// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2023-2024 Qualcomm Innovation Center, Inc. All rights reserved. * */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include #include #include #include #include #include #include #include #include #define PERIOD_TO_HZ(period_ns) ((1 * 1000000000UL) / period_ns) #define FRAME_NUM_MAX_LEN 9 /* Offsets */ #define PWM_TOPCTL0 0x0 /* offsets per frame */ #define PWM_CTL0 0x0 #define PWM_CTL1 0x4 #define PWM_CTL2 0x8 #define PWM_CYC_CFG 0xC #define PWM_UPDATE 0x10 #define PWM_PERIOD_CNT 0x14 #define PWM_FRAME_POLARITY_BIT 0 enum { ENABLE_STATUS0, ENABLE_STATUS1, ENABLE_STATUS_REG_SIZE, }; struct pdm_pwm_priv_data { unsigned int max_channels; const u16 *status_reg_offsets; }; /* *struct pdm_pwm_frames - Information regarding per pdm frame * @frame_id: Id number associated with each frame. * @polarity: Current polarity of the particular frame. * @reg_offset: offset of each frame from base pdm. * @current_period_ns: Current period of the particular frame. * @current_duty_ns: Current duty cycle of the particular frame. * @current_freq: Current frequency of frame. * @freq_set: This bool flag is responsible for setting period once per frame. * @mutex: mutex lock per frame. */ struct pdm_pwm_frames { u32 frame_id; u32 polarity; u32 reg_offset; u64 current_period_ns; u64 current_duty_ns; unsigned long current_freq; bool is_enabled; bool freq_set; struct mutex frame_lock; /* PWM per frame lock */ struct pdm_pwm_chip *pwm_chip; }; /* *struct pdm_pwm_chip - Information regarding per pdm * @pwm_chip: information per pdm. * @regmap: regmap of each pdm. * @device: pdm device. * @pdm_pwm_frames: structure for all frames of each pdm. * @pdm_ahb_clk: pdm clock for enabling pdm block * @pwm_core_clk: pwm clock for enabling each pwm. * @mutex: mutex lock per frame. * @pwm_core_rate: core rate of pwm_core__clk. * @num_frames: number of frames in each pdm. */ struct pdm_pwm_chip { struct pwm_chip pwm_chip; struct regmap *regmap; struct device *dev; struct pdm_pwm_frames *frames; struct clk *pdm_ahb_clk; struct clk *pwm_core_clk; struct pdm_pwm_priv_data *priv_data; /* This lock to be used for Enable/Disable as it is per PWM channel */ struct mutex lock; unsigned long pwm_core_rate; u32 num_frames; }; static int __pdm_pwm_calc_pwm_frequency(struct pdm_pwm_chip *chip, int period_ns, u32 hw_idx) { unsigned long cyc_cfg, freq; int ret; /* PWM client could set the period only once, due to HW limitation. */ if (chip->frames[hw_idx].freq_set) return 0; freq = PERIOD_TO_HZ(period_ns); if (!freq) { pr_err("Frequency cannot be Zero\n"); return -EINVAL; } if (freq > (chip->pwm_core_rate >> 1) || freq <= (chip->pwm_core_rate >> 16)) { pr_debug("Freq %ld is not in range Max=%ld Min=%ld\n", freq, (chip->pwm_core_rate >> 1), (chip->pwm_core_rate >> 16) + 1); return -ERANGE; } cyc_cfg = DIV_ROUND_CLOSEST(chip->pwm_core_rate, freq) - 1; ret = regmap_update_bits(chip->regmap, chip->frames[hw_idx].reg_offset + PWM_CYC_CFG, GENMASK(15, 0), cyc_cfg); if (ret) return ret; chip->frames[hw_idx].current_freq = freq; chip->frames[hw_idx].freq_set = true; chip->frames[hw_idx].current_period_ns = period_ns; return 0; } static int pdm_pwm_get_state(struct pwm_chip *pwm_chip, struct pwm_device *pwm, struct pwm_state *state) { struct pdm_pwm_chip *chip = container_of(pwm_chip, struct pdm_pwm_chip, pwm_chip); state->enabled = chip->frames[pwm->hwpwm].is_enabled; state->polarity = chip->frames[pwm->hwpwm].polarity; state->period = chip->frames[pwm->hwpwm].current_period_ns; state->duty_cycle = chip->frames[pwm->hwpwm].current_duty_ns; return 0; } static int pdm_pwm_config(struct pdm_pwm_chip *chip, u32 hw_idx, int duty_ns, int period_ns, int polarity) { unsigned long ctl1; int current_period = period_ns, ret; u32 cyc_cfg; /* * 1. Enable GCC_PDM_AHB_CBCR clock for PDM block Access * 2. pwm_core_rate = clk_get_rate(pwm_core_clk); for now it is * 19.2MHz. * 3. min_freq = pwm_core_rate/2 ^ 16; * 4. max_freq = pwm_core_rate/2; * 5. calculate the frequency based on the period_ns and compare. */ ret = clk_prepare_enable(chip->pdm_ahb_clk); if (ret) return ret; ret = clk_prepare_enable(chip->pwm_core_clk); if (ret) goto fail; mutex_lock(&chip->frames[hw_idx].frame_lock); ret = __pdm_pwm_calc_pwm_frequency(chip, current_period, hw_idx); if (ret) goto out; if (chip->frames[hw_idx].current_period_ns != period_ns) { pr_err("Period cannot be updated, calculating dutycycle on old period\n"); current_period = chip->frames[hw_idx].current_period_ns; } if (chip->frames[hw_idx].polarity != polarity) { regmap_update_bits(chip->regmap, chip->frames[hw_idx].reg_offset + PWM_CTL0, BIT(PWM_FRAME_POLARITY_BIT), polarity); chip->frames[hw_idx].polarity = polarity; } ctl1 = DIV_ROUND_CLOSEST(chip->pwm_core_rate, chip->frames[hw_idx].current_freq); ctl1 = DIV_ROUND_CLOSEST(ctl1 * (DIV_ROUND_CLOSEST((duty_ns * 100), current_period)), 100); regmap_read(chip->regmap, chip->frames[hw_idx].reg_offset + PWM_CYC_CFG, &cyc_cfg); if ((ctl1 > cyc_cfg || ctl1 <= 0) && duty_ns != 0) { pr_err("Duty cycle cannot be set at and beyond/below this limit\n"); goto out; } ret = regmap_update_bits(chip->regmap, chip->frames[hw_idx].reg_offset + PWM_CTL2, GENMASK(15, 0), 0); if (ret) goto out; ret = regmap_update_bits(chip->regmap, chip->frames[hw_idx].reg_offset + PWM_CTL1, GENMASK(15, 0), ctl1); if (ret) goto out; ret = regmap_update_bits(chip->regmap, chip->frames[hw_idx].reg_offset + PWM_UPDATE, BIT(0), 1); if (ret) goto out; chip->frames[hw_idx].current_duty_ns = duty_ns; out: mutex_unlock(&chip->frames[hw_idx].frame_lock); clk_disable_unprepare(chip->pwm_core_clk); fail: clk_disable_unprepare(chip->pdm_ahb_clk); return ret; } static void pdm_pwm_free(struct pwm_chip *pwm_chip, struct pwm_device *pwm) { struct pdm_pwm_chip *chip = container_of(pwm_chip, struct pdm_pwm_chip, pwm_chip); u32 hw_idx = pwm->hwpwm; mutex_lock(&chip->lock); chip->frames[hw_idx].freq_set = false; chip->frames[hw_idx].current_period_ns = 0; chip->frames[hw_idx].current_duty_ns = 0; mutex_unlock(&chip->lock); } static int pdm_pwm_enable(struct pdm_pwm_chip *chip, struct pwm_device *pwm) { u32 ret, val; u32 hw_idx = pwm->hwpwm; ret = clk_prepare_enable(chip->pdm_ahb_clk); if (ret) return ret; ret = clk_prepare_enable(chip->pwm_core_clk); if (ret) { clk_disable_unprepare(chip->pdm_ahb_clk); return ret; } mutex_lock(&chip->lock); /* Check the channel in Chip channel and enable the BIT in PWM_TOP */ pr_debug("%s: PWM device Label %s, HW index %u, PWM index %u\n", __func__ , pwm->label, hw_idx, pwm->pwm); pr_debug("%s: PWM frame-index %d, frame-offset 0x%x\n", __func__, chip->frames[hw_idx].frame_id, chip->frames[hw_idx].reg_offset); val = BIT(chip->frames[hw_idx].frame_id); ret = regmap_update_bits(chip->regmap, PWM_TOPCTL0, val, val); mutex_unlock(&chip->lock); if (ret) return ret; chip->frames[hw_idx].is_enabled = true; return 0; } static int pdm_pwm_disable(struct pdm_pwm_chip *chip, struct pwm_device *pwm) { u32 val, hw_idx = pwm->hwpwm; int