dp_rx.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "dp_types.h"
  19. #include "dp_rx.h"
  20. #include "dp_peer.h"
  21. #include "hal_rx.h"
  22. #include "hal_api.h"
  23. #include "qdf_nbuf.h"
  24. #ifdef MESH_MODE_SUPPORT
  25. #include "if_meta_hdr.h"
  26. #endif
  27. #include "dp_internal.h"
  28. #include "dp_rx_mon.h"
  29. #ifdef RX_DESC_DEBUG_CHECK
  30. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  31. {
  32. rx_desc->magic = DP_RX_DESC_MAGIC;
  33. rx_desc->nbuf = nbuf;
  34. }
  35. #else
  36. static inline void dp_rx_desc_prep(struct dp_rx_desc *rx_desc, qdf_nbuf_t nbuf)
  37. {
  38. rx_desc->nbuf = nbuf;
  39. }
  40. #endif
  41. #ifdef CONFIG_WIN
  42. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  43. {
  44. return vdev->ap_bridge_enabled;
  45. }
  46. #else
  47. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  48. {
  49. if (vdev->opmode != wlan_op_mode_sta)
  50. return true;
  51. else
  52. return false;
  53. }
  54. #endif
  55. /*
  56. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  57. * called during dp rx initialization
  58. * and at the end of dp_rx_process.
  59. *
  60. * @soc: core txrx main context
  61. * @mac_id: mac_id which is one of 3 mac_ids
  62. * @dp_rxdma_srng: dp rxdma circular ring
  63. * @rx_desc_pool: Pointer to free Rx descriptor pool
  64. * @num_req_buffers: number of buffer to be replenished
  65. * @desc_list: list of descs if called from dp_rx_process
  66. * or NULL during dp rx initialization or out of buffer
  67. * interrupt.
  68. * @tail: tail of descs list
  69. * Return: return success or failure
  70. */
  71. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  72. struct dp_srng *dp_rxdma_srng,
  73. struct rx_desc_pool *rx_desc_pool,
  74. uint32_t num_req_buffers,
  75. union dp_rx_desc_list_elem_t **desc_list,
  76. union dp_rx_desc_list_elem_t **tail)
  77. {
  78. uint32_t num_alloc_desc;
  79. uint16_t num_desc_to_free = 0;
  80. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  81. uint32_t num_entries_avail;
  82. uint32_t count;
  83. int sync_hw_ptr = 1;
  84. qdf_dma_addr_t paddr;
  85. qdf_nbuf_t rx_netbuf;
  86. void *rxdma_ring_entry;
  87. union dp_rx_desc_list_elem_t *next;
  88. QDF_STATUS ret;
  89. void *rxdma_srng;
  90. rxdma_srng = dp_rxdma_srng->hal_srng;
  91. if (!rxdma_srng) {
  92. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  93. "rxdma srng not initialized");
  94. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  95. return QDF_STATUS_E_FAILURE;
  96. }
  97. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  98. "requested %d buffers for replenish", num_req_buffers);
  99. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  100. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  101. rxdma_srng,
  102. sync_hw_ptr);
  103. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  104. "no of available entries in rxdma ring: %d",
  105. num_entries_avail);
  106. if (!(*desc_list) && (num_entries_avail >
  107. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  108. num_req_buffers = num_entries_avail;
  109. } else if (num_entries_avail < num_req_buffers) {
  110. num_desc_to_free = num_req_buffers - num_entries_avail;
  111. num_req_buffers = num_entries_avail;
  112. }
  113. if (qdf_unlikely(!num_req_buffers)) {
  114. num_desc_to_free = num_req_buffers;
  115. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  116. goto free_descs;
  117. }
  118. /*
  119. * if desc_list is NULL, allocate the descs from freelist
  120. */
  121. if (!(*desc_list)) {
  122. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  123. rx_desc_pool,
  124. num_req_buffers,
  125. desc_list,
  126. tail);
  127. if (!num_alloc_desc) {
  128. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  129. "no free rx_descs in freelist");
  130. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  131. num_req_buffers);
  132. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  133. return QDF_STATUS_E_NOMEM;
  134. }
  135. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  136. "%d rx desc allocated", num_alloc_desc);
  137. num_req_buffers = num_alloc_desc;
  138. }
  139. count = 0;
  140. while (count < num_req_buffers) {
  141. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  142. RX_BUFFER_SIZE,
  143. RX_BUFFER_RESERVATION,
  144. RX_BUFFER_ALIGNMENT,
  145. FALSE);
  146. if (rx_netbuf == NULL) {
  147. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  148. continue;
  149. }
  150. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  151. QDF_DMA_BIDIRECTIONAL);
  152. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  153. qdf_nbuf_free(rx_netbuf);
  154. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  155. continue;
  156. }
  157. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  158. /*
  159. * check if the physical address of nbuf->data is
  160. * less then 0x50000000 then free the nbuf and try
  161. * allocating new nbuf. We can try for 100 times.
  162. * this is a temp WAR till we fix it properly.
  163. */
  164. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  165. if (ret == QDF_STATUS_E_FAILURE) {
  166. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  167. break;
  168. }
  169. count++;
  170. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  171. rxdma_srng);
  172. qdf_assert_always(rxdma_ring_entry);
  173. next = (*desc_list)->next;
  174. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  175. (*desc_list)->rx_desc.in_use = 1;
  176. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  177. "rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  178. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  179. (unsigned long long)paddr, (*desc_list)->rx_desc.cookie);
  180. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  181. (*desc_list)->rx_desc.cookie,
  182. rx_desc_pool->owner);
  183. *desc_list = next;
  184. }
  185. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  186. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  187. "successfully replenished %d buffers", num_req_buffers);
  188. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  189. "%d rx desc added back to free list", num_desc_to_free);
  190. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  191. (RX_BUFFER_SIZE * num_req_buffers));
  192. free_descs:
  193. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  194. /*
  195. * add any available free desc back to the free list
  196. */
  197. if (*desc_list)
  198. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  199. mac_id, rx_desc_pool);
  200. return QDF_STATUS_SUCCESS;
  201. }
  202. /*
  203. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  204. * pkts to RAW mode simulation to
  205. * decapsulate the pkt.
