ce_diag.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511
  1. /*
  2. * Copyright (c) 2015-2016 The Linux Foundation. All rights reserved.
  3. *
  4. * Previously licensed under the ISC license by Qualcomm Atheros, Inc.
  5. *
  6. *
  7. * Permission to use, copy, modify, and/or distribute this software for
  8. * any purpose with or without fee is hereby granted, provided that the
  9. * above copyright notice and this permission notice appear in all
  10. * copies.
  11. *
  12. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  13. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  14. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  15. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  16. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  17. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  18. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  19. * PERFORMANCE OF THIS SOFTWARE.
  20. */
  21. /*
  22. * This file was originally distributed by Qualcomm Atheros, Inc.
  23. * under proprietary terms before Copyright ownership was assigned
  24. * to the Linux Foundation.
  25. */
  26. #include "targcfg.h"
  27. #include "qdf_lock.h"
  28. #include "qdf_status.h"
  29. #include "qdf_status.h"
  30. #include <qdf_atomic.h> /* qdf_atomic_read */
  31. #include <targaddrs.h>
  32. #include "hif_io32.h"
  33. #include <hif.h>
  34. #include "regtable.h"
  35. #include <a_debug.h>
  36. #include "hif_main.h"
  37. #include "ce_api.h"
  38. #include "qdf_trace.h"
  39. #include "hif_debug.h"
  40. void
  41. hif_ce_dump_target_memory(struct hif_softc *scn, void *ramdump_base,
  42. uint32_t address, uint32_t size)
  43. {
  44. uint32_t loc = address;
  45. uint32_t val = 0;
  46. uint32_t j = 0;
  47. u8 *temp = ramdump_base;
  48. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  49. return;
  50. while (j < size) {
  51. val = hif_read32_mb(scn->mem + loc + j);
  52. qdf_mem_copy(temp, &val, 4);
  53. j += 4;
  54. temp += 4;
  55. }
  56. Q_TARGET_ACCESS_END(scn);
  57. }
  58. /*
  59. * TBDXXX: Should be a function call specific to each Target-type.
  60. * This convoluted macro converts from Target CPU Virtual Address
  61. * Space to CE Address Space. As part of this process, we
  62. * conservatively fetch the current PCIE_BAR. MOST of the time,
  63. * this should match the upper bits of PCI space for this device;
  64. * but that's not guaranteed.
  65. */
  66. #ifdef QCA_WIFI_3_0
  67. #define TARG_CPU_SPACE_TO_CE_SPACE(pci_addr, addr) \
  68. (scn->mem_pa + addr)
  69. #else
  70. #define TARG_CPU_SPACE_TO_CE_SPACE(pci_addr, addr) \
  71. (((hif_read32_mb((pci_addr) + \
  72. (SOC_CORE_BASE_ADDRESS|CORE_CTRL_ADDRESS)) & 0x7ff) << 21) \
  73. | 0x100000 | ((addr) & 0xfffff))
  74. #endif
  75. #define TARG_CPU_SPACE_TO_CE_SPACE_IPQ4019(pci_addr, addr) \
  76. (hif_read32_mb((pci_addr)+(WIFICMN_PCIE_BAR_REG_ADDRESS)) \
  77. | ((addr) & 0xfffff))
  78. #define TARG_CPU_SPACE_TO_CE_SPACE_AR900B(pci_addr, addr) \
  79. (hif_read32_mb((pci_addr)+(WIFICMN_PCIE_BAR_REG_ADDRESS)) \
  80. | 0x100000 | ((addr) & 0xfffff))
  81. #define SRAM_BASE_ADDRESS 0xc0000
  82. #define SRAM_END_ADDRESS 0x100000
  83. #define WIFI0_IPQ4019_BAR 0xa000000
  84. #define WIFI1_IPQ4019_BAR 0xa800000
  85. /* Wait up to this many Ms for a Diagnostic Access CE operation to complete */
  86. #define DIAG_ACCESS_CE_TIMEOUT_MS 10
  87. /**
  88. * get_ce_phy_addr() - get the physical address of an soc virtual address
  89. * @sc: hif context
  90. * @address: soc virtual address
  91. * @target_type: target type being used.
