ce_main.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928
  1. /*
  2. * Copyright (c) 2013-2016 The Linux Foundation. All rights reserved.
  3. *
  4. * Previously licensed under the ISC license by Qualcomm Atheros, Inc.
  5. *
  6. *
  7. * Permission to use, copy, modify, and/or distribute this software for
  8. * any purpose with or without fee is hereby granted, provided that the
  9. * above copyright notice and this permission notice appear in all
  10. * copies.
  11. *
  12. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  13. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  14. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  15. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  16. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  17. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  18. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  19. * PERFORMANCE OF THIS SOFTWARE.
  20. */
  21. /*
  22. * This file was originally distributed by Qualcomm Atheros, Inc.
  23. * under proprietary terms before Copyright ownership was assigned
  24. * to the Linux Foundation.
  25. */
  26. #include "targcfg.h"
  27. #include "qdf_lock.h"
  28. #include "qdf_status.h"
  29. #include "qdf_status.h"
  30. #include <qdf_atomic.h> /* qdf_atomic_read */
  31. #include <targaddrs.h>
  32. #include "hif_io32.h"
  33. #include <hif.h>
  34. #include "regtable.h"
  35. #define ATH_MODULE_NAME hif
  36. #include <a_debug.h>
  37. #include "hif_main.h"
  38. #include "ce_api.h"
  39. #include "qdf_trace.h"
  40. #include "pld_common.h"
  41. #include "hif_debug.h"
  42. #include "ce_internal.h"
  43. #include "ce_reg.h"
  44. #include "ce_assignment.h"
  45. #include "ce_tasklet.h"
  46. #ifndef CONFIG_WIN
  47. #include "qwlan_version.h"
  48. #endif
  49. #define CE_POLL_TIMEOUT 10 /* ms */
  50. #define AGC_DUMP 1
  51. #define CHANINFO_DUMP 2
  52. #define BB_WATCHDOG_DUMP 3
  53. #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
  54. #define PCIE_ACCESS_DUMP 4
  55. #endif
  56. #include "mp_dev.h"
  57. /* Forward references */
  58. static int hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info);
  59. /*
  60. * Fix EV118783, poll to check whether a BMI response comes
  61. * other than waiting for the interruption which may be lost.
  62. */
  63. /* #define BMI_RSP_POLLING */
  64. #define BMI_RSP_TO_MILLISEC 1000
  65. #ifdef CONFIG_BYPASS_QMI
  66. #define BYPASS_QMI 1
  67. #else
  68. #define BYPASS_QMI 0
  69. #endif
  70. #ifdef CONFIG_WIN
  71. #define WDI_IPA_SERVICE_GROUP 5
  72. #define WDI_IPA_TX_SVC MAKE_SERVICE_ID(WDI_IPA_SERVICE_GROUP, 0)
  73. #define HTT_DATA2_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 1)
  74. #define HTT_DATA3_MSG_SVC MAKE_SERVICE_ID(HTT_SERVICE_GROUP, 2)
  75. #endif
  76. static int hif_post_recv_buffers(struct hif_softc *scn);
  77. static void hif_config_rri_on_ddr(struct hif_softc *scn);
  78. /**
  79. * hif_target_access_log_dump() - dump access log
  80. *
  81. * dump access log
  82. *
  83. * Return: n/a
  84. */
  85. #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
  86. static void hif_target_access_log_dump(void)
  87. {
  88. hif_target_dump_access_log();
  89. }
  90. #endif
  91. void hif_trigger_dump(struct hif_opaque_softc *hif_ctx,
  92. uint8_t cmd_id, bool start)
  93. {
  94. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  95. switch (cmd_id) {
  96. case AGC_DUMP:
  97. if (start)
  98. priv_start_agc(scn);
  99. else
  100. priv_dump_agc(scn);
  101. break;
  102. case CHANINFO_DUMP:
  103. if (start)
  104. priv_start_cap_chaninfo(scn);
  105. else
  106. priv_dump_chaninfo(scn);
  107. break;
  108. case BB_WATCHDOG_DUMP:
  109. priv_dump_bbwatchdog(scn);
  110. break;
  111. #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
  112. case PCIE_ACCESS_DUMP:
  113. hif_target_access_log_dump();
  114. break;
  115. #endif
  116. default:
  117. HIF_ERROR("%s: Invalid htc dump command", __func__);
  118. break;
  119. }
  120. }
  121. static void ce_poll_timeout(void *arg)
  122. {
  123. struct CE_state *CE_state = (struct CE_state *)arg;
  124. if (CE_state->timer_inited) {
  125. ce_per_engine_service(CE_state->scn, CE_state->id);
  126. qdf_timer_mod(&CE_state->poll_timer, CE_POLL_TIMEOUT);
  127. }
  128. }
  129. static unsigned int roundup_pwr2(unsigned int n)
  130. {
  131. int i;
  132. unsigned int test_pwr2;
  133. if (!(n & (n - 1)))
  134. return n; /* already a power of 2 */
  135. test_pwr2 = 4;
  136. for (i = 0; i < 29; i++) {
  137. if (test_pwr2 > n)
  138. return test_pwr2;
  139. test_pwr2 = test_pwr2 << 1;
  140. }
  141. QDF_ASSERT(0); /* n too large */
  142. return 0;
  143. }
  144. #define ADRASTEA_SRC_WR_INDEX_OFFSET 0x3C
  145. #define ADRASTEA_DST_WR_INDEX_OFFSET 0x40
  146. static struct shadow_reg_cfg target_shadow_reg_cfg_map[] = {
  147. { 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
  148. { 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
  149. { 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
  150. { 5, ADRASTEA_SRC_WR_INDEX_OFFSET},
  151. { 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
  152. { 1, ADRASTEA_DST_WR_INDEX_OFFSET},
  153. { 2, ADRASTEA_DST_WR_INDEX_OFFSET},
  154. { 7, ADRASTEA_DST_WR_INDEX_OFFSET},
  155. { 8, ADRASTEA_DST_WR_INDEX_OFFSET},
  156. #ifdef QCA_WIFI_3_0_ADRASTEA
  157. { 9, ADRASTEA_DST_WR_INDEX_OFFSET},
  158. { 10, ADRASTEA_DST_WR_INDEX_OFFSET},
  159. { 11, ADRASTEA_DST_WR_INDEX_OFFSET},
  160. #endif
  161. };
  162. static struct shadow_reg_cfg target_shadow_reg_cfg_epping[] = {
  163. { 0, ADRASTEA_SRC_WR_INDEX_OFFSET},
  164. { 3, ADRASTEA_SRC_WR_INDEX_OFFSET},
  165. { 4, ADRASTEA_SRC_WR_INDEX_OFFSET},
  166. { 7, ADRASTEA_SRC_WR_INDEX_OFFSET},
  167. { 1, ADRASTEA_DST_WR_INDEX_OFFSET},
  168. { 2, ADRASTEA_DST_WR_INDEX_OFFSET},
  169. { 5, ADRASTEA_DST_WR_INDEX_OFFSET},
  170. { 7, ADRASTEA_DST_WR_INDEX_OFFSET},
  171. { 8, ADRASTEA_DST_WR_INDEX_OFFSET},
  172. };
  173. /* CE_PCI TABLE */
  174. /*
  175. * NOTE: the table below is out of date, though still a useful reference.
  176. * Refer to target_service_to_ce_map and hif_map_service_to_pipe for the actual
  177. * mapping of HTC services to HIF pipes.
  178. */
  179. /*
  180. * This authoritative table defines Copy Engine configuration and the mapping
  181. * of services/endpoints to CEs. A subset of this information is passed to
  182. * the Target during startup as a prerequisite to entering BMI phase.
  183. * See:
  184. * target_service_to_ce_map - Target-side mapping
  185. * hif_map_service_to_pipe - Host-side mapping
  186. * target_ce_config - Target-side configuration
  187. * host_ce_config - Host-side configuration
  188. ============================================================================
  189. Purpose | Service / Endpoint | CE | Dire | Xfer | Xfer
  190. | | | ctio | Size | Frequency
  191. | | | n | |
  192. ============================================================================
  193. tx | HTT_DATA (downlink) | CE 0 | h->t | medium - | very frequent
  194. descriptor | | | | O(100B) | and regular
  195. download | | | | |
  196. ----------------------------------------------------------------------------
  197. rx | HTT_DATA (uplink) | CE 1 | t->h | small - | frequent and
  198. indication | | | | O(10B) | regular
  199. upload | | | | |
  200. ----------------------------------------------------------------------------
  201. MSDU | DATA_BK (uplink) | CE 2 | t->h | large - | rare
  202. upload | | | | O(1000B) | (frequent
  203. e.g. noise | | | | | during IP1.0
  204. packets | | | | | testing)
  205. ----------------------------------------------------------------------------
  206. MSDU | DATA_BK (downlink) | CE 3 | h->t | large - | very rare
  207. download | | | | O(1000B) | (frequent
  208. e.g. | | | | | during IP1.0
  209. misdirecte | | | | | testing)
  210. d EAPOL | | | | |
  211. packets | | | | |
  212. ----------------------------------------------------------------------------
  213. n/a | DATA_BE, DATA_VI | CE 2 | t->h | | never(?)
  214. | DATA_VO (uplink) | | | |
  215. ----------------------------------------------------------------------------
  216. n/a | DATA_BE, DATA_VI | CE 3 | h->t | | never(?)
  217. | DATA_VO (downlink) | | | |
  218. ----------------------------------------------------------------------------
  219. WMI events | WMI_CONTROL (uplink) | CE 4 | t->h | medium - | infrequent
  220. | | | | O(100B) |
  221. ----------------------------------------------------------------------------
  222. WMI | WMI_CONTROL | CE 5 | h->t | medium - | infrequent
  223. messages | (downlink) | | | O(100B) |
  224. | | | | |
  225. ----------------------------------------------------------------------------
  226. n/a | HTC_CTRL_RSVD, | CE 1 | t->h | | never(?)
  227. | HTC_RAW_STREAMS | | | |
  228. | (uplink) | | | |
  229. ----------------------------------------------------------------------------
  230. n/a | HTC_CTRL_RSVD, | CE 0 | h->t | | never(?)
  231. | HTC_RAW_STREAMS | | | |
  232. | (downlink) | | | |
  233. ----------------------------------------------------------------------------
  234. diag | none (raw CE) | CE 7 | t<>h | 4 | Diag Window
  235. | | | | | infrequent
  236. ============================================================================
  237. */
  238. /*
  239. * Map from service/endpoint to Copy Engine.
  240. * This table is derived from the CE_PCI TABLE, above.
  241. * It is passed to the Target at startup for use by firmware.
