// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013-2021, Linux Foundation. All rights reserved. * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved. */ #include "phy-qcom-ufs-i.h" #define MAX_PROP_NAME 32 #define VDDA_PHY_MIN_UV 880000 #define VDDA_PHY_MAX_UV 950000 #define VDDA_PLL_MIN_UV 1200000 #define VDDA_PLL_MAX_UV 1800000 #define VDDP_REF_CLK_MIN_UV 1200000 #define VDDP_REF_CLK_MAX_UV 1200000 #define VDDA_QREF_MIN_UV 880000 #define VDDA_QREF_MAX_UV 912000 #define UFS_PHY_DEFAULT_LANES_PER_DIRECTION 1 /** * struct ufs_qcom_phy_regs - record the info of ufs qcom phy register domain. * @list_head: the list to find all ufs phy register domins. * @prefix: the name of this register domain. * @ptr: the pointer to memory address which save the register value. * @len: the size of this register domain. */ struct ufs_qcom_phy_regs { struct list_head list; const char *prefix; u32 *ptr; size_t len; }; static int ufs_qcom_phy_start_serdes(struct ufs_qcom_phy *ufs_qcom_phy); static int ufs_qcom_phy_is_pcs_ready(struct ufs_qcom_phy *ufs_qcom_phy); void ufs_qcom_phy_write_tbl(struct ufs_qcom_phy *ufs_qcom_phy, struct ufs_qcom_phy_calibration *tbl, int tbl_size) { int i; for (i = 0; i < tbl_size; i++) writel_relaxed(tbl[i].cfg_value, ufs_qcom_phy->mmio + tbl[i].reg_offset); } EXPORT_SYMBOL(ufs_qcom_phy_write_tbl); int ufs_qcom_phy_calibrate(struct ufs_qcom_phy *ufs_qcom_phy, struct ufs_qcom_phy_calibration *tbl_A, int tbl_size_A, struct ufs_qcom_phy_calibration *tbl_B, int tbl_size_B, bool is_rate_B) { struct device *dev = ufs_qcom_phy->dev; int ret = 0; ret = reset_control_assert(ufs_qcom_phy->ufs_reset); if (ret) { dev_err(dev, "Failed to assert UFS PHY reset %d\n", ret); goto out; } if (!tbl_A) { dev_err(dev, "%s: tbl_A is NULL\n", __func__); ret = EINVAL; goto out; } ufs_qcom_phy_write_tbl(ufs_qcom_phy, tbl_A, tbl_size_A); /* * In case we would like to work in rate B, we need * to override a registers that were configured in rate A table * with registers of rate B table. * table. */ if (is_rate_B) { if (!tbl_B) { dev_err(dev, "%s: tbl_B is NULL\n", __func__); ret = EINVAL; goto out; } ufs_qcom_phy_write_tbl(ufs_qcom_phy, tbl_B, tbl_size_B); } /* flush buffered writes */ mb(); ret = reset_control_deassert(ufs_qcom_phy->ufs_reset); if (ret) dev_err(dev, "Failed to deassert UFS PHY reset %d\n", ret); ret = ufs_qcom_phy_start_serdes(ufs_qcom_phy); if (ret) goto out; ret = ufs_qcom_phy_is_pcs_ready(ufs_qcom_phy); out: return ret; } EXPORT_SYMBOL(ufs_qcom_phy_calibrate); /* * This assumes the embedded phy structure inside generic_phy is of type * struct ufs_qcom_phy. In order to function properly it's crucial * to keep the embedded struct "struct ufs_qcom_phy common_cfg" * as the first inside generic_phy. */ struct ufs_qcom_phy *get_ufs_qcom_phy(struct phy *generic_phy) { return (struct ufs_qcom_phy *)phy_get_drvdata(generic_phy); } EXPORT_SYMBOL(get_ufs_qcom_phy); static int ufs_qcom_phy_base_init(struct platform_device *pdev, struct ufs_qcom_phy *phy_common) { struct device *dev = &pdev->dev; struct resource *res; int err = 0; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "phy_mem"); phy_common->mmio = devm_ioremap_resource(dev, res); if (IS_ERR((void const *)phy_common->mmio)) { err = PTR_ERR((void const *)phy_common->mmio); phy_common->mmio = NULL; dev_err(dev, "%s: ioremap for phy_mem resource failed %d\n", __func__, err); return err; } return 0; } struct phy *ufs_qcom_phy_generic_probe(struct platform_device *pdev, struct ufs_qcom_phy *common_cfg, const struct phy_ops *ufs_qcom_phy_gen_ops, struct ufs_qcom_phy_specific_ops *phy_spec_ops) { int err; struct device *dev = &pdev->dev; struct phy *generic_phy = NULL; struct phy_provider *phy_provider; err = ufs_qcom_phy_base_init(pdev, common_cfg); if (err) { dev_err(dev, "%s: phy base init failed %d\n", __func__, err); goto out; } phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) { err = PTR_ERR(phy_provider); dev_err(dev, "%s: failed to register phy %d\n", __func__, err); goto out; } generic_phy = devm_phy_create(dev, NULL, ufs_qcom_phy_gen_ops); if (IS_ERR(generic_phy)) { err = PTR_ERR(generic_phy); dev_err(dev, "%s: failed to create phy %d\n", __func__, err); generic_phy = NULL; goto out; } if (of_property_read_u32(dev->of_node, "lanes-per-direction", &common_cfg->lanes_per_direction)) common_cfg->lanes_per_direction = UFS_PHY_DEFAULT_LANES_PER_DIRECTION; /* * UFS PHY power management is managed by its parent (UFS host * controller) hence set the no runtime PM callbacks flag * on UFS PHY device to avoid any accidental attempt to call the * PM callbacks for PHY device. */ pm_runtime_no_callbacks(&generic_phy->dev); common_cfg->phy_spec_ops = phy_spec_ops; common_cfg->dev = dev; /* * Init PHY register domain list. We use it to manage the memory space which be used * to save UFS PHY register value. */ INIT_LIST_HEAD(&common_cfg->regs_list_head); out: return generic_phy; } EXPORT_SYMBOL(ufs_qcom_phy_generic_probe); int ufs_qcom_phy_get_reset(struct ufs_qcom_phy *phy_common) { struct reset_control *reset; if (phy_common->ufs_reset) return 0; reset = devm_reset_control_get_exclusive_by_index(phy_common->dev, 0); if (IS_ERR(reset)) return PTR_ERR(reset); phy_common->ufs_reset = reset; return 0; } EXPORT_SYMBOL(ufs_qcom_phy_get_reset); static int __ufs_qcom_phy_clk_get(struct device *dev, const char *name, struct clk **clk_out, bool err_print) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (IS_ERR(clk)) { err = PTR_ERR(clk); if (err_print) dev_err(dev, "failed get %s, %d\n", name, err); } else { *clk_out = clk; } return err; } static int ufs_qcom_phy_clk_get(struct device *dev, const char *name, struct clk **clk_out) { return __ufs_qcom_phy_clk_get(dev, name, clk_out, true); } int ufs_qcom_phy_init_clks(struct ufs_qcom_phy *phy_common) { int err; if (of_device_is_compatible(phy_common->dev->of_node, "qcom,msm8996-ufs-phy-qmp-14nm")) goto skip_txrx_clk; /* * tx_iface_clk does not exist in newer version of ufs-phy HW, * so don't return error if it is not found */ __ufs_qcom_phy_clk_get(phy_common->dev, "tx_iface_clk", &phy_common->tx_iface_clk, false); /* * rx_iface_clk does not exist in newer version of ufs-phy HW, * so don't return error if it