Files
android_kernel_samsung_sm86…/core/rmnet_map_data.c
Raul Martinez 4699ee5e86 rmnet_core: Rmnet_mem dlkm dependency
Incorporate rmnet_mem dlkm dependency into rmnet_core
page allocation static pool for UL agg.
Creates a new compile time and runtime  dependency on rmnet_mem.ko.

CRs-Fixed: 3566750
Change-Id: Id4a7d5cd2a187877e6e2c73098ac4b20f73f8c5b
Signed-off-by: Raul Martinez <quic_mraul@quicinc.com>
2023-07-20 22:46:56 -06:00

1721 sor
44 KiB
C

/* Copyright (c) 2013-2021, The Linux Foundation. All rights reserved.
* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* RMNET Data MAP protocol
*
*/
#include <linux/netdevice.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <net/ip6_checksum.h>
#include "rmnet_config.h"
#include "rmnet_map.h"
#include "rmnet_private.h"
#include "rmnet_handlers.h"
#include "rmnet_ll.h"
#include "rmnet_mem.h"
#define RMNET_MAP_PKT_COPY_THRESHOLD 64
#define RMNET_MAP_DEAGGR_SPACING 64
#define RMNET_MAP_DEAGGR_HEADROOM (RMNET_MAP_DEAGGR_SPACING / 2)
#define RMNET_PAGE_COUNT 384
struct rmnet_map_coal_metadata {
void *ip_header;
void *trans_header;
u16 ip_len;
u16 trans_len;
u16 data_offset;
u16 data_len;
u8 ip_proto;
u8 trans_proto;
u8 pkt_id;
u8 pkt_count;
};
static __sum16 *rmnet_map_get_csum_field(unsigned char protocol,
const void *txporthdr)
{
__sum16 *check = NULL;
switch (protocol) {
case IPPROTO_TCP:
check = &(((struct tcphdr *)txporthdr)->check);
break;
case IPPROTO_UDP:
check = &(((struct udphdr *)txporthdr)->check);
break;
default:
check = NULL;
break;
}
return check;
}
static int
rmnet_map_ipv4_dl_csum_trailer(struct sk_buff *skb,
struct rmnet_map_dl_csum_trailer *csum_trailer,
struct rmnet_priv *priv)
{
__sum16 *csum_field, csum_temp, pseudo_csum, hdr_csum, ip_payload_csum;
u16 csum_value, csum_value_final;
struct iphdr *ip4h;
void *txporthdr;
__be16 addend;
ip4h = (struct iphdr *)rmnet_map_data_ptr(skb);
if ((ntohs(ip4h->frag_off) & IP_MF) ||
((ntohs(ip4h->frag_off) & IP_OFFSET) > 0)) {
priv->stats.csum_fragmented_pkt++;
return -EOPNOTSUPP;
}
txporthdr = rmnet_map_data_ptr(skb) + ip4h->ihl * 4;
csum_field = rmnet_map_get_csum_field(ip4h->protocol, txporthdr);
if (!csum_field) {
priv->stats.csum_err_invalid_transport++;
return -EPROTONOSUPPORT;
}
/* RFC 768 - Skip IPv4 UDP packets where sender checksum field is 0 */
if (*csum_field == 0 && ip4h->protocol == IPPROTO_UDP) {
priv->stats.csum_skipped++;
return 0;
}
csum_value = ~ntohs(csum_trailer->csum_value);
hdr_csum = ~ip_fast_csum(ip4h, (int)ip4h->ihl);
ip_payload_csum = csum16_sub((__force __sum16)csum_value,
(__force __be16)hdr_csum);
pseudo_csum = ~csum_tcpudp_magic(ip4h->saddr, ip4h->daddr,
ntohs(ip4h->tot_len) - ip4h->ihl * 4,
ip4h->protocol, 0);
addend = (__force __be16)ntohs((__force __be16)pseudo_csum);
pseudo_csum = csum16_add(ip_payload_csum, addend);
addend = (__force __be16)ntohs((__force __be16)*csum_field);
csum_temp = ~csum16_sub(pseudo_csum, addend);
csum_value_final = (__force u16)csum_temp;
if (unlikely(csum_value_final == 0)) {
switch (ip4h->protocol) {
case IPPROTO_UDP:
/* RFC 768 - DL4 1's complement rule for UDP csum 0 */
csum_value_final = ~csum_value_final;
break;
case IPPROTO_TCP:
/* DL4 Non-RFC compliant TCP checksum found */
if (*csum_field == (__force __sum16)0xFFFF)
csum_value_final = ~csum_value_final;
break;
}
}
if (csum_value_final == ntohs((__force __be16)*csum_field)) {
priv->stats.csum_ok++;
return 0;
} else {
priv->stats.csum_validation_failed++;
return -EINVAL;
}
}
#if IS_ENABLED(CONFIG_IPV6)
static int
rmnet_map_ipv6_dl_csum_trailer(struct sk_buff *skb,
struct rmnet_map_dl_csum_trailer *csum_trailer,
struct rmnet_priv *priv)
{
__sum16 *csum_field, ip6_payload_csum, pseudo_csum, csum_temp;
u16 csum_value, csum_value_final;
__be16 ip6_hdr_csum, addend;
struct ipv6hdr *ip6h;
void *txporthdr, *data = rmnet_map_data_ptr(skb);
u32 length;
ip6h = data;
txporthdr = data + sizeof(struct ipv6hdr);
csum_field = rmnet_map_get_csum_field(ip6h->nexthdr, txporthdr);
if (!csum_field) {
priv->stats.csum_err_invalid_transport++;
return -EPROTONOSUPPORT;
}
csum_value = ~ntohs(csum_trailer->csum_value);
ip6_hdr_csum = (__force __be16)
~ntohs((__force __be16)ip_compute_csum(ip6h,
(int)(txporthdr - data)));
ip6_payload_csum = csum16_sub((__force __sum16)csum_value,
ip6_hdr_csum);
length = (ip6h->nexthdr == IPPROTO_UDP) ?
