->gadget->dev, "reset port(%s)\n", port->name); usb_cser_disconnect(port); } if (!port->port_usb.in->desc || !port->port_usb.out->desc) { dev_dbg(&cdev->gadget->dev, "activate port(%s)\n", port->name); if (config_ep_by_speed(cdev->gadget, f, port->port_usb.in) || config_ep_by_speed(cdev->gadget, f, port->port_usb.out)) { port->port_usb.in->desc = NULL; port->port_usb.out->desc = NULL; return -EINVAL; } } usb_cser_connect(port); return rc; } static int usb_cser_func_suspend(struct usb_function *f, u8 options) { struct f_cdev *port = func_to_port(f); port->func_wakeup_allowed = !!(options & (USB_INTRF_FUNC_SUSPEND_RW >> 8)); port->func_is_suspended = options & (USB_INTRF_FUNC_SUSPEND_LP >> 8); return 0; } static int usb_cser_get_status(struct usb_function *f) { #ifdef CONFIG_USB_FUNC_WAKEUP_SUPPORTED struct f_cdev *port = func_to_port(f); return (port->func_wakeup_allowed ? USB_INTRF_STAT_FUNC_RW : 0) | USB_INTRF_STAT_FUNC_RW_CAP; #else return 0; #endif } static void usb_cser_disable(struct usb_function *f) { struct f_cdev *port = func_to_port(f); struct usb_composite_dev *cdev = f->config->cdev; dev_dbg(&cdev->gadget->dev, "port(%s) deactivated\n", port->name); usb_cser_disconnect(port); usb_ep_disable(port->port_usb.notify); port->port_usb.notify->driver_data = NULL; } static int usb_cser_notify(struct f_cdev *port, u8 type, u16 value, void *data, unsigned int length) { struct usb_ep *ep = port->port_usb.notify; struct usb_request *req; struct usb_cdc_notification *notify; const unsigned int len = sizeof(*notify) + length; void *buf; int status; unsigned long flags; spin_lock_irqsave(&port->port_lock, flags); if (!port->is_connected) { spin_unlock_irqrestore(&port->port_lock, flags); pr_debug("%s: port disconnected\n", __func__); return -ENODEV; } req = port->port_usb.notify_req; req->length = len; notify = req->buf; buf = notify + 1; notify->bmRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE; notify->bNotificationType = type; notify->wValue = cpu_to_le16(value); notify->wIndex = cpu_to_le16(port->port_usb.data_id); notify->wLength = cpu_to_le16(length); /* 2 byte data copy */ memcpy(buf, data, length); spin_unlock_irqrestore(&port->port_lock, flags); status = usb_ep_queue(ep, req, GFP_ATOMIC); if (status < 0) { pr_err("port %s can't notify serial state, %d\n", port->name, status); spin_lock_irqsave(&port->port_lock, flags); port->port_usb.pending = false; spin_unlock_irqrestore(&port->port_lock, flags); } return status; } static int port_notify_serial_state(struct cserial *cser) { struct f_cdev *port = cser_to_port(cser); int status; unsigned long flags; struct usb_composite_dev *cdev = port->port_usb.func.config->cdev; spin_lock_irqsave(&port->port_lock, flags); if (!port->port_usb.pending) { port->port_usb.pending = true; spin_unlock_irqrestore(&port->port_lock, flags); dev_dbg(&cdev->gadget->dev, "port %d serial state %04x\n", port->port_num, port->port_usb.serial_state); status = usb_cser_notify(port, USB_CDC_NOTIFY_SERIAL_STATE, 0, &port->port_usb.serial_state, sizeof(port->port_usb.serial_state)); spin_lock_irqsave(&port->port_lock, flags); } else { port->port_usb.q_again = true; status = 0; } spin_unlock_irqrestore(&port->port_lock, flags); return status; } static void usb_cser_notify_complete(struct usb_ep *ep, struct usb_request *req) { struct f_cdev *port = req->context; unsigned long flags; spin_lock_irqsave(&port->port_lock, flags); port->port_usb.pending = false; if (req->status != -ESHUTDOWN && port->port_usb.q_again) { port->port_usb.q_again = false; spin_unlock_irqrestore(&port->port_lock, flags); port_notify_serial_state(&port->port_usb); spin_lock_irqsave(&port->port_lock, flags); } spin_unlock_irqrestore(&port->port_lock, flags); } static void dun_cser_connect(struct cserial *cser) { cser->serial_state |= ACM_CTRL_DSR | ACM_CTRL_DCD; port_notify_serial_state(cser); } unsigned int dun_cser_get_dtr(struct cserial *cser) { if (cser->port_handshake_bits & ACM_CTRL_DTR) return 1; else return 0; } unsigned int dun_cser_get_rts(struct cserial *cser) { if (cser->port_handshake_bits & ACM_CTRL_RTS) return 1; else return 0; } unsigned int dun_cser_send_carrier_detect(struct cserial *cser, unsigned int yes) { u16 state; state = cser->serial_state; state &= ~ACM_CTRL_DCD; if (yes) state |= ACM_CTRL_DCD; cser->serial_state = state; return