is not found */ __ufs_qcom_phy_clk_get(phy_common->dev, "rx_iface_clk", &phy_common->rx_iface_clk, false); skip_txrx_clk: err = ufs_qcom_phy_clk_get(phy_common->dev, "ref_clk_src", &phy_common->ref_clk_src); if (err) goto out; /* * "ref_clk_parent" is optional hence don't abort init if it's not * found. */ __ufs_qcom_phy_clk_get(phy_common->dev, "ref_clk_parent", &phy_common->ref_clk_parent, false); /* * "ref_clk_pad_en" is only required in case where UFS_PHY and * UFS_REF_CLK_BSM both needs to be enabled for REF clock supply * to card. Hence don't abort init if it's not found. */ __ufs_qcom_phy_clk_get(phy_common->dev, "ref_clk_pad_en", &phy_common->ref_clk_pad_en, false); /* * Some platforms may not have the ON/OFF control for reference clock, * hence this clock may be optional. */ __ufs_qcom_phy_clk_get(phy_common->dev, "ref_clk", &phy_common->ref_clk, false); /* * "ref_aux_clk" is optional and only supported by certain * phy versions, don't abort init if it's not found. */ __ufs_qcom_phy_clk_get(phy_common->dev, "ref_aux_clk", &phy_common->ref_aux_clk, false); /* * "qref_clk_signal" is optional. It is needed for certain platforms. * No need to abort if it's not present. */ __ufs_qcom_phy_clk_get(phy_common->dev, "qref_clk", &phy_common->qref_clk, false); __ufs_qcom_phy_clk_get(phy_common->dev, "rx_sym0_mux_clk", &phy_common->rx_sym0_mux_clk, false); __ufs_qcom_phy_clk_get(phy_common->dev, "rx_sym1_mux_clk", &phy_common->rx_sym1_mux_clk, false); __ufs_qcom_phy_clk_get(phy_common->dev, "tx_sym0_mux_clk", &phy_common->tx_sym0_mux_clk, false); __ufs_qcom_phy_clk_get(phy_common->dev, "rx_sym0_phy_clk", &phy_common->rx_sym0_phy_clk, false); __ufs_qcom_phy_clk_get(phy_common->dev, "rx_sym1_phy_clk", &phy_common->rx_sym1_phy_clk, false); __ufs_qcom_phy_clk_get(phy_common->dev, "tx_sym0_phy_clk", &phy_common->tx_sym0_phy_clk, false); if (!phy_common->rx_sym0_mux_clk || !phy_common->rx_sym1_mux_clk || !phy_common->tx_sym0_mux_clk || !phy_common->ref_clk_src || !phy_common->rx_sym0_phy_clk || !phy_common->rx_sym1_phy_clk || !phy_common->tx_sym0_phy_clk) dev_err(phy_common->dev, "%s: null clock\n", __func__); out: return err; } EXPORT_SYMBOL(ufs_qcom_phy_init_clks); static int ufs_qcom_phy_init_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg, const char *name) { int err = 0; char prop_name[MAX_PROP_NAME]; if (dev->of_node) { snprintf(prop_name, MAX_PROP_NAME, "%s-supply", name); if (!of_parse_phandle(dev->of_node, prop_name, 0)) { dev_dbg(dev, "No vreg data found for %s\n", prop_name); return -ENODATA; } } vreg->name = name; vreg->reg = devm_regulator_get(dev, name); if (IS_ERR(vreg->reg)) { err = PTR_ERR(vreg->reg); dev_err(dev, "failed to get %s, %d\n", name, err); goto out; } if (dev->of_node) { snprintf(prop_name, MAX_PROP_NAME, "%s-max-microamp", name); err = of_property_read_u32(dev->of_node, prop_name, &vreg->max_uA); if (err && err != -EINVAL) { dev_err(dev, "%s: failed to read %s\n", __func__, prop_name); goto out; } else if (err == -EINVAL || !vreg->max_uA) { if (!vreg->max_uA) { err = 0; } else if (regulator_count_voltages(vreg->reg) > 