ntohs(((struct udphdr *)txporthdr)->len) :
ntohs(ip6h->payload_len);
pseudo_csum = ~(csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
length, ip6h->nexthdr, 0));
addend = (__force __be16)ntohs((__force __be16)pseudo_csum);
pseudo_csum = csum16_add(ip6_payload_csum, addend);
addend = (__force __be16)ntohs((__force __be16)*csum_field);
csum_temp = ~csum16_sub(pseudo_csum, addend);
csum_value_final = (__force u16)csum_temp;
if (unlikely(csum_value_final == 0)) {
switch (ip6h->nexthdr) {
case IPPROTO_UDP:
/* RFC 2460 section 8.1
* DL6 One's complement rule for UDP checksum 0
*/
csum_value_final = ~csum_value_final;
break;
case IPPROTO_TCP:
/* DL6 Non-RFC compliant TCP checksum found */
if (*csum_field == (__force __sum16)0xFFFF)
csum_value_final = ~csum_value_final;
break;
}
}
if (csum_value_final == ntohs((__force __be16)*csum_field)) {
priv->stats.csum_ok++;
return 0;
} else {
priv->stats.csum_validation_failed++;
return -EINVAL;
}
}
#endif
static void rmnet_map_complement_ipv4_txporthdr_csum_field(void *iphdr)
{
struct iphdr *ip4h = (struct iphdr *)iphdr;
void *txphdr;
u16 *csum;
txphdr = iphdr + ip4h->ihl * 4;
if (ip4h->protocol == IPPROTO_TCP || ip4h->protocol == IPPROTO_UDP) {
csum = (u16 *)rmnet_map_get_csum_field(ip4h->protocol, txphdr);
*csum = ~(*csum);
}
}
static void
rmnet_map_ipv4_ul_csum_header(void *iphdr,
struct rmnet_map_ul_csum_header *ul_header,
struct sk_buff *skb)
{
struct iphdr *ip4h = (struct iphdr *)iphdr;
__be16 *hdr = (__be16 *)ul_header, offset;
offset = htons((__force u16)(skb_transport_header(skb) -
(unsigned char *)iphdr));
ul_header->csum_start_offset = offset;
ul_header->csum_insert_offset = skb->csum_offset;
ul_header->csum_enabled = 1;
if (ip4h->protocol == IPPROTO_UDP)
ul_header->udp_ind = 1;
else
ul_header->udp_ind = 0;
/* Changing remaining fields to network order */
hdr++;
*hdr = htons((__force u16)*hdr);
skb->ip_summed = CHECKSUM_NONE;
rmnet_map_complement_ipv4_txporthdr_csum_field(iphdr);
}
#if IS_ENABLED(CONFIG_IPV6)
static void rmnet_map_complement_ipv6_txporthdr_csum_field(void *ip6hdr)
{
struct ipv6hdr *ip6h = (struct ipv6hdr *)ip6hdr;
void *txphdr;
u16 *csum;
txphdr = ip6hdr + sizeof(struct ipv6hdr);
if (ip6h->nexthdr == IPPROTO_TCP || ip6h->nexthdr == IPPROTO_UDP) {
csum = (u16 *)rmnet_map_get_csum_field(ip6h->nexthdr, txphdr);
*csum = ~(*csum);
}
}
static void
rmnet_map_ipv6_ul_csum_header(void *ip6hdr,
struct rmnet_map_ul_csum_header *ul_header,
struct sk_buff *skb)
{
struct ipv6hdr *ip6h = (struct ipv6hdr *)ip6hdr;
__be16 *hdr = (__be16 *)ul_header, offset;
offset = htons((__force u16)(skb_transport_header(skb) -
(unsigned char *)ip6hdr));
ul_header->csum_start_offset = offset;
ul_header->csum_insert_offset = skb->csum_offset;
ul_header->csum_enabled = 1;
if (ip6h->nexthdr == IPPROTO_UDP)
ul_header->udp_ind = 1;
else
ul_header->udp_ind = 0;
/* Changing remaining fields to network order */
hdr++;
*hdr = htons((__force u16)*hdr);
skb->ip_summed = CHECKSUM_NONE;
rmnet_map_complement_ipv6_txporthdr_csum_field(ip6hdr);
}
#endif
/* Adds MAP header to front of skb->data
* Padding is calculated and set appropriately in MAP header. Mux ID is
* initialized to 0.
*/
struct rmnet_map_header *rmnet_map_add_map_header(struct sk_buff *skb,
int hdrlen, int pad,
struct rmnet_port *port)
{
struct rmnet_map_header *map_header;
u32 padding, map_datalen;
u8 *padbytes;
map_datalen = skb->len - hdrlen;
map_header = (struct rmnet_map_header *)
skb_push(skb, sizeof(struct rmnet_map_header));
memset(map_header, 0, sizeof(struct rmnet_map_header));
/* Set next_hdr bit for csum offload packets */
if (port->data_format & RMNET_PRIV_FLAGS_EGRESS_MAP_CKSUMV5)
map_header->next_hdr = 1;
if (pad == RMNET_MAP_NO_PAD_BYTES) {
map_header->pkt_len = htons(map_datalen);
return map_header;
}
padding = ALIGN(map_datalen, 4) - map_datalen;
if (padding == 0)
goto done;
if (skb_tailroom(skb) < padding)
return NULL;
padbytes = (u8 *)skb_put(skb, padding);
memset(padbytes, 0, padding);
done:
map_header->pkt_len = htons(map_datalen + padding);
map_header->pad_len = padding & 0x3F;
return map_header;
}
/* Deaggregates a single packet
* A whole new buffer is allocated for each portion of an aggregated frame.
* Caller should keep calling deaggregate() on the source skb until 0 is
* returned, indicating that there are no more packets to deaggregate. Caller
* is responsible for freeing the original skb.
*/
struct sk_buff *rmnet_map_deaggregate(struct sk_buff *skb,
struct rmnet_port *port)
{
struct rmnet_map_header *maph;
struct sk_buff *skbn;
unsigned char *data = rmnet_map_data_ptr(skb), *next_hdr = NULL;
u32 packet_len;
if (skb->len == 0)
return NULL;
maph = (struct rmnet_map_header *)data;
packet_len = ntohs(maph->pkt_len) + sizeof(struct rmnet_map_header);
if (port->data_format & RMNET_FLAGS_INGRESS_MAP_CKSUMV4)
packet_len += sizeof(struct rmnet_map_dl_csum_trailer);
else if (port->data_format & RMNET_PRIV_FLAGS_INGRESS_MAP_CKSUMV5) {
if (!maph->cd_bit) {
packet_len += sizeof(struct rmnet_map_v5_csum_header);
/* Coalescing headers require MAPv5 */
next_hdr = data + sizeof(*maph);
}
}
if (((int)skb->len - (int)packet_len) < 0)
return NULL;
/* Some hardware can send us empty frames. Catch them */
if (ntohs(maph->pkt_len) == 0)
return NULL;
if (next_hdr &&
((struct rmnet_map_v5_coal_header *)next_hdr)->header_type ==
RMNET_MAP_HEADER_TYPE_COALESCING)
return skb;
if (skb_is_nonlinear(skb)) {
skb_frag_t *frag0 = skb_shinfo(skb)->frags;
struct page *page = skb_frag_page(frag0);
skbn = alloc_skb(RMNET_MAP_DEAGGR_HEADROOM, GFP_ATOMIC);
if (!skbn)
return NULL;
skb_append_pagefrags(skbn, page, frag0->bv_offset,
packet_len);
skbn->data_len += packet_len;
skbn->len += packet_len;
} else {
skbn = alloc_skb(packet_len + RMNET_MAP_DEAGGR_SPACING,
GFP_ATOMIC);
if (!skbn)
return NULL;
skb_reserve(skbn, RMNET_MAP_DEAGGR_HEADROOM);
skb_put(skbn, packet_len);
memcpy(skbn->data, data, packet_len);
}
skbn->priority = skb->priority;
pskb_pull(skb, packet_len);
return skbn;
}
/* Validates packet checksums. Function takes a pointer to
* the beginning of a buffer which contains the IP payload +
* padding + checksum trailer.
