hal_srng.c 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. /*
  2. * Copyright (c) 2016-2018 The Linux Foundation. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions are
  6. * met:
  7. * * Redistributions of source code must retain the above copyright
  8. * notice, this list of conditions and the following disclaimer.
  9. * * Redistributions in binary form must reproduce the above
  10. * copyright notice, this list of conditions and the following
  11. * disclaimer in the documentation and/or other materials provided
  12. * with the distribution.
  13. * * Neither the name of The Linux Foundation nor the names of its
  14. * contributors may be used to endorse or promote products derived
  15. * from this software without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
  18. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  19. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
  21. * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  24. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  25. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  26. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  27. * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include "hal_api.h"
  30. #include "target_type.h"
  31. #include "wcss_version.h"
  32. /**
  33. * Common SRNG register access macros:
  34. * The SRNG registers are distributed accross various UMAC and LMAC HW blocks,
  35. * but the register group and format is exactly same for all rings, with some
  36. * difference between producer rings (these are 'producer rings' with respect
  37. * to HW and refered as 'destination rings' in SW) and consumer rings (these
  38. * are 'consumer rings' with respect to HW and refered as 'source rings' in SW).
  39. * The following macros provide uniform access to all SRNG rings.
  40. */
  41. /* SRNG registers are split among two groups R0 and R2 and following
  42. * definitions identify the group to which each register belongs to
  43. */
  44. #define R0_INDEX 0
  45. #define R2_INDEX 1
  46. #define HWREG_INDEX(_reg_group) _reg_group ## _ ## INDEX
  47. /* Registers in R0 group */
  48. #define BASE_LSB_GROUP R0
  49. #define BASE_MSB_GROUP R0
  50. #define ID_GROUP R0
  51. #define STATUS_GROUP R0
  52. #define MISC_GROUP R0
  53. #define HP_ADDR_LSB_GROUP R0
  54. #define HP_ADDR_MSB_GROUP R0
  55. #define PRODUCER_INT_SETUP_GROUP R0
  56. #define PRODUCER_INT_STATUS_GROUP R0
  57. #define PRODUCER_FULL_COUNTER_GROUP R0
  58. #define MSI1_BASE_LSB_GROUP R0
  59. #define MSI1_BASE_MSB_GROUP R0
  60. #define MSI1_DATA_GROUP R0
  61. #define HP_TP_SW_OFFSET_GROUP R0
  62. #define TP_ADDR_LSB_GROUP R0
  63. #define TP_ADDR_MSB_GROUP R0
  64. #define CONSUMER_INT_SETUP_IX0_GROUP R0
  65. #define CONSUMER_INT_SETUP_IX1_GROUP R0
  66. #define CONSUMER_INT_STATUS_GROUP R0
  67. #define CONSUMER_EMPTY_COUNTER_GROUP R0
  68. #define CONSUMER_PREFETCH_TIMER_GROUP R0
  69. #define CONSUMER_PREFETCH_STATUS_GROUP R0
  70. /* Registers in R2 group */
  71. #define HP_GROUP R2
  72. #define TP_GROUP R2
  73. /**
  74. * Register definitions for all SRNG based rings are same, except few
  75. * differences between source (HW consumer) and destination (HW producer)
  76. * registers. Following macros definitions provide generic access to all
  77. * SRNG based rings.
  78. * For source rings, we will use the register/field definitions of SW2TCL1
  79. * ring defined in the HW header file mac_tcl_reg_seq_hwioreg.h. To setup
  80. * individual fields, SRNG_SM macros should be used with fields specified
  81. * using SRNG_SRC_FLD(<register>, <field>), Register writes should be done
  82. * using SRNG_SRC_REG_WRITE(<hal_srng>, <register>, <value>).
  83. * Similarly for destination rings we will use definitions of REO2SW1 ring
  84. * defined in the register reo_destination_ring.h. To setup individual
  85. * fields SRNG_SM macros should be used with fields specified using
  86. * SRNG_DST_FLD(<register>, <field>). Register writes should be done using
  87. * SRNG_DST_REG_WRITE(<hal_srng>, <register>, <value>).