  242. */
  243. static struct service_to_pipe target_service_to_ce_map_wlan[] = {
  244. {
  245. WMI_DATA_VO_SVC,
  246. PIPEDIR_OUT, /* out = UL = host -> target */
  247. 3,
  248. },
  249. {
  250. WMI_DATA_VO_SVC,
  251. PIPEDIR_IN, /* in = DL = target -> host */
  252. 2,
  253. },
  254. {
  255. WMI_DATA_BK_SVC,
  256. PIPEDIR_OUT, /* out = UL = host -> target */
  257. 3,
  258. },
  259. {
  260. WMI_DATA_BK_SVC,
  261. PIPEDIR_IN, /* in = DL = target -> host */
  262. 2,
  263. },
  264. {
  265. WMI_DATA_BE_SVC,
  266. PIPEDIR_OUT, /* out = UL = host -> target */
  267. 3,
  268. },
  269. {
  270. WMI_DATA_BE_SVC,
  271. PIPEDIR_IN, /* in = DL = target -> host */
  272. 2,
  273. },
  274. {
  275. WMI_DATA_VI_SVC,
  276. PIPEDIR_OUT, /* out = UL = host -> target */
  277. 3,
  278. },
  279. {
  280. WMI_DATA_VI_SVC,
  281. PIPEDIR_IN, /* in = DL = target -> host */
  282. 2,
  283. },
  284. {
  285. WMI_CONTROL_SVC,
  286. PIPEDIR_OUT, /* out = UL = host -> target */
  287. 3,
  288. },
  289. {
  290. WMI_CONTROL_SVC,
  291. PIPEDIR_IN, /* in = DL = target -> host */
  292. 2,
  293. },
  294. {
  295. HTC_CTRL_RSVD_SVC,
  296. PIPEDIR_OUT, /* out = UL = host -> target */
  297. 0, /* could be moved to 3 (share with WMI) */
  298. },
  299. {
  300. HTC_CTRL_RSVD_SVC,
  301. PIPEDIR_IN, /* in = DL = target -> host */
  302. 2,
  303. },
  304. {
  305. HTC_RAW_STREAMS_SVC, /* not currently used */
  306. PIPEDIR_OUT, /* out = UL = host -> target */
  307. 0,
  308. },
  309. {
  310. HTC_RAW_STREAMS_SVC, /* not currently used */
  311. PIPEDIR_IN, /* in = DL = target -> host */
  312. 2,
  313. },
  314. {
  315. HTT_DATA_MSG_SVC,
  316. PIPEDIR_OUT, /* out = UL = host -> target */
  317. 4,
  318. },
  319. {
  320. HTT_DATA_MSG_SVC,
  321. PIPEDIR_IN, /* in = DL = target -> host */
  322. 1,
  323. },
  324. {
  325. WDI_IPA_TX_SVC,
  326. PIPEDIR_OUT, /* in = DL = target -> host */
  327. 5,
  328. },
  329. #if defined(QCA_WIFI_3_0_ADRASTEA)
  330. {
  331. HTT_DATA2_MSG_SVC,
  332. PIPEDIR_IN, /* in = DL = target -> host */
  333. 9,
  334. },
  335. {
  336. HTT_DATA3_MSG_SVC,
  337. PIPEDIR_IN, /* in = DL = target -> host */
  338. 10,
  339. },
  340. {
  341. PACKET_LOG_SVC,
  342. PIPEDIR_IN, /* in = DL = target -> host */
  343. 11,
  344. },
  345. #endif
  346. /* (Additions here) */
  347. { /* Must be last */
  348. 0,
  349. 0,
  350. 0,
  351. },
  352. };
  353. static struct service_to_pipe target_service_to_ce_map_ar900b[] = {
  354. {
  355. WMI_DATA_VO_SVC,
  356. PIPEDIR_OUT, /* out = UL = host -> target */
  357. 3,
  358. },
  359. {
  360. WMI_DATA_VO_SVC,
  361. PIPEDIR_IN, /* in = DL = target -> host */
  362. 2,
  363. },
  364. {
  365. WMI_DATA_BK_SVC,
  366. PIPEDIR_OUT, /* out = UL = host -> target */
  367. 3,
  368. },
  369. {
  370. WMI_DATA_BK_SVC,
  371. PIPEDIR_IN, /* in = DL = target -> host */
  372. 2,
  373. },
  374. {
  375. WMI_DATA_BE_SVC,
  376. PIPEDIR_OUT, /* out = UL = host -> target */
  377. 3,
  378. },
  379. {
  380. WMI_DATA_BE_SVC,
  381. PIPEDIR_IN, /* in = DL = target -> host */
  382. 2,
  383. },
  384. {
  385. WMI_DATA_VI_SVC,
  386. PIPEDIR_OUT, /* out = UL = host -> target */
  387. 3,
  388. },
  389. {
  390. WMI_DATA_VI_SVC,
  391. PIPEDIR_IN, /* in = DL = target -> host */
  392. 2,
  393. },
  394. {
  395. WMI_CONTROL_SVC,
  396. PIPEDIR_OUT, /* out = UL = host -> target */
  397. 3,
  398. },
  399. {
  400. WMI_CONTROL_SVC,
  401. PIPEDIR_IN, /* in = DL = target -> host */
  402. 2,
  403. },
  404. {
  405. HTC_CTRL_RSVD_SVC,
  406. PIPEDIR_OUT, /* out = UL = host -> target */
  407. 0, /* could be moved to 3 (share with WMI) */
  408. },
  409. {
  410. HTC_CTRL_RSVD_SVC,
  411. PIPEDIR_IN, /* in = DL = target -> host */
  412. 1,
  413. },
  414. {
  415. HTC_RAW_STREAMS_SVC, /* not currently used */
  416. PIPEDIR_OUT, /* out = UL = host -> target */
  417. 0,
  418. },
  419. {
  420. HTC_RAW_STREAMS_SVC, /* not currently used */
  421. PIPEDIR_IN, /* in = DL = target -> host */
  422. 1,
  423. },
  424. {
  425. HTT_DATA_MSG_SVC,
  426. PIPEDIR_OUT, /* out = UL = host -> target */
  427. 4,
  428. },
  429. #if WLAN_FEATURE_FASTPATH
  430. {
  431. HTT_DATA_MSG_SVC,
  432. PIPEDIR_IN, /* in = DL = target -> host */
  433. 5,
  434. },
  435. #else /* WLAN_FEATURE_FASTPATH */
  436. {
  437. HTT_DATA_MSG_SVC,
  438. PIPEDIR_IN, /* in = DL = target -> host */
  439. 1,
  440. },
  441. #endif /* WLAN_FEATURE_FASTPATH */
  442. /* (Additions here) */
  443. { /* Must be last */
  444. 0,
  445. 0,
  446. 0,
  447. },
  448. };
  449. static struct service_to_pipe *target_service_to_ce_map =
  450. target_service_to_ce_map_wlan;
  451. static int target_service_to_ce_map_sz = sizeof(target_service_to_ce_map_wlan);
  452. static struct shadow_reg_cfg *target_shadow_reg_cfg = target_shadow_reg_cfg_map;
  453. static int shadow_cfg_sz = sizeof(target_shadow_reg_cfg_map);
  454. static struct service_to_pipe target_service_to_ce_map_wlan_epping[] = {
  455. {WMI_DATA_VO_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
  456. {WMI_DATA_VO_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
  457. {WMI_DATA_BK_SVC, PIPEDIR_OUT, 4,}, /* out = UL = host -> target */
  458. {WMI_DATA_BK_SVC, PIPEDIR_IN, 1,}, /* in = DL = target -> host */
  459. {WMI_DATA_BE_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
  460. {WMI_DATA_BE_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
  461. {WMI_DATA_VI_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
  462. {WMI_DATA_VI_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
  463. {WMI_CONTROL_SVC, PIPEDIR_OUT, 3,}, /* out = UL = host -> target */
  464. {WMI_CONTROL_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
  465. {HTC_CTRL_RSVD_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
  466. {HTC_CTRL_RSVD_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
  467. {HTC_RAW_STREAMS_SVC, PIPEDIR_OUT, 0,}, /* out = UL = host -> target */
  468. {HTC_RAW_STREAMS_SVC, PIPEDIR_IN, 2,}, /* in = DL = target -> host */
  469. {HTT_DATA_MSG_SVC, PIPEDIR_OUT, 4,}, /* out = UL = host -> target */
  470. {HTT_DATA_MSG_SVC, PIPEDIR_IN, 1,}, /* in = DL = target -> host */
  471. {0, 0, 0,}, /* Must be last */
  472. };
  473. /**
  474. * ce_mark_datapath() - marks the ce_state->htt_rx_data accordingly
  475. * @ce_state : pointer to the state context of the CE
  476. *
  477. * Description:
  478. * Sets htt_rx_data attribute of the state structure if the
  479. * CE serves one of the HTT DATA services.
  480. *
  481. * Return:
  482. * false (attribute set to false)
  483. * true (attribute set to true);
  484. */
  485. bool ce_mark_datapath(struct CE_state *ce_state)
  486. {
  487. struct service_to_pipe *svc_map;
  488. size_t map_sz;
  489. int i;
  490. bool rc = false;
  491. struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(ce_state->scn);
  492. struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
  493. if (ce_state != NULL) {
  494. if (QDF_IS_EPPING_ENABLED(hif_get_conparam(ce_state->scn))) {
  495. svc_map = target_service_to_ce_map_wlan_epping;
  496. map_sz = sizeof(target_service_to_ce_map_wlan_epping) /
  497. sizeof(struct service_to_pipe);
  498. } else {
  499. switch (tgt_info->target_type) {
  500. default:
  501. svc_map = target_service_to_ce_map_wlan;
  502. map_sz =
  503. sizeof(target_service_to_ce_map_wlan) /
  504. sizeof(struct service_to_pipe);
  505. break;
  506. case TARGET_TYPE_AR900B:
  507. case TARGET_TYPE_QCA9984:
  508. case TARGET_TYPE_IPQ4019:
  509. case TARGET_TYPE_QCA9888:
  510. case TARGET_TYPE_AR9888:
  511. case TARGET_TYPE_AR9888V2:
  512. svc_map = target_service_to_ce_map_ar900b;
  513. map_sz =
  514. sizeof(target_service_to_ce_map_ar900b)
  515. / sizeof(struct service_to_pipe);
  516. break;
  517. }
  518. }
  519. for (i = 0; i < map_sz; i++) {
  520. if ((svc_map[i].pipenum == ce_state->id) &&
  521. ((svc_map[i].service_id == HTT_DATA_MSG_SVC) ||
  522. (svc_map[i].service_id == HTT_DATA2_MSG_SVC) ||
  523. (svc_map[i].service_id == HTT_DATA3_MSG_SVC))) {
  524. /* HTT CEs are unidirectional */
  525. if (svc_map[i].pipedir == PIPEDIR_IN)
  526. ce_state->htt_rx_data = true;
  527. else
  528. ce_state->htt_tx_data = true;
  529. rc = true;
  530. }
  531. }
  532. }
  533. return rc;
  534. }
  535. /**
  536. * ce_ring_test_initial_indexes() - tests the initial ce ring indexes
  537. * @ce_id: ce in question
  538. * @ring: ring state being examined
  539. * @type: "src_ring" or "dest_ring" string for identifying the ring
  540. *
  541. * Warns on non-zero index values.
  542. * Causes a kernel panic if the ring is not empty durring initialization.
  543. */
  544. static void ce_ring_test_initial_indexes(int ce_id, struct CE_ring_state *ring,
  545. char *type)
  546. {
  547. if (ring->write_index != 0 || ring->sw_index != 0)
  548. HIF_ERROR("ce %d, %s, initial sw_index = %d, initial write_index =%d",
  549. ce_id, type, ring->sw_index, ring->write_index);
  550. if (ring->write_index != ring->sw_index)
  551. QDF_BUG(0);
  552. }
  553. /*
  554. * Initialize a Copy Engine based on caller-supplied attributes.
  555. * This may be called once to initialize both source and destination
  556. * rings or it may be called twice for separate source and destination
  557. * initialization. It may be that only one side or the other is
  558. * initialized by software/firmware.
  559. *
  560. * This should be called durring the initialization sequence before
  561. * interupts are enabled, so we don't have to worry about thread safety.
  562. */
  563. struct CE_handle *ce_init(struct hif_softc *scn,
  564. unsigned int CE_id, struct CE_attr *attr)
  565. {
  566. struct CE_state *CE_state;
  567. uint32_t ctrl_addr;
  568. unsigned int nentries;
  569. qdf_dma_addr_t base_addr;
  570. bool malloc_CE_state = false;
  571. bool malloc_src_ring = false;
  572. QDF_ASSERT(CE_id < scn->ce_count);
  573. ctrl_addr = CE_BASE_ADDRESS(CE_id);
  574. CE_state = scn->ce_id_to_state[CE_id];
  575. if (!CE_state) {
  576. CE_state =
  577. (struct CE_state *)qdf_mem_malloc(sizeof(*CE_state));
  578. if (!CE_state) {
  579. HIF_ERROR("%s: CE_state has no mem", __func__);
  580. return NULL;
  581. }
  582. malloc_CE_state = true;
  583. qdf_mem_zero(CE_state, sizeof(*CE_state));
  584. scn->ce_id_to_state[CE_id] = CE_state;
  585. qdf_spinlock_create(&CE_state->ce_index_lock);
  586. CE_state->id = CE_id;
  587. CE_state->ctrl_addr = ctrl_addr;
  588. CE_state->state = CE_RUNNING;
  589. CE_state->attr_flags = attr->flags;
  590. }
  591. CE_state->scn = scn;
  592. qdf_atomic_init(&CE_state->rx_pending);
  593. if (attr == NULL) {
  594. /* Already initialized; caller wants the handle */
  595. return (struct CE_handle *)CE_state;
  596. }
  597. if (CE_state->src_sz_max)
  598. QDF_ASSERT(CE_state->src_sz_max == attr->src_sz_max);
  599. else
  600. CE_state->src_sz_max = attr->src_sz_max;
  601. ce_init_ce_desc_event_log(CE_id,
  602. attr->src_nentries + attr->dest_nentries);
  603. /* source ring setup */
  604. nentries = attr->src_nentries;
  605. if (nentries) {
  606. struct CE_ring_state *src_ring;
  607. unsigned CE_nbytes;
  608. char *ptr;
  609. uint64_t dma_addr;
  610. nentries = roundup_pwr2(nentries);
  611. if (CE_state->src_ring) {
  612. QDF_ASSERT(CE_state->src_ring->nentries == nentries);
  613. } else {
  614. CE_nbytes = sizeof(struct CE_ring_state)
  615. + (nentries * sizeof(void *));
  616. ptr = qdf_mem_malloc(CE_nbytes);
  617. if (!ptr) {
  618. /* cannot allocate src ring. If the
  619. * CE_state is allocated locally free
  620. * CE_State and return error.
  621. */
  622. HIF_ERROR("%s: src ring has no mem", __func__);
  623. if (malloc_CE_state) {
  624. /* allocated CE_state locally */
  625. scn->ce_id_to_state[CE_id] = NULL;
  626. qdf_mem_free(CE_state);
  627. malloc_CE_state = false;
  628. }
  629. return NULL;
  630. } else {
  631. /* we can allocate src ring.
  632. * Mark that the src ring is
  633. * allocated locally
  634. */
  635. malloc_src_ring = true;
  636. }
  637. qdf_mem_zero(ptr, CE_nbytes);
  638. src_ring = CE_state->src_ring =
  639. (struct CE_ring_state *)ptr;
  640. ptr += sizeof(struct CE_ring_state);
  641. src_ring->nentries = nentries;
  642. src_ring->nentries_mask = nentries - 1;
  643. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  644. goto error_target_access;
  645. src_ring->hw_index =
  646. CE_SRC_RING_READ_IDX_GET_FROM_REGISTER(scn,
  647. ctrl_addr);
  648. src_ring->sw_index = src_ring->hw_index;
  649. src_ring->write_index =
  650. CE_SRC_RING_WRITE_IDX_GET_FROM_REGISTER(scn,
  651. ctrl_addr);
  652. ce_ring_test_initial_indexes(CE_id, src_ring,
  653. "src_ring");
  654. if (Q_TARGET_ACCESS_END(scn) < 0)
  655. goto error_target_access;
  656. src_ring->low_water_mark_nentries = 0;
  657. src_ring->high_water_mark_nentries = nentries;
  658. src_ring->per_transfer_context = (void **)ptr;
  659. /* Legacy platforms that do not support cache
  660. * coherent DMA are unsupported
  661. */
  662. src_ring->base_addr_owner_space_unaligned =
  663. qdf_mem_alloc_consistent(scn->qdf_dev,
  664. scn->qdf_dev->dev,
  665. (nentries *
  666. sizeof(struct CE_src_desc) +
  667. CE_DESC_RING_ALIGN),
  668. &base_addr);
  669. if (src_ring->base_addr_owner_space_unaligned
  670. == NULL) {
  671. HIF_ERROR("%s: src ring has no DMA mem",
  672. __func__);
  673. goto error_no_dma_mem;
  674. }
  675. src_ring->base_addr_CE_space_unaligned = base_addr;
  676. if (src_ring->
  677. base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN
  678. - 1)) {
  679. src_ring->base_addr_CE_space =
  680. (src_ring->base_addr_CE_space_unaligned
  681. + CE_DESC_RING_ALIGN -
  682. 1) & ~(CE_DESC_RING_ALIGN - 1);
  683. src_ring->base_addr_owner_space =
  684. (void
  685. *)(((size_t) src_ring->
  686. base_addr_owner_space_unaligned +
  687. CE_DESC_RING_ALIGN -
  688. 1) & ~(CE_DESC_RING_ALIGN - 1));
  689. } else {
  690. src_ring->base_addr_CE_space =
  691. src_ring->base_addr_CE_space_unaligned;
  692. src_ring->base_addr_owner_space =
  693. src_ring->
  694. base_addr_owner_space_unaligned;
  695. }
  696. /*
  697. * Also allocate a shadow src ring in
  698. * regular mem to use for faster access.