ret; mutex_lock(&chip->lock); /* Check the channel in the chip and disable the BIT in PWM_TOP */ pr_debug("%s:PWM device Label %s\n", __func__, pwm->label); val = BIT(chip->frames[hw_idx].frame_id); ret = regmap_update_bits(chip->regmap, PWM_TOPCTL0, val, 0); mutex_unlock(&chip->lock); if (ret) return ret; chip->frames[hw_idx].is_enabled = false; clk_disable_unprepare(chip->pwm_core_clk); clk_disable_unprepare(chip->pdm_ahb_clk); return 0; } static int pdm_pwm_apply(struct pwm_chip *pwm_chip, struct pwm_device *pwm, const struct pwm_state *state) { struct pdm_pwm_chip *chip = container_of(pwm_chip, struct pdm_pwm_chip, pwm_chip); struct pwm_state curr_state; int ret; pwm_get_state(pwm, &curr_state); if (state->period < curr_state.period) return -EINVAL; if (state->period != curr_state.period || state->duty_cycle != curr_state.duty_cycle || state->polarity != curr_state.polarity) { ret = pdm_pwm_config(chip, pwm->hwpwm, state->duty_cycle, state->period, state->polarity); if (ret) { pr_err("%s: Failed to update PWM configuration\n", __func__); return ret; } } if (state->enabled != curr_state.enabled) { if (state->enabled) return pdm_pwm_enable(chip, pwm); ret = pdm_pwm_disable(chip, pwm); if (ret) return ret; } return 0; } static const struct pwm_ops pdm_pwm_ops = { .apply = pdm_pwm_apply, .free = pdm_pwm_free, .get_state = pdm_pwm_get_state, }; static const struct regmap_config pwm_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .fast_io = true, }; static int pdm_pwm_parse_dt(struct platform_device *pdev, struct pdm_pwm_chip *chip) { struct resource *res; struct device_node *np = pdev->dev.of_node; struct device_node *frame_node; void __iomem *base; int count, ret; chip->pdm_ahb_clk = devm_clk_get(chip->dev, "pdm_ahb_clk"); if (IS_ERR(chip->pdm_ahb_clk)) { if (PTR_ERR(chip->pdm_ahb_clk) != -EPROBE_DEFER) dev_err(chip->dev, "Unable to get ahb clock handle\n"); return PTR_ERR(chip->pdm_ahb_clk); } chip->pwm_core_clk = devm_clk_get(chip->dev, "pwm_core_clk"); if (IS_ERR(chip->pwm_core_clk)) { if (PTR_ERR(chip->pwm_core_clk) != -EPROBE_DEFER) dev_err(chip->dev, "Unable to get core clock handle\n"); return PTR_ERR(chip->pwm_core_clk); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) { dev_err(chip->dev, "Failed to get reg base resource\n"); return -EINVAL; } base = devm_ioremap(chip->dev, res->start, resource_size(res)); if (!base) return -ENOMEM; chip->regmap = devm_regmap_init_mmio(chip->dev, base, &pwm_regmap_config); if (!chip->regmap) { dev_err(chip->dev, "Couldn't get regmap\n"); return -EINVAL; } if (!of_find_property(np, "assigned-clocks", NULL)) { dev_err(chip->dev, "missing parent clock handle\n"); return -ENODEV; } if (!of_find_property(np, "assigned-clock-rates", NULL)) { dev_err(chip->dev, "missing parent clock rate\n"); return -ENODEV; } chip->pwm_core_rate = clk_get_rate(chip->pwm_core_clk); chip->num_frames = of_get_child_count(np); if (!chip->num_frames || chip->num_frames > chip->priv_data->max_channels) { dev_err(chip->dev, "PWM frames 0-%u are supported.\n", chip->priv_data->max_channels); return -EINVAL; } chip->frames = devm_kcalloc(chip->dev, chip->num_frames, sizeof(*chip->frames), GFP_KERNEL); if (!chip->frames) return -ENOMEM; count = 0; for_each_available_child_of_node(np, frame_node) { u32 n, off; if (of_property_read_u32(frame_node, "frame-index", &n)) { pr_err(FW_BUG "Missing frame-index.\n"); of_node_put(frame_node); return -EINVAL; } chip->frames[count].frame_id = n; if (of_property_read_u32(frame_node, "frame-offset", &off)) { pr_err(FW_BUG "Missing frame-offset.