  206. *
  207. * @vdev: vdev on which RAW mode is enabled
  208. * @nbuf_list: list of RAW pkts to process
  209. * @peer: peer object from which the pkt is rx
  210. *
  211. * Return: void
  212. */
  213. void
  214. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  215. struct dp_peer *peer)
  216. {
  217. qdf_nbuf_t deliver_list_head = NULL;
  218. qdf_nbuf_t deliver_list_tail = NULL;
  219. qdf_nbuf_t nbuf;
  220. nbuf = nbuf_list;
  221. while (nbuf) {
  222. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  223. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  224. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  225. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  226. /*
  227. * reset the chfrag_start and chfrag_end bits in nbuf cb
  228. * as this is a non-amsdu pkt and RAW mode simulation expects
  229. * these bit s to be 0 for non-amsdu pkt.
  230. */
  231. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  232. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  233. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  234. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  235. }
  236. nbuf = next;
  237. }
  238. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  239. &deliver_list_tail, (struct cdp_peer*) peer);
  240. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  241. }
  242. #ifdef DP_LFR
  243. /*
  244. * In case of LFR, data of a new peer might be sent up
  245. * even before peer is added.
  246. */
  247. static inline struct dp_vdev *
  248. dp_get_vdev_from_peer(struct dp_soc *soc,
  249. uint16_t peer_id,
  250. struct dp_peer *peer,
  251. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  252. {
  253. struct dp_vdev *vdev;
  254. uint8_t vdev_id;
  255. if (unlikely(!peer)) {
  256. if (peer_id != HTT_INVALID_PEER) {
  257. vdev_id = DP_PEER_METADATA_ID_GET(
  258. mpdu_desc_info.peer_meta_data);
  259. QDF_TRACE(QDF_MODULE_ID_DP,
  260. QDF_TRACE_LEVEL_DEBUG,
  261. FL("PeerID %d not found use vdevID %d"),
  262. peer_id, vdev_id);
  263. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  264. vdev_id);
  265. } else {
  266. QDF_TRACE(QDF_MODULE_ID_DP,
  267. QDF_TRACE_LEVEL_DEBUG,
  268. FL("Invalid PeerID %d"),
  269. peer_id);
  270. return NULL;
  271. }
  272. } else {
  273. vdev = peer->vdev;
  274. }
  275. return vdev;
  276. }
  277. #else
  278. static inline struct dp_vdev *
  279. dp_get_vdev_from_peer(struct dp_soc *soc,
  280. uint16_t peer_id,
  281. struct dp_peer *peer,
  282. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  283. {
  284. if (unlikely(!peer)) {
  285. QDF_TRACE(QDF_MODULE_ID_DP,
  286. QDF_TRACE_LEVEL_DEBUG,
  287. FL("Peer not found for peerID %d"),
  288. peer_id);
  289. return NULL;
  290. } else {
  291. return peer->vdev;
  292. }
  293. }
  294. #endif
  295. /**
  296. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  297. *
  298. * @soc: core txrx main context
  299. * @sa_peer : source peer entry
  300. * @rx_tlv_hdr : start address of rx tlvs
  301. * @nbuf : nbuf that has to be intrabss forwarded
  302. *
  303. * Return: bool: true if it is forwarded else false
  304. */
  305. static bool
  306. dp_rx_intrabss_fwd(struct dp_soc *soc,
  307. struct dp_peer *sa_peer,
  308. uint8_t *rx_tlv_hdr,
  309. qdf_nbuf_t nbuf)
  310. {
  311. uint16_t da_idx;
  312. uint16_t len;
  313. struct dp_peer *da_peer;
  314. struct dp_ast_entry *ast_entry;
  315. qdf_nbuf_t nbuf_copy;
  316. struct dp_vdev *vdev = sa_peer->vdev;
  317. /*
  318. * intrabss forwarding is not applicable if
  319. * vap is nawds enabled or ap_bridge is false.
  320. */
  321. if (vdev->nawds_enabled)
  322. return false;
  323. /* check if the destination peer is available in peer table
  324. * and also check if the source peer and destination peer
  325. * belong to the same vap and destination peer is not bss peer.
  326. */
  327. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  328. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  329. da_idx = hal_rx_msdu_end_da_idx_get(rx_tlv_hdr);
  330. ast_entry = soc->ast_table[da_idx];
  331. if (!ast_entry)
  332. return false;
  333. da_peer = ast_entry->peer;
  334. if (!da_peer)
  335. return false;
  336. if (da_peer->vdev == sa_peer->vdev && !da_peer->bss_peer) {
  337. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  338. len = qdf_nbuf_len(nbuf);
  339. /* linearize the nbuf just before we send to
  340. * dp_tx_send()
  341. */
  342. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  343. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  344. return false;
  345. nbuf = qdf_nbuf_unshare(nbuf);
  346. if (!nbuf) {
  347. DP_STATS_INC_PKT(sa_peer,
  348. rx.intra_bss.fail,
  349. 1,
  350. len);
  351. /* return true even though the pkt is
  352. * not forwarded. Basically skb_unshare
  353. * failed and we want to continue with
  354. * next nbuf.
  355. */
  356. return true;
  357. }
  358. }
  359. if (!dp_tx_send(sa_peer->vdev, nbuf)) {
  360. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts,
  361. 1, len);
  362. return true;
  363. } else {
  364. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1,
  365. len);
  366. return false;
  367. }
  368. }
  369. }
  370. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  371. * source, then clone the pkt and send the cloned pkt for
  372. * intra BSS forwarding and original pkt up the network stack
  373. * Note: how do we handle multicast pkts. do we forward
  374. * all multicast pkts as is or let a higher layer module
  375. * like igmpsnoop decide whether to forward or not with
  376. * Mcast enhancement.
  377. */
  378. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  379. !sa_peer->bss_peer))) {
  380. nbuf_copy = qdf_nbuf_copy(nbuf);
  381. if (!nbuf_copy)
  382. return false;
  383. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  384. len = qdf_nbuf_len(nbuf_copy);
  385. if (dp_tx_send(sa_peer->vdev, nbuf_copy)) {
  386. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.fail, 1, len);
  387. qdf_nbuf_free(nbuf_copy);
  388. } else
  389. DP_STATS_INC_PKT(sa_peer, rx.intra_bss.pkts, 1, len);
  390. }
  391. /* return false as we have to still send the original pkt
  392. * up the stack
  393. */
  394. return false;
  395. }
  396. #ifdef MESH_MODE_SUPPORT
  397. /**
  398. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  399. *
  400. * @vdev: DP Virtual device handle
  401. * @nbuf: Buffer pointer
  402. * @rx_tlv_hdr: start of rx tlv header
  403. * @peer: pointer to peer
  404. *
  405. * This function allocated memory for mesh receive stats and fill the
  406. * required stats. Stores the memory address in skb cb.