* Only IPv4 and IPv6 are supported along with TCP & UDP.
* Fragmented or tunneled packets are not supported.
*/
int rmnet_map_checksum_downlink_packet(struct sk_buff *skb, u16 len)
{
struct rmnet_priv *priv = netdev_priv(skb->dev);
struct rmnet_map_dl_csum_trailer *csum_trailer;
if (unlikely(!(skb->dev->features & NETIF_F_RXCSUM))) {
priv->stats.csum_sw++;
return -EOPNOTSUPP;
}
csum_trailer = (struct rmnet_map_dl_csum_trailer *)
(rmnet_map_data_ptr(skb) + len);
if (!csum_trailer->valid) {
priv->stats.csum_valid_unset++;
return -EINVAL;
}
if (skb->protocol == htons(ETH_P_IP)) {
return rmnet_map_ipv4_dl_csum_trailer(skb, csum_trailer, priv);
} else if (skb->protocol == htons(ETH_P_IPV6)) {
#if IS_ENABLED(CONFIG_IPV6)
return rmnet_map_ipv6_dl_csum_trailer(skb, csum_trailer, priv);
#else
priv->stats.csum_err_invalid_ip_version++;
return -EPROTONOSUPPORT;
#endif
} else {
priv->stats.csum_err_invalid_ip_version++;
return -EPROTONOSUPPORT;
}
return 0;
}
EXPORT_SYMBOL(rmnet_map_checksum_downlink_packet);
void rmnet_map_v4_checksum_uplink_packet(struct sk_buff *skb,
struct net_device *orig_dev)
{
struct rmnet_priv *priv = netdev_priv(orig_dev);
struct rmnet_map_ul_csum_header *ul_header;
void *iphdr;
ul_header = (struct rmnet_map_ul_csum_header *)
skb_push(skb, sizeof(struct rmnet_map_ul_csum_header));
if (unlikely(!(orig_dev->features &
(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))))
goto sw_csum;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
iphdr = (char *)ul_header +
sizeof(struct rmnet_map_ul_csum_header);
if (skb->protocol == htons(ETH_P_IP)) {
rmnet_map_ipv4_ul_csum_header(iphdr, ul_header, skb);
priv->stats.csum_hw++;
return;
} else if (skb->protocol == htons(ETH_P_IPV6)) {
#if IS_ENABLED(CONFIG_IPV6)
rmnet_map_ipv6_ul_csum_header(iphdr, ul_header, skb);
priv->stats.csum_hw++;
return;
#else
priv->stats.csum_err_invalid_ip_version++;
goto sw_csum;
#endif
} else {
priv->stats.csum_err_invalid_ip_version++;
}
}
sw_csum:
ul_header->csum_start_offset = 0;
ul_header->csum_insert_offset = 0;
ul_header->csum_enabled = 0;
ul_header->udp_ind = 0;
priv->stats.csum_sw++;
}
static void rmnet_map_v5_check_priority(struct sk_buff *skb,
struct net_device *orig_dev,
struct rmnet_map_v5_csum_header *hdr,
bool tso)
{
struct rmnet_priv *priv = netdev_priv(orig_dev);
if (RMNET_LLM(skb->priority)) {
priv->stats.ul_prio++;
hdr->priority = 1;
}
/* APS priority bit is only valid for csum header */
if (!tso && RMNET_APS_LLB(skb->priority)) {
priv->stats.aps_prio++;
hdr->aps_prio = 1;
}
}
void rmnet_map_v5_checksum_uplink_packet(struct sk_buff *skb,
struct rmnet_port *port,
struct net_device *orig_dev)
{
struct rmnet_priv *priv = netdev_priv(orig_dev);
struct rmnet_map_v5_csum_header *ul_header;
ul_header = (struct rmnet_map_v5_csum_header *)
skb_push(skb, sizeof(*ul_header));
memset(ul_header, 0, sizeof(*ul_header));
ul_header->header_type = RMNET_MAP_HEADER_TYPE_CSUM_OFFLOAD;
if (port->data_format & RMNET_EGRESS_FORMAT_PRIORITY)
rmnet_map_v5_check_priority(skb, orig_dev, ul_header, false);
/* Allow priority w/o csum offload */
if (!(port->data_format & RMNET_PRIV_FLAGS_EGRESS_MAP_CKSUMV5))
return;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
void *iph = (char *)ul_header + sizeof(*ul_header);
void *trans;
__sum16 *check;
u8 proto;
if (skb->protocol == htons(ETH_P_IP)) {
u16 ip_len = ((struct iphdr *)iph)->ihl * 4;
proto = ((struct iphdr *)iph)->protocol;
trans = iph + ip_len;
} else if (skb->protocol == htons(ETH_P_IPV6)) {
u16 ip_len = sizeof(struct ipv6hdr);
proto = ((struct ipv6hdr *)iph)->nexthdr;
trans = iph + ip_len;
} else {
priv->stats.csum_err_invalid_ip_version++;
goto sw_csum;
}
check = rmnet_map_get_csum_field(proto, trans);
if (check) {
skb->ip_summed = CHECKSUM_NONE;
/* Ask for checksum offloading */
ul_header->csum_valid_required = 1;
priv->stats.csum_hw++;
return;
}
}
sw_csum:
priv->stats.csum_sw++;
}
/* Generates UL checksum meta info header for IPv4 and IPv6 over TCP and UDP
* packets that are supported for UL checksum offload.
*/
void rmnet_map_checksum_uplink_packet(struct sk_buff *skb,
struct rmnet_port *port,
struct net_device *orig_dev,
int csum_type)
{
switch (csum_type) {
case RMNET_FLAGS_EGRESS_MAP_CKSUMV4:
rmnet_map_v4_checksum_uplink_packet(skb, orig_dev);
break;
case RMNET_PRIV_FLAGS_EGRESS_MAP_CKSUMV5:
rmnet_map_v5_checksum_uplink_packet(skb, port, orig_dev);
break;
default:
break;
}
}
bool rmnet_map_v5_csum_buggy(struct rmnet_map_v5_coal_header *coal_hdr)
{
/* Only applies to frames with a single packet */
if (coal_hdr->num_nlos != 1 || coal_hdr->nl_pairs[0].num_packets != 1)
return false;
/* TCP header has FIN or PUSH set */
if (coal_hdr->close_type == RMNET_MAP_COAL_CLOSE_COAL)
return true;
/* Hit packet limit, byte limit, or time limit/EOF on DMA */
if (coal_hdr->close_type == RMNET_MAP_COAL_CLOSE_HW) {
switch (coal_hdr->close_value) {
case RMNET_MAP_COAL_CLOSE_HW_PKT:
case RMNET_MAP_COAL_CLOSE_HW_BYTE:
case RMNET_MAP_COAL_CLOSE_HW_TIME:
return true;
}
}
return false;
}
static void rmnet_map_move_headers(struct sk_buff *skb)
{
struct iphdr *iph;
u16 ip_len;
u16 trans_len = 0;
u8 proto;
/* This only applies to non-linear SKBs */
if (!skb_is_nonlinear(skb))
return;
iph = (struct iphdr *)rmnet_map_data_ptr(skb);
if (iph->version == 4) {
ip_len = iph->ihl * 4;
proto = iph->protocol;
if (iph->frag_off & htons(IP_OFFSET))
/* No transport header information */
goto pull;
} else if (iph->version == 6) {
struct ipv6hdr *ip6h = (struct ipv6hdr *)iph;
__be16 frag_off;
u8 nexthdr = ip6h->nexthdr;
ip_len = ipv6_skip_exthdr(skb, sizeof(*ip6h), &nexthdr,
&frag_off);
if (ip_len < 0)
return;
proto = nexthdr;
} else {
return;
}
if (proto == IPPROTO_TCP) {
struct tcphdr *tp = (struct tcphdr *)((u8 *)iph + ip_len);
trans_len = tp->doff * 4;
} else if (proto == IPPROTO_UDP) {
trans_len = sizeof(struct udphdr);
} else if (proto == NEXTHDR_FRAGMENT) {
/* Non-first fragments don't have the fragment length added by
* ipv6_skip_exthdr() and sho up as proto NEXTHDR_FRAGMENT, so
* we account for the length here.