\n"); of_node_put(frame_node); return -EINVAL; } chip->frames[count].reg_offset = off; /* Holding a reference to the pdm chip for debug operations. */ chip->frames[count].pwm_chip = chip; mutex_init(&chip->frames[count].frame_lock); count++; } ret = clk_prepare_enable(chip->pdm_ahb_clk); if (ret) return ret; ret = regmap_update_bits(chip->regmap, PWM_TOPCTL0, GENMASK(chip->num_frames, 0), 0); if (ret) return ret; clk_disable_unprepare(chip->pdm_ahb_clk); return 0; } #ifdef CONFIG_DEBUG_FS static int duty_get(void *data, u64 *val) { struct pdm_pwm_frames *frame = data; *val = DIV_ROUND_CLOSEST((frame->current_duty_ns * 100), frame->current_period_ns); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pwm_duty_fops, duty_get, NULL, "%lld\n"); static int get_polarity(struct seq_file *m, void *unused) { struct pdm_pwm_frames *frame = m->private; struct pdm_pwm_chip *chip = frame->pwm_chip; u32 temp; regmap_read(chip->regmap, frame->reg_offset + PWM_CTL0, &temp); if (BIT(PWM_FRAME_POLARITY_BIT) & temp) seq_puts(m, "PWM_POLARITY_INVERSED\n"); else seq_puts(m, "PWM_POLARITY_NORMAL\n"); return 0; } static int print_polarity(struct inode *inode, struct file *file) { return single_open(file, get_polarity, inode->i_private); }; static const struct file_operations pwm_polarity_fops = { .open = print_polarity, .read = seq_read, }; static int enabled(void *data, u64 *val) { struct pdm_pwm_frames *frame = data; struct pdm_pwm_chip *chip = frame->pwm_chip; u32 temp, reg_offset; *val = 0; reg_offset = chip->priv_data->status_reg_offsets[ENABLE_STATUS0]; if (chip->priv_data->status_reg_offsets[ENABLE_STATUS1] && frame->frame_id > 10) reg_offset = chip->priv_data->status_reg_offsets[ENABLE_STATUS1]; regmap_read(chip->regmap, reg_offset, &temp); if (BIT((frame->frame_id % 10) + BIT(0)) & temp) *val = 1; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pwm_enable_fops, enabled, NULL, "%lld\n"); static int print_hw_show(struct seq_file *m, void *unused) { struct pdm_pwm_frames *frame = m->private; u32 ctl1, ctl2, cyc_cfg, period_cnt; regmap_read(frame->pwm_chip->regmap, frame->reg_offset + PWM_CTL1, &ctl1); regmap_read(frame->pwm_chip->regmap, frame->reg_offset + PWM_CTL2, &ctl2); regmap_read(frame->pwm_chip->regmap, frame->reg_offset + PWM_CYC_CFG, &cyc_cfg); regmap_read(frame->pwm_chip->regmap, frame->reg_offset + PWM_PERIOD_CNT, &period_cnt); seq_printf(m, "PWM_CTL1 : 0x%x\nPWM_CTL2 : 0x%x\n", ctl1, ctl2); seq_printf(m, "PWM_CYC_CFG : 0x%x\nPWM_PERIOD_CNT : 0x%x\n", cyc_cfg, period_cnt); return 0; } static int print_hw_open(struct inode *inode, struct file *file) { return single_open(file, print_hw_show, inode->i_private); } static const struct file_operations pwm_list_regs_fops = { .open = print_hw_open, .read = seq_read, }; static int freq_get(void *data, u64 *val) { struct pdm_pwm_frames *frame = data; *val = PERIOD_TO_HZ(frame->current_period_ns); return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pwm_freq_fops, freq_get, NULL, "%lld\n"); static int period_ns_get(void *data, u64 *val) { struct pdm_pwm_frames *frame = data; *val = frame->current_period_ns; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pwm_period_ns_fops, period_ns_get, NULL, "%lld\n"); static int duty_ns_get(void *data, u64 *val) { struct pdm_pwm_frames *frame = data; *val = frame->current_duty_ns; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(pwm_duty_ns_fops, duty_ns_get, NULL, "%lld\n"); static void pdm_dwm_debug_init(struct pwm_chip *pwm_chip) { struct pdm_pwm_chip *chip = container_of(pwm_chip, struct pdm_pwm_chip, pwm_chip); struct pwm_device *pwm; static struct dentry *debugfs_base, *debugfs_frame_base; int i, hw_idx; char frame[FRAME_NUM_MAX_LEN]; debugfs_base = debugfs_create_dir(chip->dev->of_node->name, NULL); if (IS_ERR_OR_NULL(debugfs_base)) { pr_err("Failed in creating debugfs directory.