  407. *
  408. * Return: void
  409. */
  410. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  411. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  412. {
  413. struct mesh_recv_hdr_s *rx_info = NULL;
  414. uint32_t pkt_type;
  415. uint32_t nss;
  416. uint32_t rate_mcs;
  417. uint32_t bw;
  418. /* fill recv mesh stats */
  419. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  420. /* upper layers are resposible to free this memory */
  421. if (rx_info == NULL) {
  422. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  423. "Memory allocation failed for mesh rx stats");
  424. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  425. return;
  426. }
  427. rx_info->rs_flags = MESH_RXHDR_VER1;
  428. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  429. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  430. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  431. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  432. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  433. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  434. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  435. if (vdev->osif_get_key)
  436. vdev->osif_get_key(vdev->osif_vdev,
  437. &rx_info->rs_decryptkey[0],
  438. &peer->mac_addr.raw[0],
  439. rx_info->rs_keyix);
  440. }
  441. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  442. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  443. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  444. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  445. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  446. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  447. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  448. (bw << 24);
  449. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  450. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  451. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  452. rx_info->rs_flags,
  453. rx_info->rs_rssi,
  454. rx_info->rs_channel,
  455. rx_info->rs_ratephy1,
  456. rx_info->rs_keyix);
  457. }
  458. /**
  459. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  460. *
  461. * @vdev: DP Virtual device handle
  462. * @nbuf: Buffer pointer
  463. * @rx_tlv_hdr: start of rx tlv header
  464. *
  465. * This checks if the received packet is matching any filter out
  466. * catogery and and drop the packet if it matches.
  467. *
  468. * Return: status(0 indicates drop, 1 indicate to no drop)
  469. */
  470. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  471. uint8_t *rx_tlv_hdr)
  472. {
  473. union dp_align_mac_addr mac_addr;
  474. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  475. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  476. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  477. return QDF_STATUS_SUCCESS;
  478. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  479. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  480. return QDF_STATUS_SUCCESS;
  481. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  482. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  483. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  484. return QDF_STATUS_SUCCESS;
  485. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  486. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  487. &mac_addr.raw[0]))
  488. return QDF_STATUS_E_FAILURE;
  489. if (!qdf_mem_cmp(&mac_addr.raw[0],
  490. &vdev->mac_addr.raw[0],
  491. DP_MAC_ADDR_LEN))
  492. return QDF_STATUS_SUCCESS;
  493. }
  494. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  495. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  496. &mac_addr.raw[0]))
  497. return QDF_STATUS_E_FAILURE;
  498. if (!qdf_mem_cmp(&mac_addr.raw[0],
  499. &vdev->mac_addr.raw[0],
  500. DP_MAC_ADDR_LEN))
  501. return QDF_STATUS_SUCCESS;
  502. }
  503. }
  504. return QDF_STATUS_E_FAILURE;
  505. }
  506. #else
  507. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  508. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  509. {
  510. }
  511. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  512. uint8_t *rx_tlv_hdr)
  513. {
  514. return QDF_STATUS_E_FAILURE;
  515. }
  516. #endif
  517. #ifdef CONFIG_WIN
  518. /**
  519. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  520. * clients
  521. * @pdev: DP pdev handle
  522. * @rx_pkt_hdr: Rx packet Header
  523. *
  524. * return: dp_vdev*
  525. */
  526. static
  527. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  528. uint8_t *rx_pkt_hdr)
  529. {
  530. struct ieee80211_frame *wh;
  531. struct dp_neighbour_peer *peer = NULL;
  532. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  533. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  534. return NULL;
  535. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  536. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  537. neighbour_peer_list_elem) {
  538. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  539. wh->i_addr2, DP_MAC_ADDR_LEN) == 0) {
  540. QDF_TRACE(
  541. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  542. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  543. peer->neighbour_peers_macaddr.raw[0],
  544. peer->neighbour_peers_macaddr.raw[1],
  545. peer->neighbour_peers_macaddr.raw[2],
  546. peer->neighbour_peers_macaddr.raw[3],
  547. peer->neighbour_peers_macaddr.raw[4],
  548. peer->neighbour_peers_macaddr.raw[5]);
  549. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  550. return pdev->monitor_vdev;
  551. }
  552. }
  553. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  554. return NULL;
  555. }
  556. /**
  557. * dp_rx_process_nac_rssi_frames(): Store RSSI for configured NAC
  558. * @pdev: DP pdev handle
  559. * @rx_tlv_hdr: tlv hdr buf
  560. *
  561. * return: None
  562. */
  563. #ifdef ATH_SUPPORT_NAC_RSSI
  564. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  565. {
  566. struct dp_vdev *vdev = NULL;
  567. struct dp_soc *soc = pdev->soc;
  568. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  569. struct ieee80211_frame *wh = (struct ieee80211_frame *)rx_pkt_hdr;
  570. if (pdev->nac_rssi_filtering) {
  571. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  572. if (vdev->cdp_nac_rssi_enabled &&
  573. (qdf_mem_cmp(vdev->cdp_nac_rssi.client_mac,
  574. wh->i_addr1, DP_MAC_ADDR_LEN) == 0)) {
  575. QDF_TRACE(QDF_MODULE_ID_DP,
  576. QDF_TRACE_LEVEL_DEBUG, "RSSI updated");
  577. vdev->cdp_nac_rssi.vdev_id = vdev->vdev_id;
  578. vdev->cdp_nac_rssi.client_rssi =
  579. hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  580. dp_wdi_event_handler(WDI_EVENT_NAC_RSSI, soc,
  581. (void *)&vdev->cdp_nac_rssi,
  582. HTT_INVALID_PEER, WDI_NO_VAL,
  583. pdev->pdev_id);
  584. }
  585. }
  586. }
  587. }
  588. #else
  589. static void dp_rx_process_nac_rssi_frames(struct dp_pdev *pdev, uint8_t *rx_tlv_hdr)
  590. {
  591. }
  592. #endif
  593. /**
  594. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  595. * @soc: DP SOC handle
  596. * @mpdu: mpdu for which peer is invalid
  597. *
  598. * return: integer type
  599. */
  600. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  601. {
  602. struct dp_invalid_peer_msg msg;
  603. struct dp_vdev *vdev = NULL;
  604. struct dp_pdev *pdev = NULL;
  605. struct ieee80211_frame *wh;
  606. uint8_t i;
  607. qdf_nbuf_t curr_nbuf, next_nbuf;
  608. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  609. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  610. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  611. if (!DP_FRAME_IS_DATA(wh)) {
  612. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  613. "NAWDS valid only for data frames");
  614. goto free;
  615. }
  616. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  617. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  618. "Invalid nbuf length");