port_notify_serial_state(cser); } unsigned int dun_cser_send_ring_indicator(struct cserial *cser, unsigned int yes) { u16 state; state = cser->serial_state; state &= ~ACM_CTRL_RI; if (yes) state |= ACM_CTRL_RI; cser->serial_state = state; return port_notify_serial_state(cser); } static void dun_cser_disconnect(struct cserial *cser) { cser->serial_state &= ~(ACM_CTRL_DSR | ACM_CTRL_DCD); port_notify_serial_state(cser); } static int dun_cser_send_break(struct cserial *cser, int duration) { u16 state; state = cser->serial_state; state &= ~ACM_CTRL_BRK; if (duration) state |= ACM_CTRL_BRK; cser->serial_state = state; return port_notify_serial_state(cser); } static int dun_cser_send_ctrl_bits(struct cserial *cser, int ctrl_bits) { cser->serial_state = ctrl_bits; return port_notify_serial_state(cser); } static void usb_cser_free_req(struct usb_ep *ep, struct usb_request *req) { if (req) { kfree(req->buf); usb_ep_free_request(ep, req); req = NULL; } } static void usb_cser_free_requests(struct usb_ep *ep, struct list_head *head) { struct usb_request *req; while (!list_empty(head)) { req = list_entry(head->next, struct usb_request, list); list_del_init(&req->list); usb_cser_free_req(ep, req); } } static struct usb_request * usb_cser_alloc_req(struct usb_ep *ep, unsigned int len, gfp_t flags) { struct usb_request *req; req = usb_ep_alloc_request(ep, flags); if (!req) { pr_err("usb alloc request failed\n"); return 0; } req->length = len; req->buf = kmalloc(len, flags); if (!req->buf) { pr_err("request buf allocation failed\n"); usb_ep_free_request(ep, req); return 0; } return req; } static int usb_cser_bind(struct usb_configuration *c, struct usb_function *f) { struct usb_composite_dev *cdev = c->cdev; struct f_cdev *port = func_to_port(f); int status; struct usb_ep *ep; struct f_cdev_opts *opts = container_of(f->fi, struct f_cdev_opts, func_inst); if (cser_string_defs[0].id == 0) { status = usb_string_id(c->cdev); if (status < 0) return status; cser_string_defs[0].id = status; cser_interface_desc.iInterface = status; } status = usb_interface_id(c, f); if (status < 0) goto fail; port->port_usb.data_id = status; cser_interface_desc.bInterfaceNumber = status; cser_interface_desc.bInterfaceProtocol = opts->proto; status = -ENODEV; ep = usb_ep_autoconfig(cdev->gadget, &cser_fs_in_desc); if (!ep) goto fail; port->port_usb.in = ep; ep->driver_data = cdev; ep = usb_ep_autoconfig(cdev->gadget, &cser_fs_out_desc); if (!ep) goto fail; port->port_usb.out = ep; ep->driver_data = cdev; ep = usb_ep_autoconfig(cdev->gadget, &cser_fs_notify_desc); if (!ep) goto fail; port->port_usb.notify = ep; ep->driver_data = cdev; /* allocate notification */ port->port_usb.notify_req = usb_cser_alloc_req(ep, sizeof(struct usb_cdc_notification) + 2, GFP_KERNEL); if (!port->port_usb.notify_req) goto fail; port->port_usb.notify_req->complete = usb_cser_notify_complete; port->port_usb.notify_req->context = port; cser_hs_in_desc.bEndpointAddress = cser_fs_in_desc.bEndpointAddress; cser_hs_out_desc.bEndpointAddress = cser_fs_out_desc.bEndpointAddress; cser_ss_in_desc.bEndpointAddress = cser_fs_in_desc.bEndpointAddress; cser_ss_out_desc.bEndpointAddress = cser_fs_out_desc.bEndpointAddress; if (gadget_is_dualspeed(c->cdev->gadget)) { cser_hs_notify_desc.bEndpointAddress = cser_fs_notify_desc.bEndpointAddress; } if (gadget_is_superspeed(c->cdev->gadget)) { cser_ss_notify_desc.bEndpointAddress = cser_fs_notify_desc.bEndpointAddress; } status = usb_assign_descriptors(f, cser_fs_function, cser_hs_function, cser_ss_function, cser_ss_function); if (status) goto fail; dev_dbg(&cdev->gadget->dev, "usb serial port(%d): %s speed IN/%s OUT/%s\n", port->port_num, gadget_is_superspeed(c->cdev->gadget) ? "super" : gadget_is_dualspeed(c->cdev->gadget) ? "dual" : "full", port->port_usb.in->name, port->port_usb.out->name); return 0; fail: if (port->port_usb.notify_req) usb_cser_free_req(port->port_usb.notify, port->port_usb.notify_req); if (port->port_usb.notify) port->port_usb.notify->driver_data = NULL; if (port->port_usb.out) port->port_usb.out->driver_data = NULL; if (port->port_usb.in) port->port_usb.in->driver_data = NULL; pr_err("%s: can't bind, err %d\n", f->name, status); return status; } static void cser_free_inst(struct usb_function_instance *fi) { struct f_cdev_opts *opts; opts = container_of(fi, struct