0) { dev_err(dev, "%s: %s is mandatory\n", __func__, prop_name); goto out; } err = 0; } } if (!strcmp(name, "vdda-pll")) { vreg->max_uV = VDDA_PLL_MAX_UV; vreg->min_uV = VDDA_PLL_MIN_UV; } else if (!strcmp(name, "vdda-phy")) { vreg->max_uV = VDDA_PHY_MAX_UV; vreg->min_uV = VDDA_PHY_MIN_UV; snprintf(prop_name, MAX_PROP_NAME, "%s-min-microvolt", name); of_property_read_u32(dev->of_node, prop_name, &vreg->min_uV); if (vreg->min_uV < VDDA_PHY_MIN_UV || vreg->min_uV > VDDA_PHY_MAX_UV) { dev_err(dev, "%s: ufs vdda-phy invalid min_uV=%duV\n", __func__, vreg->min_uV); vreg->min_uV = VDDA_PHY_MIN_UV; } } else if (!strcmp(name, "vddp-ref-clk")) { vreg->max_uV = VDDP_REF_CLK_MAX_UV; vreg->min_uV = VDDP_REF_CLK_MIN_UV; } else if (!strcmp(name, "vdda-qref")) { vreg->max_uV = VDDA_QREF_MAX_UV; vreg->min_uV = VDDA_QREF_MIN_UV; } out: return err; } int ufs_qcom_phy_init_vregulators(struct ufs_qcom_phy *phy_common) { int err; err = ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vdda_pll, "vdda-pll"); if (err) goto out; err = ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vdda_phy, "vdda-phy"); if (err) goto out; ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vddp_ref_clk, "vddp-ref-clk"); ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vdd_phy_gdsc, "vdd-phy-gdsc"); ufs_qcom_phy_init_vreg(phy_common->dev, &phy_common->vdda_qref, "vdda-qref"); out: return err; } EXPORT_SYMBOL(ufs_qcom_phy_init_vregulators); static int ufs_qcom_phy_cfg_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg, bool on) { int ret = 0; struct regulator *reg = vreg->reg; const char *name = vreg->name; int min_uV; int uA_load; if (regulator_count_voltages(reg) > 0) { min_uV = on ? vreg->min_uV : 0; ret = regulator_set_voltage(reg, min_uV, vreg->max_uV); if (ret) { dev_err(dev, "%s: %s set voltage failed, err=%d\n", __func__, name, ret); goto out; } uA_load = on ? vreg->max_uA : 0; ret = regulator_set_load(reg, uA_load); if (ret >= 0) { /* * regulator_set_load() returns new regulator * mode upon success. */ ret = 0; } else { dev_err(dev, "%s: %s set optimum mode(uA_load=%d) failed, err=%d\n", __func__, name, uA_load, ret); goto out; } } out: return ret; } static int ufs_qcom_phy_enable_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg) { int ret = 0; if (!vreg || vreg->enabled) goto out; ret = ufs_qcom_phy_cfg_vreg(dev, vreg, true); if (ret) { dev_err(dev, "%s: ufs_qcom_phy_cfg_vreg() failed, err=%d\n", __func__, ret); goto out; } ret = regulator_enable(vreg->reg); if (ret) { dev_err(dev, "%s: enable failed, err=%d\n", __func__, ret); goto out; } vreg->enabled = true; out: return ret; } static int ufs_qcom_phy_enable_ref_clk(struct ufs_qcom_phy *phy) { int ret = 0; if (phy->is_ref_clk_enabled) goto out; /* * "ref_clk_pad_en" is only required if UFS_PHY and UFS_REF_CLK_BSM * both needs to be enabled. Hence make sure that clk reference * is available before trying to enable the clock. */ if (phy->ref_clk_pad_en) { ret = clk_prepare_enable(phy->ref_clk_pad_en); if (ret) { dev_err(phy->dev, "%s: ref_clk_pad_en enable failed %d\n", __func__, ret); goto out; } } /* qref clk signal is