  619. goto free;
  620. }
  621. for (i = 0; i < MAX_PDEV_CNT; i++) {
  622. pdev = soc->pdev_list[i];
  623. if (!pdev) {
  624. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  625. "PDEV not found");
  626. continue;
  627. }
  628. if (pdev->filter_neighbour_peers) {
  629. /* Next Hop scenario not yet handle */
  630. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  631. if (vdev) {
  632. dp_rx_mon_deliver(soc, i,
  633. pdev->invalid_peer_head_msdu,
  634. pdev->invalid_peer_tail_msdu);
  635. pdev->invalid_peer_head_msdu = NULL;
  636. pdev->invalid_peer_tail_msdu = NULL;
  637. return 0;
  638. }
  639. }
  640. dp_rx_process_nac_rssi_frames(pdev, rx_tlv_hdr);
  641. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  642. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  643. DP_MAC_ADDR_LEN) == 0) {
  644. goto out;
  645. }
  646. }
  647. }
  648. if (!vdev) {
  649. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  650. "VDEV not found");
  651. goto free;
  652. }
  653. out:
  654. msg.wh = wh;
  655. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  656. msg.nbuf = mpdu;
  657. msg.vdev_id = vdev->vdev_id;
  658. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  659. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  660. &msg);
  661. free:
  662. /* Drop and free packet */
  663. curr_nbuf = mpdu;
  664. while (curr_nbuf) {
  665. next_nbuf = qdf_nbuf_next(curr_nbuf);
  666. qdf_nbuf_free(curr_nbuf);
  667. curr_nbuf = next_nbuf;
  668. }
  669. return 0;
  670. }
  671. /**
  672. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  673. * @soc: DP SOC handle
  674. * @mpdu: mpdu for which peer is invalid
  675. * @mpdu_done: if an mpdu is completed
  676. *
  677. * return: integer type
  678. */
  679. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  680. qdf_nbuf_t mpdu, bool mpdu_done)
  681. {
  682. /* Only trigger the process when mpdu is completed */
  683. if (mpdu_done)
  684. dp_rx_process_invalid_peer(soc, mpdu);
  685. }
  686. #else
  687. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  688. {
  689. qdf_nbuf_t curr_nbuf, next_nbuf;
  690. struct dp_pdev *pdev;
  691. uint8_t i;
  692. curr_nbuf = mpdu;
  693. while (curr_nbuf) {
  694. next_nbuf = qdf_nbuf_next(curr_nbuf);
  695. /* Drop and free packet */
  696. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  697. qdf_nbuf_len(curr_nbuf));
  698. qdf_nbuf_free(curr_nbuf);
  699. curr_nbuf = next_nbuf;
  700. }
  701. /* reset the head and tail pointers */
  702. for (i = 0; i < MAX_PDEV_CNT; i++) {
  703. pdev = soc->pdev_list[i];
  704. if (!pdev) {
  705. QDF_TRACE(QDF_MODULE_ID_DP,
  706. QDF_TRACE_LEVEL_ERROR,
  707. "PDEV not found");
  708. continue;
  709. }
  710. pdev->invalid_peer_head_msdu = NULL;
  711. pdev->invalid_peer_tail_msdu = NULL;
  712. }
  713. return 0;
  714. }
  715. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  716. qdf_nbuf_t mpdu, bool mpdu_done)
  717. {
  718. /* To avoid compiler warning */
  719. mpdu_done = mpdu_done;
  720. /* Process the nbuf */
  721. dp_rx_process_invalid_peer(soc, mpdu);
  722. }
  723. #endif
  724. #if defined(FEATURE_LRO)
  725. static void dp_rx_print_lro_info(uint8_t *rx_tlv)
  726. {
  727. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  728. FL("----------------------RX DESC LRO----------------------\n"));
  729. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  730. FL("lro_eligible 0x%x"), HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  731. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  732. FL("pure_ack 0x%x"), HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  733. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  734. FL("chksum 0x%x"), HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  735. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  736. FL("TCP seq num 0x%x"), HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  737. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  738. FL("TCP ack num 0x%x"), HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  739. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  740. FL("TCP window 0x%x"), HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  741. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  742. FL("TCP protocol 0x%x"), HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  743. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  744. FL("TCP offset 0x%x"), HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  745. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  746. FL("toeplitz 0x%x"), HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  747. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  748. FL("---------------------------------------------------------\n"));
  749. }
  750. /**
  751. * dp_rx_lro() - LRO related processing
  752. * @rx_tlv: TLV data extracted from the rx packet
  753. * @peer: destination peer of the msdu
  754. * @msdu: network buffer
  755. * @ctx: LRO context
  756. *
  757. * This function performs the LRO related processing of the msdu
  758. *
  759. * Return: true: LRO enabled false: LRO is not enabled
  760. */
  761. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  762. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  763. {
  764. if (!peer || !peer->vdev || !peer->vdev->lro_enable) {
  765. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  766. FL("no peer, no vdev or LRO disabled"));
  767. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = 0;
  768. return;
  769. }
  770. qdf_assert(rx_tlv);
  771. dp_rx_print_lro_info(rx_tlv);
  772. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  773. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  774. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  775. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  776. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  777. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  778. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  779. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  780. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  781. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  782. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  783. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  784. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  785. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  786. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  787. HAL_RX_TLV_GET_IPV6(rx_tlv);
  788. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  789. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  790. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  791. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  792. QDF_NBUF_CB_RX_LRO_CTX(msdu) = (unsigned char *)ctx;
  793. }
  794. #else
  795. static void dp_rx_lro(uint8_t *rx_tlv, struct dp_peer *peer,
  796. qdf_nbuf_t msdu, qdf_lro_ctx_t ctx)
  797. {
  798. }
  799. #endif
  800. /**
  801. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  802. *
  803. * @nbuf: pointer to msdu.
  804. * @mpdu_len: mpdu length
  805. *
  806. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  807. */
  808. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  809. {
  810. bool last_nbuf;
  811. if (*mpdu_len >= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  812. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  813. last_nbuf = false;
  814. } else {
  815. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  816. last_nbuf = true;
  817. }
  818. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  819. return last_nbuf;
  820. }
  821. /**
  822. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  823. * multiple nbufs.