  699. */
  700. src_ring->shadow_base_unaligned =
  701. qdf_mem_malloc(nentries *
  702. sizeof(struct CE_src_desc) +
  703. CE_DESC_RING_ALIGN);
  704. if (src_ring->shadow_base_unaligned == NULL) {
  705. HIF_ERROR("%s: src ring no shadow_base mem",
  706. __func__);
  707. goto error_no_dma_mem;
  708. }
  709. src_ring->shadow_base = (struct CE_src_desc *)
  710. (((size_t) src_ring->shadow_base_unaligned +
  711. CE_DESC_RING_ALIGN - 1) &
  712. ~(CE_DESC_RING_ALIGN - 1));
  713. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  714. goto error_target_access;
  715. dma_addr = src_ring->base_addr_CE_space;
  716. CE_SRC_RING_BASE_ADDR_SET(scn, ctrl_addr,
  717. (uint32_t)(dma_addr & 0xFFFFFFFF));
  718. /* if SR_BA_ADDRESS_HIGH register exists */
  719. if (is_register_supported(SR_BA_ADDRESS_HIGH)) {
  720. uint32_t tmp;
  721. tmp = CE_SRC_RING_BASE_ADDR_HIGH_GET(
  722. scn, ctrl_addr);
  723. tmp &= ~0x1F;
  724. dma_addr = ((dma_addr >> 32) & 0x1F)|tmp;
  725. CE_SRC_RING_BASE_ADDR_HIGH_SET(scn,
  726. ctrl_addr, (uint32_t)dma_addr);
  727. }
  728. CE_SRC_RING_SZ_SET(scn, ctrl_addr, nentries);
  729. CE_SRC_RING_DMAX_SET(scn, ctrl_addr, attr->src_sz_max);
  730. #ifdef BIG_ENDIAN_HOST
  731. /* Enable source ring byte swap for big endian host */
  732. CE_SRC_RING_BYTE_SWAP_SET(scn, ctrl_addr, 1);
  733. #endif
  734. CE_SRC_RING_LOWMARK_SET(scn, ctrl_addr, 0);
  735. CE_SRC_RING_HIGHMARK_SET(scn, ctrl_addr, nentries);
  736. if (Q_TARGET_ACCESS_END(scn) < 0)
  737. goto error_target_access;
  738. }
  739. }
  740. /* destination ring setup */
  741. nentries = attr->dest_nentries;
  742. if (nentries) {
  743. struct CE_ring_state *dest_ring;
  744. unsigned CE_nbytes;
  745. char *ptr;
  746. uint64_t dma_addr;
  747. nentries = roundup_pwr2(nentries);
  748. if (CE_state->dest_ring) {
  749. QDF_ASSERT(CE_state->dest_ring->nentries == nentries);
  750. } else {
  751. CE_nbytes = sizeof(struct CE_ring_state)
  752. + (nentries * sizeof(void *));
  753. ptr = qdf_mem_malloc(CE_nbytes);
  754. if (!ptr) {
  755. /* cannot allocate dst ring. If the CE_state
  756. * or src ring is allocated locally free
  757. * CE_State and src ring and return error.
  758. */
  759. HIF_ERROR("%s: dest ring has no mem",
  760. __func__);
  761. if (malloc_src_ring) {
  762. qdf_mem_free(CE_state->src_ring);
  763. CE_state->src_ring = NULL;
  764. malloc_src_ring = false;
  765. }
  766. if (malloc_CE_state) {
  767. /* allocated CE_state locally */
  768. scn->ce_id_to_state[CE_id] = NULL;
  769. qdf_mem_free(CE_state);
  770. malloc_CE_state = false;
  771. }
  772. return NULL;
  773. }
  774. qdf_mem_zero(ptr, CE_nbytes);
  775. dest_ring = CE_state->dest_ring =
  776. (struct CE_ring_state *)ptr;
  777. ptr += sizeof(struct CE_ring_state);
  778. dest_ring->nentries = nentries;
  779. dest_ring->nentries_mask = nentries - 1;
  780. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  781. goto error_target_access;
  782. dest_ring->sw_index =
  783. CE_DEST_RING_READ_IDX_GET_FROM_REGISTER(scn,
  784. ctrl_addr);
  785. dest_ring->write_index =
  786. CE_DEST_RING_WRITE_IDX_GET_FROM_REGISTER(scn,
  787. ctrl_addr);
  788. ce_ring_test_initial_indexes(CE_id, dest_ring,
  789. "dest_ring");
  790. if (Q_TARGET_ACCESS_END(scn) < 0)
  791. goto error_target_access;
  792. dest_ring->low_water_mark_nentries = 0;
  793. dest_ring->high_water_mark_nentries = nentries;
  794. dest_ring->per_transfer_context = (void **)ptr;
  795. /* Legacy platforms that do not support cache
  796. * coherent DMA are unsupported */
  797. dest_ring->base_addr_owner_space_unaligned =
  798. qdf_mem_alloc_consistent(scn->qdf_dev,
  799. scn->qdf_dev->dev,
  800. (nentries *
  801. sizeof(struct CE_dest_desc) +
  802. CE_DESC_RING_ALIGN),
  803. &base_addr);
  804. if (dest_ring->base_addr_owner_space_unaligned
  805. == NULL) {
  806. HIF_ERROR("%s: dest ring has no DMA mem",
  807. __func__);
  808. goto error_no_dma_mem;
  809. }
  810. dest_ring->base_addr_CE_space_unaligned = base_addr;
  811. /* Correctly initialize memory to 0 to
  812. * prevent garbage data crashing system
  813. * when download firmware
  814. */
  815. qdf_mem_zero(dest_ring->base_addr_owner_space_unaligned,
  816. nentries * sizeof(struct CE_dest_desc) +
  817. CE_DESC_RING_ALIGN);
  818. if (dest_ring->
  819. base_addr_CE_space_unaligned & (CE_DESC_RING_ALIGN -
  820. 1)) {
  821. dest_ring->base_addr_CE_space =
  822. (dest_ring->
  823. base_addr_CE_space_unaligned +
  824. CE_DESC_RING_ALIGN -
  825. 1) & ~(CE_DESC_RING_ALIGN - 1);
  826. dest_ring->base_addr_owner_space =
  827. (void
  828. *)(((size_t) dest_ring->
  829. base_addr_owner_space_unaligned +
  830. CE_DESC_RING_ALIGN -
  831. 1) & ~(CE_DESC_RING_ALIGN - 1));
  832. } else {
  833. dest_ring->base_addr_CE_space =
  834. dest_ring->base_addr_CE_space_unaligned;
  835. dest_ring->base_addr_owner_space =
  836. dest_ring->
  837. base_addr_owner_space_unaligned;
  838. }
  839. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  840. goto error_target_access;
  841. dma_addr = dest_ring->base_addr_CE_space;
  842. CE_DEST_RING_BASE_ADDR_SET(scn, ctrl_addr,
  843. (uint32_t)(dma_addr & 0xFFFFFFFF));
  844. /* if DR_BA_ADDRESS_HIGH exists */
  845. if (is_register_supported(DR_BA_ADDRESS_HIGH)) {
  846. uint32_t tmp;
  847. tmp = CE_DEST_RING_BASE_ADDR_HIGH_GET(scn,
  848. ctrl_addr);
  849. tmp &= ~0x1F;
  850. dma_addr = ((dma_addr >> 32) & 0x1F)|tmp;
  851. CE_DEST_RING_BASE_ADDR_HIGH_SET(scn,
  852. ctrl_addr, (uint32_t)dma_addr);
  853. }
  854. CE_DEST_RING_SZ_SET(scn, ctrl_addr, nentries);
  855. #ifdef BIG_ENDIAN_HOST
  856. /* Enable Dest ring byte swap for big endian host */
  857. CE_DEST_RING_BYTE_SWAP_SET(scn, ctrl_addr, 1);
  858. #endif
  859. CE_DEST_RING_LOWMARK_SET(scn, ctrl_addr, 0);
  860. CE_DEST_RING_HIGHMARK_SET(scn, ctrl_addr, nentries);
  861. if (Q_TARGET_ACCESS_END(scn) < 0)
  862. goto error_target_access;
  863. /* epping */
  864. /* poll timer */
  865. if ((CE_state->attr_flags & CE_ATTR_ENABLE_POLL)) {
  866. qdf_timer_init(scn->qdf_dev,
  867. &CE_state->poll_timer,
  868. ce_poll_timeout,
  869. CE_state,
  870. QDF_TIMER_TYPE_SW);
  871. CE_state->timer_inited = true;
  872. qdf_timer_mod(&CE_state->poll_timer,
  873. CE_POLL_TIMEOUT);
  874. }
  875. }
  876. }
  877. /* Enable CE error interrupts */
  878. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  879. goto error_target_access;
  880. CE_ERROR_INTR_ENABLE(scn, ctrl_addr);
  881. if (Q_TARGET_ACCESS_END(scn) < 0)
  882. goto error_target_access;
  883. /* update the htt_data attribute */
  884. ce_mark_datapath(CE_state);
  885. return (struct CE_handle *)CE_state;
  886. error_target_access:
  887. error_no_dma_mem:
  888. ce_fini((struct CE_handle *)CE_state);
  889. return NULL;
  890. }
  891. #ifdef WLAN_FEATURE_FASTPATH
  892. /**
  893. * hif_enable_fastpath() Update that we have enabled fastpath mode
  894. * @hif_ctx: HIF context
  895. *
  896. * For use in data path
  897. *
  898. * Retrun: void
  899. */
  900. void hif_enable_fastpath(struct hif_opaque_softc *hif_ctx)
  901. {
  902. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  903. HIF_INFO("%s, Enabling fastpath mode", __func__);
  904. scn->fastpath_mode_on = true;
  905. }
  906. /**
  907. * hif_is_fastpath_mode_enabled - API to query if fasthpath mode is enabled
  908. * @hif_ctx: HIF Context
  909. *
  910. * For use in data path to skip HTC
  911. *
  912. * Return: bool
  913. */
  914. bool hif_is_fastpath_mode_enabled(struct hif_opaque_softc *hif_ctx)
  915. {
  916. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  917. return scn->fastpath_mode_on;
  918. }
  919. /**
  920. * hif_get_ce_handle - API to get CE handle for FastPath mode
  921. * @hif_ctx: HIF Context
  922. * @id: CopyEngine Id
  923. *
  924. * API to return CE handle for fastpath mode
  925. *
  926. * Return: void
  927. */
  928. void *hif_get_ce_handle(struct hif_opaque_softc *hif_ctx, int id)
  929. {
  930. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  931. return scn->ce_id_to_state[id];
  932. }
  933. /**
  934. * ce_h2t_tx_ce_cleanup() Place holder function for H2T CE cleanup.
  935. * No processing is required inside this function.
  936. * @ce_hdl: Cope engine handle
  937. * Using an assert, this function makes sure that,
  938. * the TX CE has been processed completely.
  939. *
  940. * This is called while dismantling CE structures. No other thread
  941. * should be using these structures while dismantling is occuring
  942. * therfore no locking is needed.
  943. *
  944. * Return: none
  945. */
  946. void
  947. ce_h2t_tx_ce_cleanup(struct CE_handle *ce_hdl)
  948. {
  949. struct CE_state *ce_state = (struct CE_state *)ce_hdl;
  950. struct CE_ring_state *src_ring = ce_state->src_ring;
  951. struct hif_softc *sc = ce_state->scn;
  952. uint32_t sw_index, write_index;
  953. if (hif_is_nss_wifi_enabled(sc))
  954. return;
  955. if (sc->fastpath_mode_on && ce_state->htt_tx_data) {
  956. HIF_INFO("%s %d Fastpath mode ON, Cleaning up HTT Tx CE",
  957. __func__, __LINE__);
  958. sw_index = src_ring->sw_index;
  959. write_index = src_ring->sw_index;
  960. /* At this point Tx CE should be clean */
  961. qdf_assert_always(sw_index == write_index);
  962. }
  963. }
  964. /**
  965. * ce_t2h_msg_ce_cleanup() - Cleanup buffers on the t2h datapath msg queue.
  966. * @ce_hdl: Handle to CE
  967. *
  968. * These buffers are never allocated on the fly, but
  969. * are allocated only once during HIF start and freed
  970. * only once during HIF stop.
  971. * NOTE:
  972. * The assumption here is there is no in-flight DMA in progress
  973. * currently, so that buffers can be freed up safely.
  974. *
  975. * Return: NONE
  976. */
  977. void ce_t2h_msg_ce_cleanup(struct CE_handle *ce_hdl)
  978. {
  979. struct CE_state *ce_state = (struct CE_state *)ce_hdl;
  980. struct CE_ring_state *dst_ring = ce_state->dest_ring;
  981. qdf_nbuf_t nbuf;
  982. int i;
  983. if (!ce_state->fastpath_handler)
  984. return;
  985. /*
  986. * when fastpath_mode is on and for datapath CEs. Unlike other CE's,
  987. * this CE is completely full: does not leave one blank space, to
  988. * distinguish between empty queue & full queue. So free all the
  989. * entries.
  990. */
  991. for (i = 0; i < dst_ring->nentries; i++) {
  992. nbuf = dst_ring->per_transfer_context[i];
  993. /*
  994. * The reasons for doing this check are:
  995. * 1) Protect against calling cleanup before allocating buffers
  996. * 2) In a corner case, FASTPATH_mode_on may be set, but we
  997. * could have a partially filled ring, because of a memory
  998. * allocation failure in the middle of allocating ring.
  999. * This check accounts for that case, checking
  1000. * fastpath_mode_on flag or started flag would not have
  1001. * covered that case. This is not in performance path,
  1002. * so OK to do this.
  1003. */
  1004. if (nbuf)
  1005. qdf_nbuf_free(nbuf);
  1006. }
  1007. }
  1008. /**
  1009. * hif_update_fastpath_recv_bufs_cnt() - Increments the Rx buf count by 1
  1010. * @scn: HIF handle
  1011. *
  1012. * Datapath Rx CEs are special case, where we reuse all the message buffers.
  1013. * Hence we have to post all the entries in the pipe, even, in the beginning
  1014. * unlike for other CE pipes where one less than dest_nentries are filled in
  1015. * the beginning.