f_cdev_opts, func_inst); if (opts->port) { cdev_device_del(&opts->port->fcdev_cdev, &opts->port->dev); mutex_lock(&chardev_ida_lock); ida_simple_remove(&chardev_ida, opts->port->minor); mutex_unlock(&chardev_ida_lock); usb_cser_debugfs_exit(opts->port); put_device(&opts->port->dev); } usb_cser_chardev_deinit(); kfree(opts->func_name); kfree(opts); } static void usb_cser_unbind(struct usb_configuration *c, struct usb_function *f) { struct f_cdev *port = func_to_port(f); if (port->is_connected) usb_cser_disable(f); /* Reset string id */ cser_string_defs[0].id = 0; usb_free_all_descriptors(f); usb_cser_free_req(port->port_usb.notify, port->port_usb.notify_req); } static int usb_cser_alloc_requests(struct usb_ep *ep, struct list_head *head, int num, int size, void (*cb)(struct usb_ep *ep, struct usb_request *)) { int i; struct usb_request *req; pr_debug("ep:%pK head:%p num:%d size:%d cb:%p\n", ep, head, num, size, cb); for (i = 0; i < num; i++) { req = usb_cser_alloc_req(ep, size, GFP_ATOMIC); if (!req) { pr_debug("req allocated:%d\n", i); return list_empty(head) ? -ENOMEM : 0; } req->complete = cb; list_add_tail(&req->list, head); } return 0; } static void usb_cser_start_rx(struct f_cdev *port) { struct list_head *pool; struct usb_ep *ep; unsigned long flags; int ret; pr_debug("start RX(USB OUT)\n"); if (!port) { pr_err("port is null\n"); return; } spin_lock_irqsave(&port->port_lock, flags); if (!(port->is_connected && port->port_open)) { spin_unlock_irqrestore(&port->port_lock, flags); pr_debug("can't start rx.\n"); return; } pool = &port->read_pool; ep = port->port_usb.out; while (!list_empty(pool)) { struct usb_request *req; req = list_entry(pool->next, struct usb_request, list); list_del_init(&req->list); req->length = BRIDGE_RX_BUF_SIZE; req->complete = usb_cser_read_complete; spin_unlock_irqrestore(&port->port_lock, flags); ret = usb_ep_queue(ep, req, GFP_KERNEL); spin_lock_irqsave(&port->port_lock, flags); if (ret) { pr_err("port(%d):%pK usb ep(%s) queue failed\n", port->port_num, port, ep->name); list_add(&req->list, pool); break; } } spin_unlock_irqrestore(&port->port_lock, flags); } static void usb_cser_read_complete(struct usb_ep *ep, struct usb_request *req) { struct f_cdev *port = ep->driver_data; unsigned long flags; int ret; pr_debug("ep:(%pK)(%s) port:%p req_status:%d req->actual:%u\n", ep, ep->name, port, req->status, req->actual); if (!port) { pr_err("port is null\n"); return; } spin_lock_irqsave(&port->port_lock, flags); if (!port->port_open) { list_add_tail(&req->list, &port->read_pool); spin_unlock_irqrestore(&port->port_lock, flags); return; } if (req->status || !req->actual) { /* * EPIPE can be returned when host issues clear * EP halt, restart OUT requests if so. */ if (req->status == -EPIPE) { spin_unlock_irqrestore(&port->port_lock, flags); ret = usb_ep_queue(ep, req, GFP_KERNEL); if (!ret) return; spin_lock_irqsave(&port->port_lock, flags); } /* * ECONNRESET is returned when the requests are dequeued * (one reason being send_gadget_ep_cmd failure), add the * requests back to read_pool so that it can requeued. */ list_add_tail(&req->list, &port->read_pool); spin_unlock_irqrestore(&port->port_lock, flags); return; } port->nbytes_from_host += req->actual; list_add_tail(&req->list, &port->read_queued); spin_unlock_irqrestore(&port->port_lock, flags); wake_up(&port->read_wq); } static void usb_cser_write_complete(struct usb_ep *ep, struct usb_request *req) { unsigned long flags; struct f_cdev *port = ep->driver_data; pr_debug("ep:(%pK)(%s) port:%p req_stats:%d\n", ep, ep->name, port, req->status); if (!port) { pr_err("port is null\n"); return; } spin_lock_irqsave(&port->port_lock, flags); port->nbytes_to_host += req->actual; list_add_tail(&req->list, &port->write_pool); spin_unlock_irqrestore(&port->port_lock, flags); switch (req->status) { default: pr_debug("unexpected %s status %d\n", ep->name, req->status); fallthrough; case 0: /* normal completion */ break; case -ESHUTDOWN: /* disconnect */ pr_debug("%s shutdown\n", ep->name); break; } } static void usb_cser_start_io(struct f_cdev *port) { int ret = -ENODEV; unsigned long flags; pr_debug("port: %pK\n", port); spin_lock_irqsave(&port->port_lock, flags); if (!port->is_connected) goto start_io_out; port->current_rx_req = NULL; port->pending_rx_bytes = 0; port->current_rx_buf = NULL; ret = usb_cser_alloc_requests(port->port_usb.out, &port->read_pool, BRIDGE_RX_QUEUE_SIZE, BRIDGE_RX_BUF_SIZE, usb_cser_read_complete); if (ret) { pr_err("unable to allocate out requests\n"); goto start_io_out; } ret = usb_cser_alloc_requests(port->port_usb.in, &port->write_pool, BRIDGE_TX_QUEUE_SIZE, BRIDGE_TX_BUF_SIZE, usb_cser_write_complete); if (ret) { usb_cser_free_requests(port->port_usb.out, &port->read_pool); pr_err("unable to allocate IN requests\n"); goto start_io_out; } start_io_out: spin_unlock_irqrestore(&port->port_lock, flags); if (ret) return; usb_cser_start_rx(port); } static void usb_cser_stop_io(struct f_cdev *port) { struct usb_ep *in; struct usb_ep *out; unsigned long flags; pr_debug("port:%pK\n", port); in = port->port_usb.in; out = port->port_usb.out; /* disable endpoints, aborting down any active I/O */ usb_ep_disable(out); out->driver_data = NULL; usb_ep_disable(in); in->driver_data = NULL; spin_lock_irqsave(&port->port_lock, flags); if (port->current_rx_req != NULL) { kfree(port->current_rx_req->buf); usb_ep_free_request(out, port->current_rx_req); } port->pending_rx_bytes = 0; port->current_rx_buf = NULL; usb_cser_free_requests(out, &port->read_queued); usb_cser_free_requests(out, &port->read_pool); usb_cser_free_requests(in, &port->write_pool); spin_unlock_irqrestore(&port->port_lock, flags); } int f_cdev_open(struct inode *inode, struct file *file) { int ret; unsigned long flags; struct f_cdev *port; port = container_of(inode->i_cdev, struct f_cdev, fcdev_cdev); get_device(&port->dev); if (port->port_open) { pr_err("port is already opened.\n"); put_device(&port->dev); return -EBUSY; } file->private_data = port; pr_debug("opening port(%s)(%pK)\n", port->name, port); ret = wait_event_interruptible(port->open_wq, port->is_connected); if (ret) { pr_debug("open interrupted.\n"); put_device(&port->dev); return ret; } spin_lock_irqsave(&port->port_lock, flags); port->port_open = true; spin_unlock_irqrestore(&port->port_lock, flags); usb_cser_start_rx(port); pr_debug("port(%s)(%pK) open is success\n", port->name, port); return 0; } int f_cdev_release(struct inode *inode, struct file *file) { unsigned long flags; struct f_cdev *port; port = file->private_data; spin_lock_irqsave(&port->port_lock, flags); port->port_open = false; port->cbits_updated = false; spin_unlock_irqrestore(&port->port_lock, flags); pr_debug("port(%s)(%pK) is closed.\n", port->name, port); put_device(&port->dev); return 0; } ssize_t f_cdev_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned long flags; struct f_cdev *port; struct usb_request *req; struct list_head *pool; struct usb_request *current_rx_req; size_t pending_rx_bytes, bytes_copied = 0, size; u8 *current_rx_buf; port = file->private_data; if (!port) { pr_err("port is NULL.\n"); return -EINVAL; } pr_debug("read on port(%s)(%pK) count:%zu\n", port->name, port, count); spin_lock_irqsave(&port->port_lock, flags); current_rx_req = port->current_rx_req; pending_rx_bytes = port->pending_rx_bytes; current_rx_buf = port->current_rx_buf; port->current_rx_req = NULL; port->current_rx_buf = NULL; port->pending_rx_bytes = 0; bytes_copied = 0; if (list_empty(&port->read_queued) && !pending_rx_bytes) { spin_unlock_irqrestore(&port->port_lock, flags); pr_debug("%s(): read_queued list is empty.\n", __func__); goto start_rx; } /* * Consider below cases: * 1. If available read buffer size (i.e. count value) is greater than * available data as part of one USB OUT request buffer, then consider * copying multiple USB OUT request buffers until read buffer is filled. * 2. If available read buffer size (i.e. count value) is smaller than * available data as part of one USB OUT request buffer, then copy this * buffer data across multiple read() call until whole USB OUT request * buffer is copied. */ while ((pending_rx_bytes || !list_empty(&port->read_queued)) && count) { if (pending_rx_bytes == 0) { pool = &port->read_queued; req = list_first_entry(pool, struct usb_request, list); list_del_init(&req->list); current_rx_req = req; pending_rx_bytes = req->actual; current_rx_buf = req->buf; } spin_unlock_irqrestore(&port->port_lock, flags); size = count; if (size > pending_rx_bytes) size = pending_rx_bytes; pr_debug("pending_rx_bytes:%zu count:%zu size:%zu\n", pending_rx_bytes, count, size); size -= copy_to_user(buf, current_rx_buf, size); port->nbytes_to_port_bridge += size; bytes_copied += size; count -= size; buf += size; spin_lock_irqsave(&port->port_lock, flags); if (!port->is_connected) { list_add_tail(¤t_rx_req->list, &port->read_pool); spin_unlock_irqrestore(&port->port_lock, flags); return -EAGAIN; } /* * partial data available, then update pending_rx_bytes, * otherwise add USB request back to read_pool for next data. */ if (size < pending_rx_bytes) { pending_rx_bytes -= size; current_rx_buf += size; } else { list_add_tail(¤t_rx_req->list, &port->read_pool); pending_rx_bytes = 0; current_rx_req = NULL; current_rx_buf = NULL; } } port->pending_rx_bytes = pending_rx_bytes; port->current_rx_buf = current_rx_buf; port->current_rx_req = current_rx_req; spin_unlock_irqrestore(&port->port_lock, flags); start_rx: usb_cser_start_rx(port); return bytes_copied; } ssize_t f_cdev_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { int ret; unsigned long flags; struct f_cdev *port; struct usb_request *req; struct list_head *pool; unsigned int xfer_size; struct usb_ep *in; port = file->private_data; if (!port) { pr_err("port is NULL.\n"); return -EINVAL; } spin_lock_irqsave(&port->port_lock, flags); pr_debug("write on port(%s)(%pK)\n", port->name, port); if (!port->is_connected) { spin_unlock_irqrestore(&port->port_lock, flags); pr_err("%s: cable is disconnected.\n", __func__); return -ENODEV; } if (list_empty(&port->write_pool)) { spin_unlock_irqrestore(&port->port_lock, flags); pr_debug("%s: Request list is empty.\n", __func__); return 0; } in = port->port_usb.in; pool = &port->write_pool; req = list_first_entry(pool, struct usb_request, list); list_del_init(&req->list); spin_unlock_irqrestore(&port->port_lock, flags); pr_debug("%s: write buf size:%zu\n", __func__, count); if (count > BRIDGE_TX_BUF_SIZE) xfer_size = BRIDGE_TX_BUF_SIZE; else xfer_size = count; ret = copy_from_user(req->buf, buf, xfer_size); if (ret) { pr_err("copy_from_user failed: err %d\n", ret); ret = -EFAULT; } else { req->length = xfer_size; req->zero = 1; ret = usb_ep_queue(in, req, GFP_KERNEL); if (ret) { pr_err("EP QUEUE failed:%d\n", ret); ret = -EIO; goto err_exit; } spin_lock_irqsave(&port->port_lock, flags); port->nbytes_from_port_bridge += req->length; spin_unlock_irqrestore(&port->port_lock, flags); } err_exit: if (ret) { spin_lock_irqsave(&port->port_lock, flags); /* USB cable is connected, add it back otherwise free request */ if (port->is_connected) list_add(&req->list, &port->write_pool); else usb_cser_free_req(in, req); spin_unlock_irqrestore(&port->port_lock, flags); return ret; } return xfer_size; } static unsigned int f_cdev_poll(struct file *file, poll_table *wait) { unsigned int mask = 0; struct f_cdev *port; unsigned long flags; port = file->private_data; if (port && port->is_connected) { poll_wait(file, &port->read_wq, wait); spin_lock_irqsave(&port->port_lock, flags); if (!list_empty(&port->read_queued)) { mask |= POLLIN | POLLRDNORM; pr_debug("sets POLLIN for %s\n", port->name); } if (port->cbits_updated) { mask |= POLLPRI; pr_debug("sets POLLPRI for %s\n", port->name); } spin_unlock_irqrestore(&port->port_lock, flags); } else { pr_err("Failed due to NULL device or disconnected.\n"); mask = POLLERR; } return mask; } static int f_cdev_tiocmget(struct f_cdev *port) { struct cserial *cser; unsigned int result = 0; if (!port) { pr_err("port is NULL.\n"); return -ENODEV; } cser = &port->port_usb; if (cser->get_dtr) result |= (cser->get_dtr(cser) ? TIOCM_DTR : 0); if (cser->get_rts) result |= (cser->get_rts(cser) ? TIOCM_RTS : 0); if (cser->serial_state & TIOCM_CD) result |= TIOCM_CD; if (cser->serial_state & TIOCM_RI) result |= TIOCM_RI; return result; } static int f_cdev_tiocmset(struct f_cdev *port, unsigned int set, unsigned int clear) { struct cserial *cser; int status = 0; if (!port) { pr_err("port is NULL.\n"); return -ENODEV; } cser = &port->port_usb; if (set & TIOCM_RI) { if (cser->send_ring_indicator) { cser->serial_state |= TIOCM_RI; status = cser->send_ring_indicator(cser, 1); } } if (clear & TIOCM_RI) { if (cser->send_ring_indicator) { cser->serial_state &= ~TIOCM_RI; status = cser->send_ring_indicator(cser, 0); } } if (set & TIOCM_CD) { if (cser->send_carrier_detect) { cser->serial_state |= TIOCM_CD; status = cser->send_carrier_detect(cser, 1); } } if (clear & TIOCM_CD) { if (cser->send_carrier_detect) { cser->serial_state &= ~TIOCM_CD; status = cser->send_carrier_detect(cser, 0); } } return status; } static long f_cdev_ioctl(struct file *fp, unsigned int cmd, unsigned long arg) { long ret = 0; int i = 0; uint32_t val; struct f_cdev *port; port = fp->private_data; if (!port) { pr_err("port is null.