\n"); return; } for (i = 0; i < pwm_chip->npwm; i++) { pwm = &pwm_chip->pwms[i]; hw_idx = pwm->hwpwm; snprintf(frame, FRAME_NUM_MAX_LEN, "frame_%d", chip->frames[hw_idx].frame_id); debugfs_frame_base = debugfs_create_dir(frame, debugfs_base); debugfs_create_file("enabled", 0444, debugfs_frame_base, &chip->frames[hw_idx], &pwm_enable_fops); debugfs_create_file("polarity", 0444, debugfs_frame_base, &chip->frames[hw_idx], &pwm_polarity_fops); debugfs_create_file("current_duty", 0444, debugfs_frame_base, &chip->frames[hw_idx], &pwm_duty_fops); debugfs_create_file("pwm_print_regs", 0444, debugfs_frame_base, &chip->frames[hw_idx], &pwm_list_regs_fops); debugfs_create_file("current_frequency_hz", 0444, debugfs_frame_base, &chip->frames[hw_idx], &pwm_freq_fops); debugfs_create_file("current_period_ns", 0444, debugfs_frame_base, &chip->frames[hw_idx], &pwm_period_ns_fops); debugfs_create_file("current_duty_cycle_ns", 0444, debugfs_frame_base, &chip->frames[hw_idx], &pwm_duty_ns_fops); } } #endif static int pdm_pwm_probe(struct platform_device *pdev) { struct pdm_pwm_chip *chip; int rc; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->priv_data = (struct pdm_pwm_priv_data *)of_device_get_match_data(&pdev->dev); if (IS_ERR_OR_NULL(chip->priv_data)) return -EINVAL; chip->dev = &pdev->dev; mutex_init(&chip->lock); rc = pdm_pwm_parse_dt(pdev, chip); if (rc < 0) { dev_err(chip->dev, "Devicetree properties parsing failed, rc=%d\n", rc); goto err_out; } dev_set_drvdata(chip->dev, chip); chip->pwm_chip.dev = chip->dev; chip->pwm_chip.base = -1; chip->pwm_chip.npwm = chip->num_frames; chip->pwm_chip.ops = &pdm_pwm_ops; chip->pwm_chip.of_xlate = of_pwm_xlate_with_flags; chip->pwm_chip.of_pwm_n_cells = 3; rc = pwmchip_add(&chip->pwm_chip); if (rc < 0) { dev_err(chip->dev, "Add pwmchip failed, rc=%d\n", rc); goto err_out; } #ifdef CONFIG_DEBUG_FS pdm_dwm_debug_init(&chip->pwm_chip); #endif dev_info(chip->dev, "pwmchip driver success.\n"); return rc; err_out: mutex_destroy(&chip->lock); return rc; } static int pdm_pwm_remove(struct platform_device *pdev) { struct pdm_pwm_chip *chip = dev_get_drvdata(&pdev->dev); pwmchip_remove(&chip->pwm_chip); mutex_destroy(&chip->lock); dev_set_drvdata(chip->dev, NULL); return 0; } static struct pdm_pwm_priv_data pdm_pwm_reg_offsets = { .max_channels = 10, .status_reg_offsets = (u16 [ENABLE_STATUS_REG_SIZE]) { [ENABLE_STATUS0] = 0xc, }, }; static struct pdm_pwm_priv_data pdm_pwm_v2_reg_offsets = { .max_channels = 20, .status_reg_offsets = (u16 [ENABLE_STATUS_REG_SIZE]) { [ENABLE_STATUS0] = 0xc, [ENABLE_STATUS1] = 0x10, }, }; static const struct of_device_id pdm_pwm_of_match[] = { { .compatible = "qcom,pdm-pwm", .data = &pdm_pwm_reg_offsets }, { .compatible = "qcom,pdm-pwm-v2", .data = &pdm_pwm_v2_reg_offsets }, { }, }; static struct platform_driver pdm_pwm_driver = { .driver = { .name = "pdm-pwm", .of_match_table = pdm_pwm_of_match, }, .probe = pdm_pwm_probe, .remove = pdm_pwm_remove, }; module_platform_driver(pdm_pwm_driver); MODULE_DESCRIPTION("QTI PDM PWM driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("pwm:pdm-pwm");