  88. */
  89. #define SRNG_DST_REG_OFFSET(_reg, _reg_group) \
  90. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg##_ADDR(0)
  91. #define SRNG_SRC_REG_OFFSET(_reg, _reg_group) \
  92. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg ## _ADDR(0)
  93. #define _SRNG_DST_FLD(_reg_group, _reg_fld) \
  94. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg_fld
  95. #define _SRNG_SRC_FLD(_reg_group, _reg_fld) \
  96. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg_fld
  97. #define _SRNG_FLD(_reg_group, _reg_fld, _dir) \
  98. _SRNG_ ## _dir ## _FLD(_reg_group, _reg_fld)
  99. #define SRNG_DST_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, DST)
  100. #define SRNG_SRC_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, SRC)
  101. #define SRNG_SRC_R0_START_OFFSET SRNG_SRC_REG_OFFSET(BASE_LSB, R0)
  102. #define SRNG_DST_R0_START_OFFSET SRNG_DST_REG_OFFSET(BASE_LSB, R0)
  103. #define SRNG_SRC_R2_START_OFFSET SRNG_SRC_REG_OFFSET(HP, R2)
  104. #define SRNG_DST_R2_START_OFFSET SRNG_DST_REG_OFFSET(HP, R2)
  105. #define SRNG_SRC_START_OFFSET(_reg_group) \
  106. SRNG_SRC_ ## _reg_group ## _START_OFFSET
  107. #define SRNG_DST_START_OFFSET(_reg_group) \
  108. SRNG_DST_ ## _reg_group ## _START_OFFSET
  109. #define SRNG_REG_ADDR(_srng, _reg, _reg_group, _dir) \
  110. ((_srng)->hwreg_base[HWREG_INDEX(_reg_group)] + \
  111. SRNG_ ## _dir ## _REG_OFFSET(_reg, _reg_group) - \
  112. SRNG_ ## _dir ## _START_OFFSET(_reg_group))
  113. #define SRNG_DST_ADDR(_srng, _reg) \
  114. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, DST)
  115. #define SRNG_SRC_ADDR(_srng, _reg) \
  116. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, SRC)
  117. #define SRNG_REG_WRITE(_srng, _reg, _value, _dir) \
  118. hal_write_address_32_mb(_srng->hal_soc, SRNG_ ## _dir ## _ADDR(_srng, _reg), (_value))
  119. #define SRNG_REG_READ(_srng, _reg, _dir) \
  120. hal_read_address_32_mb(_srng->hal_soc, SRNG_ ## _dir ## _ADDR(_srng, _reg))
  121. #define SRNG_SRC_REG_WRITE(_srng, _reg, _value) \
  122. SRNG_REG_WRITE(_srng, _reg, _value, SRC)
  123. #define SRNG_DST_REG_WRITE(_srng, _reg, _value) \
  124. SRNG_REG_WRITE(_srng, _reg, _value, DST)
  125. #define SRNG_SRC_REG_READ(_srng, _reg) \
  126. SRNG_REG_READ(_srng, _reg, SRC)
  127. #define _SRNG_FM(_reg_fld) _reg_fld ## _BMSK
  128. #define _SRNG_FS(_reg_fld) _reg_fld ## _SHFT
  129. #define SRNG_SM(_reg_fld, _val) \
  130. (((_val) << _SRNG_FS(_reg_fld)) & _SRNG_FM(_reg_fld))
  131. #define SRNG_MS(_reg_fld, _val) \
  132. (((_val) & _SRNG_FM(_reg_fld)) >> _SRNG_FS(_reg_fld))
  133. #define SRNG_MAX_SIZE_DWORDS \
  134. (SRNG_MS(SRNG_SRC_FLD(BASE_MSB, RING_SIZE), 0xffffffff))
  135. /**
  136. * HW ring configuration table to identify hardware ring attributes like
  137. * register addresses, number of rings, ring entry size etc., for each type
  138. * of SRNG ring.
  139. *
  140. * Currently there is just one HW ring table, but there could be multiple
  141. * configurations in future based on HW variants from the same wifi3.0 family
  142. * and hence need to be attached with hal_soc based on HW type
  143. */
  144. #define HAL_SRNG_CONFIG(_hal_soc, _ring_type) (&hw_srng_table[_ring_type])
  145. static struct hal_hw_srng_config hw_srng_table[] = {
  146. /* TODO: max_rings can populated by querying HW capabilities */
  147. { /* REO_DST */
  148. .start_ring_id = HAL_SRNG_REO2SW1,
  149. .max_rings = 4,
  150. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  151. .lmac_ring = FALSE,
  152. .ring_dir = HAL_SRNG_DST_RING,
  153. .reg_start = {
  154. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(
  155. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  156. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(
  157. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  158. },
  159. .reg_size = {
  160. HWIO_REO_R0_REO2SW2_RING_BASE_LSB_ADDR(0) -
  161. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(0),
  162. HWIO_REO_R2_REO2SW2_RING_HP_ADDR(0) -
  163. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(0),
  164. },
  165. },
  166. { /* REO_EXCEPTION */
  167. /* Designating REO2TCL ring as exception ring. This ring is
  168. * similar to other REO2SW rings though it is named as REO2TCL.