  824. * @nbuf: pointer to the first msdu of an amsdu.
  825. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  826. *
  827. *
  828. * This function implements the creation of RX frag_list for cases
  829. * where an MSDU is spread across multiple nbufs.
  830. *
  831. * Return: returns the head nbuf which contains complete frag_list.
  832. */
  833. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  834. {
  835. qdf_nbuf_t parent, next, frag_list;
  836. uint16_t frag_list_len = 0;
  837. uint16_t mpdu_len;
  838. bool last_nbuf;
  839. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  840. /*
  841. * this is a case where the complete msdu fits in one single nbuf.
  842. * in this case HW sets both start and end bit and we only need to
  843. * reset these bits for RAW mode simulator to decap the pkt
  844. */
  845. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  846. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  847. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  848. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  849. return nbuf;
  850. }
  851. /*
  852. * This is a case where we have multiple msdus (A-MSDU) spread across
  853. * multiple nbufs. here we create a fraglist out of these nbufs.
  854. *
  855. * the moment we encounter a nbuf with continuation bit set we
  856. * know for sure we have an MSDU which is spread across multiple
  857. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  858. */
  859. parent = nbuf;
  860. frag_list = nbuf->next;
  861. nbuf = nbuf->next;
  862. /*
  863. * set the start bit in the first nbuf we encounter with continuation
  864. * bit set. This has the proper mpdu length set as it is the first
  865. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  866. * nbufs will form the frag_list of the parent nbuf.
  867. */
  868. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  869. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  870. /*
  871. * this is where we set the length of the fragments which are
  872. * associated to the parent nbuf. We iterate through the frag_list
  873. * till we hit the last_nbuf of the list.
  874. */
  875. do {
  876. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  877. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  878. frag_list_len += qdf_nbuf_len(nbuf);
  879. if (last_nbuf) {
  880. next = nbuf->next;
  881. nbuf->next = NULL;
  882. break;
  883. }
  884. nbuf = nbuf->next;
  885. } while (!last_nbuf);
  886. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  887. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  888. parent->next = next;
  889. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  890. return parent;
  891. }
  892. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  893. struct dp_peer *peer,
  894. qdf_nbuf_t nbuf_head,
  895. qdf_nbuf_t nbuf_tail)
  896. {
  897. /*
  898. * highly unlikely to have a vdev without a registered rx
  899. * callback function. if so let us free the nbuf_list.
  900. */
  901. if (qdf_unlikely(!vdev->osif_rx)) {
  902. qdf_nbuf_t nbuf;
  903. do {
  904. nbuf = nbuf_head;
  905. nbuf_head = nbuf_head->next;
  906. qdf_nbuf_free(nbuf);
  907. } while (nbuf_head);
  908. return;
  909. }
  910. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  911. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  912. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  913. &nbuf_tail, (struct cdp_peer *) peer);
  914. }
  915. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  916. }
  917. /**
  918. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  919. * @nbuf: pointer to the first msdu of an amsdu.
  920. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  921. *
  922. * The ipsumed field of the skb is set based on whether HW validated the
  923. * IP/TCP/UDP checksum.
  924. *
  925. * Return: void
  926. */
  927. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  928. qdf_nbuf_t nbuf,
  929. uint8_t *rx_tlv_hdr)
  930. {
  931. qdf_nbuf_rx_cksum_t cksum = {0};
  932. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  933. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  934. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  935. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  936. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  937. } else {
  938. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  939. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  940. }
  941. }
  942. /**
  943. * dp_rx_msdu_stats_update() - update per msdu stats.
  944. * @soc: core txrx main context
  945. * @nbuf: pointer to the first msdu of an amsdu.
  946. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  947. * @peer: pointer to the peer object.
  948. * @ring_id: reo dest ring number on which pkt is reaped.
  949. *
  950. * update all the per msdu stats for that nbuf.
  951. * Return: void
  952. */
  953. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  954. qdf_nbuf_t nbuf,
  955. uint8_t *rx_tlv_hdr,
  956. struct dp_peer *peer,
  957. uint8_t ring_id)
  958. {
  959. bool is_ampdu, is_not_amsdu;
  960. uint16_t peer_id;
  961. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  962. struct dp_vdev *vdev = peer->vdev;
  963. struct ether_header *eh;
  964. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  965. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  966. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  967. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  968. qdf_nbuf_is_rx_chfrag_end(nbuf);
  969. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  970. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  971. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  972. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  973. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  974. eh = (struct ether_header *)qdf_nbuf_data(nbuf);
  975. if (IEEE80211_IS_BROADCAST(eh->ether_dhost)) {
  976. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  977. } else {
  978. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  979. }
  980. }
  981. /*
  982. * currently we can return from here as we have similar stats
  983. * updated at per ppdu level instead of msdu level
  984. */
  985. if (!soc->process_rx_status)
  986. return;
  987. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  988. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  989. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  990. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  991. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  992. tid = hal_rx_mpdu_start_tid_get(rx_tlv_hdr);
  993. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  994. reception_type = hal_rx_msdu_start_reception_type_get(rx_tlv_hdr);
  995. nss = hal_rx_msdu_start_nss_get(rx_tlv_hdr);
  996. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  997. /* Save tid to skb->priority */
  998. DP_RX_TID_SAVE(nbuf, tid);
  999. DP_STATS_INC(peer, rx.bw[bw], 1);
  1000. DP_STATS_INC(peer, rx.nss[nss], 1);
  1001. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1002. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1003. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1004. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1005. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1006. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1007. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1008. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1009. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1010. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1011. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1012. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1013. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1014. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1015. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1016. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1017. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1018. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1019. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1020. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1021. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1022. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1023. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1024. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS], 1,
  1025. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1026. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1027. ((mcs <= MAX_MCS) && (pkt_type == DOT11_AX)));
  1028. if ((soc->process_rx_status) &&
  1029. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1030. if (soc->cdp_soc.ol_ops->update_dp_stats) {