  1016. *
  1017. * Return: None
  1018. */
  1019. static void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
  1020. {
  1021. int pipe_num;
  1022. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1023. if (scn->fastpath_mode_on == false)
  1024. return;
  1025. for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
  1026. struct HIF_CE_pipe_info *pipe_info =
  1027. &hif_state->pipe_info[pipe_num];
  1028. struct CE_state *ce_state =
  1029. scn->ce_id_to_state[pipe_info->pipe_num];
  1030. if (ce_state->htt_rx_data)
  1031. atomic_inc(&pipe_info->recv_bufs_needed);
  1032. }
  1033. }
  1034. #else
  1035. static inline void hif_update_fastpath_recv_bufs_cnt(struct hif_softc *scn)
  1036. {
  1037. }
  1038. static inline bool ce_is_fastpath_enabled(struct hif_softc *scn)
  1039. {
  1040. return false;
  1041. }
  1042. static inline bool ce_is_fastpath_handler_registered(struct CE_state *ce_state)
  1043. {
  1044. return false;
  1045. }
  1046. #endif /* WLAN_FEATURE_FASTPATH */
  1047. void ce_fini(struct CE_handle *copyeng)
  1048. {
  1049. struct CE_state *CE_state = (struct CE_state *)copyeng;
  1050. unsigned int CE_id = CE_state->id;
  1051. struct hif_softc *scn = CE_state->scn;
  1052. CE_state->state = CE_UNUSED;
  1053. scn->ce_id_to_state[CE_id] = NULL;
  1054. if (CE_state->src_ring) {
  1055. /* Cleanup the datapath Tx ring */
  1056. ce_h2t_tx_ce_cleanup(copyeng);
  1057. if (CE_state->src_ring->shadow_base_unaligned)
  1058. qdf_mem_free(CE_state->src_ring->shadow_base_unaligned);
  1059. if (CE_state->src_ring->base_addr_owner_space_unaligned)
  1060. qdf_mem_free_consistent(scn->qdf_dev,
  1061. scn->qdf_dev->dev,
  1062. (CE_state->src_ring->nentries *
  1063. sizeof(struct CE_src_desc) +
  1064. CE_DESC_RING_ALIGN),
  1065. CE_state->src_ring->
  1066. base_addr_owner_space_unaligned,
  1067. CE_state->src_ring->
  1068. base_addr_CE_space, 0);
  1069. qdf_mem_free(CE_state->src_ring);
  1070. }
  1071. if (CE_state->dest_ring) {
  1072. /* Cleanup the datapath Rx ring */
  1073. ce_t2h_msg_ce_cleanup(copyeng);
  1074. if (CE_state->dest_ring->base_addr_owner_space_unaligned)
  1075. qdf_mem_free_consistent(scn->qdf_dev,
  1076. scn->qdf_dev->dev,
  1077. (CE_state->dest_ring->nentries *
  1078. sizeof(struct CE_dest_desc) +
  1079. CE_DESC_RING_ALIGN),
  1080. CE_state->dest_ring->
  1081. base_addr_owner_space_unaligned,
  1082. CE_state->dest_ring->
  1083. base_addr_CE_space, 0);
  1084. qdf_mem_free(CE_state->dest_ring);
  1085. /* epping */
  1086. if (CE_state->timer_inited) {
  1087. CE_state->timer_inited = false;
  1088. qdf_timer_free(&CE_state->poll_timer);
  1089. }
  1090. }
  1091. qdf_mem_free(CE_state);
  1092. }
  1093. void hif_detach_htc(struct hif_opaque_softc *hif_ctx)
  1094. {
  1095. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
  1096. qdf_mem_zero(&hif_state->msg_callbacks_pending,
  1097. sizeof(hif_state->msg_callbacks_pending));
  1098. qdf_mem_zero(&hif_state->msg_callbacks_current,
  1099. sizeof(hif_state->msg_callbacks_current));
  1100. }
  1101. /* Send the first nbytes bytes of the buffer */
  1102. QDF_STATUS
  1103. hif_send_head(struct hif_opaque_softc *hif_ctx,
  1104. uint8_t pipe, unsigned int transfer_id, unsigned int nbytes,
  1105. qdf_nbuf_t nbuf, unsigned int data_attr)
  1106. {
  1107. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  1108. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
  1109. struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
  1110. struct CE_handle *ce_hdl = pipe_info->ce_hdl;
  1111. int bytes = nbytes, nfrags = 0;
  1112. struct ce_sendlist sendlist;
  1113. int status, i = 0;
  1114. unsigned int mux_id = 0;
  1115. QDF_ASSERT(nbytes <= qdf_nbuf_len(nbuf));
  1116. transfer_id =
  1117. (mux_id & MUX_ID_MASK) |
  1118. (transfer_id & TRANSACTION_ID_MASK);
  1119. data_attr &= DESC_DATA_FLAG_MASK;
  1120. /*
  1121. * The common case involves sending multiple fragments within a
  1122. * single download (the tx descriptor and the tx frame header).
  1123. * So, optimize for the case of multiple fragments by not even
  1124. * checking whether it's necessary to use a sendlist.
  1125. * The overhead of using a sendlist for a single buffer download
  1126. * is not a big deal, since it happens rarely (for WMI messages).
  1127. */
  1128. ce_sendlist_init(&sendlist);
  1129. do {
  1130. qdf_dma_addr_t frag_paddr;
  1131. int frag_bytes;
  1132. frag_paddr = qdf_nbuf_get_frag_paddr(nbuf, nfrags);
  1133. frag_bytes = qdf_nbuf_get_frag_len(nbuf, nfrags);
  1134. /*
  1135. * Clear the packet offset for all but the first CE desc.
  1136. */
  1137. if (i++ > 0)
  1138. data_attr &= ~QDF_CE_TX_PKT_OFFSET_BIT_M;
  1139. status = ce_sendlist_buf_add(&sendlist, frag_paddr,
  1140. frag_bytes >
  1141. bytes ? bytes : frag_bytes,
  1142. qdf_nbuf_get_frag_is_wordstream
  1143. (nbuf,
  1144. nfrags) ? 0 :
  1145. CE_SEND_FLAG_SWAP_DISABLE,
  1146. data_attr);
  1147. if (status != QDF_STATUS_SUCCESS) {
  1148. HIF_ERROR("%s: error, frag_num %d larger than limit",
  1149. __func__, nfrags);
  1150. return status;
  1151. }
  1152. bytes -= frag_bytes;
  1153. nfrags++;
  1154. } while (bytes > 0);
  1155. /* Make sure we have resources to handle this request */
  1156. qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
  1157. if (pipe_info->num_sends_allowed < nfrags) {
  1158. qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
  1159. ce_pkt_error_count_incr(hif_state, HIF_PIPE_NO_RESOURCE);
  1160. return QDF_STATUS_E_RESOURCES;
  1161. }
  1162. pipe_info->num_sends_allowed -= nfrags;
  1163. qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
  1164. if (qdf_unlikely(ce_hdl == NULL)) {
  1165. HIF_ERROR("%s: error CE handle is null", __func__);
  1166. return A_ERROR;
  1167. }
  1168. QDF_NBUF_UPDATE_TX_PKT_COUNT(nbuf, QDF_NBUF_TX_PKT_HIF);
  1169. DPTRACE(qdf_dp_trace(nbuf, QDF_DP_TRACE_HIF_PACKET_PTR_RECORD,
  1170. qdf_nbuf_data_addr(nbuf),
  1171. sizeof(qdf_nbuf_data(nbuf)), QDF_TX));
  1172. status = ce_sendlist_send(ce_hdl, nbuf, &sendlist, transfer_id);
  1173. QDF_ASSERT(status == QDF_STATUS_SUCCESS);
  1174. return status;
  1175. }
  1176. void hif_send_complete_check(struct hif_opaque_softc *hif_ctx, uint8_t pipe,
  1177. int force)
  1178. {
  1179. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  1180. if (!force) {
  1181. int resources;
  1182. /*
  1183. * Decide whether to actually poll for completions, or just
  1184. * wait for a later chance. If there seem to be plenty of
  1185. * resources left, then just wait, since checking involves
  1186. * reading a CE register, which is a relatively expensive
  1187. * operation.
  1188. */
  1189. resources = hif_get_free_queue_number(hif_ctx, pipe);
  1190. /*
  1191. * If at least 50% of the total resources are still available,
  1192. * don't bother checking again yet.
  1193. */
  1194. if (resources > (host_ce_config[pipe].src_nentries >> 1)) {
  1195. return;
  1196. }
  1197. }
  1198. #if ATH_11AC_TXCOMPACT
  1199. ce_per_engine_servicereap(scn, pipe);
  1200. #else
  1201. ce_per_engine_service(scn, pipe);
  1202. #endif
  1203. }
  1204. uint16_t
  1205. hif_get_free_queue_number(struct hif_opaque_softc *hif_ctx, uint8_t pipe)
  1206. {
  1207. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
  1208. struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
  1209. uint16_t rv;
  1210. qdf_spin_lock_bh(&pipe_info->completion_freeq_lock);
  1211. rv = pipe_info->num_sends_allowed;
  1212. qdf_spin_unlock_bh(&pipe_info->completion_freeq_lock);
  1213. return rv;
  1214. }
  1215. /* Called by lower (CE) layer when a send to Target completes. */
  1216. void
  1217. hif_pci_ce_send_done(struct CE_handle *copyeng, void *ce_context,
  1218. void *transfer_context, qdf_dma_addr_t CE_data,
  1219. unsigned int nbytes, unsigned int transfer_id,
  1220. unsigned int sw_index, unsigned int hw_index,
  1221. unsigned int toeplitz_hash_result)
  1222. {
  1223. struct HIF_CE_pipe_info *pipe_info =
  1224. (struct HIF_CE_pipe_info *)ce_context;
  1225. struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
  1226. struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
  1227. unsigned int sw_idx = sw_index, hw_idx = hw_index;
  1228. struct hif_msg_callbacks *msg_callbacks =
  1229. &hif_state->msg_callbacks_current;
  1230. do {
  1231. /*
  1232. * The upper layer callback will be triggered
  1233. * when last fragment is complteted.
  1234. */
  1235. if (transfer_context != CE_SENDLIST_ITEM_CTXT) {
  1236. if (scn->target_status == TARGET_STATUS_RESET)
  1237. qdf_nbuf_free(transfer_context);
  1238. else
  1239. msg_callbacks->txCompletionHandler(
  1240. msg_callbacks->Context,
  1241. transfer_context, transfer_id,
  1242. toeplitz_hash_result);
  1243. }
  1244. qdf_spin_lock(&pipe_info->completion_freeq_lock);
  1245. pipe_info->num_sends_allowed++;
  1246. qdf_spin_unlock(&pipe_info->completion_freeq_lock);
  1247. } while (ce_completed_send_next(copyeng,
  1248. &ce_context, &transfer_context,
  1249. &CE_data, &nbytes, &transfer_id,
  1250. &sw_idx, &hw_idx,
  1251. &toeplitz_hash_result) == QDF_STATUS_SUCCESS);
  1252. }
  1253. /**
  1254. * hif_ce_do_recv(): send message from copy engine to upper layers
  1255. * @msg_callbacks: structure containing callback and callback context
  1256. * @netbuff: skb containing message
  1257. * @nbytes: number of bytes in the message
  1258. * @pipe_info: used for the pipe_number info
  1259. *
  1260. * Checks the packet length, configures the lenght in the netbuff,
  1261. * and calls the upper layer callback.
  1262. *
  1263. * return: None
  1264. */
  1265. static inline void hif_ce_do_recv(struct hif_msg_callbacks *msg_callbacks,
  1266. qdf_nbuf_t netbuf, int nbytes,
  1267. struct HIF_CE_pipe_info *pipe_info) {
  1268. if (nbytes <= pipe_info->buf_sz) {
  1269. qdf_nbuf_set_pktlen(netbuf, nbytes);
  1270. msg_callbacks->
  1271. rxCompletionHandler(msg_callbacks->Context,
  1272. netbuf, pipe_info->pipe_num);
  1273. } else {
  1274. HIF_ERROR("%s: Invalid Rx msg buf:%p nbytes:%d",
  1275. __func__, netbuf, nbytes);
  1276. qdf_nbuf_free(netbuf);
  1277. }
  1278. }
  1279. /* Called by lower (CE) layer when data is received from the Target. */
  1280. void
  1281. hif_pci_ce_recv_data(struct CE_handle *copyeng, void *ce_context,
  1282. void *transfer_context, qdf_dma_addr_t CE_data,
  1283. unsigned int nbytes, unsigned int transfer_id,
  1284. unsigned int flags)
  1285. {
  1286. struct HIF_CE_pipe_info *pipe_info =
  1287. (struct HIF_CE_pipe_info *)ce_context;
  1288. struct HIF_CE_state *hif_state = pipe_info->HIF_CE_state;
  1289. struct CE_state *ce_state = (struct CE_state *) copyeng;
  1290. struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
  1291. #ifdef HIF_PCI
  1292. struct hif_pci_softc *hif_pci_sc = HIF_GET_PCI_SOFTC(hif_state);
  1293. #endif
  1294. struct hif_msg_callbacks *msg_callbacks =
  1295. &hif_state->msg_callbacks_current;
  1296. do {
  1297. #ifdef HIF_PCI
  1298. hif_pm_runtime_mark_last_busy(hif_pci_sc->dev);
  1299. #endif
  1300. qdf_nbuf_unmap_single(scn->qdf_dev,
  1301. (qdf_nbuf_t) transfer_context,
  1302. QDF_DMA_FROM_DEVICE);
  1303. atomic_inc(&pipe_info->recv_bufs_needed);
  1304. hif_post_recv_buffers_for_pipe(pipe_info);
  1305. if (scn->target_status == TARGET_STATUS_RESET)
  1306. qdf_nbuf_free(transfer_context);
  1307. else
  1308. hif_ce_do_recv(msg_callbacks, transfer_context,
  1309. nbytes, pipe_info);
  1310. /* Set up force_break flag if num of receices reaches
  1311. * MAX_NUM_OF_RECEIVES */
  1312. ce_state->receive_count++;
  1313. if (qdf_unlikely(hif_ce_service_should_yield(scn, ce_state))) {
  1314. ce_state->force_break = 1;
  1315. break;
  1316. }
  1317. } while (ce_completed_recv_next(copyeng, &ce_context, &transfer_context,
  1318. &CE_data, &nbytes, &transfer_id,
  1319. &flags) == QDF_STATUS_SUCCESS);
  1320. }
  1321. /* TBDXXX: Set CE High Watermark; invoke txResourceAvailHandler in response */
  1322. void
  1323. hif_post_init(struct hif_opaque_softc *hif_ctx, void *unused,
  1324. struct hif_msg_callbacks *callbacks)
  1325. {
  1326. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
  1327. #ifdef CONFIG_ATH_PCIE_ACCESS_DEBUG
  1328. spin_lock_init(&pcie_access_log_lock);
  1329. #endif
  1330. /* Save callbacks for later installation */
  1331. qdf_mem_copy(&hif_state->msg_callbacks_pending, callbacks,
  1332. sizeof(hif_state->msg_callbacks_pending));
  1333. }
  1334. int hif_completion_thread_startup(struct HIF_CE_state *hif_state)
  1335. {
  1336. struct CE_handle *ce_diag = hif_state->ce_diag;
  1337. int pipe_num;
  1338. struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
  1339. struct hif_msg_callbacks *hif_msg_callbacks =
  1340. &hif_state->msg_callbacks_current;
  1341. /* daemonize("hif_compl_thread"); */
  1342. if (scn->ce_count == 0) {
  1343. HIF_ERROR("%s: Invalid ce_count", __func__);
  1344. return -EINVAL;
  1345. }
  1346. if (!hif_msg_callbacks ||
  1347. !hif_msg_callbacks->rxCompletionHandler ||
  1348. !hif_msg_callbacks->txCompletionHandler) {
  1349. HIF_ERROR("%s: no completion handler registered", __func__);
  1350. return -EFAULT;
  1351. }
  1352. A_TARGET_ACCESS_LIKELY(scn);
  1353. for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
  1354. struct CE_attr attr;
  1355. struct HIF_CE_pipe_info *pipe_info;
  1356. pipe_info = &hif_state->pipe_info[pipe_num];
  1357. if (pipe_info->ce_hdl == ce_diag) {
  1358. continue; /* Handle Diagnostic CE specially */
  1359. }
  1360. attr = host_ce_config[pipe_num];
  1361. if (attr.src_nentries) {
  1362. /* pipe used to send to target */
  1363. HIF_INFO_MED("%s: pipe_num:%d pipe_info:0x%p",
  1364. __func__, pipe_num, pipe_info);
  1365. ce_send_cb_register(pipe_info->ce_hdl,
  1366. hif_pci_ce_send_done, pipe_info,
  1367. attr.flags & CE_ATTR_DISABLE_INTR);
  1368. pipe_info->num_sends_allowed = attr.src_nentries - 1;
  1369. }
  1370. if (attr.dest_nentries) {
  1371. /* pipe used to receive from target */
  1372. ce_recv_cb_register(pipe_info->ce_hdl,
  1373. hif_pci_ce_recv_data, pipe_info,
  1374. attr.flags & CE_ATTR_DISABLE_INTR);
  1375. }
  1376. if (attr.src_nentries)
  1377. qdf_spinlock_create(&pipe_info->completion_freeq_lock);
  1378. }
  1379. A_TARGET_ACCESS_UNLIKELY(scn);
  1380. return 0;
  1381. }
  1382. /*
  1383. * Install pending msg callbacks.