  169. * Any of theREO2SW rings can be used as exception ring.
  170. */
  171. .start_ring_id = HAL_SRNG_REO2TCL,
  172. .max_rings = 1,
  173. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  174. .lmac_ring = FALSE,
  175. .ring_dir = HAL_SRNG_DST_RING,
  176. .reg_start = {
  177. HWIO_REO_R0_REO2TCL_RING_BASE_LSB_ADDR(
  178. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  179. HWIO_REO_R2_REO2TCL_RING_HP_ADDR(
  180. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  181. },
  182. /* Single ring - provide ring size if multiple rings of this
  183. * type are supported */
  184. .reg_size = {},
  185. },
  186. { /* REO_REINJECT */
  187. .start_ring_id = HAL_SRNG_SW2REO,
  188. .max_rings = 1,
  189. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  190. .lmac_ring = FALSE,
  191. .ring_dir = HAL_SRNG_SRC_RING,
  192. .reg_start = {
  193. HWIO_REO_R0_SW2REO_RING_BASE_LSB_ADDR(
  194. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  195. HWIO_REO_R2_SW2REO_RING_HP_ADDR(
  196. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  197. },
  198. /* Single ring - provide ring size if multiple rings of this
  199. * type are supported */
  200. .reg_size = {},
  201. },
  202. { /* REO_CMD */
  203. .start_ring_id = HAL_SRNG_REO_CMD,
  204. .max_rings = 1,
  205. .entry_size = (sizeof(struct tlv_32_hdr) +
  206. sizeof(struct reo_get_queue_stats)) >> 2,
  207. .lmac_ring = FALSE,
  208. .ring_dir = HAL_SRNG_SRC_RING,
  209. .reg_start = {
  210. HWIO_REO_R0_REO_CMD_RING_BASE_LSB_ADDR(
  211. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  212. HWIO_REO_R2_REO_CMD_RING_HP_ADDR(
  213. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  214. },
  215. /* Single ring - provide ring size if multiple rings of this
  216. * type are supported */
  217. .reg_size = {},
  218. },
  219. { /* REO_STATUS */
  220. .start_ring_id = HAL_SRNG_REO_STATUS,
  221. .max_rings = 1,
  222. .entry_size = (sizeof(struct tlv_32_hdr) +
  223. sizeof(struct reo_get_queue_stats_status)) >> 2,
  224. .lmac_ring = FALSE,
  225. .ring_dir = HAL_SRNG_DST_RING,
  226. .reg_start = {
  227. HWIO_REO_R0_REO_STATUS_RING_BASE_LSB_ADDR(
  228. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  229. HWIO_REO_R2_REO_STATUS_RING_HP_ADDR(
  230. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  231. },
  232. /* Single ring - provide ring size if multiple rings of this
  233. * type are supported */
  234. .reg_size = {},
  235. },
  236. { /* TCL_DATA */
  237. .start_ring_id = HAL_SRNG_SW2TCL1,
  238. .max_rings = 3,
  239. .entry_size = (sizeof(struct tlv_32_hdr) +
  240. sizeof(struct tcl_data_cmd)) >> 2,
  241. .lmac_ring = FALSE,
  242. .ring_dir = HAL_SRNG_SRC_RING,
  243. .reg_start = {
  244. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(
  245. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  246. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(
  247. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  248. },
  249. .reg_size = {
  250. HWIO_TCL_R0_SW2TCL2_RING_BASE_LSB_ADDR(0) -
  251. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(0),
  252. HWIO_TCL_R2_SW2TCL2_RING_HP_ADDR(0) -
  253. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(0),
  254. },
  255. },
  256. { /* TCL_CMD */
  257. .start_ring_id = HAL_SRNG_SW2TCL_CMD,
  258. .max_rings = 1,
  259. .entry_size = (sizeof(struct tlv_32_hdr) +
  260. sizeof(struct tcl_gse_cmd)) >> 2,
  261. .lmac_ring = FALSE,
  262. .ring_dir = HAL_SRNG_SRC_RING,
  263. .reg_start = {
  264. HWIO_TCL_R0_SW2TCL_CMD_RING_BASE_LSB_ADDR(
  265. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  266. HWIO_TCL_R2_SW2TCL_CMD_RING_HP_ADDR(
  267. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  268. },
  269. /* Single ring - provide ring size if multiple rings of this
  270. * type are supported */
  271. .reg_size = {},
  272. },
  273. { /* TCL_STATUS */
  274. .start_ring_id = HAL_SRNG_TCL_STATUS,
  275. .max_rings = 1,