  92. *
  93. * Return: soc physical address
  94. */
  95. qdf_dma_addr_t get_ce_phy_addr(struct hif_softc *sc, uint32_t address,
  96. unsigned int target_type)
  97. {
  98. qdf_dma_addr_t ce_phy_addr;
  99. struct hif_softc *scn = sc;
  100. unsigned int region = address & 0xfffff;
  101. unsigned int bar = address & 0xfff00000;
  102. unsigned int sramregion = 0;
  103. if ((target_type == TARGET_TYPE_IPQ4019) &&
  104. (region >= SRAM_BASE_ADDRESS && region <= SRAM_END_ADDRESS)
  105. && (bar == WIFI0_IPQ4019_BAR ||
  106. bar == WIFI1_IPQ4019_BAR || bar == 0)) {
  107. sramregion = 1;
  108. }
  109. if ((target_type == TARGET_TYPE_IPQ4019) && sramregion == 1) {
  110. ce_phy_addr =
  111. TARG_CPU_SPACE_TO_CE_SPACE_IPQ4019(sc->mem, address);
  112. } else if ((target_type == TARGET_TYPE_AR900B) ||
  113. (target_type == TARGET_TYPE_QCA9984) ||
  114. (target_type == TARGET_TYPE_IPQ4019) ||
  115. (target_type == TARGET_TYPE_QCA9888)) {
  116. ce_phy_addr =
  117. TARG_CPU_SPACE_TO_CE_SPACE_AR900B(sc->mem, address);
  118. } else {
  119. ce_phy_addr =
  120. TARG_CPU_SPACE_TO_CE_SPACE(sc->mem, address);
  121. }
  122. return ce_phy_addr;
  123. }
  124. /*
  125. * Diagnostic read/write access is provided for startup/config/debug usage.
  126. * Caller must guarantee proper alignment, when applicable, and single user
  127. * at any moment.
  128. */
  129. #define FW_SRAM_ADDRESS 0x000C0000
  130. QDF_STATUS hif_diag_read_mem(struct hif_opaque_softc *hif_ctx,
  131. uint32_t address, uint8_t *data, int nbytes)
  132. {
  133. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  134. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  135. QDF_STATUS status = QDF_STATUS_SUCCESS;
  136. qdf_dma_addr_t buf;
  137. unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
  138. unsigned int id;
  139. unsigned int flags;
  140. struct CE_handle *ce_diag;
  141. qdf_dma_addr_t CE_data; /* Host buffer address in CE space */
  142. qdf_dma_addr_t CE_data_base = 0;
  143. void *data_buf = NULL;
  144. int i;
  145. unsigned int mux_id = 0;
  146. unsigned int transaction_id = 0xffff;
  147. qdf_dma_addr_t ce_phy_addr = address;
  148. unsigned int toeplitz_hash_result;
  149. unsigned int user_flags = 0;
  150. unsigned int target_type = 0;
  151. unsigned int boundary_addr = 0;
  152. transaction_id = (mux_id & MUX_ID_MASK) |
  153. (transaction_id & TRANSACTION_ID_MASK);
  154. #ifdef QCA_WIFI_3_0
  155. user_flags &= DESC_DATA_FLAG_MASK;
  156. #endif
  157. target_type = (hif_get_target_info_handle(hif_ctx))->target_type;
  158. /* This code cannot handle reads to non-memory space. Redirect to the
  159. * register read fn but preserve the multi word read capability of
  160. * this fn
  161. */
  162. if ((target_type == TARGET_TYPE_IPQ4019) ||
  163. (target_type == TARGET_TYPE_AR900B) ||
  164. (target_type == TARGET_TYPE_QCA9984) ||
  165. (target_type == TARGET_TYPE_AR9888) ||
  166. (target_type == TARGET_TYPE_QCA9888))
  167. boundary_addr = FW_SRAM_ADDRESS;
  168. else
  169. boundary_addr = DRAM_BASE_ADDRESS;
  170. if (address < boundary_addr) {
  171. if ((address & 0x3) || ((uintptr_t) data & 0x3))
  172. return QDF_STATUS_E_INVAL;
  173. while ((nbytes >= 4) &&
  174. (QDF_STATUS_SUCCESS == (status =
  175. hif_diag_read_access(hif_ctx, address,
  176. (uint32_t *)data)))) {