optional */ if (phy->qref_clk) clk_prepare_enable(phy->qref_clk); /* * reference clock is propagated in a daisy-chained manner from * source to phy, so ungate them at each stage. */ ret = clk_prepare_enable(phy->ref_clk_src); if (ret) { dev_err(phy->dev, "%s: ref_clk_src enable failed %d\n", __func__, ret); goto out; } /* * "ref_clk_parent" is optional clock hence make sure that clk reference * is available before trying to enable the clock. */ if (phy->ref_clk_parent) { ret = clk_prepare_enable(phy->ref_clk_parent); if (ret) { dev_err(phy->dev, "%s: ref_clk_parent enable failed %d\n", __func__, ret); goto out_disable_src; } } /* * "ref_clk" is optional clock hence make sure that clk reference * is available before trying to enable the clock. */ if (phy->ref_clk) { ret = clk_prepare_enable(phy->ref_clk); if (ret) { dev_err(phy->dev, "%s: ref_clk enable failed %d\n", __func__, ret); goto out_disable_parent; } } /* * "ref_aux_clk" is optional clock and only supported by certain * phy versions, hence make sure that clk reference is available * before trying to enable the clock. */ if (phy->ref_aux_clk) { ret = clk_prepare_enable(phy->ref_aux_clk); if (ret) { dev_err(phy->dev, "%s: ref_aux_clk enable failed %d\n", __func__, ret); goto out_disable_ref; } } phy->is_ref_clk_enabled = true; goto out; out_disable_ref: if (phy->ref_clk) clk_disable_unprepare(phy->ref_clk); out_disable_parent: if (phy->ref_clk_parent) clk_disable_unprepare(phy->ref_clk_parent); out_disable_src: clk_disable_unprepare(phy->ref_clk_src); out: return ret; } static int ufs_qcom_phy_disable_vreg(struct device *dev, struct ufs_qcom_phy_vreg *vreg) { int ret = 0; if (!vreg || !vreg->enabled) goto out; ret = regulator_disable(vreg->reg); if (!ret) { /* ignore errors on applying disable config */ ufs_qcom_phy_cfg_vreg(dev, vreg, false); vreg->enabled = false; } else { dev_err(dev, "%s: %s disable failed, err=%d\n", __func__, vreg->name, ret); } out: return ret; } static void ufs_qcom_phy_disable_ref_clk(struct ufs_qcom_phy *phy) { if (phy->is_ref_clk_enabled) { /* * "ref_aux_clk" is optional clock and only supported by * certain phy versions, hence make sure that clk reference * is available before trying to disable the clock. */ if (phy->ref_aux_clk) clk_disable_unprepare(phy->ref_aux_clk); /* * "ref_clk" is optional clock hence make sure that clk * reference is available before trying to disable the clock. */ if (phy->ref_clk) clk_disable_unprepare(phy->ref_clk); /* * "ref_clk_parent" is optional clock hence make sure that clk * reference is available before trying to disable the clock. */ if (phy->ref_clk_parent) clk_disable_unprepare(phy->ref_clk_parent); clk_disable_unprepare(phy->ref_clk_src); /* * "ref_clk_pad_en" is optional clock hence make sure that clk * reference is available before trying to disable the clock. */ if (phy->ref_clk_pad_en) clk_disable_unprepare(phy->ref_clk_pad_en); /* qref clk signal is optional */ if (phy->qref_clk) clk_disable_unprepare(phy->qref_clk); phy->is_ref_clk_enabled = false; } } /* Turn ON M-PHY RMMI interface clocks */ static int ufs_qcom_phy_enable_iface_clk(struct