*/
ip_len += sizeof(struct frag_hdr);
}
pull:
__pskb_pull_tail(skb, ip_len + trans_len);
skb_reset_network_header(skb);
if (trans_len)
skb_set_transport_header(skb, ip_len);
}
static void rmnet_map_nonlinear_copy(struct sk_buff *coal_skb,
struct rmnet_map_coal_metadata *coal_meta,
struct sk_buff *dest)
{
unsigned char *data_start = rmnet_map_data_ptr(coal_skb) +
coal_meta->ip_len + coal_meta->trans_len;
u32 copy_len = coal_meta->data_len * coal_meta->pkt_count;
if (skb_is_nonlinear(coal_skb)) {
skb_frag_t *frag0 = skb_shinfo(coal_skb)->frags;
struct page *page = skb_frag_page(frag0);
skb_append_pagefrags(dest, page,
frag0->bv_offset + coal_meta->ip_len +
coal_meta->trans_len +
coal_meta->data_offset,
copy_len);
dest->data_len += copy_len;
dest->len += copy_len;
} else {
skb_put_data(dest, data_start + coal_meta->data_offset,
copy_len);
}
}
/* Fill in GSO metadata to allow the SKB to be segmented by the NW stack
* if needed (i.e. forwarding, UDP GRO)
*/
static void rmnet_map_gso_stamp(struct sk_buff *skb,
struct rmnet_map_coal_metadata *coal_meta)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
if (coal_meta->trans_proto == IPPROTO_TCP)
shinfo->gso_type = (coal_meta->ip_proto == 4) ?
SKB_GSO_TCPV4 : SKB_GSO_TCPV6;
else
shinfo->gso_type = SKB_GSO_UDP_L4;
shinfo->gso_size = coal_meta->data_len;
shinfo->gso_segs = coal_meta->pkt_count;
}
/* Handles setting up the partial checksum in the skb. Sets the transport
* checksum to the pseudoheader checksum and sets the csum offload metadata
*/
static void rmnet_map_partial_csum(struct sk_buff *skb,
struct rmnet_map_coal_metadata *coal_meta)
{
unsigned char *data = skb->data;
__sum16 pseudo;
u16 pkt_len = skb->len - coal_meta->ip_len;
if (coal_meta->ip_proto == 4) {
struct iphdr *iph = (struct iphdr *)data;
pseudo = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
pkt_len, coal_meta->trans_proto,
0);
} else {
struct ipv6hdr *ip6h = (struct ipv6hdr *)data;
pseudo = ~csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
pkt_len, coal_meta->trans_proto, 0);
}
if (coal_meta->trans_proto == IPPROTO_TCP) {
struct tcphdr *tp = (struct tcphdr *)(data + coal_meta->ip_len);
tp->check = pseudo;
skb->csum_offset = offsetof(struct tcphdr, check);
} else {
struct udphdr *up = (struct udphdr *)(data + coal_meta->ip_len);
up->check = pseudo;
skb->csum_offset = offsetof(struct udphdr, check);
}
skb->ip_summed = CHECKSUM_PARTIAL;
skb->csum_start = skb->data + coal_meta->ip_len - skb->head;
}
static void
__rmnet_map_segment_coal_skb(struct sk_buff *coal_skb,
struct rmnet_map_coal_metadata *coal_meta,
struct sk_buff_head *list, u8 pkt_id,
bool csum_valid)
{
struct sk_buff *skbn;
struct rmnet_priv *priv = netdev_priv(coal_skb->dev);
__sum16 *check = NULL;
u32 alloc_len;
u32 dlen = coal_meta->data_len * coal_meta->pkt_count;
u32 hlen = coal_meta->ip_len + coal_meta->trans_len;
bool zero_csum = false;
/* We can avoid copying the data if the SKB we got from the lower-level
* drivers was nonlinear.
*/
if (skb_is_nonlinear(coal_skb))
alloc_len = hlen;
else
alloc_len = hlen + dlen;
skbn = alloc_skb(alloc_len, GFP_ATOMIC);
if (!skbn)
return;
skb_reserve(skbn, hlen);
rmnet_map_nonlinear_copy(coal_skb, coal_meta, skbn);
/* Push transport header and update necessary fields */
skb_push(skbn, coal_meta->trans_len);
memcpy(skbn->data, coal_meta->trans_header, coal_meta->trans_len);
skb_reset_transport_header(skbn);
if (coal_meta->trans_proto == IPPROTO_TCP) {
struct tcphdr *th = tcp_hdr(skbn);
th->seq = htonl(ntohl(th->seq) + coal_meta->data_offset);
check = &th->check;
/* Don't allow dangerous flags to be set in any segment but the
* last one.
*/
if (th->fin || th->psh) {
if (hlen + coal_meta->data_offset + dlen <
coal_skb->len) {
th->fin = 0;
th->psh = 0;
}
}
} else if (coal_meta->trans_proto == IPPROTO_UDP) {
struct udphdr *uh = udp_hdr(skbn);
uh->len = htons(skbn->len);
check = &uh->check;
if (coal_meta->ip_proto == 4 && !uh->check)
zero_csum = true;
}
/* Push IP header and update necessary fields */
skb_push(skbn, coal_meta->ip_len);
memcpy(skbn->data, coal_meta->ip_header, coal_meta->ip_len);
skb_reset_network_header(skbn);
if (coal_meta->ip_proto == 4) {
struct iphdr *iph = ip_hdr(skbn);
iph->id = htons(ntohs(iph->id) + coal_meta->pkt_id);
iph->tot_len = htons(skbn->len);
iph->check = 0;
iph->check = ip_fast_csum(iph, iph->ihl);
} else {
/* Payload length includes any extension headers */
ipv6_hdr(skbn)->payload_len = htons(skbn->len -
sizeof(struct ipv6hdr));
}
/* Handle checksum status */
if (likely(csum_valid) || zero_csum) {
/* Set the partial checksum information */
rmnet_map_partial_csum(skbn, coal_meta);
} else if (check) {
/* Unfortunately, we have to fake a bad checksum here, since
* the original bad value is lost by the hardware. The only
* reliable way to do it is to calculate the actual checksum
* and corrupt it.