  177. nbytes -= sizeof(uint32_t);
  178. address += sizeof(uint32_t);
  179. data += sizeof(uint32_t);
  180. }
  181. return status;
  182. }
  183. ce_diag = hif_state->ce_diag;
  184. A_TARGET_ACCESS_LIKELY(scn);
  185. /*
  186. * Allocate a temporary bounce buffer to hold caller's data
  187. * to be DMA'ed from Target. This guarantees
  188. * 1) 4-byte alignment
  189. * 2) Buffer in DMA-able space
  190. */
  191. orig_nbytes = nbytes;
  192. data_buf = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  193. orig_nbytes, &CE_data_base);
  194. if (!data_buf) {
  195. status = QDF_STATUS_E_NOMEM;
  196. goto done;
  197. }
  198. qdf_mem_set(data_buf, orig_nbytes, 0);
  199. qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data_base,
  200. orig_nbytes, DMA_FROM_DEVICE);
  201. remaining_bytes = orig_nbytes;
  202. CE_data = CE_data_base;
  203. while (remaining_bytes) {
  204. nbytes = min(remaining_bytes, DIAG_TRANSFER_LIMIT);
  205. {
  206. status = ce_recv_buf_enqueue(ce_diag, NULL, CE_data);
  207. if (status != QDF_STATUS_SUCCESS)
  208. goto done;
  209. }
  210. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  211. return QDF_STATUS_E_FAILURE;
  212. /* convert soc virtual address to physical address */
  213. ce_phy_addr = get_ce_phy_addr(scn, address, target_type);
  214. if (Q_TARGET_ACCESS_END(scn) < 0)
  215. return QDF_STATUS_E_FAILURE;
  216. /* Request CE to send from Target(!)
  217. * address to Host buffer */
  218. status = ce_send(ce_diag, NULL, ce_phy_addr, nbytes,
  219. transaction_id, 0, user_flags);
  220. if (status != QDF_STATUS_SUCCESS)
  221. goto done;
  222. i = 0;
  223. while (ce_completed_send_next(ce_diag, NULL, NULL, &buf,
  224. &completed_nbytes, &id, NULL, NULL,
  225. &toeplitz_hash_result) != QDF_STATUS_SUCCESS) {
  226. qdf_mdelay(1);
  227. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  228. status = QDF_STATUS_E_BUSY;
  229. goto done;
  230. }
  231. }
  232. if (nbytes != completed_nbytes) {
  233. status = QDF_STATUS_E_FAILURE;
  234. goto done;
  235. }
  236. if (buf != ce_phy_addr) {
  237. status = QDF_STATUS_E_FAILURE;
  238. goto done;
  239. }
  240. i = 0;
  241. while (ce_completed_recv_next
  242. (ce_diag, NULL, NULL, &buf,
  243. &completed_nbytes, &id,
  244. &flags) != QDF_STATUS_SUCCESS) {
  245. qdf_mdelay(1);
  246. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  247. status = QDF_STATUS_E_BUSY;
  248. goto done;
  249. }
  250. }
  251. if (nbytes != completed_nbytes) {
  252. status = QDF_STATUS_E_FAILURE;
  253. goto done;
  254. }
  255. if (buf != CE_data) {
  256. status = QDF_STATUS_E_FAILURE;
  257. goto done;
  258. }
  259. remaining_bytes -= nbytes;
  260. address += nbytes;
  261. CE_data += nbytes;
  262. }
  263. done:
  264. A_TARGET_ACCESS_UNLIKELY(scn);
  265. if (status == QDF_STATUS_SUCCESS)
  266. qdf_mem_copy(data, data_buf, orig_nbytes);
  267. else
  268. HIF_ERROR("%s failure (0x%x)", __func__, address);
  269. if (data_buf)
  270. qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  271. orig_nbytes, data_buf, CE_data_base, 0);
  272. return status;
  273. }
  274. /* Read 4-byte aligned data from Target memory or register */
  275. QDF_STATUS hif_diag_read_access(struct hif_opaque_softc *hif_ctx,
  276. uint32_t address, uint32_t *data)
  277. {