ufs_qcom_phy *phy) { int ret = 0; if (phy->is_iface_clk_enabled) goto out; if (!phy->tx_iface_clk) goto out; ret = clk_prepare_enable(phy->tx_iface_clk); if (ret) { dev_err(phy->dev, "%s: tx_iface_clk enable failed %d\n", __func__, ret); goto out; } ret = clk_prepare_enable(phy->rx_iface_clk); if (ret) { clk_disable_unprepare(phy->tx_iface_clk); dev_err(phy->dev, "%s: rx_iface_clk enable failed %d. disabling also tx_iface_clk\n", __func__, ret); goto out; } phy->is_iface_clk_enabled = true; out: return ret; } /* Turn OFF M-PHY RMMI interface clocks */ static void ufs_qcom_phy_disable_iface_clk(struct ufs_qcom_phy *phy) { if (!phy->tx_iface_clk) return; if (phy->is_iface_clk_enabled) { clk_disable_unprepare(phy->tx_iface_clk); clk_disable_unprepare(phy->rx_iface_clk); phy->is_iface_clk_enabled = false; } } static int ufs_qcom_phy_start_serdes(struct ufs_qcom_phy *ufs_qcom_phy) { int ret = 0; if (!ufs_qcom_phy->phy_spec_ops->start_serdes) { dev_err(ufs_qcom_phy->dev, "%s: start_serdes() callback is not supported\n", __func__); ret = -EOPNOTSUPP; } else { ufs_qcom_phy->phy_spec_ops->start_serdes(ufs_qcom_phy); } return ret; } void ufs_qcom_phy_set_tx_lane_enable(struct phy *generic_phy, u32 tx_lanes) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (ufs_qcom_phy->phy_spec_ops->set_tx_lane_enable) ufs_qcom_phy->phy_spec_ops->set_tx_lane_enable(ufs_qcom_phy, tx_lanes); } EXPORT_SYMBOL(ufs_qcom_phy_set_tx_lane_enable); int ufs_qcom_phy_save_controller_version(struct phy *generic_phy, u8 major, u16 minor, u16 step) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (!ufs_qcom_phy) return -EPROBE_DEFER; ufs_qcom_phy->host_ctrl_rev_major = major; ufs_qcom_phy->host_ctrl_rev_minor = minor; ufs_qcom_phy->host_ctrl_rev_step = step; return 0; } EXPORT_SYMBOL(ufs_qcom_phy_save_controller_version); void ufs_qcom_phy_set_src_clk_h8_enter(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (!ufs_qcom_phy->rx_sym0_mux_clk || !ufs_qcom_phy->rx_sym1_mux_clk || !ufs_qcom_phy->tx_sym0_mux_clk || !ufs_qcom_phy->ref_clk_src) return; /* * Before entering hibernate, select xo as source of symbol * clocks according to the UFS Host Controller Hardware * Programming Guide's "Hibernate enter with power collapse". */ clk_set_parent(ufs_qcom_phy->rx_sym0_mux_clk, ufs_qcom_phy->ref_clk_src); clk_set_parent(ufs_qcom_phy->rx_sym1_mux_clk, ufs_qcom_phy->ref_clk_src); clk_set_parent(ufs_qcom_phy->tx_sym0_mux_clk, ufs_qcom_phy->ref_clk_src); } EXPORT_SYMBOL(ufs_qcom_phy_set_src_clk_h8_enter); void ufs_qcom_phy_set_src_clk_h8_exit(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (!ufs_qcom_phy->rx_sym0_mux_clk || !ufs_qcom_phy->rx_sym1_mux_clk || !ufs_qcom_phy->tx_sym0_mux_clk || !ufs_qcom_phy->rx_sym0_phy_clk || !ufs_qcom_phy->rx_sym1_phy_clk || !ufs_qcom_phy->tx_sym0_phy_clk) return; /* * Refer to the UFS Host Controller Hardware Programming Guide's * section "Hibernate exit from power collapse". Select phy clocks * as source of the PHY symbol clocks. */ clk_set_parent(ufs_qcom_phy->rx_sym0_mux_clk, ufs_qcom_phy->rx_sym0_phy_clk); clk_set_parent(ufs_qcom_phy->rx_sym1_mux_clk, ufs_qcom_phy->rx_sym1_phy_clk); clk_set_parent(ufs_qcom_phy->tx_sym0_mux_clk, ufs_qcom_phy->tx_sym0_phy_clk); } EXPORT_SYMBOL(ufs_qcom_phy_set_src_clk_h8_exit); static int ufs_qcom_phy_is_pcs_ready(struct ufs_qcom_phy *ufs_qcom_phy) { if (!ufs_qcom_phy->phy_spec_ops->is_physical_coding_sublayer_ready) { dev_err(ufs_qcom_phy->dev, "%s: is_physical_coding_sublayer_ready() callback is not supported\n", __func__); return -EOPNOTSUPP; } return ufs_qcom_phy->phy_spec_ops->is_physical_coding_sublayer_ready(ufs_qcom_phy); } int ufs_qcom_phy_power_on(struct phy *generic_phy) { struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy); struct device *dev = phy_common->dev; int err; if (phy_common->vdd_phy_gdsc.reg) { err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vdd_phy_gdsc); if (err) { dev_err(dev, "%s enable phy_gdsc failed, err=%d\n", __func__, err); goto out; } } if (phy_common->vdda_qref.reg) { err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vdda_qref); if (err) { dev_err(dev, "%s enable vdda_qref failed, err=%d\n", __func__, err); goto out; } } err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vdda_phy); if (err) { dev_err(dev, "%s enable vdda_phy failed, err=%d\n", __func__, err); goto out; } phy_common->phy_spec_ops->power_control(phy_common, true); /* vdda_pll also enables ref clock LDOs so enable it first */ err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vdda_pll); if (err) { dev_err(dev, "%s enable vdda_pll failed, err=%d\n", __func__, err); goto out_disable_phy; } err = ufs_qcom_phy_enable_iface_clk(phy_common); if (err) { dev_err(dev, "%s enable phy iface clock failed, err=%d\n", __func__, err); goto out_disable_pll; } err = ufs_qcom_phy_enable_ref_clk(phy_common); if (err) { dev_err(dev, "%s enable phy ref clock failed, err=%d\n", __func__, err); goto out_disable_iface_clk; } /* enable device PHY ref_clk pad rail */ if (phy_common->vddp_ref_clk.reg) { err = ufs_qcom_phy_enable_vreg(dev, &phy_common->vddp_ref_clk); if (err) { dev_err(dev, "%s enable vddp_ref_clk failed, err=%d\n", __func__, err); goto out_disable_ref_clk; } } goto out; out_disable_ref_clk: ufs_qcom_phy_disable_ref_clk(phy_common); out_disable_iface_clk: ufs_qcom_phy_disable_iface_clk(phy_common); out_disable_pll: ufs_qcom_phy_disable_vreg(dev, &phy_common->vdda_pll); out_disable_phy: ufs_qcom_phy_disable_vreg(dev, &phy_common->vdda_phy); out: return err; } EXPORT_SYMBOL(ufs_qcom_phy_power_on); int ufs_qcom_phy_power_off(struct phy *generic_phy) { struct ufs_qcom_phy *phy_common = get_ufs_qcom_phy(generic_phy); phy_common->phy_spec_ops->power_control(phy_common, false); if (phy_common->vddp_ref_clk.reg) ufs_qcom_phy_disable_vreg(phy_common->dev, &phy_common->vddp_ref_clk); ufs_qcom_phy_disable_ref_clk(phy_common); ufs_qcom_phy_disable_iface_clk(phy_common); ufs_qcom_phy_disable_vreg(phy_common->dev, &phy_common->vdda_pll); ufs_qcom_phy_disable_vreg(phy_common->dev, &phy_common->vdda_phy); if (phy_common->vdda_qref.reg) ufs_qcom_phy_disable_vreg(phy_common->dev, &phy_common->vdda_qref); return 0; } EXPORT_SYMBOL(ufs_qcom_phy_power_off); void