*/
__wsum csum;
unsigned int offset = skb_transport_offset(skbn);
__sum16 pseudo;
/* Calculate pseudo header */
if (coal_meta->ip_proto == 4) {
struct iphdr *iph = ip_hdr(skbn);
pseudo = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
skbn->len -
coal_meta->ip_len,
coal_meta->trans_proto, 0);
} else {
struct ipv6hdr *ip6h = ipv6_hdr(skbn);
pseudo = ~csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
skbn->len - coal_meta->ip_len,
coal_meta->trans_proto, 0);
}
*check = pseudo;
csum = skb_checksum(skbn, offset, skbn->len - offset, 0);
/* Add 1 to corrupt. This cannot produce a final value of 0
* since csum_fold() can't return a value of 0xFFFF.
*/
*check = csum16_add(csum_fold(csum), htons(1));
skbn->ip_summed = CHECKSUM_NONE;
}
skbn->dev = coal_skb->dev;
priv->stats.coal.coal_reconstruct++;
/* Stamp GSO information if necessary */
if (coal_meta->pkt_count > 1)
rmnet_map_gso_stamp(skbn, coal_meta);
/* Propagate priority value */
skbn->priority = coal_skb->priority;
__skb_queue_tail(list, skbn);
/* Update meta information to move past the data we just segmented */
coal_meta->data_offset += dlen;
coal_meta->pkt_id = pkt_id + 1;
coal_meta->pkt_count = 0;
}
static bool rmnet_map_validate_csum(struct sk_buff *skb,
struct rmnet_map_coal_metadata *meta)
{
u8 *data = rmnet_map_data_ptr(skb);
unsigned int datagram_len;
__wsum csum;
__sum16 pseudo;
datagram_len = skb->len - meta->ip_len;
if (meta->ip_proto == 4) {
struct iphdr *iph = (struct iphdr *)data;
pseudo = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
datagram_len,
meta->trans_proto, 0);
} else {
struct ipv6hdr *ip6h = (struct ipv6hdr *)data;
pseudo = ~csum_ipv6_magic(&ip6h->saddr, &ip6h->daddr,
datagram_len, meta->trans_proto,
0);
}
csum = skb_checksum(skb, meta->ip_len, datagram_len,
csum_unfold(pseudo));
return !csum_fold(csum);
}
/* Converts the coalesced SKB into a list of SKBs.
* NLOs containing csum erros will not be included.
* The original coalesced SKB should be treated as invalid and
* must be freed by the caller
*/
static void rmnet_map_segment_coal_skb(struct sk_buff *coal_skb,
u64 nlo_err_mask,
struct sk_buff_head *list)
{
struct iphdr *iph;
struct rmnet_priv *priv = netdev_priv(coal_skb->dev);
struct rmnet_map_v5_coal_header *coal_hdr;
struct rmnet_map_coal_metadata coal_meta;
u16 pkt_len;
u8 pkt, total_pkt = 0;
u8 nlo;
bool gro = coal_skb->dev->features & NETIF_F_GRO_HW;
bool zero_csum = false;
memset(&coal_meta, 0, sizeof(coal_meta));
/* Pull off the headers we no longer need */
pskb_pull(coal_skb, sizeof(struct rmnet_map_header));
coal_hdr = (struct rmnet_map_v5_coal_header *)
rmnet_map_data_ptr(coal_skb);
pskb_pull(coal_skb, sizeof(*coal_hdr));
iph = (struct iphdr *)rmnet_map_data_ptr(coal_skb);
if (iph->version == 4) {
coal_meta.ip_proto = 4;
coal_meta.ip_len = iph->ihl * 4;
coal_meta.trans_proto = iph->protocol;
coal_meta.ip_header = iph;
/* Don't allow coalescing of any packets with IP options */
if (iph->ihl != 5)
gro = false;
} else if (iph->version == 6) {
struct ipv6hdr *ip6h = (struct ipv6hdr *)iph;
__be16 frag_off;
u8 protocol = ip6h->nexthdr;
coal_meta.ip_proto = 6;
coal_meta.ip_len = ipv6_skip_exthdr(coal_skb, sizeof(*ip6h),
&protocol, &frag_off);
coal_meta.trans_proto = protocol;
coal_meta.ip_header = ip6h;
/* If we run into a problem, or this has a fragment header
* (which should technically not be possible, if the HW
* works as intended...), bail.
*/
if (coal_meta.ip_len < 0 || frag_off) {
priv->stats.coal.coal_ip_invalid++;
return;
} else if (coal_meta.ip_len > sizeof(*ip6h)) {
/* Don't allow coalescing of any packets with IPv6
* extension headers.
*/
gro = false;
}
} else {
priv->stats.coal.coal_ip_invalid++;
return;
}
if (coal_meta.trans_proto == IPPROTO_TCP) {
struct tcphdr *th;
th = (struct tcphdr *)((u8 *)iph + coal_meta.ip_len);
coal_meta.trans_len = th->doff * 4;
coal_meta.trans_header = th;
} else if (coal_meta.trans_proto == IPPROTO_UDP) {
struct udphdr *uh;
uh = (struct udphdr *)((u8 *)iph + coal_meta.ip_len);
coal_meta.trans_len = sizeof(*uh);
coal_meta.trans_header = uh;
/* Check for v4 zero checksum */
if (coal_meta.ip_proto == 4 && !uh->check)
zero_csum = true;
} else {
priv->stats.coal.coal_trans_invalid++;
return;
}
if (rmnet_map_v5_csum_buggy(coal_hdr) && !zero_csum) {
rmnet_map_move_headers(coal_skb);
/* Mark as valid if it checks out */
if (rmnet_map_validate_csum(coal_skb, &coal_meta))
coal_skb->ip_summed = CHECKSUM_UNNECESSARY;
__skb_queue_tail(list, coal_skb);
return;
}
/* Fast-forward the case where we have 1 NLO (i.e. 1 packet length),
* no checksum errors, and are allowing GRO. We can just reuse this
* SKB unchanged.
*/
if (gro && coal_hdr->num_nlos == 1 && coal_hdr->csum_valid) {
rmnet_map_move_headers(coal_skb);
coal_skb->ip_summed = CHECKSUM_UNNECESSARY;
coal_meta.data_len = ntohs(coal_hdr->nl_pairs[0].pkt_len);
coal_meta.data_len -= coal_meta.ip_len + coal_meta.trans_len;
coal_meta.pkt_count = coal_hdr->nl_pairs[0].num_packets;
if (coal_meta.pkt_count > 1) {
rmnet_map_partial_csum(coal_skb, &coal_meta);
rmnet_map_gso_stamp(coal_skb, &coal_meta);
}
__skb_queue_tail(list, coal_skb);
return;
}
/* Segment the coalesced SKB into new packets */
for (nlo = 0; nlo < coal_hdr->num_nlos; nlo++) {
pkt_len = ntohs(coal_hdr->nl_pairs[nlo].pkt_len);
pkt_len -= coal_meta.ip_len + coal_meta.trans_len;
coal_meta.data_len = pkt_len;
for (pkt = 0; pkt < coal_hdr->nl_pairs[nlo].num_packets;
pkt++, total_pkt++, nlo_err_mask >>= 1) {
bool csum_err = nlo_err_mask & 1;
/* Segment the packet if we're not sending the larger
* packet up the stack.