  276. .entry_size = (sizeof(struct tlv_32_hdr) +
  277. sizeof(struct tcl_status_ring)) >> 2,
  278. .lmac_ring = FALSE,
  279. .ring_dir = HAL_SRNG_DST_RING,
  280. .reg_start = {
  281. HWIO_TCL_R0_TCL_STATUS1_RING_BASE_LSB_ADDR(
  282. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  283. HWIO_TCL_R2_TCL_STATUS1_RING_HP_ADDR(
  284. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  285. },
  286. /* Single ring - provide ring size if multiple rings of this
  287. * type are supported */
  288. .reg_size = {},
  289. },
  290. { /* CE_SRC */
  291. .start_ring_id = HAL_SRNG_CE_0_SRC,
  292. .max_rings = 12,
  293. .entry_size = sizeof(struct ce_src_desc) >> 2,
  294. .lmac_ring = FALSE,
  295. .ring_dir = HAL_SRNG_SRC_RING,
  296. .reg_start = {
  297. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  298. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  299. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  300. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  301. },
  302. .reg_size = {
  303. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  304. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  305. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  306. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  307. },
  308. },
  309. { /* CE_DST */
  310. .start_ring_id = HAL_SRNG_CE_0_DST,
  311. .max_rings = 12,
  312. .entry_size = 8 >> 2,
  313. /*TODO: entry_size above should actually be
  314. * sizeof(struct ce_dst_desc) >> 2, but couldn't find definition
  315. * of struct ce_dst_desc in HW header files
  316. */
  317. .lmac_ring = FALSE,
  318. .ring_dir = HAL_SRNG_SRC_RING,
  319. .reg_start = {
  320. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  321. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  322. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  323. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  324. },
  325. .reg_size = {
  326. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  327. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  328. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  329. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  330. },
  331. },
  332. { /* CE_DST_STATUS */
  333. .start_ring_id = HAL_SRNG_CE_0_DST_STATUS,
  334. .max_rings = 12,
  335. .entry_size = sizeof(struct ce_stat_desc) >> 2,
  336. .lmac_ring = FALSE,
  337. .ring_dir = HAL_SRNG_DST_RING,
  338. .reg_start = {
  339. HWIO_WFSS_CE_CHANNEL_DST_R0_STATUS_RING_BASE_LSB_ADDR(
  340. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  341. HWIO_WFSS_CE_CHANNEL_DST_R2_STATUS_RING_HP_ADDR(
  342. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  343. },
  344. /* TODO: check destination status ring registers */
  345. .reg_size = {
  346. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  347. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  348. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  349. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  350. },
  351. },
  352. { /* WBM_IDLE_LINK */
  353. .start_ring_id = HAL_SRNG_WBM_IDLE_LINK,
  354. .max_rings = 1,
  355. .entry_size = sizeof(struct wbm_link_descriptor_ring) >> 2,
  356. .lmac_ring = FALSE,
  357. .ring_dir = HAL_SRNG_SRC_RING,
  358. .reg_start = {
  359. HWIO_WBM_R0_WBM_IDLE_LINK_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  360. HWIO_WBM_R2_WBM_IDLE_LINK_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  361. },
  362. /* Single ring - provide ring size if multiple rings of this
  363. * type are supported */
  364. .reg_size = {},
  365. },
  366. { /* SW2WBM_RELEASE */
  367. .start_ring_id = HAL_SRNG_WBM_SW_RELEASE,
  368. .max_rings = 1,
  369. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  370. .lmac_ring = FALSE,
  371. .ring_dir = HAL_SRNG_SRC_RING,
  372. .reg_start = {
  373. HWIO_WBM_R0_SW_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  374. HWIO_WBM_R2_SW_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  375. },