  278. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  279. if (address >= DRAM_BASE_ADDRESS) {
  280. /* Assume range doesn't cross this boundary */
  281. return hif_diag_read_mem(hif_ctx, address, (uint8_t *) data,
  282. sizeof(uint32_t));
  283. } else {
  284. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  285. return QDF_STATUS_E_FAILURE;
  286. *data = A_TARGET_READ(scn, address);
  287. if (Q_TARGET_ACCESS_END(scn) < 0)
  288. return QDF_STATUS_E_FAILURE;
  289. return QDF_STATUS_SUCCESS;
  290. }
  291. }
  292. /**
  293. * hif_diag_write_mem() - write data into the soc memory
  294. * @hif_ctx: hif context
  295. * @address: soc virtual address
  296. * @data: data to copy into the soc address
  297. * @nbytes: number of bytes to coppy
  298. */
  299. QDF_STATUS hif_diag_write_mem(struct hif_opaque_softc *hif_ctx,
  300. uint32_t address, uint8_t *data, int nbytes)
  301. {
  302. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  303. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
  304. QDF_STATUS status = QDF_STATUS_SUCCESS;
  305. qdf_dma_addr_t buf;
  306. unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
  307. unsigned int id;
  308. unsigned int flags;
  309. struct CE_handle *ce_diag;
  310. void *data_buf = NULL;
  311. qdf_dma_addr_t CE_data; /* Host buffer address in CE space */
  312. qdf_dma_addr_t CE_data_base = 0;
  313. int i;
  314. unsigned int mux_id = 0;
  315. unsigned int transaction_id = 0xffff;
  316. qdf_dma_addr_t ce_phy_addr = address;
  317. unsigned int toeplitz_hash_result;
  318. unsigned int user_flags = 0;
  319. unsigned int target_type = 0;
  320. ce_diag = hif_state->ce_diag;
  321. transaction_id = (mux_id & MUX_ID_MASK) |
  322. (transaction_id & TRANSACTION_ID_MASK);
  323. #ifdef QCA_WIFI_3_0
  324. user_flags &= DESC_DATA_FLAG_MASK;
  325. #endif
  326. A_TARGET_ACCESS_LIKELY(scn);
  327. /*
  328. * Allocate a temporary bounce buffer to hold caller's data
  329. * to be DMA'ed to Target. This guarantees
  330. * 1) 4-byte alignment
  331. * 2) Buffer in DMA-able space
  332. */
  333. orig_nbytes = nbytes;
  334. data_buf = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  335. orig_nbytes, &CE_data_base);
  336. if (!data_buf) {
  337. status = A_NO_MEMORY;
  338. goto done;
  339. }
  340. /* Copy caller's data to allocated DMA buf */
  341. qdf_mem_copy(data_buf, data, orig_nbytes);
  342. qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data_base,
  343. orig_nbytes, DMA_TO_DEVICE);
  344. target_type = (hif_get_target_info_handle(hif_ctx))->target_type;
  345. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  346. return QDF_STATUS_E_FAILURE;
  347. /* convert soc virtual address to physical address */
  348. ce_phy_addr = get_ce_phy_addr(scn, address, target_type);
  349. if (Q_TARGET_ACCESS_END(scn) < 0)
  350. return QDF_STATUS_E_FAILURE;
  351. remaining_bytes = orig_nbytes;
  352. CE_data = CE_data_base;
  353. while (remaining_bytes) {
  354. nbytes = min(remaining_bytes, DIAG_TRANSFER_LIMIT);
  355. /* Set up to receive directly into Target(!) address */
  356. status = ce_recv_buf_enqueue(ce_diag, NULL, ce_phy_addr);
  357. if (status != QDF_STATUS_SUCCESS)
  358. goto done;
  359. /*
  360. * Request CE to send caller-supplied data that
  361. * was copied to bounce buffer to Target(!) address.