*/
if (!gro) {
coal_meta.pkt_count = 1;
if (csum_err)
priv->stats.coal.coal_csum_err++;
__rmnet_map_segment_coal_skb(coal_skb,
&coal_meta, list,
total_pkt,
!csum_err);
continue;
}
if (csum_err) {
priv->stats.coal.coal_csum_err++;
/* Segment out the good data */
if (gro && coal_meta.pkt_count)
__rmnet_map_segment_coal_skb(coal_skb,
&coal_meta,
list,
total_pkt,
true);
/* Segment out the bad checksum */
coal_meta.pkt_count = 1;
__rmnet_map_segment_coal_skb(coal_skb,
&coal_meta, list,
total_pkt, false);
} else {
coal_meta.pkt_count++;
}
}
/* If we're switching NLOs, we need to send out everything from
* the previous one, if we haven't done so. NLOs only switch
* when the packet length changes.
*/
if (coal_meta.pkt_count)
__rmnet_map_segment_coal_skb(coal_skb, &coal_meta, list,
total_pkt, true);
}
}
/* Record reason for coalescing pipe closure */
static void rmnet_map_data_log_close_stats(struct rmnet_priv *priv, u8 type,
u8 code)
{
struct rmnet_coal_close_stats *stats = &priv->stats.coal.close;
switch (type) {
case RMNET_MAP_COAL_CLOSE_NON_COAL:
stats->non_coal++;
break;
case RMNET_MAP_COAL_CLOSE_IP_MISS:
stats->ip_miss++;
break;
case RMNET_MAP_COAL_CLOSE_TRANS_MISS:
stats->trans_miss++;
break;
case RMNET_MAP_COAL_CLOSE_HW:
switch (code) {
case RMNET_MAP_COAL_CLOSE_HW_NL:
stats->hw_nl++;
break;
case RMNET_MAP_COAL_CLOSE_HW_PKT:
stats->hw_pkt++;
break;
case RMNET_MAP_COAL_CLOSE_HW_BYTE:
stats->hw_byte++;
break;
case RMNET_MAP_COAL_CLOSE_HW_TIME:
stats->hw_time++;
break;
case RMNET_MAP_COAL_CLOSE_HW_EVICT:
stats->hw_evict++;
break;
default:
break;
}
break;
case RMNET_MAP_COAL_CLOSE_COAL:
stats->coal++;
break;
default:
break;
}
}
/* Check if the coalesced header has any incorrect values, in which case, the
* entire coalesced skb must be dropped. Then check if there are any
* checksum issues
*/
static int rmnet_map_data_check_coal_header(struct sk_buff *skb,
u64 *nlo_err_mask)
{
struct rmnet_map_v5_coal_header *coal_hdr;
unsigned char *data = rmnet_map_data_ptr(skb);
struct rmnet_priv *priv = netdev_priv(skb->dev);
u64 mask = 0;
int i;
u8 veid, pkts = 0;
coal_hdr = ((struct rmnet_map_v5_coal_header *)
(data + sizeof(struct rmnet_map_header)));
veid = coal_hdr->virtual_channel_id;
if (coal_hdr->num_nlos == 0 ||
coal_hdr->num_nlos > RMNET_MAP_V5_MAX_NLOS) {
priv->stats.coal.coal_hdr_nlo_err++;
return -EINVAL;
}
for (i = 0; i < RMNET_MAP_V5_MAX_NLOS; i++) {
/* If there is a checksum issue, we need to split
* up the skb. Rebuild the full csum error field
*/
u8 err = coal_hdr->nl_pairs[i].csum_error_bitmap;
u8 pkt = coal_hdr->nl_pairs[i].num_packets;
mask |= ((u64)err) << (8 * i);
/* Track total packets in frame */
pkts += pkt;
if (pkts > RMNET_MAP_V5_MAX_PACKETS) {
priv->stats.coal.coal_hdr_pkt_err++;
return -EINVAL;
}
}
/* Track number of packets we get inside of coalesced frames */
priv->stats.coal.coal_pkts += pkts;
/* Update ethtool stats */
rmnet_map_data_log_close_stats(priv,
coal_hdr->close_type,
coal_hdr->close_value);
if (veid < RMNET_MAX_VEID)
priv->stats.coal.coal_veid[veid]++;
*nlo_err_mask = mask;
return 0;
}
/* Process a QMAPv5 packet header */
int rmnet_map_process_next_hdr_packet(struct sk_buff *skb,
struct sk_buff_head *list,
u16 len)
{
struct rmnet_priv *priv = netdev_priv(skb->dev);
u64 nlo_err_mask;
int rc = 0;
switch (rmnet_map_get_next_hdr_type(skb)) {
case RMNET_MAP_HEADER_TYPE_COALESCING:
priv->stats.coal.coal_rx++;
rc = rmnet_map_data_check_coal_header(skb, &nlo_err_mask);
if (rc)
return rc;
rmnet_map_segment_coal_skb(skb, nlo_err_mask, list);
if (skb_peek(list) != skb)
consume_skb(skb);
break;
case RMNET_MAP_HEADER_TYPE_CSUM_OFFLOAD:
if (unlikely(!(skb->dev->features & NETIF_F_RXCSUM))) {
priv->stats.csum_sw++;
} else if (rmnet_map_get_csum_valid(skb)) {
priv->stats.csum_ok++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
priv->stats.csum_valid_unset++;
}
/* Pull unnecessary headers and move the rest to the linear
* section of the skb.
*/
pskb_pull(skb,
(sizeof(struct rmnet_map_header) +
sizeof(struct rmnet_map_v5_csum_header)));
rmnet_map_move_headers(skb);
/* Remove padding only for csum offload packets.
* Coalesced packets should never have padding.