  1384. *
  1385. * TBDXXX: This hack is needed because upper layers install msg callbacks
  1386. * for use with HTC before BMI is done; yet this HIF implementation
  1387. * needs to continue to use BMI msg callbacks. Really, upper layers
  1388. * should not register HTC callbacks until AFTER BMI phase.
  1389. */
  1390. static void hif_msg_callbacks_install(struct hif_softc *scn)
  1391. {
  1392. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1393. qdf_mem_copy(&hif_state->msg_callbacks_current,
  1394. &hif_state->msg_callbacks_pending,
  1395. sizeof(hif_state->msg_callbacks_pending));
  1396. }
  1397. void hif_get_default_pipe(struct hif_opaque_softc *hif_hdl, uint8_t *ULPipe,
  1398. uint8_t *DLPipe)
  1399. {
  1400. int ul_is_polled, dl_is_polled;
  1401. (void)hif_map_service_to_pipe(hif_hdl, HTC_CTRL_RSVD_SVC,
  1402. ULPipe, DLPipe, &ul_is_polled, &dl_is_polled);
  1403. }
  1404. /**
  1405. * hif_dump_pipe_debug_count() - Log error count
  1406. * @scn: hif_softc pointer.
  1407. *
  1408. * Output the pipe error counts of each pipe to log file
  1409. *
  1410. * Return: N/A
  1411. */
  1412. void hif_dump_pipe_debug_count(struct hif_softc *scn)
  1413. {
  1414. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1415. int pipe_num;
  1416. if (hif_state == NULL) {
  1417. HIF_ERROR("%s hif_state is NULL", __func__);
  1418. return;
  1419. }
  1420. for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
  1421. struct HIF_CE_pipe_info *pipe_info;
  1422. pipe_info = &hif_state->pipe_info[pipe_num];
  1423. if (pipe_info->nbuf_alloc_err_count > 0 ||
  1424. pipe_info->nbuf_dma_err_count > 0 ||
  1425. pipe_info->nbuf_ce_enqueue_err_count)
  1426. HIF_ERROR(
  1427. "%s: pipe_id = %d, recv_bufs_needed = %d, nbuf_alloc_err_count = %u, nbuf_dma_err_count = %u, nbuf_ce_enqueue_err_count = %u",
  1428. __func__, pipe_info->pipe_num,
  1429. atomic_read(&pipe_info->recv_bufs_needed),
  1430. pipe_info->nbuf_alloc_err_count,
  1431. pipe_info->nbuf_dma_err_count,
  1432. pipe_info->nbuf_ce_enqueue_err_count);
  1433. }
  1434. }
  1435. static int hif_post_recv_buffers_for_pipe(struct HIF_CE_pipe_info *pipe_info)
  1436. {
  1437. struct CE_handle *ce_hdl;
  1438. qdf_size_t buf_sz;
  1439. struct hif_softc *scn = HIF_GET_SOFTC(pipe_info->HIF_CE_state);
  1440. QDF_STATUS ret;
  1441. uint32_t bufs_posted = 0;
  1442. buf_sz = pipe_info->buf_sz;
  1443. if (buf_sz == 0) {
  1444. /* Unused Copy Engine */
  1445. return 0;
  1446. }
  1447. ce_hdl = pipe_info->ce_hdl;
  1448. qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
  1449. while (atomic_read(&pipe_info->recv_bufs_needed) > 0) {
  1450. qdf_dma_addr_t CE_data; /* CE space buffer address */
  1451. qdf_nbuf_t nbuf;
  1452. int status;
  1453. atomic_dec(&pipe_info->recv_bufs_needed);
  1454. qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
  1455. nbuf = qdf_nbuf_alloc(scn->qdf_dev, buf_sz, 0, 4, false);
  1456. if (!nbuf) {
  1457. qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
  1458. pipe_info->nbuf_alloc_err_count++;
  1459. qdf_spin_unlock_bh(
  1460. &pipe_info->recv_bufs_needed_lock);
  1461. HIF_ERROR(
  1462. "%s buf alloc error [%d] needed %d, nbuf_alloc_err_count = %u",
  1463. __func__, pipe_info->pipe_num,
  1464. atomic_read(&pipe_info->recv_bufs_needed),
  1465. pipe_info->nbuf_alloc_err_count);
  1466. atomic_inc(&pipe_info->recv_bufs_needed);
  1467. return 1;
  1468. }
  1469. /*
  1470. * qdf_nbuf_peek_header(nbuf, &data, &unused);
  1471. * CE_data = dma_map_single(dev, data, buf_sz, );
  1472. * DMA_FROM_DEVICE);
  1473. */
  1474. ret =
  1475. qdf_nbuf_map_single(scn->qdf_dev, nbuf,
  1476. QDF_DMA_FROM_DEVICE);
  1477. if (unlikely(ret != QDF_STATUS_SUCCESS)) {
  1478. qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
  1479. pipe_info->nbuf_dma_err_count++;
  1480. qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
  1481. HIF_ERROR(
  1482. "%s buf alloc error [%d] needed %d, nbuf_dma_err_count = %u",
  1483. __func__, pipe_info->pipe_num,
  1484. atomic_read(&pipe_info->recv_bufs_needed),
  1485. pipe_info->nbuf_dma_err_count);
  1486. qdf_nbuf_free(nbuf);
  1487. atomic_inc(&pipe_info->recv_bufs_needed);
  1488. return 1;
  1489. }
  1490. CE_data = qdf_nbuf_get_frag_paddr(nbuf, 0);
  1491. qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data,
  1492. buf_sz, DMA_FROM_DEVICE);
  1493. status = ce_recv_buf_enqueue(ce_hdl, (void *)nbuf, CE_data);
  1494. QDF_ASSERT(status == QDF_STATUS_SUCCESS);
  1495. if (status != EOK) {
  1496. qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
  1497. pipe_info->nbuf_ce_enqueue_err_count++;
  1498. qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
  1499. HIF_ERROR(
  1500. "%s buf alloc error [%d] needed %d, nbuf_alloc_err_count = %u",
  1501. __func__, pipe_info->pipe_num,
  1502. atomic_read(&pipe_info->recv_bufs_needed),
  1503. pipe_info->nbuf_ce_enqueue_err_count);
  1504. atomic_inc(&pipe_info->recv_bufs_needed);
  1505. qdf_nbuf_free(nbuf);
  1506. return 1;
  1507. }
  1508. qdf_spin_lock_bh(&pipe_info->recv_bufs_needed_lock);
  1509. bufs_posted++;
  1510. }
  1511. pipe_info->nbuf_alloc_err_count =
  1512. (pipe_info->nbuf_alloc_err_count > bufs_posted) ?
  1513. pipe_info->nbuf_alloc_err_count - bufs_posted : 0;
  1514. pipe_info->nbuf_dma_err_count =
  1515. (pipe_info->nbuf_dma_err_count > bufs_posted) ?
  1516. pipe_info->nbuf_dma_err_count - bufs_posted : 0;
  1517. pipe_info->nbuf_ce_enqueue_err_count =
  1518. (pipe_info->nbuf_ce_enqueue_err_count > bufs_posted) ?
  1519. pipe_info->nbuf_ce_enqueue_err_count - bufs_posted : 0;
  1520. qdf_spin_unlock_bh(&pipe_info->recv_bufs_needed_lock);
  1521. return 0;
  1522. }
  1523. /*
  1524. * Try to post all desired receive buffers for all pipes.
  1525. * Returns 0 if all desired buffers are posted,
  1526. * non-zero if were were unable to completely
  1527. * replenish receive buffers.
  1528. */
  1529. static int hif_post_recv_buffers(struct hif_softc *scn)
  1530. {
  1531. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1532. int pipe_num, rv = 0;
  1533. struct CE_state *ce_state;
  1534. A_TARGET_ACCESS_LIKELY(scn);
  1535. for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
  1536. struct HIF_CE_pipe_info *pipe_info;
  1537. ce_state = scn->ce_id_to_state[pipe_num];
  1538. pipe_info = &hif_state->pipe_info[pipe_num];
  1539. if (hif_is_nss_wifi_enabled(scn) &&
  1540. ce_state && (ce_state->htt_rx_data)) {
  1541. continue;
  1542. }
  1543. if (hif_post_recv_buffers_for_pipe(pipe_info)) {
  1544. rv = 1;
  1545. goto done;
  1546. }
  1547. }
  1548. done:
  1549. A_TARGET_ACCESS_UNLIKELY(scn);
  1550. return rv;
  1551. }
  1552. QDF_STATUS hif_start(struct hif_opaque_softc *hif_ctx)
  1553. {
  1554. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  1555. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1556. hif_update_fastpath_recv_bufs_cnt(scn);
  1557. hif_msg_callbacks_install(scn);
  1558. if (hif_completion_thread_startup(hif_state))
  1559. return QDF_STATUS_E_FAILURE;
  1560. /* Post buffers once to start things off. */
  1561. (void)hif_post_recv_buffers(scn);
  1562. hif_state->started = true;
  1563. return QDF_STATUS_SUCCESS;
  1564. }
  1565. void hif_recv_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
  1566. {
  1567. struct hif_softc *scn;
  1568. struct CE_handle *ce_hdl;
  1569. uint32_t buf_sz;
  1570. struct HIF_CE_state *hif_state;
  1571. qdf_nbuf_t netbuf;
  1572. qdf_dma_addr_t CE_data;
  1573. void *per_CE_context;
  1574. buf_sz = pipe_info->buf_sz;
  1575. if (buf_sz == 0) {
  1576. /* Unused Copy Engine */
  1577. return;
  1578. }
  1579. hif_state = pipe_info->HIF_CE_state;
  1580. if (!hif_state->started) {
  1581. return;
  1582. }
  1583. scn = HIF_GET_SOFTC(hif_state);
  1584. ce_hdl = pipe_info->ce_hdl;
  1585. if (scn->qdf_dev == NULL) {
  1586. return;
  1587. }
  1588. while (ce_revoke_recv_next
  1589. (ce_hdl, &per_CE_context, (void **)&netbuf,
  1590. &CE_data) == QDF_STATUS_SUCCESS) {
  1591. qdf_nbuf_unmap_single(scn->qdf_dev, netbuf,
  1592. QDF_DMA_FROM_DEVICE);
  1593. qdf_nbuf_free(netbuf);
  1594. }
  1595. }
  1596. void hif_send_buffer_cleanup_on_pipe(struct HIF_CE_pipe_info *pipe_info)
  1597. {
  1598. struct CE_handle *ce_hdl;
  1599. struct HIF_CE_state *hif_state;
  1600. struct hif_softc *scn;
  1601. qdf_nbuf_t netbuf;
  1602. void *per_CE_context;
  1603. qdf_dma_addr_t CE_data;
  1604. unsigned int nbytes;
  1605. unsigned int id;
  1606. uint32_t buf_sz;
  1607. uint32_t toeplitz_hash_result;
  1608. buf_sz = pipe_info->buf_sz;
  1609. if (buf_sz == 0) {
  1610. /* Unused Copy Engine */
  1611. return;
  1612. }
  1613. hif_state = pipe_info->HIF_CE_state;
  1614. if (!hif_state->started) {
  1615. return;
  1616. }
  1617. scn = HIF_GET_SOFTC(hif_state);
  1618. ce_hdl = pipe_info->ce_hdl;
  1619. while (ce_cancel_send_next
  1620. (ce_hdl, &per_CE_context,
  1621. (void **)&netbuf, &CE_data, &nbytes,
  1622. &id, &toeplitz_hash_result) == QDF_STATUS_SUCCESS) {
  1623. if (netbuf != CE_SENDLIST_ITEM_CTXT) {
  1624. /*
  1625. * Packets enqueued by htt_h2t_ver_req_msg() and
  1626. * htt_h2t_rx_ring_cfg_msg_ll() have already been
  1627. * freed in htt_htc_misc_pkt_pool_free() in
  1628. * wlantl_close(), so do not free them here again
  1629. * by checking whether it's the endpoint
  1630. * which they are queued in.
  1631. */
  1632. if (id == scn->htc_htt_tx_endpoint)
  1633. return;
  1634. /* Indicate the completion to higher
  1635. * layer to free the buffer */
  1636. hif_state->msg_callbacks_current.
  1637. txCompletionHandler(hif_state->
  1638. msg_callbacks_current.Context,
  1639. netbuf, id, toeplitz_hash_result);
  1640. }
  1641. }
  1642. }
  1643. /*
  1644. * Cleanup residual buffers for device shutdown:
  1645. * buffers that were enqueued for receive
  1646. * buffers that were to be sent
  1647. * Note: Buffers that had completed but which were
  1648. * not yet processed are on a completion queue. They
  1649. * are handled when the completion thread shuts down.