  1031. soc->cdp_soc.ol_ops->update_dp_stats(
  1032. vdev->pdev->ctrl_pdev,
  1033. &peer->stats,
  1034. peer_id,
  1035. UPDATE_PEER_STATS);
  1036. }
  1037. }
  1038. }
  1039. #ifdef WDS_VENDOR_EXTENSION
  1040. int dp_wds_rx_policy_check(
  1041. uint8_t *rx_tlv_hdr,
  1042. struct dp_vdev *vdev,
  1043. struct dp_peer *peer,
  1044. int rx_mcast
  1045. )
  1046. {
  1047. struct dp_peer *bss_peer;
  1048. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1049. int rx_policy_ucast, rx_policy_mcast;
  1050. if (vdev->opmode == wlan_op_mode_ap) {
  1051. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1052. if (bss_peer->bss_peer) {
  1053. /* if wds policy check is not enabled on this vdev, accept all frames */
  1054. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1055. return 1;
  1056. }
  1057. break;
  1058. }
  1059. }
  1060. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1061. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1062. } else { /* sta mode */
  1063. if (!peer->wds_ecm.wds_rx_filter) {
  1064. return 1;
  1065. }
  1066. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1067. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1068. }
  1069. /* ------------------------------------------------
  1070. * self
  1071. * peer- rx rx-
  1072. * wds ucast mcast dir policy accept note
  1073. * ------------------------------------------------
  1074. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1075. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1076. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1077. * 1 1 0 00 x1 0 bad frame, won't see it
  1078. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1079. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1080. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1081. * 1 0 1 00 1x 0 bad frame, won't see it
  1082. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1083. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1084. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1085. * 1 1 0 00 x0 0 bad frame, won't see it
  1086. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1087. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1088. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1089. * 1 0 1 00 0x 0 bad frame, won't see it
  1090. *
  1091. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1092. * 0 x x 01 xx 1
  1093. * 0 x x 10 xx 0
  1094. * 0 x x 00 xx 0 bad frame, won't see it
  1095. * ------------------------------------------------
  1096. */
  1097. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1098. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1099. rx_3addr = fr_ds ^ to_ds;
  1100. rx_4addr = fr_ds & to_ds;
  1101. if (vdev->opmode == wlan_op_mode_ap) {
  1102. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1103. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1104. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1105. return 1;
  1106. }
  1107. } else { /* sta mode */
  1108. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1109. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1110. return 1;
  1111. }
  1112. }
  1113. return 0;
  1114. }
  1115. #else
  1116. int dp_wds_rx_policy_check(
  1117. uint8_t *rx_tlv_hdr,
  1118. struct dp_vdev *vdev,
  1119. struct dp_peer *peer,
  1120. int rx_mcast
  1121. )
  1122. {
  1123. return 1;
  1124. }
  1125. #endif
  1126. /**
  1127. * dp_rx_process() - Brain of the Rx processing functionality
  1128. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1129. * @soc: core txrx main context
  1130. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1131. * @quota: No. of units (packets) that can be serviced in one shot.
  1132. *
  1133. * This function implements the core of Rx functionality. This is
  1134. * expected to handle only non-error frames.
  1135. *
  1136. * Return: uint32_t: No. of elements processed
  1137. */
  1138. uint32_t
  1139. dp_rx_process(struct dp_intr *int_ctx, void *hal_ring, uint32_t quota)
  1140. {
  1141. void *hal_soc;
  1142. void *ring_desc;
  1143. struct dp_rx_desc *rx_desc = NULL;
  1144. qdf_nbuf_t nbuf, next;
  1145. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1146. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1147. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1148. uint32_t l2_hdr_offset = 0;
  1149. uint16_t msdu_len = 0;
  1150. uint16_t peer_id;
  1151. struct dp_peer *peer = NULL;
  1152. struct dp_vdev *vdev = NULL;
  1153. uint32_t pkt_len = 0;
  1154. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1155. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1156. enum hal_reo_error_status error;
  1157. uint32_t peer_mdata;
  1158. uint8_t *rx_tlv_hdr;
  1159. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1160. uint8_t mac_id = 0;
  1161. struct dp_pdev *pdev;
  1162. struct dp_srng *dp_rxdma_srng;
  1163. struct rx_desc_pool *rx_desc_pool;
  1164. struct dp_soc *soc = int_ctx->soc;
  1165. uint8_t ring_id = 0;
  1166. uint8_t core_id = 0;
  1167. qdf_nbuf_t nbuf_head = NULL;
  1168. qdf_nbuf_t nbuf_tail = NULL;
  1169. qdf_nbuf_t deliver_list_head = NULL;
  1170. qdf_nbuf_t deliver_list_tail = NULL;
  1171. DP_HIST_INIT();
  1172. /* Debug -- Remove later */
  1173. qdf_assert(soc && hal_ring);
  1174. hal_soc = soc->hal_soc;
  1175. /* Debug -- Remove later */
  1176. qdf_assert(hal_soc);
  1177. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1178. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1179. /*
  1180. * Need API to convert from hal_ring pointer to
  1181. * Ring Type / Ring Id combo
  1182. */
  1183. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1184. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1185. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1186. hal_srng_access_end(hal_soc, hal_ring);
  1187. goto done;
  1188. }
  1189. /*
  1190. * start reaping the buffers from reo ring and queue
  1191. * them in per vdev queue.
  1192. * Process the received pkts in a different per vdev loop.
  1193. */
  1194. while (qdf_likely(quota)) {
  1195. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1196. /*
  1197. * in case HW has updated hp after we cached the hp
  1198. * ring_desc can be NULL even there are entries
  1199. * available in the ring. Update the cached_hp
  1200. * and reap the buffers available to read complete
  1201. * mpdu in one reap
  1202. *
  1203. * This is needed for RAW mode we have to read all
  1204. * msdus corresponding to amsdu in one reap to create
  1205. * SG list properly but due to mismatch in cached_hp
  1206. * and actual hp sometimes we are unable to read
  1207. * complete mpdu in one reap.
  1208. */
  1209. if (qdf_unlikely(!ring_desc)) {
  1210. hal_srng_access_start_unlocked(hal_soc, hal_ring);
  1211. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1212. if (!ring_desc)
  1213. break;
  1214. }
  1215. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1216. ring_id = hal_srng_ring_id_get(hal_ring);
  1217. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1218. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1219. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1220. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1221. /* Don't know how to deal with this -- assert */
  1222. qdf_assert(0);
  1223. }
  1224. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1225. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1226. qdf_assert(rx_desc);
  1227. rx_bufs_reaped[rx_desc->pool_id]++;
  1228. /* TODO */
  1229. /*
  1230. * Need a separate API for unmapping based on
  1231. * phyiscal address
  1232. */
  1233. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1234. QDF_DMA_BIDIRECTIONAL);
  1235. core_id = smp_processor_id();
  1236. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1237. /* Get MPDU DESC info */
  1238. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1239. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1240. mpdu_desc_info.peer_meta_data);
  1241. /* Get MSDU DESC info */
  1242. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1243. /*
  1244. * save msdu flags first, last and continuation msdu in
  1245. * nbuf->cb
  1246. */
  1247. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1248. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1249. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1250. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1251. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1252. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1253. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1254. /*
  1255. * if continuation bit is set then we have MSDU spread
  1256. * across multiple buffers, let us not decrement quota
  1257. * till we reap all buffers of that MSDU.