\n"); return POLLERR; } switch (cmd) { case TIOCMBIC: case TIOCMBIS: case TIOCMSET: pr_debug("TIOCMSET on port(%s)%pK\n", port->name, port); i = get_user(val, (uint32_t *)arg); if (i) { pr_err("Error getting TIOCMSET value\n"); return i; } ret = f_cdev_tiocmset(port, val, ~val); break; case TIOCMGET: pr_debug("TIOCMGET on port(%s)%pK\n", port->name, port); ret = f_cdev_tiocmget(port); if (ret >= 0) { ret = put_user(ret, (uint32_t *)arg); port->cbits_updated = false; } break; default: pr_err("Received cmd:%d not supported\n", cmd); ret = -ENOIOCTLCMD; break; } return ret; } static void usb_cser_notify_modem(void *fport, int ctrl_bits) { int temp; struct f_cdev *port = fport; if (!port) { pr_err("port is null\n"); return; } pr_debug("port(%s): ctrl_bits:%x\n", port->name, ctrl_bits); temp = convert_acm_sigs_to_uart(ctrl_bits); if (temp == port->cbits_to_modem) return; port->cbits_to_modem = temp; port->cbits_updated = true; wake_up(&port->read_wq); } int usb_cser_connect(struct f_cdev *port) { unsigned long flags; int ret; struct cserial *cser; if (!port) { pr_err("port is NULL.\n"); return -ENODEV; } pr_debug("port(%s) (%pK)\n", port->name, port); cser = &port->port_usb; cser->notify_modem = usb_cser_notify_modem; ret = usb_ep_enable(cser->in); if (ret) { pr_err("usb_ep_enable failed eptype:IN ep:%pK, err:%d\n", cser->in, ret); return ret; } cser->in->driver_data = port; ret = usb_ep_enable(cser->out); if (ret) { pr_err("usb_ep_enable failed eptype:OUT ep:%pK, err: %d\n", cser->out, ret); cser->in->driver_data = 0; return ret; } cser->out->driver_data = port; spin_lock_irqsave(&port->port_lock, flags); cser->pending = false; cser->q_again = false; port->is_connected = true; spin_unlock_irqrestore(&port->port_lock, flags); usb_cser_start_io(port); wake_up(&port->open_wq); return 0; } void usb_cser_disconnect(struct f_cdev *port) { unsigned long flags; usb_cser_stop_io(port); /* lower DTR to modem */ usb_cser_notify_modem(port, 0); spin_lock_irqsave(&port->port_lock, flags); port->is_connected = false; port->nbytes_from_host = port->nbytes_to_host = 0; port->nbytes_to_port_bridge = 0; spin_unlock_irqrestore(&port->port_lock, flags); } static const struct file_operations f_cdev_fops = { .owner = THIS_MODULE, .open = f_cdev_open, .release = f_cdev_release, .read = f_cdev_read, .write = f_cdev_write, .poll = f_cdev_poll, .unlocked_ioctl = f_cdev_ioctl, .compat_ioctl = f_cdev_ioctl, }; static ssize_t cser_rw_write(struct file *file, const char __user *ubuf, size_t count, loff_t *ppos) { struct seq_file *s = file->private_data; struct f_cdev *port = s->private; u8 input; struct cserial *cser; struct usb_function *func; struct usb_gadget *gadget; int ret; cser = &port->port_usb; if (!cser) { pr_err("cser is NULL\n"); return -EINVAL; } if (!port->is_connected) { pr_debug("port disconnected\n"); return -ENODEV; } func = &cser->func; if (!func) { pr_err("func is NULL\n"); return -EINVAL; } if (ubuf == NULL) { pr_debug("buffer is Null.\n"); goto err; } ret = kstrtou8_from_user(ubuf, count, 0, &input); if (ret) { pr_err("Invalid value. err:%d\n", ret); goto err; } if (port->debugfs_rw_enable == !!input) { if (!!input) pr_debug("RW already enabled\n"); else pr_debug("RW already disabled\n"); goto err; } port->debugfs_rw_enable = !!input; if (port->debugfs_rw_enable) { gadget = cser->func.config->cdev->gadget; if (gadget->speed >= USB_SPEED_SUPER && port->func_is_suspended) { ret = -EPERM; #ifdef CONFIG_USB_FUNC_WAKEUP_SUPPORTED pr_debug("Calling usb_func_wakeup\n"); ret = usb_func_wakeup(func); #endif } else { pr_debug("Calling usb_gadget_wakeup\n"); ret = usb_gadget_wakeup(gadget); } if ((ret == -EBUSY) || (ret == -EAGAIN)) pr_debug("RW delayed due to LPM exit.\n"); else if (ret) pr_err("wakeup failed. ret=%d.\n", ret); } else { pr_debug("RW disabled.