*/
pskb_trim(skb, len);
__skb_queue_tail(list, skb);
break;
default:
rc = -EINVAL;
break;
}
return rc;
}
long rmnet_agg_time_limit __read_mostly = 1000000L;
long rmnet_agg_bypass_time __read_mostly = 10000000L;
int rmnet_map_tx_agg_skip(struct sk_buff *skb, int offset)
{
u8 *packet_start = skb->data + offset;
int is_icmp = 0;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *ip4h = (struct iphdr *)(packet_start);
if (ip4h->protocol == IPPROTO_ICMP)
is_icmp = 1;
} else if (skb->protocol == htons(ETH_P_IPV6)) {
struct ipv6hdr *ip6h = (struct ipv6hdr *)(packet_start);
if (ip6h->nexthdr == IPPROTO_ICMPV6) {
is_icmp = 1;
} else if (ip6h->nexthdr == NEXTHDR_FRAGMENT) {
struct frag_hdr *frag;
frag = (struct frag_hdr *)(packet_start
+ sizeof(struct ipv6hdr));
if (frag->nexthdr == IPPROTO_ICMPV6)
is_icmp = 1;
}
}
return is_icmp;
}
static void rmnet_map_flush_tx_packet_work(struct work_struct *work)
{
struct sk_buff *skb = NULL;
struct rmnet_aggregation_state *state;
state = container_of(work, struct rmnet_aggregation_state, agg_wq);
spin_lock_bh(&state->agg_lock);
if (likely(state->agg_state == -EINPROGRESS)) {
/* Buffer may have already been shipped out */
if (likely(state->agg_skb)) {
skb = state->agg_skb;
state->agg_skb = NULL;
state->agg_count = 0;
memset(&state->agg_time, 0, sizeof(state->agg_time));
}
state->agg_state = 0;
}
if (skb)
state->send_agg_skb(skb);
spin_unlock_bh(&state->agg_lock);
}
enum hrtimer_restart rmnet_map_flush_tx_packet_queue(struct hrtimer *t)
{
struct rmnet_aggregation_state *state;
state = container_of(t, struct rmnet_aggregation_state, hrtimer);
schedule_work(&state->agg_wq);
return HRTIMER_NORESTART;
}
static void rmnet_map_linearize_copy(struct sk_buff *dst, struct sk_buff *src)
{
unsigned int linear = src->len - src->data_len, target = src->len;
unsigned char *src_buf;
struct sk_buff *skb;
src_buf = src->data;
skb_put_data(dst, src_buf, linear);
target -= linear;
skb = src;
while (target) {
unsigned int i = 0, non_linear = 0;
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
non_linear = skb_frag_size(&skb_shinfo(skb)->frags[i]);
src_buf = skb_frag_address(&skb_shinfo(skb)->frags[i]);
skb_put_data(dst, src_buf, non_linear);
target -= non_linear;
}
if (skb_shinfo(skb)->frag_list) {
skb = skb_shinfo(skb)->frag_list;
continue;
}
if (skb->next)
skb = skb->next;
}
}
static void rmnet_free_agg_pages(struct rmnet_aggregation_state *state)
{
struct rmnet_agg_page *agg_page, *idx;
list_for_each_entry_safe(agg_page, idx, &state->agg_list, list) {
list_del(&agg_page->list);
rmnet_mem_put_page_entry(agg_page->page);
kfree(agg_page);
}
state->agg_head = NULL;
}
static struct page *rmnet_get_agg_pages(struct rmnet_aggregation_state *state)
{
struct rmnet_agg_page *agg_page;
struct page *page = NULL;
int i = 0;
int rc;
int pageorder = 2;
if (!(state->params.agg_features & RMNET_PAGE_RECYCLE))
goto alloc;
do {
agg_page = state->agg_head;
if (unlikely(!agg_page))
break;
if (page_ref_count(agg_page->page) == 1) {
page = agg_page->page;
page_ref_inc(agg_page->page);
state->stats->ul_agg_reuse++;
state->agg_head = list_next_entry(agg_page, list);
break;
}
state->agg_head = list_next_entry(agg_page, list);
i++;
} while (i <= 5);
alloc:
if (!page) {
page = rmnet_mem_get_pages_entry(GFP_ATOMIC, state->agg_size_order, &rc,
&pageorder, RMNET_CORE_ID);
state->stats->ul_agg_alloc++;
}
return page;
}
static struct rmnet_agg_page *
__rmnet_alloc_agg_pages(struct rmnet_aggregation_state *state)
{
struct rmnet_agg_page *agg_page;
struct page *page;
int rc;
int pageorder = 2;
agg_page = kzalloc(sizeof(*agg_page), GFP_ATOMIC);
if (!agg_page)
return NULL;
page = rmnet_mem_get_pages_entry(GFP_ATOMIC, state->agg_size_order, &rc,
&pageorder, RMNET_CORE_ID);
if (!page) {
kfree(agg_page);
return NULL;
}
agg_page->page = page;
INIT_LIST_HEAD(&agg_page->list);
return agg_page;
}
static void rmnet_alloc_agg_pages(struct rmnet_aggregation_state *state)
{
struct rmnet_agg_page *agg_page = NULL;
int i = 0;
for (i = 0; i < RMNET_PAGE_COUNT; i++) {
agg_page = __rmnet_alloc_agg_pages(state);
if (agg_page)
list_add_tail(&agg_page->list, &state->agg_list);
}
state->agg_head = list_first_entry_or_null(&state->agg_list,
struct rmnet_agg_page, list);
}
static struct sk_buff *
rmnet_map_build_skb(struct rmnet_aggregation_state *state)
{
struct sk_buff *skb;
unsigned int size;
struct page *page;
void *vaddr;
page = rmnet_get_agg_pages(state);
if (!page)
return NULL;
vaddr = page_address(page);
size = PAGE_SIZE << state->agg_size_order;
skb = build_skb(vaddr, size);
if (!skb) {
put_page(page);
return NULL;
}
return skb;
}
void rmnet_map_send_agg_skb(struct rmnet_aggregation_state *state)
{
struct sk_buff *agg_skb;
if (!state->agg_skb) {
spin_unlock_bh(&state->agg_lock);
return;
}
agg_skb = state->agg_skb;
/* Reset the aggregation state */
state->agg_skb = NULL;
state->agg_count = 0;
memset(&state->agg_time, 0, sizeof(state->agg_time));
state->agg_state = 0;
state->send_agg_skb(agg_skb);
spin_unlock_bh(&state->agg_lock);
hrtimer_cancel(&state->hrtimer);
}
void rmnet_map_tx_aggregate(struct sk_buff *skb, struct rmnet_port *port,
bool low_latency)
{
struct rmnet_aggregation_state *state;
struct timespec64 diff, last;
int size;
state = &port->agg_state[(low_latency) ? RMNET_LL_AGG_STATE :
RMNET_DEFAULT_AGG_STATE];
new_packet:
spin_lock_bh(&state->agg_lock);
memcpy(&last, &state->agg_last, sizeof(last));
ktime_get_real_ts64(&state->agg_last);
if ((port->data_format & RMNET_EGRESS_FORMAT_PRIORITY) &&
(RMNET_LLM(skb->priority) || RMNET_APS_LLB(skb->priority))) {
/* Send out any aggregated SKBs we have */
rmnet_map_send_agg_skb(state);
/* Send out the priority SKB. Not holding agg_lock anymore */
skb->protocol = htons(ETH_P_MAP);
state->send_agg_skb(skb);
return;
}
if (!state->agg_skb) {
/* Check to see if we should agg first. If the traffic is very
* sparse, don't aggregate. We will need to tune this later
*/
diff = timespec64_sub(state->agg_last, last);
size = state->params.agg_size - skb->len;
if (diff.tv_sec > 0 || diff.tv_nsec > rmnet_agg_bypass_time ||
size <= 0) {
skb->protocol = htons(ETH_P_MAP);
state->send_agg_skb(skb);
spin_unlock_bh(&state->agg_lock);
return;
}
state->agg_skb = rmnet_map_build_skb(state);
if (!state->agg_skb) {
state->agg_skb = NULL;
state->agg_count = 0;
memset(&state->agg_time, 0, sizeof(state->agg_time));
skb->protocol = htons(ETH_P_MAP);
state->send_agg_skb(skb);
spin_unlock_bh(&state->agg_lock);
return;
}
rmnet_map_linearize_copy(state->agg_skb, skb);
state->agg_skb->dev = skb->dev;
state->agg_skb->protocol = htons(ETH_P_MAP);
state->agg_count = 1;
ktime_get_real_ts64(&state->agg_time);
dev_kfree_skb_any(skb);
goto schedule;
}
diff = timespec64_sub(state->agg_last, state->agg_time);
size = skb_tailroom(state->agg_skb);
if (skb->len > size ||
state->agg_count >= state->params.agg_count ||
diff.tv_sec > 0 || diff.tv_nsec > rmnet_agg_time_limit) {
rmnet_map_send_agg_skb(state);
goto new_packet;
}
rmnet_map_linearize_copy(state->agg_skb, skb);
state->agg_count++;
dev_kfree_skb_any(skb);
schedule:
if (state->agg_state != -EINPROGRESS) {
state->agg_state = -EINPROGRESS;
hrtimer_start(&state->hrtimer,
ns_to_ktime(state->params.agg_time),
HRTIMER_MODE_REL);
}
spin_unlock_bh(&state->agg_lock);
}
void rmnet_map_update_ul_agg_config(struct rmnet_aggregation_state *state,
u16 size, u8 count, u8 features, u32 time)
{
spin_lock_bh(&state->agg_lock);
state->params.agg_count = count;
state->params.agg_time = time;
state->params.agg_size = size;
state->params.agg_features = features;
rmnet_free_agg_pages(state);
/* This effectively disables recycling in case the UL aggregation
* size is lesser than PAGE_SIZE.