  362. */
  363. status = ce_send(ce_diag, NULL, (qdf_dma_addr_t) CE_data,
  364. nbytes, transaction_id, 0, user_flags);
  365. if (status != QDF_STATUS_SUCCESS)
  366. goto done;
  367. /* poll for transfer complete */
  368. i = 0;
  369. while (ce_completed_send_next(ce_diag, NULL, NULL, &buf,
  370. &completed_nbytes, &id,
  371. NULL, NULL, &toeplitz_hash_result) !=
  372. QDF_STATUS_SUCCESS) {
  373. qdf_mdelay(1);
  374. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  375. status = QDF_STATUS_E_BUSY;
  376. goto done;
  377. }
  378. }
  379. if (nbytes != completed_nbytes) {
  380. status = QDF_STATUS_E_FAILURE;
  381. goto done;
  382. }
  383. if (buf != CE_data) {
  384. status = QDF_STATUS_E_FAILURE;
  385. goto done;
  386. }
  387. i = 0;
  388. while (ce_completed_recv_next
  389. (ce_diag, NULL, NULL, &buf,
  390. &completed_nbytes, &id,
  391. &flags) != QDF_STATUS_SUCCESS) {
  392. qdf_mdelay(1);
  393. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  394. status = QDF_STATUS_E_BUSY;
  395. goto done;
  396. }
  397. }
  398. if (nbytes != completed_nbytes) {
  399. status = QDF_STATUS_E_FAILURE;
  400. goto done;
  401. }
  402. if (buf != ce_phy_addr) {
  403. status = QDF_STATUS_E_FAILURE;
  404. goto done;
  405. }
  406. remaining_bytes -= nbytes;
  407. address += nbytes;
  408. CE_data += nbytes;
  409. }
  410. done:
  411. A_TARGET_ACCESS_UNLIKELY(scn);
  412. if (data_buf) {
  413. qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  414. orig_nbytes, data_buf, CE_data_base, 0);
  415. }
  416. if (status != QDF_STATUS_SUCCESS) {
  417. HIF_ERROR("%s failure (0x%llu)", __func__,
  418. (uint64_t)ce_phy_addr);
  419. }
  420. return status;
  421. }
  422. /* Write 4B data to Target memory or register */
  423. QDF_STATUS hif_diag_write_access(struct hif_opaque_softc *hif_ctx,
  424. uint32_t address, uint32_t data)
  425. {
  426. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  427. if (address >= DRAM_BASE_ADDRESS) {
  428. /* Assume range doesn't cross this boundary */
  429. uint32_t data_buf = data;
  430. return hif_diag_write_mem(hif_ctx, address,
  431. (uint8_t *) &data_buf,
  432. sizeof(uint32_t));
  433. } else {
  434. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  435. return QDF_STATUS_E_FAILURE;
  436. A_TARGET_WRITE(scn, address, data);
  437. if (Q_TARGET_ACCESS_END(scn) < 0)
  438. return QDF_STATUS_E_FAILURE;
  439. return QDF_STATUS_SUCCESS;
  440. }
  441. }