  1258. */
  1259. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1260. quota -= 1;
  1261. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1262. &tail[rx_desc->pool_id],
  1263. rx_desc);
  1264. }
  1265. done:
  1266. hal_srng_access_end(hal_soc, hal_ring);
  1267. /* Update histogram statistics by looping through pdev's */
  1268. DP_RX_HIST_STATS_PER_PDEV();
  1269. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1270. /*
  1271. * continue with next mac_id if no pkts were reaped
  1272. * from that pool
  1273. */
  1274. if (!rx_bufs_reaped[mac_id])
  1275. continue;
  1276. pdev = soc->pdev_list[mac_id];
  1277. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1278. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1279. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1280. rx_desc_pool, rx_bufs_reaped[mac_id],
  1281. &head[mac_id], &tail[mac_id]);
  1282. }
  1283. /* Peer can be NULL is case of LFR */
  1284. if (qdf_likely(peer != NULL))
  1285. vdev = NULL;
  1286. /*
  1287. * BIG loop where each nbuf is dequeued from global queue,
  1288. * processed and queued back on a per vdev basis. These nbufs
  1289. * are sent to stack as and when we run out of nbufs
  1290. * or a new nbuf dequeued from global queue has a different
  1291. * vdev when compared to previous nbuf.
  1292. */
  1293. nbuf = nbuf_head;
  1294. while (nbuf) {
  1295. next = nbuf->next;
  1296. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1297. /*
  1298. * Check if DMA completed -- msdu_done is the last bit
  1299. * to be written
  1300. */
  1301. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1302. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1303. FL("MSDU DONE failure"));
  1304. hal_rx_dump_pkt_tlvs(rx_tlv_hdr, QDF_TRACE_LEVEL_INFO);
  1305. qdf_assert(0);
  1306. }
  1307. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1308. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1309. peer = dp_peer_find_by_id(soc, peer_id);
  1310. if (peer) {
  1311. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1312. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1313. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1314. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1315. QDF_NBUF_RX_PKT_DATA_TRACK;
  1316. }
  1317. rx_bufs_used++;
  1318. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1319. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1320. deliver_list_tail);
  1321. deliver_list_head = NULL;
  1322. deliver_list_tail = NULL;
  1323. }
  1324. if (qdf_likely(peer != NULL)) {
  1325. vdev = peer->vdev;
  1326. } else {
  1327. qdf_nbuf_free(nbuf);
  1328. nbuf = next;
  1329. continue;
  1330. }
  1331. if (qdf_unlikely(vdev == NULL)) {
  1332. qdf_nbuf_free(nbuf);
  1333. nbuf = next;
  1334. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1335. continue;
  1336. }
  1337. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1338. /*
  1339. * First IF condition:
  1340. * 802.11 Fragmented pkts are reinjected to REO
  1341. * HW block as SG pkts and for these pkts we only
  1342. * need to pull the RX TLVS header length.
  1343. * Second IF condition:
  1344. * The below condition happens when an MSDU is spread
  1345. * across multiple buffers. This can happen in two cases
  1346. * 1. The nbuf size is smaller then the received msdu.
  1347. * ex: we have set the nbuf size to 2048 during
  1348. * nbuf_alloc. but we received an msdu which is
  1349. * 2304 bytes in size then this msdu is spread
  1350. * across 2 nbufs.
  1351. *
  1352. * 2. AMSDUs when RAW mode is enabled.
  1353. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1354. * across 1st nbuf and 2nd nbuf and last MSDU is
  1355. * spread across 2nd nbuf and 3rd nbuf.
  1356. *
  1357. * for these scenarios let us create a skb frag_list and
  1358. * append these buffers till the last MSDU of the AMSDU
  1359. * Third condition:
  1360. * This is the most likely case, we receive 802.3 pkts
  1361. * decapsulated by HW, here we need to set the pkt length.
  1362. */
  1363. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1364. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1365. else if (qdf_unlikely(vdev->rx_decap_type ==
  1366. htt_cmn_pkt_type_raw)) {
  1367. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1368. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1369. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1370. DP_STATS_INC_PKT(peer, rx.raw, 1,
  1371. msdu_len);
  1372. next = nbuf->next;
  1373. } else {
  1374. l2_hdr_offset =
  1375. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1376. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1377. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1378. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1379. qdf_nbuf_pull_head(nbuf,
  1380. RX_PKT_TLVS_LEN +
  1381. l2_hdr_offset);
  1382. }
  1383. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1384. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1385. QDF_TRACE(QDF_MODULE_ID_DP,
  1386. QDF_TRACE_LEVEL_ERROR,
  1387. FL("Policy Check Drop pkt"));
  1388. /* Drop & free packet */
  1389. qdf_nbuf_free(nbuf);
  1390. /* Statistics */
  1391. nbuf = next;
  1392. continue;
  1393. }
  1394. if (qdf_unlikely(peer && peer->bss_peer)) {
  1395. QDF_TRACE(QDF_MODULE_ID_DP,
  1396. QDF_TRACE_LEVEL_ERROR,
  1397. FL("received pkt with same src MAC"));
  1398. DP_STATS_INC(vdev->pdev, dropped.mec, 1);
  1399. /* Drop & free packet */
  1400. qdf_nbuf_free(nbuf);
  1401. /* Statistics */
  1402. nbuf = next;
  1403. continue;
  1404. }
  1405. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1406. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1407. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1408. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1409. qdf_nbuf_free(nbuf);
  1410. nbuf = next;
  1411. continue;
  1412. }
  1413. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1414. dp_set_rx_queue(nbuf, ring_id);
  1415. /*
  1416. * HW structures call this L3 header padding --
  1417. * even though this is actually the offset from
  1418. * the buffer beginning where the L2 header
  1419. * begins.