*/
if (size < PAGE_SIZE)
goto done;
state->agg_size_order = get_order(size);
size = PAGE_SIZE << state->agg_size_order;
size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
state->params.agg_size = size;
if (state->params.agg_features == RMNET_PAGE_RECYCLE)
rmnet_alloc_agg_pages(state);
done:
spin_unlock_bh(&state->agg_lock);
}
void rmnet_map_tx_aggregate_init(struct rmnet_port *port)
{
unsigned int i;
for (i = RMNET_DEFAULT_AGG_STATE; i < RMNET_MAX_AGG_STATE; i++) {
struct rmnet_aggregation_state *state = &port->agg_state[i];
spin_lock_init(&state->agg_lock);
INIT_LIST_HEAD(&state->agg_list);
hrtimer_init(&state->hrtimer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
state->hrtimer.function = rmnet_map_flush_tx_packet_queue;
INIT_WORK(&state->agg_wq, rmnet_map_flush_tx_packet_work);
state->stats = &port->stats.agg;
/* Since PAGE_SIZE - 1 is specified here, no pages are
* pre-allocated. This is done to reduce memory usage in cases
* where UL aggregation is disabled.
* Additionally, the features flag is also set to 0.
*/
rmnet_map_update_ul_agg_config(state, PAGE_SIZE - 1, 20, 0,
3000000);
}
/* Set delivery functions for each aggregation state */
port->agg_state[RMNET_DEFAULT_AGG_STATE].send_agg_skb = dev_queue_xmit;
port->agg_state[RMNET_LL_AGG_STATE].send_agg_skb = rmnet_ll_send_skb;
}
void rmnet_map_tx_aggregate_exit(struct rmnet_port *port)
{
unsigned int i;
for (i = RMNET_DEFAULT_AGG_STATE; i < RMNET_MAX_AGG_STATE; i++) {
struct rmnet_aggregation_state *state = &port->agg_state[i];
hrtimer_cancel(&state->hrtimer);
cancel_work_sync(&state->agg_wq);
}
for (i = RMNET_DEFAULT_AGG_STATE; i < RMNET_MAX_AGG_STATE; i++) {
struct rmnet_aggregation_state *state = &port->agg_state[i];
spin_lock_bh(&state->agg_lock);
if (state->agg_state == -EINPROGRESS) {
if (state->agg_skb) {
kfree_skb(state->agg_skb);
state->agg_skb = NULL;
state->agg_count = 0;
memset(&state->agg_time, 0,
sizeof(state->agg_time));
}
state->agg_state = 0;
}
rmnet_free_agg_pages(state);
spin_unlock_bh(&state->agg_lock);
}
}
void rmnet_map_tx_qmap_cmd(struct sk_buff *qmap_skb, u8 ch, bool flush)
{
struct rmnet_aggregation_state *state;
struct rmnet_port *port;
struct sk_buff *agg_skb;
if (unlikely(ch >= RMNET_MAX_AGG_STATE))
ch = RMNET_DEFAULT_AGG_STATE;
port = rmnet_get_port(qmap_skb->dev);
if (!port) {
kfree_skb(qmap_skb);
return;
}
state = &port->agg_state[ch];
if (!flush)
goto send;
if (!(port->data_format & RMNET_EGRESS_FORMAT_AGGREGATION))
goto send;
spin_lock_bh(&state->agg_lock);
if (state->agg_skb) {
agg_skb = state->agg_skb;
state->agg_skb = NULL;
state->agg_count = 0;
memset(&state->agg_time, 0, sizeof(state->agg_time));
state->agg_state = 0;
state->send_agg_skb(agg_skb);
spin_unlock_bh(&state->agg_lock);
hrtimer_cancel(&state->hrtimer);
} else {
spin_unlock_bh(&state->agg_lock);
}
send:
state->send_agg_skb(qmap_skb);
}
EXPORT_SYMBOL(rmnet_map_tx_qmap_cmd);
int rmnet_map_add_tso_header(struct sk_buff *skb, struct rmnet_port *port,
struct net_device *orig_dev)
{
struct rmnet_priv *priv = netdev_priv(orig_dev);
struct rmnet_map_v5_tso_header *ul_header;
if (!(orig_dev->features & (NETIF_F_ALL_TSO | NETIF_F_GSO_UDP_L4))) {
priv->stats.tso_arriv_errs++;
return -EINVAL;
}
ul_header = (struct rmnet_map_v5_tso_header *)
skb_push(skb, sizeof(*ul_header));
memset(ul_header, 0, sizeof(*ul_header));
ul_header->header_type = RMNET_MAP_HEADER_TYPE_TSO;
if (port->data_format & RMNET_EGRESS_FORMAT_PRIORITY)
rmnet_map_v5_check_priority(skb, orig_dev,
(struct rmnet_map_v5_csum_header *)ul_header,
true);
ul_header->segment_size = htons(skb_shinfo(skb)->gso_size);
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID)
ul_header->ip_id_cfg = 1;
skb->ip_summed = CHECKSUM_NONE;
skb_shinfo(skb)->gso_size = 0;
skb_shinfo(skb)->gso_segs = 0;
skb_shinfo(skb)->gso_type = 0;
priv->stats.tso_pkts++;
return 0;
}