  1650. */
  1651. void hif_buffer_cleanup(struct HIF_CE_state *hif_state)
  1652. {
  1653. int pipe_num;
  1654. struct hif_softc *scn = HIF_GET_SOFTC(hif_state);
  1655. struct CE_state *ce_state;
  1656. for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
  1657. struct HIF_CE_pipe_info *pipe_info;
  1658. ce_state = scn->ce_id_to_state[pipe_num];
  1659. if (hif_is_nss_wifi_enabled(scn) && ce_state &&
  1660. ((ce_state->htt_tx_data) ||
  1661. (ce_state->htt_rx_data))) {
  1662. continue;
  1663. }
  1664. pipe_info = &hif_state->pipe_info[pipe_num];
  1665. hif_recv_buffer_cleanup_on_pipe(pipe_info);
  1666. hif_send_buffer_cleanup_on_pipe(pipe_info);
  1667. }
  1668. }
  1669. void hif_flush_surprise_remove(struct hif_opaque_softc *hif_ctx)
  1670. {
  1671. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  1672. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1673. hif_buffer_cleanup(hif_state);
  1674. }
  1675. void hif_ce_stop(struct hif_softc *scn)
  1676. {
  1677. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1678. int pipe_num;
  1679. scn->hif_init_done = false;
  1680. /*
  1681. * At this point, asynchronous threads are stopped,
  1682. * The Target should not DMA nor interrupt, Host code may
  1683. * not initiate anything more. So we just need to clean
  1684. * up Host-side state.
  1685. */
  1686. if (scn->athdiag_procfs_inited) {
  1687. athdiag_procfs_remove();
  1688. scn->athdiag_procfs_inited = false;
  1689. }
  1690. hif_buffer_cleanup(hif_state);
  1691. for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
  1692. struct HIF_CE_pipe_info *pipe_info;
  1693. pipe_info = &hif_state->pipe_info[pipe_num];
  1694. if (pipe_info->ce_hdl) {
  1695. ce_fini(pipe_info->ce_hdl);
  1696. pipe_info->ce_hdl = NULL;
  1697. pipe_info->buf_sz = 0;
  1698. }
  1699. }
  1700. if (hif_state->sleep_timer_init) {
  1701. qdf_timer_stop(&hif_state->sleep_timer);
  1702. qdf_timer_free(&hif_state->sleep_timer);
  1703. hif_state->sleep_timer_init = false;
  1704. }
  1705. hif_state->started = false;
  1706. }
  1707. /**
  1708. * hif_get_target_ce_config() - get copy engine configuration
  1709. * @target_ce_config_ret: basic copy engine configuration
  1710. * @target_ce_config_sz_ret: size of the basic configuration in bytes
  1711. * @target_service_to_ce_map_ret: service mapping for the copy engines
  1712. * @target_service_to_ce_map_sz_ret: size of the mapping in bytes
  1713. * @target_shadow_reg_cfg_ret: shadow register configuration
  1714. * @shadow_cfg_sz_ret: size of the shadow register configuration in bytes
  1715. *
  1716. * providing accessor to these values outside of this file.
  1717. * currently these are stored in static pointers to const sections.
  1718. * there are multiple configurations that are selected from at compile time.
  1719. * Runtime selection would need to consider mode, target type and bus type.
  1720. *
  1721. * Return: return by parameter.
  1722. */
  1723. void hif_get_target_ce_config(struct CE_pipe_config **target_ce_config_ret,
  1724. int *target_ce_config_sz_ret,
  1725. struct service_to_pipe **target_service_to_ce_map_ret,
  1726. int *target_service_to_ce_map_sz_ret,
  1727. struct shadow_reg_cfg **target_shadow_reg_cfg_ret,
  1728. int *shadow_cfg_sz_ret)
  1729. {
  1730. *target_ce_config_ret = target_ce_config;
  1731. *target_ce_config_sz_ret = target_ce_config_sz;
  1732. *target_service_to_ce_map_ret = target_service_to_ce_map;
  1733. *target_service_to_ce_map_sz_ret = target_service_to_ce_map_sz;
  1734. if (target_shadow_reg_cfg_ret)
  1735. *target_shadow_reg_cfg_ret = target_shadow_reg_cfg;
  1736. if (shadow_cfg_sz_ret)
  1737. *shadow_cfg_sz_ret = shadow_cfg_sz;
  1738. }
  1739. /**
  1740. * hif_wlan_enable(): call the platform driver to enable wlan
  1741. * @scn: HIF Context
  1742. *
  1743. * This function passes the con_mode and CE configuration to
  1744. * platform driver to enable wlan.
  1745. *
  1746. * Return: linux error code
  1747. */
  1748. int hif_wlan_enable(struct hif_softc *scn)
  1749. {
  1750. struct pld_wlan_enable_cfg cfg;
  1751. enum pld_driver_mode mode;
  1752. uint32_t con_mode = hif_get_conparam(scn);
  1753. hif_get_target_ce_config((struct CE_pipe_config **)&cfg.ce_tgt_cfg,
  1754. &cfg.num_ce_tgt_cfg,
  1755. (struct service_to_pipe **)&cfg.ce_svc_cfg,
  1756. &cfg.num_ce_svc_pipe_cfg,
  1757. (struct shadow_reg_cfg **)&cfg.shadow_reg_cfg,
  1758. &cfg.num_shadow_reg_cfg);
  1759. /* translate from structure size to array size */
  1760. cfg.num_ce_tgt_cfg /= sizeof(struct CE_pipe_config);
  1761. cfg.num_ce_svc_pipe_cfg /= sizeof(struct service_to_pipe);
  1762. cfg.num_shadow_reg_cfg /= sizeof(struct shadow_reg_cfg);
  1763. if (QDF_GLOBAL_FTM_MODE == con_mode)
  1764. mode = PLD_FTM;
  1765. else if (QDF_IS_EPPING_ENABLED(con_mode))
  1766. mode = PLD_EPPING;
  1767. else
  1768. mode = PLD_MISSION;
  1769. if (BYPASS_QMI)
  1770. return 0;
  1771. else
  1772. return pld_wlan_enable(scn->qdf_dev->dev, &cfg,
  1773. mode, QWLAN_VERSIONSTR);
  1774. }
  1775. #define CE_EPPING_USES_IRQ true
  1776. /**
  1777. * hif_ce_prepare_config() - load the correct static tables.
  1778. * @scn: hif context
  1779. *
  1780. * Epping uses different static attribute tables than mission mode.
  1781. */
  1782. void hif_ce_prepare_config(struct hif_softc *scn)
  1783. {
  1784. uint32_t mode = hif_get_conparam(scn);
  1785. struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
  1786. struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
  1787. /* if epping is enabled we need to use the epping configuration. */
  1788. if (QDF_IS_EPPING_ENABLED(mode)) {
  1789. if (CE_EPPING_USES_IRQ)
  1790. host_ce_config = host_ce_config_wlan_epping_irq;
  1791. else
  1792. host_ce_config = host_ce_config_wlan_epping_poll;
  1793. target_ce_config = target_ce_config_wlan_epping;
  1794. target_ce_config_sz = sizeof(target_ce_config_wlan_epping);
  1795. target_service_to_ce_map =
  1796. target_service_to_ce_map_wlan_epping;
  1797. target_service_to_ce_map_sz =
  1798. sizeof(target_service_to_ce_map_wlan_epping);
  1799. target_shadow_reg_cfg = target_shadow_reg_cfg_epping;
  1800. shadow_cfg_sz = sizeof(target_shadow_reg_cfg_epping);
  1801. }
  1802. switch (tgt_info->target_type) {
  1803. default:
  1804. break;
  1805. case TARGET_TYPE_AR900B:
  1806. case TARGET_TYPE_QCA9984:
  1807. case TARGET_TYPE_IPQ4019:
  1808. case TARGET_TYPE_QCA9888:
  1809. host_ce_config = host_ce_config_wlan_ar900b;
  1810. target_ce_config = target_ce_config_wlan_ar900b;
  1811. target_ce_config_sz = sizeof(target_ce_config_wlan_ar900b);
  1812. target_service_to_ce_map = target_service_to_ce_map_ar900b;
  1813. target_service_to_ce_map_sz =
  1814. sizeof(target_service_to_ce_map_ar900b);
  1815. break;
  1816. case TARGET_TYPE_AR9888:
  1817. case TARGET_TYPE_AR9888V2:
  1818. host_ce_config = host_ce_config_wlan_ar9888;
  1819. target_ce_config = target_ce_config_wlan_ar9888;
  1820. target_ce_config_sz = sizeof(target_ce_config_wlan_ar9888);
  1821. target_service_to_ce_map = target_service_to_ce_map_ar900b;
  1822. target_service_to_ce_map_sz =
  1823. sizeof(target_service_to_ce_map_ar900b);
  1824. break;
  1825. }
  1826. }
  1827. /**
  1828. * hif_ce_open() - do ce specific allocations
  1829. * @hif_sc: pointer to hif context
  1830. *
  1831. * return: 0 for success or QDF_STATUS_E_NOMEM
  1832. */
  1833. QDF_STATUS hif_ce_open(struct hif_softc *hif_sc)
  1834. {
  1835. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
  1836. qdf_spinlock_create(&hif_state->keep_awake_lock);
  1837. return QDF_STATUS_SUCCESS;
  1838. }
  1839. /**
  1840. * hif_ce_close() - do ce specific free
  1841. * @hif_sc: pointer to hif context
  1842. */
  1843. void hif_ce_close(struct hif_softc *hif_sc)
  1844. {
  1845. }
  1846. /**
  1847. * hif_unconfig_ce() - ensure resources from hif_config_ce are freed
  1848. * @hif_sc: hif context
  1849. *
  1850. * uses state variables to support cleaning up when hif_config_ce fails.
  1851. */
  1852. void hif_unconfig_ce(struct hif_softc *hif_sc)
  1853. {
  1854. int pipe_num;
  1855. struct HIF_CE_pipe_info *pipe_info;
  1856. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_sc);
  1857. for (pipe_num = 0; pipe_num < hif_sc->ce_count; pipe_num++) {
  1858. pipe_info = &hif_state->pipe_info[pipe_num];
  1859. if (pipe_info->ce_hdl) {
  1860. ce_unregister_irq(hif_state, (1 << pipe_num));
  1861. hif_sc->request_irq_done = false;
  1862. ce_fini(pipe_info->ce_hdl);
  1863. pipe_info->ce_hdl = NULL;
  1864. pipe_info->buf_sz = 0;
  1865. }
  1866. }
  1867. if (hif_sc->athdiag_procfs_inited) {
  1868. athdiag_procfs_remove();
  1869. hif_sc->athdiag_procfs_inited = false;
  1870. }
  1871. }
  1872. #ifdef CONFIG_BYPASS_QMI
  1873. #define FW_SHARED_MEM (2 * 1024 * 1024)
  1874. /**
  1875. * hif_post_static_buf_to_target() - post static buffer to WLAN FW
  1876. * @scn: pointer to HIF structure
  1877. *
  1878. * WLAN FW needs 2MB memory from DDR when QMI is disabled.
  1879. *
  1880. * Return: void
  1881. */
  1882. static void hif_post_static_buf_to_target(struct hif_softc *scn)
  1883. {
  1884. void *target_va;
  1885. phys_addr_t target_pa;
  1886. target_va = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  1887. FW_SHARED_MEM, &target_pa);
  1888. if (NULL == target_va) {
  1889. HIF_TRACE("Memory allocation failed could not post target buf");
  1890. return;
  1891. }
  1892. hif_write32_mb(scn->mem + BYPASS_QMI_TEMP_REGISTER, target_pa);
  1893. HIF_TRACE("target va %pK target pa %pa", target_va, &target_pa);
  1894. }
  1895. #else
  1896. static inline void hif_post_static_buf_to_target(struct hif_softc *scn)
  1897. {
  1898. return;
  1899. }
  1900. #endif
  1901. /**
  1902. * hif_config_ce() - configure copy engines
  1903. * @scn: hif context
  1904. *
  1905. * Prepares fw, copy engine hardware and host sw according
  1906. * to the attributes selected by hif_ce_prepare_config.
  1907. *
  1908. * also calls athdiag_procfs_init
  1909. *
  1910. * return: 0 for success nonzero for failure.