  1420. */
  1421. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1422. FL("rxhash: flow id toeplitz: 0x%x\n"),
  1423. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1424. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1425. if (qdf_unlikely(vdev->mesh_vdev)) {
  1426. if (dp_rx_filter_mesh_packets(vdev, nbuf,
  1427. rx_tlv_hdr)
  1428. == QDF_STATUS_SUCCESS) {
  1429. QDF_TRACE(QDF_MODULE_ID_DP,
  1430. QDF_TRACE_LEVEL_INFO_MED,
  1431. FL("mesh pkt filtered"));
  1432. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1433. 1);
  1434. qdf_nbuf_free(nbuf);
  1435. nbuf = next;
  1436. continue;
  1437. }
  1438. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1439. }
  1440. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1441. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1442. "p_id %d msdu_len %d hdr_off %d",
  1443. peer_id, msdu_len, l2_hdr_offset);
  1444. print_hex_dump(KERN_ERR,
  1445. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1446. qdf_nbuf_data(nbuf), 128, false);
  1447. #endif /* NAPIER_EMULATION */
  1448. if (qdf_likely(vdev->rx_decap_type ==
  1449. htt_cmn_pkt_type_ethernet) &&
  1450. (qdf_likely(!vdev->mesh_vdev))) {
  1451. /* WDS Source Port Learning */
  1452. dp_rx_wds_srcport_learn(soc,
  1453. rx_tlv_hdr,
  1454. peer,
  1455. nbuf);
  1456. /* Intrabss-fwd */
  1457. if (dp_rx_check_ap_bridge(vdev))
  1458. if (dp_rx_intrabss_fwd(soc,
  1459. peer,
  1460. rx_tlv_hdr,
  1461. nbuf)) {
  1462. nbuf = next;
  1463. continue; /* Get next desc */
  1464. }
  1465. }
  1466. dp_rx_lro(rx_tlv_hdr, peer, nbuf, int_ctx->lro_ctx);
  1467. DP_RX_LIST_APPEND(deliver_list_head,
  1468. deliver_list_tail,
  1469. nbuf);
  1470. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1471. qdf_nbuf_len(nbuf));
  1472. nbuf = next;
  1473. }
  1474. if (deliver_list_head)
  1475. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1476. deliver_list_tail);
  1477. return rx_bufs_used; /* Assume no scale factor for now */
  1478. }
  1479. /**
  1480. * dp_rx_detach() - detach dp rx
  1481. * @pdev: core txrx pdev context
  1482. *
  1483. * This function will detach DP RX into main device context
  1484. * will free DP Rx resources.
  1485. *
  1486. * Return: void
  1487. */
  1488. void
  1489. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1490. {
  1491. uint8_t pdev_id = pdev->pdev_id;
  1492. struct dp_soc *soc = pdev->soc;
  1493. struct rx_desc_pool *rx_desc_pool;
  1494. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1495. if (rx_desc_pool->pool_size != 0) {
  1496. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1497. }
  1498. return;
  1499. }
  1500. /**
  1501. * dp_rx_attach() - attach DP RX
  1502. * @pdev: core txrx pdev context
  1503. *
  1504. * This function will attach a DP RX instance into the main
  1505. * device (SOC) context. Will allocate dp rx resource and
  1506. * initialize resources.
  1507. *
  1508. * Return: QDF_STATUS_SUCCESS: success
  1509. * QDF_STATUS_E_RESOURCES: Error return
  1510. */
  1511. QDF_STATUS
  1512. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1513. {
  1514. uint8_t pdev_id = pdev->pdev_id;
  1515. struct dp_soc *soc = pdev->soc;
  1516. struct dp_srng rxdma_srng;
  1517. uint32_t rxdma_entries;
  1518. union dp_rx_desc_list_elem_t *desc_list = NULL;
  1519. union dp_rx_desc_list_elem_t *tail = NULL;
  1520. struct dp_srng *dp_rxdma_srng;
  1521. struct rx_desc_pool *rx_desc_pool;
  1522. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  1523. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1524. "nss-wifi<4> skip Rx refil %d", pdev_id);
  1525. return QDF_STATUS_SUCCESS;
  1526. }
  1527. pdev = soc->pdev_list[pdev_id];
  1528. rxdma_srng = pdev->rx_refill_buf_ring;
  1529. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  1530. rxdma_entries = rxdma_srng.alloc_size/hal_srng_get_entrysize(
  1531. soc->hal_soc, RXDMA_BUF);
  1532. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1533. dp_rx_desc_pool_alloc(soc, pdev_id, rxdma_entries*3, rx_desc_pool);
  1534. rx_desc_pool->owner = DP_WBM2SW_RBM;
  1535. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  1536. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1537. dp_rx_buffers_replenish(soc, pdev_id, dp_rxdma_srng, rx_desc_pool,
  1538. 0, &desc_list, &tail);
  1539. return QDF_STATUS_SUCCESS;
  1540. }
  1541. /*
  1542. * dp_rx_nbuf_prepare() - prepare RX nbuf
  1543. * @soc: core txrx main context
  1544. * @pdev: core txrx pdev context
  1545. *
  1546. * This function alloc & map nbuf for RX dma usage, retry it if failed
  1547. * until retry times reaches max threshold or succeeded.
  1548. *
  1549. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  1550. */
  1551. qdf_nbuf_t
  1552. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  1553. {
  1554. uint8_t *buf;
  1555. int32_t nbuf_retry_count;
  1556. QDF_STATUS ret;
  1557. qdf_nbuf_t nbuf = NULL;
  1558. for (nbuf_retry_count = 0; nbuf_retry_count <
  1559. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  1560. nbuf_retry_count++) {
  1561. /* Allocate a new skb */
  1562. nbuf = qdf_nbuf_alloc(soc->osdev,
  1563. RX_BUFFER_SIZE,
  1564. RX_BUFFER_RESERVATION,
  1565. RX_BUFFER_ALIGNMENT,
  1566. FALSE);
  1567. if (nbuf == NULL) {
  1568. DP_STATS_INC(pdev,
  1569. replenish.nbuf_alloc_fail, 1);
  1570. continue;
  1571. }
  1572. buf = qdf_nbuf_data(nbuf);
  1573. memset(buf, 0, RX_BUFFER_SIZE);
  1574. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  1575. QDF_DMA_BIDIRECTIONAL);
  1576. /* nbuf map failed */
  1577. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1578. qdf_nbuf_free(nbuf);
  1579. DP_STATS_INC(pdev, replenish.map_err, 1);
  1580. continue;
  1581. }
  1582. /* qdf_nbuf alloc and map succeeded */
  1583. break;
  1584. }
  1585. /* qdf_nbuf still alloc or map failed */
  1586. if (qdf_unlikely(nbuf_retry_count >=
  1587. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  1588. return NULL;
  1589. return nbuf;
  1590. }