\n"); } err: return count; } static int usb_cser_rw_show(struct seq_file *s, void *unused) { struct f_cdev *port = s->private; if (!port) { pr_err("port is null\n"); return 0; } seq_printf(s, "%d\n", port->debugfs_rw_enable); return 0; } static int debug_cdev_rw_open(struct inode *inode, struct file *f) { return single_open(f, usb_cser_rw_show, inode->i_private); } static const struct file_operations cser_rem_wakeup_fops = { .open = debug_cdev_rw_open, .read = seq_read, .write = cser_rw_write, .owner = THIS_MODULE, .llseek = seq_lseek, .release = seq_release, }; static void usb_cser_debugfs_init(struct f_cdev *port) { port->debugfs_root = debugfs_create_dir(port->name, NULL); if (IS_ERR(port->debugfs_root)) return; debugfs_create_file("remote_wakeup", 0600, port->debugfs_root, port, &cser_rem_wakeup_fops); } static void usb_cser_debugfs_exit(struct f_cdev *port) { debugfs_remove_recursive(port->debugfs_root); } static void cdev_device_release(struct device *dev) { struct f_cdev *port = container_of(dev, struct f_cdev, dev); pr_debug("Free cdev port(%d)\n", port->port_num); kfree(port); } static struct f_cdev *f_cdev_alloc(char *func_name, int portno) { int ret; struct f_cdev *port; port = kzalloc(sizeof(struct f_cdev), GFP_KERNEL); if (!port) { ret = -ENOMEM; return ERR_PTR(ret); } mutex_lock(&chardev_ida_lock); if (ida_is_empty(&chardev_ida)) { ret = usb_cser_alloc_chardev_region(); if (ret) { mutex_unlock(&chardev_ida_lock); pr_err("alloc chardev failed\n"); goto err_alloc_chardev; } } ret = ida_simple_get(&chardev_ida, 0, 0, GFP_KERNEL); if (ret >= NUM_INSTANCE) { ida_simple_remove(&chardev_ida, ret); mutex_unlock(&chardev_ida_lock); ret = -ENODEV; goto err_get_ida; } port->port_num = portno; port->minor = ret; mutex_unlock(&chardev_ida_lock); snprintf(port->name, sizeof(port->name), "%s%d", DEVICE_NAME, portno); spin_lock_init(&port->port_lock); init_waitqueue_head(&port->open_wq); init_waitqueue_head(&port->read_wq); INIT_LIST_HEAD(&port->read_pool); INIT_LIST_HEAD(&port->read_queued); INIT_LIST_HEAD(&port->write_pool); port->fcdev_wq = create_singlethread_workqueue(port->name); if (!port->fcdev_wq) { pr_err("Unable to create workqueue fcdev_wq for port:%s\n", port->name); ret = -ENOMEM; goto err_get_ida; } /* create char device */ cdev_init(&port->fcdev_cdev, &f_cdev_fops); device_initialize(&port->dev); port->dev.class = fcdev_classp; port->dev.parent = NULL; port->dev.release = cdev_device_release; port->dev.devt = MKDEV(major, port->minor); dev_set_name(&port->dev, port->name); ret = cdev_device_add(&port->fcdev_cdev, &port->dev); if (ret) { pr_err("Failed to add cdev for port(%s)\n", port->name); goto err_cdev_add; } usb_cser_debugfs_init(port); pr_info("port_name:%s (%pK) portno:(%d)\n", port->name, port, port->port_num); return port; err_cdev_add: destroy_workqueue(port->fcdev_wq); err_get_ida: usb_cser_chardev_deinit(); err_alloc_chardev: kfree(port); return ERR_PTR(ret); } static void usb_cser_chardev_deinit(void) { if (ida_is_empty(&chardev_ida)) { if (major) { unregister_chrdev_region(MKDEV(major, 0), minors); major = minors = 0; } if (!IS_ERR_OR_NULL(fcdev_classp)) class_destroy(fcdev_classp); } } static int usb_cser_alloc_chardev_region(void) { int ret; dev_t dev; ret = alloc_chrdev_region(&dev, 0, NUM_INSTANCE, MODULE_NAME); if (ret) { pr_err("alloc_chrdev_region() failed ret:%i\n", ret); return ret; } major = MAJOR(dev); minors = NUM_INSTANCE; fcdev_classp = class_create(THIS_MODULE, MODULE_NAME); if (IS_ERR(fcdev_classp)) { pr_err("class_create() failed ENOMEM\n"); ret = -ENOMEM; } return 0; } static inline struct f_cdev_opts *to_f_cdev_opts(struct config_item *item) { return container_of(to_config_group(item), struct f_cdev_opts, func_inst.group); } static struct f_cdev_opts *to_fi_cdev_opts(struct usb_function_instance *fi) { return container_of(fi, struct f_cdev_opts, func_inst); } static void cserial_attr_release(struct config_item *item) { struct f_cdev_opts *opts = to_f_cdev_opts(item); usb_put_function_instance(&opts->func_inst); } static struct configfs_item_operations cserial_item_ops = { .release = cserial_attr_release, }; static ssize_t usb_cser_status_show(struct config_item *item, char *page) { struct f_cdev *port = to_f_cdev_opts(item)->port; char *buf; unsigned long flags; int temp = 0; int ret; buf = kzalloc(sizeof(char) * 512, GFP_KERNEL); if (!buf) return -ENOMEM; spin_lock_irqsave(&port->port_lock, flags); temp += scnprintf(buf + temp, 512 - temp, "###PORT:%s###\n" "port_no:%d\n" "func:%s\n" "nbytes_to_host: %lu\n" "nbytes_from_host: %lu\n" "nbytes_to_port_bridge: %lu\n" "nbytes_from_port_bridge: %lu\n" "cbits_to_modem: %u\n" "Port Opened: %s\n", port->name, port->port_num, to_f_cdev_opts(item)->func_name, port->nbytes_to_host, port->nbytes_from_host, port->nbytes_to_port_bridge, port->nbytes_from_port_bridge, port->cbits_to_modem, (port->port_open ? "Opened" : "Closed")); spin_unlock_irqrestore(&port->port_lock, flags); ret = scnprintf(page, temp, buf); kfree(buf); return ret; } static ssize_t usb_cser_status_store(struct config_item *item, const char *page, size_t len) { struct f_cdev *port = to_f_cdev_opts(item)->port; unsigned long flags; u8 stats; if (page == NULL) { pr_err("Invalid buffer\n"); return len; } if (kstrtou8(page, 0, &stats) != 0 || stats != 0) { pr_err("(%u)Wrong value. enter 0 to clear.\n", stats); return len; } spin_lock_irqsave(&port->port_lock, flags); port->nbytes_to_host = port->nbytes_from_host = 0; port->nbytes_to_port_bridge = port->nbytes_from_port_bridge = 0; spin_unlock_irqrestore(&port->port_lock, flags); return len; } CONFIGFS_ATTR(usb_cser_, status); static struct configfs_attribute *cserial_attrs[] = { &usb_cser_attr_status, NULL, }; static struct config_item_type cserial_func_type = { .ct_item_ops = &cserial_item_ops, .ct_attrs = cserial_attrs, .ct_owner = THIS_MODULE, }; static int cser_set_inst_name(struct usb_function_instance *f, const char *name) { struct f_cdev_opts *opts = container_of(f, struct f_cdev_opts, func_inst); char *ptr, *str; size_t name_len, str_size; int ret; struct f_cdev *port; name_len = strlen(name) + 1; if (name_len > MAX_CDEV_INST_NAME) return -ENAMETOOLONG; /* expect name as cdev.. */ str = strnchr(name, strlen(name), '.'); if (!str) { pr_err("invalid input (%s)\n", name); return -EINVAL; } /* get function name */ str_size = name_len - strlen(str); if (str_size > MAX_CDEV_FUNC_NAME) return -ENAMETOOLONG; ptr = kstrndup(name, str_size - 1, GFP_KERNEL); if (!ptr) { pr_err("error:%ld\n", PTR_ERR(ptr)); return -ENOMEM; } opts->func_name = ptr; /* get port number */ str = strrchr(name, '.'); if (!str) { pr_err("err: port number not found\n"); return -EINVAL; } pr_debug("str:%s\n", str); *str = '\0'; str++; ret = kstrtou8(str, 0, &opts->port_num); if (ret) { pr_err("erro: not able to get port number\n"); return -EINVAL; } pr_debug("gser: port_num:%d func_name:%s\n", opts->port_num, opts->func_name); port = f_cdev_alloc(opts->func_name, opts->port_num); if (IS_ERR(port)) { pr_err("Failed to create cdev port(%d)\n", opts->port_num); return -ENOMEM; } opts->port = port; /* For DUN functionality only sets control signal handling */ if (!strcmp(opts->func_name, "dun")) { port->port_usb.connect = dun_cser_connect; port->port_usb.get_dtr = dun_cser_get_dtr; port->port_usb.get_rts = dun_cser_get_rts; port->port_usb.send_carrier_detect = dun_cser_send_carrier_detect; port->port_usb.send_ring_indicator = dun_cser_send_ring_indicator; port->port_usb.send_modem_ctrl_bits = dun_cser_send_ctrl_bits; port->port_usb.disconnect = dun_cser_disconnect; port->port_usb.send_break = dun_cser_send_break; opts->proto = 0x40; } else { opts->proto = 0x60; } return 0; } static struct usb_function_instance *cser_alloc_inst(void) { struct f_cdev_opts *opts; opts = kzalloc(sizeof(*opts), GFP_KERNEL); if (!opts) return ERR_PTR(-ENOMEM); opts->func_inst.free_func_inst = cser_free_inst; opts->func_inst.set_inst_name = cser_set_inst_name; config_group_init_type_name(&opts->func_inst.group, "", &cserial_func_type); return &opts->func_inst; } static struct usb_function *cser_alloc(struct usb_function_instance *fi) { struct f_cdev_opts *opts = to_fi_cdev_opts(fi); struct f_cdev *port = opts->port; port->port_usb.func.name = "cser"; port->port_usb.func.strings = usb_cser_strings; port->port_usb.func.bind = usb_cser_bind; port->port_usb.func.unbind = usb_cser_unbind; port->port_usb.func.set_alt = usb_cser_set_alt; port->port_usb.func.disable = usb_cser_disable; port->port_usb.func.setup = usb_cser_setup; port->port_usb.func.func_suspend = usb_cser_func_suspend; port->port_usb.func.get_status = usb_cser_get_status; port->port_usb.func.free_func = usb_cser_free_func; return &port->port_usb.func; } DECLARE_USB_FUNCTION_INIT(cser, cser_alloc_inst, cser_alloc); MODULE_DESCRIPTION("USB Serial Character Driver"); MODULE_LICENSE("GPL");