  1911. */
  1912. int hif_config_ce(struct hif_softc *scn)
  1913. {
  1914. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  1915. struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
  1916. struct HIF_CE_pipe_info *pipe_info;
  1917. int pipe_num;
  1918. struct CE_state *ce_state;
  1919. #ifdef ADRASTEA_SHADOW_REGISTERS
  1920. int i;
  1921. #endif
  1922. QDF_STATUS rv = QDF_STATUS_SUCCESS;
  1923. scn->notice_send = true;
  1924. hif_post_static_buf_to_target(scn);
  1925. hif_state->fw_indicator_address = FW_INDICATOR_ADDRESS;
  1926. hif_config_rri_on_ddr(scn);
  1927. /* During CE initializtion */
  1928. scn->ce_count = HOST_CE_COUNT;
  1929. for (pipe_num = 0; pipe_num < scn->ce_count; pipe_num++) {
  1930. struct CE_attr *attr;
  1931. pipe_info = &hif_state->pipe_info[pipe_num];
  1932. pipe_info->pipe_num = pipe_num;
  1933. pipe_info->HIF_CE_state = hif_state;
  1934. attr = &host_ce_config[pipe_num];
  1935. pipe_info->ce_hdl = ce_init(scn, pipe_num, attr);
  1936. ce_state = scn->ce_id_to_state[pipe_num];
  1937. QDF_ASSERT(pipe_info->ce_hdl != NULL);
  1938. if (pipe_info->ce_hdl == NULL) {
  1939. rv = QDF_STATUS_E_FAILURE;
  1940. A_TARGET_ACCESS_UNLIKELY(scn);
  1941. goto err;
  1942. }
  1943. if (pipe_num == DIAG_CE_ID) {
  1944. /* Reserve the ultimate CE for
  1945. * Diagnostic Window support */
  1946. hif_state->ce_diag = pipe_info->ce_hdl;
  1947. continue;
  1948. }
  1949. if (hif_is_nss_wifi_enabled(scn) && ce_state &&
  1950. (ce_state->htt_rx_data))
  1951. continue;
  1952. pipe_info->buf_sz = (qdf_size_t) (attr->src_sz_max);
  1953. qdf_spinlock_create(&pipe_info->recv_bufs_needed_lock);
  1954. if (attr->dest_nentries > 0) {
  1955. atomic_set(&pipe_info->recv_bufs_needed,
  1956. init_buffer_count(attr->dest_nentries - 1));
  1957. } else {
  1958. atomic_set(&pipe_info->recv_bufs_needed, 0);
  1959. }
  1960. ce_tasklet_init(hif_state, (1 << pipe_num));
  1961. ce_register_irq(hif_state, (1 << pipe_num));
  1962. scn->request_irq_done = true;
  1963. }
  1964. if (athdiag_procfs_init(scn) != 0) {
  1965. A_TARGET_ACCESS_UNLIKELY(scn);
  1966. goto err;
  1967. }
  1968. scn->athdiag_procfs_inited = true;
  1969. HIF_INFO_MED("%s: ce_init done", __func__);
  1970. init_tasklet_workers(hif_hdl);
  1971. HIF_TRACE("%s: X, ret = %d", __func__, rv);
  1972. #ifdef ADRASTEA_SHADOW_REGISTERS
  1973. HIF_INFO("%s, Using Shadow Registers instead of CE Registers", __func__);
  1974. for (i = 0; i < NUM_SHADOW_REGISTERS; i++) {
  1975. HIF_INFO("%s Shadow Register%d is mapped to address %x",
  1976. __func__, i,
  1977. (A_TARGET_READ(scn, (SHADOW_ADDRESS(i))) << 2));
  1978. }
  1979. #endif
  1980. return rv != QDF_STATUS_SUCCESS;
  1981. err:
  1982. /* Failure, so clean up */
  1983. hif_unconfig_ce(scn);
  1984. HIF_TRACE("%s: X, ret = %d", __func__, rv);
  1985. return QDF_STATUS_SUCCESS != QDF_STATUS_E_FAILURE;
  1986. }
  1987. #ifdef WLAN_FEATURE_FASTPATH
  1988. /**
  1989. * hif_ce_fastpath_cb_register() - Register callback for fastpath msg handler
  1990. * @handler: Callback funtcion
  1991. * @context: handle for callback function
  1992. *
  1993. * Return: QDF_STATUS_SUCCESS on success or QDF_STATUS_E_FAILURE
  1994. */
  1995. int hif_ce_fastpath_cb_register(struct hif_opaque_softc *hif_ctx,
  1996. fastpath_msg_handler handler,
  1997. void *context)
  1998. {
  1999. struct CE_state *ce_state;
  2000. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  2001. int i;
  2002. if (!scn) {
  2003. HIF_ERROR("%s: scn is NULL", __func__);
  2004. QDF_ASSERT(0);
  2005. return QDF_STATUS_E_FAILURE;
  2006. }
  2007. if (!scn->fastpath_mode_on) {
  2008. HIF_WARN("%s: Fastpath mode disabled", __func__);
  2009. return QDF_STATUS_E_FAILURE;
  2010. }
  2011. for (i = 0; i < scn->ce_count; i++) {
  2012. ce_state = scn->ce_id_to_state[i];
  2013. if (ce_state->htt_rx_data) {
  2014. ce_state->fastpath_handler = handler;
  2015. ce_state->context = context;
  2016. }
  2017. }
  2018. return QDF_STATUS_SUCCESS;
  2019. }
  2020. #endif
  2021. #ifdef IPA_OFFLOAD
  2022. /**
  2023. * hif_ce_ipa_get_ce_resource() - get uc resource on hif
  2024. * @scn: bus context
  2025. * @ce_sr_base_paddr: copyengine source ring base physical address
  2026. * @ce_sr_ring_size: copyengine source ring size
  2027. * @ce_reg_paddr: copyengine register physical address
  2028. *
  2029. * IPA micro controller data path offload feature enabled,
  2030. * HIF should release copy engine related resource information to IPA UC
  2031. * IPA UC will access hardware resource with released information
  2032. *
  2033. * Return: None
  2034. */
  2035. void hif_ce_ipa_get_ce_resource(struct hif_softc *scn,
  2036. qdf_dma_addr_t *ce_sr_base_paddr,
  2037. uint32_t *ce_sr_ring_size,
  2038. qdf_dma_addr_t *ce_reg_paddr)
  2039. {
  2040. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  2041. struct HIF_CE_pipe_info *pipe_info =
  2042. &(hif_state->pipe_info[HIF_PCI_IPA_UC_ASSIGNED_CE]);
  2043. struct CE_handle *ce_hdl = pipe_info->ce_hdl;
  2044. ce_ipa_get_resource(ce_hdl, ce_sr_base_paddr, ce_sr_ring_size,
  2045. ce_reg_paddr);
  2046. return;
  2047. }
  2048. #endif /* IPA_OFFLOAD */
  2049. #ifdef ADRASTEA_SHADOW_REGISTERS
  2050. /*
  2051. Current shadow register config
  2052. -----------------------------------------------------------
  2053. Shadow Register | CE | src/dst write index
  2054. -----------------------------------------------------------
  2055. 0 | 0 | src
  2056. 1 No Config - Doesn't point to anything
  2057. 2 No Config - Doesn't point to anything
  2058. 3 | 3 | src
  2059. 4 | 4 | src
  2060. 5 | 5 | src
  2061. 6 No Config - Doesn't point to anything
  2062. 7 | 7 | src
  2063. 8 No Config - Doesn't point to anything
  2064. 9 No Config - Doesn't point to anything
  2065. 10 No Config - Doesn't point to anything
  2066. 11 No Config - Doesn't point to anything
  2067. -----------------------------------------------------------
  2068. 12 No Config - Doesn't point to anything
  2069. 13 | 1 | dst
  2070. 14 | 2 | dst
  2071. 15 No Config - Doesn't point to anything
  2072. 16 No Config - Doesn't point to anything
  2073. 17 No Config - Doesn't point to anything
  2074. 18 No Config - Doesn't point to anything
  2075. 19 | 7 | dst
  2076. 20 | 8 | dst
  2077. 21 No Config - Doesn't point to anything
  2078. 22 No Config - Doesn't point to anything
  2079. 23 No Config - Doesn't point to anything
  2080. -----------------------------------------------------------
  2081. ToDo - Move shadow register config to following in the future
  2082. This helps free up a block of shadow registers towards the end.
  2083. Can be used for other purposes
  2084. -----------------------------------------------------------
  2085. Shadow Register | CE | src/dst write index
  2086. -----------------------------------------------------------
  2087. 0 | 0 | src
  2088. 1 | 3 | src
  2089. 2 | 4 | src
  2090. 3 | 5 | src
  2091. 4 | 7 | src
  2092. -----------------------------------------------------------
  2093. 5 | 1 | dst
  2094. 6 | 2 | dst
  2095. 7 | 7 | dst
  2096. 8 | 8 | dst
  2097. -----------------------------------------------------------
  2098. 9 No Config - Doesn't point to anything
  2099. 12 No Config - Doesn't point to anything
  2100. 13 No Config - Doesn't point to anything
  2101. 14 No Config - Doesn't point to anything
  2102. 15 No Config - Doesn't point to anything
  2103. 16 No Config - Doesn't point to anything
  2104. 17 No Config - Doesn't point to anything
  2105. 18 No Config - Doesn't point to anything
  2106. 19 No Config - Doesn't point to anything
  2107. 20 No Config - Doesn't point to anything
  2108. 21 No Config - Doesn't point to anything
  2109. 22 No Config - Doesn't point to anything
  2110. 23 No Config - Doesn't point to anything
  2111. -----------------------------------------------------------
  2112. */
  2113. u32 shadow_sr_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
  2114. {
  2115. u32 addr = 0;
  2116. u32 ce = COPY_ENGINE_ID(ctrl_addr);
  2117. switch (ce) {
  2118. case 0:
  2119. addr = SHADOW_VALUE0;
  2120. break;
  2121. case 3:
  2122. addr = SHADOW_VALUE3;
  2123. break;
  2124. case 4:
  2125. addr = SHADOW_VALUE4;
  2126. break;
  2127. case 5:
  2128. addr = SHADOW_VALUE5;
  2129. break;
  2130. case 7:
  2131. addr = SHADOW_VALUE7;
  2132. break;
  2133. default:
  2134. HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
  2135. QDF_ASSERT(0);
  2136. }
  2137. return addr;
  2138. }
  2139. u32 shadow_dst_wr_ind_addr(struct hif_softc *scn, u32 ctrl_addr)
  2140. {
  2141. u32 addr = 0;
  2142. u32 ce = COPY_ENGINE_ID(ctrl_addr);
  2143. switch (ce) {
  2144. case 1:
  2145. addr = SHADOW_VALUE13;
  2146. break;
  2147. case 2:
  2148. addr = SHADOW_VALUE14;
  2149. break;
  2150. case 5:
  2151. addr = SHADOW_VALUE17;
  2152. break;
  2153. case 7:
  2154. addr = SHADOW_VALUE19;
  2155. break;
  2156. case 8:
  2157. addr = SHADOW_VALUE20;
  2158. break;
  2159. case 9:
  2160. addr = SHADOW_VALUE21;
  2161. break;
  2162. case 10:
  2163. addr = SHADOW_VALUE22;
  2164. break;
  2165. case 11:
  2166. addr = SHADOW_VALUE23;
  2167. break;
  2168. default:
  2169. HIF_ERROR("invalid CE ctrl_addr (CE=%d)", ce);
  2170. QDF_ASSERT(0);
  2171. }
  2172. return addr;
  2173. }
  2174. #endif
  2175. #if defined(FEATURE_LRO)
  2176. /**
  2177. * ce_lro_flush_cb_register() - register the LRO flush
  2178. * callback
  2179. * @scn: HIF context
  2180. * @handler: callback function
  2181. * @data: opaque data pointer to be passed back
  2182. *
  2183. * Store the LRO flush callback provided
  2184. *
  2185. * Return: Number of instances the callback is registered for
  2186. */
  2187. int ce_lro_flush_cb_register(struct hif_opaque_softc *hif_hdl,
  2188. void (handler)(void *), void *data)
  2189. {
  2190. int rc = 0;
  2191. int i;
  2192. struct CE_state *ce_state;
  2193. struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
  2194. QDF_ASSERT(scn != NULL);
  2195. if (scn != NULL) {
  2196. for (i = 0; i < scn->ce_count; i++) {
  2197. ce_state = scn->ce_id_to_state[i];
  2198. if ((ce_state != NULL) && (ce_state->htt_rx_data)) {
  2199. ce_state->lro_flush_cb = handler;
  2200. ce_state->lro_data = data;
  2201. rc++;
  2202. }
  2203. }
  2204. } else {
  2205. HIF_ERROR("%s: hif_state NULL!", __func__);
  2206. }
  2207. return rc;
  2208. }
  2209. /**
  2210. * ce_lro_flush_cb_deregister() - deregister the LRO flush
  2211. * callback
  2212. * @scn: HIF context
  2213. *
  2214. * Remove the LRO flush callback
  2215. *
  2216. * Return: Number of instances the callback is de-registered
  2217. */
  2218. int ce_lro_flush_cb_deregister(struct hif_opaque_softc *hif_hdl)
  2219. {
  2220. int rc = 0;
  2221. int i;
  2222. struct CE_state *ce_state;
  2223. struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
  2224. QDF_ASSERT(scn != NULL);
  2225. if (scn != NULL) {
  2226. for (i = 0; i < scn->ce_count; i++) {
  2227. ce_state = scn->ce_id_to_state[i];
  2228. if ((ce_state != NULL) && (ce_state->htt_rx_data)) {
  2229. ce_state->lro_flush_cb = NULL;
  2230. ce_state->lro_data = NULL;
  2231. rc++;
  2232. }
  2233. }
  2234. } else {
  2235. HIF_ERROR("%s: hif_state NULL!", __func__);
  2236. }
  2237. return rc;
  2238. }
  2239. #endif
  2240. /**
  2241. * hif_map_service_to_pipe() - returns the ce ids pertaining to
  2242. * this service
  2243. * @scn: hif_softc pointer.
  2244. * @svc_id: Service ID for which the mapping is needed.
  2245. * @ul_pipe: address of the container in which ul pipe is returned.
  2246. * @dl_pipe: address of the container in which dl pipe is returned.
  2247. * @ul_is_polled: address of the container in which a bool
  2248. * indicating if the UL CE for this service
  2249. * is polled is returned.
  2250. * @dl_is_polled: address of the container in which a bool
  2251. * indicating if the DL CE for this service
  2252. * is polled is returned.
  2253. *
  2254. * Return: Indicates whether the service has been found in the table.
  2255. * Upon return, ul_is_polled is updated only if ul_pipe is updated.
  2256. * There will be warning logs if either leg has not been updated
  2257. * because it missed the entry in the table (but this is not an err).