ufs_qcom_phy_ctrl_rx_linecfg(struct phy *generic_phy, bool ctrl) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (ufs_qcom_phy->phy_spec_ops->ctrl_rx_linecfg) ufs_qcom_phy->phy_spec_ops->ctrl_rx_linecfg(ufs_qcom_phy, ctrl); } EXPORT_SYMBOL(ufs_qcom_phy_ctrl_rx_linecfg); int ufs_qcom_phy_get_tx_hs_equalizer(struct phy *generic_phy, u32 gear, u32 *val) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (!ufs_qcom_phy->phy_spec_ops->get_tx_hs_equalizer) return -EOPNOTSUPP; *val = ufs_qcom_phy->phy_spec_ops->get_tx_hs_equalizer(ufs_qcom_phy, gear); return 0; } EXPORT_SYMBOL(ufs_qcom_phy_get_tx_hs_equalizer); int ufs_qcom_phy_dump_regs(struct ufs_qcom_phy *phy, int offset, int len, char *prefix) { u32 *regs; size_t pos; if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ return -EINVAL; regs = kzalloc(len, GFP_KERNEL); if (!regs) return -ENOMEM; for (pos = 0; pos < len; pos += 4) regs[pos / 4] = readl_relaxed(phy->mmio + offset + pos); print_hex_dump(KERN_ERR, prefix, len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE, 16, 4, regs, len, false); kfree(regs); return 0; } EXPORT_SYMBOL(ufs_qcom_phy_dump_regs); /** * ufs_qcom_phy_save_regs - save specified domain of ufs phy registers to memory * @phy - pointer to ufs qcom phy * @offset - register address offset * @len - size of this domain * @prefix - name of this domain */ int ufs_qcom_phy_save_regs(struct ufs_qcom_phy *phy, int offset, int len, char *prefix) { struct ufs_qcom_phy_regs *regs = NULL; struct list_head *head = &phy->regs_list_head; size_t pos; unsigned int noio_flag; if (offset % 4 != 0 || len % 4 != 0) return -EINVAL; /* find the node if this register domain has been saved before */ list_for_each_entry(regs, head, list) if (regs->prefix && !strcmp(regs->prefix, prefix)) break; /* create a new node and add it to list if this domain never been written */ if (®s->list == head) { /* * use memalloc_noio_save() here as GFP_ATOMIC should not be invoked * in an IO error context */ noio_flag = memalloc_noio_save(); regs = devm_kzalloc(phy->dev, sizeof(*regs), GFP_ATOMIC); if (!regs) goto out; regs->ptr = devm_kzalloc(phy->dev, len, GFP_ATOMIC); if (!regs->ptr) goto out; memalloc_noio_restore(noio_flag); regs->prefix = prefix; regs->len = len; list_add_tail(®s->list, &phy->regs_list_head); } for (pos = 0; pos < len; pos += 4) regs->ptr[pos / 4] = readl_relaxed(phy->mmio + offset + pos); return 0; out: memalloc_noio_restore(noio_flag); return -ENOMEM; } EXPORT_SYMBOL(ufs_qcom_phy_save_regs); void ufs_qcom_phy_dbg_register_dump(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (ufs_qcom_phy->phy_spec_ops->dbg_register_dump) ufs_qcom_phy->phy_spec_ops->dbg_register_dump(ufs_qcom_phy); } EXPORT_SYMBOL(ufs_qcom_phy_dbg_register_dump); void ufs_qcom_phy_dbg_register_save(struct phy *generic_phy) { struct ufs_qcom_phy *ufs_qcom_phy = get_ufs_qcom_phy(generic_phy); if (ufs_qcom_phy->phy_spec_ops->dbg_register_save) ufs_qcom_phy->phy_spec_ops->dbg_register_save(ufs_qcom_phy); } EXPORT_SYMBOL(ufs_qcom_phy_dbg_register_save); MODULE_DESCRIPTION("Universal Flash Storage (UFS) QCOM PHY"); MODULE_LICENSE("GPL v2");