  2258. */
  2259. int hif_map_service_to_pipe(struct hif_opaque_softc *hif_hdl, uint16_t svc_id,
  2260. uint8_t *ul_pipe, uint8_t *dl_pipe, int *ul_is_polled,
  2261. int *dl_is_polled)
  2262. {
  2263. int status = QDF_STATUS_E_INVAL;
  2264. unsigned int i;
  2265. struct service_to_pipe element;
  2266. struct service_to_pipe *tgt_svc_map_to_use;
  2267. size_t sz_tgt_svc_map_to_use;
  2268. struct hif_softc *scn = HIF_GET_SOFTC(hif_hdl);
  2269. uint32_t mode = hif_get_conparam(scn);
  2270. struct hif_target_info *tgt_info = hif_get_target_info_handle(hif_hdl);
  2271. bool dl_updated = false;
  2272. bool ul_updated = false;
  2273. if (QDF_IS_EPPING_ENABLED(mode)) {
  2274. tgt_svc_map_to_use = target_service_to_ce_map_wlan_epping;
  2275. sz_tgt_svc_map_to_use =
  2276. sizeof(target_service_to_ce_map_wlan_epping);
  2277. } else {
  2278. switch (tgt_info->target_type) {
  2279. default:
  2280. tgt_svc_map_to_use = target_service_to_ce_map_wlan;
  2281. sz_tgt_svc_map_to_use =
  2282. sizeof(target_service_to_ce_map_wlan);
  2283. break;
  2284. case TARGET_TYPE_AR900B:
  2285. case TARGET_TYPE_QCA9984:
  2286. case TARGET_TYPE_IPQ4019:
  2287. case TARGET_TYPE_QCA9888:
  2288. case TARGET_TYPE_AR9888:
  2289. case TARGET_TYPE_AR9888V2:
  2290. tgt_svc_map_to_use = target_service_to_ce_map_ar900b;
  2291. sz_tgt_svc_map_to_use =
  2292. sizeof(target_service_to_ce_map_ar900b);
  2293. break;
  2294. }
  2295. }
  2296. *dl_is_polled = 0; /* polling for received messages not supported */
  2297. for (i = 0; i < (sz_tgt_svc_map_to_use/sizeof(element)); i++) {
  2298. memcpy(&element, &tgt_svc_map_to_use[i], sizeof(element));
  2299. if (element.service_id == svc_id) {
  2300. if (element.pipedir == PIPEDIR_OUT) {
  2301. *ul_pipe = element.pipenum;
  2302. *ul_is_polled =
  2303. (host_ce_config[*ul_pipe].flags &
  2304. CE_ATTR_DISABLE_INTR) != 0;
  2305. ul_updated = true;
  2306. } else if (element.pipedir == PIPEDIR_IN) {
  2307. *dl_pipe = element.pipenum;
  2308. dl_updated = true;
  2309. }
  2310. status = QDF_STATUS_SUCCESS;
  2311. }
  2312. }
  2313. if (ul_updated == false)
  2314. HIF_WARN("%s: ul pipe is NOT updated for service %d",
  2315. __func__, svc_id);
  2316. if (dl_updated == false)
  2317. HIF_WARN("%s: dl pipe is NOT updated for service %d",
  2318. __func__, svc_id);
  2319. return status;
  2320. }
  2321. #ifdef SHADOW_REG_DEBUG
  2322. inline uint32_t DEBUG_CE_SRC_RING_READ_IDX_GET(struct hif_softc *scn,
  2323. uint32_t CE_ctrl_addr)
  2324. {
  2325. uint32_t read_from_hw, srri_from_ddr = 0;
  2326. read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_SRRI_ADDRESS);
  2327. srri_from_ddr = SRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
  2328. if (read_from_hw != srri_from_ddr) {
  2329. HIF_ERROR("%s: error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
  2330. __func__, srri_from_ddr, read_from_hw,
  2331. CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
  2332. QDF_ASSERT(0);
  2333. }
  2334. return srri_from_ddr;
  2335. }
  2336. inline uint32_t DEBUG_CE_DEST_RING_READ_IDX_GET(struct hif_softc *scn,
  2337. uint32_t CE_ctrl_addr)
  2338. {
  2339. uint32_t read_from_hw, drri_from_ddr = 0;
  2340. read_from_hw = A_TARGET_READ(scn, CE_ctrl_addr + CURRENT_DRRI_ADDRESS);
  2341. drri_from_ddr = DRRI_FROM_DDR_ADDR(VADDR_FOR_CE(scn, CE_ctrl_addr));
  2342. if (read_from_hw != drri_from_ddr) {
  2343. HIF_ERROR("error: read from ddr = %d actual read from register = %d, CE_MISC_INT_STATUS_GET = 0x%x",
  2344. drri_from_ddr, read_from_hw,
  2345. CE_MISC_INT_STATUS_GET(scn, CE_ctrl_addr));
  2346. QDF_ASSERT(0);
  2347. }
  2348. return drri_from_ddr;
  2349. }
  2350. #endif
  2351. #ifdef ADRASTEA_RRI_ON_DDR
  2352. /**
  2353. * hif_get_src_ring_read_index(): Called to get the SRRI
  2354. *
  2355. * @scn: hif_softc pointer
  2356. * @CE_ctrl_addr: base address of the CE whose RRI is to be read
  2357. *
  2358. * This function returns the SRRI to the caller. For CEs that
  2359. * dont have interrupts enabled, we look at the DDR based SRRI
  2360. *
  2361. * Return: SRRI
  2362. */
  2363. inline unsigned int hif_get_src_ring_read_index(struct hif_softc *scn,
  2364. uint32_t CE_ctrl_addr)
  2365. {
  2366. struct CE_attr attr;
  2367. attr = host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
  2368. if (attr.flags & CE_ATTR_DISABLE_INTR)
  2369. return CE_SRC_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
  2370. else
  2371. return A_TARGET_READ(scn,
  2372. (CE_ctrl_addr) + CURRENT_SRRI_ADDRESS);
  2373. }
  2374. /**
  2375. * hif_get_dst_ring_read_index(): Called to get the DRRI
  2376. *
  2377. * @scn: hif_softc pointer
  2378. * @CE_ctrl_addr: base address of the CE whose RRI is to be read
  2379. *
  2380. * This function returns the DRRI to the caller. For CEs that
  2381. * dont have interrupts enabled, we look at the DDR based DRRI
  2382. *
  2383. * Return: DRRI
  2384. */
  2385. inline unsigned int hif_get_dst_ring_read_index(struct hif_softc *scn,
  2386. uint32_t CE_ctrl_addr)
  2387. {
  2388. struct CE_attr attr;
  2389. attr = host_ce_config[COPY_ENGINE_ID(CE_ctrl_addr)];
  2390. if (attr.flags & CE_ATTR_DISABLE_INTR)
  2391. return CE_DEST_RING_READ_IDX_GET_FROM_DDR(scn, CE_ctrl_addr);
  2392. else
  2393. return A_TARGET_READ(scn,
  2394. (CE_ctrl_addr) + CURRENT_DRRI_ADDRESS);
  2395. }
  2396. /**
  2397. * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
  2398. *
  2399. * @scn: hif_softc pointer
  2400. *
  2401. * This function allocates non cached memory on ddr and sends
  2402. * the physical address of this memory to the CE hardware. The
  2403. * hardware updates the RRI on this particular location.
  2404. *
  2405. * Return: None
  2406. */
  2407. static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
  2408. {
  2409. unsigned int i;
  2410. qdf_dma_addr_t paddr_rri_on_ddr;
  2411. uint32_t high_paddr, low_paddr;
  2412. scn->vaddr_rri_on_ddr =
  2413. (uint32_t *)qdf_mem_alloc_consistent(scn->qdf_dev,
  2414. scn->qdf_dev->dev, (CE_COUNT*sizeof(uint32_t)),
  2415. &paddr_rri_on_ddr);
  2416. low_paddr = BITS0_TO_31(paddr_rri_on_ddr);
  2417. high_paddr = BITS32_TO_35(paddr_rri_on_ddr);
  2418. HIF_INFO("%s using srri and drri from DDR", __func__);
  2419. WRITE_CE_DDR_ADDRESS_FOR_RRI_LOW(scn, low_paddr);
  2420. WRITE_CE_DDR_ADDRESS_FOR_RRI_HIGH(scn, high_paddr);
  2421. for (i = 0; i < CE_COUNT; i++)
  2422. CE_IDX_UPD_EN_SET(scn, CE_BASE_ADDRESS(i));
  2423. qdf_mem_zero(scn->vaddr_rri_on_ddr, CE_COUNT*sizeof(uint32_t));
  2424. return;
  2425. }
  2426. #else
  2427. /**
  2428. * hif_config_rri_on_ddr(): Configure the RRI on DDR mechanism
  2429. *
  2430. * @scn: hif_softc pointer
  2431. *
  2432. * This is a dummy implementation for platforms that don't
  2433. * support this functionality.
  2434. *
  2435. * Return: None
  2436. */
  2437. static inline void hif_config_rri_on_ddr(struct hif_softc *scn)
  2438. {
  2439. return;
  2440. }
  2441. #endif
  2442. /**
  2443. * hif_dump_ce_registers() - dump ce registers
  2444. * @scn: hif_opaque_softc pointer.
  2445. *
  2446. * Output the copy engine registers
  2447. *
  2448. * Return: 0 for success or error code
  2449. */
  2450. int hif_dump_ce_registers(struct hif_softc *scn)
  2451. {
  2452. struct hif_opaque_softc *hif_hdl = GET_HIF_OPAQUE_HDL(scn);
  2453. uint32_t ce_reg_address = CE0_BASE_ADDRESS;
  2454. uint32_t ce_reg_values[CE_USEFUL_SIZE >> 2];
  2455. uint32_t ce_reg_word_size = CE_USEFUL_SIZE >> 2;
  2456. uint16_t i;
  2457. QDF_STATUS status;
  2458. for (i = 0; i < scn->ce_count; i++, ce_reg_address += CE_OFFSET) {
  2459. if (scn->ce_id_to_state[i] == NULL) {
  2460. HIF_DBG("CE%d not used.", i);
  2461. continue;
  2462. }
  2463. status = hif_diag_read_mem(hif_hdl, ce_reg_address,
  2464. (uint8_t *) &ce_reg_values[0],
  2465. ce_reg_word_size * sizeof(uint32_t));
  2466. if (status != QDF_STATUS_SUCCESS) {
  2467. HIF_ERROR("Dumping CE register failed!");
  2468. return -EACCES;
  2469. }
  2470. HIF_ERROR("CE%d Registers:", i);
  2471. qdf_trace_hex_dump(QDF_MODULE_ID_HIF, QDF_TRACE_LEVEL_DEBUG,
  2472. (uint8_t *) &ce_reg_values[0],
  2473. ce_reg_word_size * sizeof(uint32_t));
  2474. }
  2475. return 0;
  2476. }
  2477. #ifdef QCA_NSS_WIFI_OFFLOAD_SUPPORT
  2478. struct hif_pipe_addl_info *hif_get_addl_pipe_info(struct hif_opaque_softc *osc,
  2479. struct hif_pipe_addl_info *hif_info, uint32_t pipe)
  2480. {
  2481. struct hif_softc *scn = HIF_GET_SOFTC(osc);
  2482. struct hif_pci_softc *sc = HIF_GET_PCI_SOFTC(scn);
  2483. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(osc);
  2484. struct HIF_CE_pipe_info *pipe_info = &(hif_state->pipe_info[pipe]);
  2485. struct CE_handle *ce_hdl = pipe_info->ce_hdl;
  2486. struct CE_state *ce_state = (struct CE_state *)ce_hdl;
  2487. struct CE_ring_state *src_ring = ce_state->src_ring;
  2488. struct CE_ring_state *dest_ring = ce_state->dest_ring;
  2489. if (src_ring) {
  2490. hif_info->ul_pipe.nentries = src_ring->nentries;
  2491. hif_info->ul_pipe.nentries_mask = src_ring->nentries_mask;
  2492. hif_info->ul_pipe.sw_index = src_ring->sw_index;
  2493. hif_info->ul_pipe.write_index = src_ring->write_index;
  2494. hif_info->ul_pipe.hw_index = src_ring->hw_index;
  2495. hif_info->ul_pipe.base_addr_CE_space =
  2496. src_ring->base_addr_CE_space;
  2497. hif_info->ul_pipe.base_addr_owner_space =
  2498. src_ring->base_addr_owner_space;
  2499. }
  2500. if (dest_ring) {
  2501. hif_info->dl_pipe.nentries = dest_ring->nentries;
  2502. hif_info->dl_pipe.nentries_mask = dest_ring->nentries_mask;
  2503. hif_info->dl_pipe.sw_index = dest_ring->sw_index;
  2504. hif_info->dl_pipe.write_index = dest_ring->write_index;
  2505. hif_info->dl_pipe.hw_index = dest_ring->hw_index;
  2506. hif_info->dl_pipe.base_addr_CE_space =
  2507. dest_ring->base_addr_CE_space;
  2508. hif_info->dl_pipe.base_addr_owner_space =
  2509. dest_ring->base_addr_owner_space;
  2510. }
  2511. hif_info->pci_mem = pci_resource_start(sc->pdev, 0);
  2512. hif_info->ctrl_addr = ce_state->ctrl_addr;
  2513. return hif_info;
  2514. }
  2515. uint32_t hif_set_nss_wifiol_mode(struct hif_opaque_softc *osc, uint32_t mode)
  2516. {
  2517. struct hif_softc *scn = HIF_GET_SOFTC(osc);
  2518. scn->nss_wifi_ol_mode = mode;
  2519. return 0;
  2520. }
  2521. #endif
  2522. void hif_disable_interrupt(struct hif_opaque_softc *osc, uint32_t pipe_num)
  2523. {
  2524. struct hif_softc *scn = HIF_GET_SOFTC(osc);
  2525. struct CE_state *CE_state = scn->ce_id_to_state[pipe_num];
  2526. uint32_t ctrl_addr = CE_state->ctrl_addr;
  2527. Q_TARGET_ACCESS_BEGIN(scn);
  2528. CE_COPY_COMPLETE_INTR_DISABLE(scn, ctrl_addr);
  2529. Q_TARGET_ACCESS_END(scn);
  2530. }
  2531. /**
  2532. * hif_fw_event_handler() - hif fw event handler
  2533. * @hif_state: pointer to hif ce state structure
  2534. *
  2535. * Process fw events and raise HTC callback to process fw events.
  2536. *
  2537. * Return: none
  2538. */
  2539. static inline void hif_fw_event_handler(struct HIF_CE_state *hif_state)
  2540. {
  2541. struct hif_msg_callbacks *msg_callbacks =
  2542. &hif_state->msg_callbacks_current;
  2543. if (!msg_callbacks->fwEventHandler)
  2544. return;
  2545. msg_callbacks->fwEventHandler(msg_callbacks->Context,
  2546. QDF_STATUS_E_FAILURE);
  2547. }
  2548. #ifndef QCA_WIFI_3_0
  2549. /**
  2550. * hif_fw_interrupt_handler() - FW interrupt handler
  2551. * @irq: irq number
  2552. * @arg: the user pointer
  2553. *
  2554. * Called from the PCI interrupt handler when a
  2555. * firmware-generated interrupt to the Host.
  2556. *
  2557. * Return: status of handled irq
  2558. */
  2559. irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
  2560. {
  2561. struct hif_softc *scn = arg;
  2562. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  2563. uint32_t fw_indicator_address, fw_indicator;
  2564. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  2565. return ATH_ISR_NOSCHED;
  2566. fw_indicator_address = hif_state->fw_indicator_address;
  2567. /* For sudden unplug this will return ~0 */
  2568. fw_indicator = A_TARGET_READ(scn, fw_indicator_address);
  2569. if ((fw_indicator != ~0) && (fw_indicator & FW_IND_EVENT_PENDING)) {
  2570. /* ACK: clear Target-side pending event */
  2571. A_TARGET_WRITE(scn, fw_indicator_address,
  2572. fw_indicator & ~FW_IND_EVENT_PENDING);
  2573. if (Q_TARGET_ACCESS_END(scn) < 0)
  2574. return ATH_ISR_SCHED;
  2575. if (hif_state->started) {
  2576. hif_fw_event_handler(hif_state);
  2577. } else {
  2578. /*
  2579. * Probable Target failure before we're prepared
  2580. * to handle it. Generally unexpected.
  2581. */
  2582. AR_DEBUG_PRINTF(ATH_DEBUG_ERR,
  2583. ("%s: Early firmware event indicated\n",
  2584. __func__));
  2585. }
  2586. } else {
  2587. if (Q_TARGET_ACCESS_END(scn) < 0)
  2588. return ATH_ISR_SCHED;
  2589. }
  2590. return ATH_ISR_SCHED;
  2591. }
  2592. #else
  2593. irqreturn_t hif_fw_interrupt_handler(int irq, void *arg)
  2594. {
  2595. return ATH_ISR_SCHED;
  2596. }
  2597. #endif /* #ifdef QCA_WIFI_3_0 */
  2598. /**
  2599. * hif_wlan_disable(): call the platform driver to disable wlan
  2600. * @scn: HIF Context
  2601. *
  2602. * This function passes the con_mode to platform driver to disable
  2603. * wlan.
  2604. *
  2605. * Return: void
  2606. */
  2607. void hif_wlan_disable(struct hif_softc *scn)
  2608. {
  2609. enum pld_driver_mode mode;
  2610. uint32_t con_mode = hif_get_conparam(scn);
  2611. if (QDF_GLOBAL_FTM_MODE == con_mode)
  2612. mode = PLD_FTM;
  2613. else if (QDF_IS_EPPING_ENABLED(con_mode))
  2614. mode = PLD_EPPING;
  2615. else
  2616. mode = PLD_MISSION;
  2617. pld_wlan_disable(scn->qdf_dev->dev, mode);
  2618. }