  376. /* Single ring - provide ring size if multiple rings of this
  377. * type are supported */
  378. .reg_size = {},
  379. },
  380. { /* WBM2SW_RELEASE */
  381. .start_ring_id = HAL_SRNG_WBM2SW0_RELEASE,
  382. .max_rings = 4,
  383. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  384. .lmac_ring = FALSE,
  385. .ring_dir = HAL_SRNG_DST_RING,
  386. .reg_start = {
  387. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  388. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  389. },
  390. .reg_size = {
  391. HWIO_WBM_R0_WBM2SW1_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  392. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  393. HWIO_WBM_R2_WBM2SW1_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  394. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  395. },
  396. },
  397. { /* RXDMA_BUF */
  398. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA0_BUF0,
  399. #ifdef IPA_OFFLOAD
  400. .max_rings = 3,
  401. #else
  402. .max_rings = 2,
  403. #endif
  404. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  405. .lmac_ring = TRUE,
  406. .ring_dir = HAL_SRNG_SRC_RING,
  407. /* reg_start is not set because LMAC rings are not accessed
  408. * from host
  409. */
  410. .reg_start = {},
  411. .reg_size = {},
  412. },
  413. { /* RXDMA_DST */
  414. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW0,
  415. .max_rings = 1,
  416. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  417. .lmac_ring = TRUE,
  418. .ring_dir = HAL_SRNG_DST_RING,
  419. /* reg_start is not set because LMAC rings are not accessed
  420. * from host
  421. */
  422. .reg_start = {},
  423. .reg_size = {},
  424. },
  425. { /* RXDMA_MONITOR_BUF */
  426. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA2_BUF,
  427. .max_rings = 1,
  428. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  429. .lmac_ring = TRUE,
  430. .ring_dir = HAL_SRNG_SRC_RING,
  431. /* reg_start is not set because LMAC rings are not accessed
  432. * from host
  433. */
  434. .reg_start = {},
  435. .reg_size = {},
  436. },
  437. { /* RXDMA_MONITOR_STATUS */
  438. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA1_STATBUF,
  439. .max_rings = 1,
  440. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  441. .lmac_ring = TRUE,
  442. .ring_dir = HAL_SRNG_SRC_RING,
  443. /* reg_start is not set because LMAC rings are not accessed
  444. * from host
  445. */
  446. .reg_start = {},
  447. .reg_size = {},
  448. },
  449. { /* RXDMA_MONITOR_DST */
  450. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW1,
  451. .max_rings = 1,
  452. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  453. .lmac_ring = TRUE,
  454. .ring_dir = HAL_SRNG_DST_RING,
  455. /* reg_start is not set because LMAC rings are not accessed
  456. * from host
  457. */
  458. .reg_start = {},
  459. .reg_size = {},
  460. },
  461. { /* RXDMA_MONITOR_DESC */
  462. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA1_DESC,
  463. .max_rings = 1,
  464. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  465. .lmac_ring = TRUE,
  466. .ring_dir = HAL_SRNG_SRC_RING,
  467. /* reg_start is not set because LMAC rings are not accessed
  468. * from host
  469. */
  470. .reg_start = {},
  471. .reg_size = {},
  472. },
  473. { /* DIR_BUF_RX_DMA_SRC */
  474. .start_ring_id = HAL_SRNG_DIR_BUF_RX_SRC_DMA_RING,
  475. .max_rings = 1,
  476. .entry_size = 2,
  477. .lmac_ring = TRUE,
  478. .ring_dir = HAL_SRNG_SRC_RING,
  479. /* reg_start is not set because LMAC rings are not accessed
  480. * from host
  481. */
  482. .reg_start = {},
  483. .reg_size = {},
  484. },
  485. #ifdef WLAN_FEATURE_CIF_CFR
  486. { /* WIFI_POS_SRC */
  487. .start_ring_id = HAL_SRNG_WIFI_POS_SRC_DMA_RING,
  488. .max_rings = 1,
  489. .entry_size = sizeof(wmi_oem_dma_buf_release_entry) >> 2,
  490. .lmac_ring = TRUE,
  491. .ring_dir = HAL_SRNG_SRC_RING,
  492. /* reg_start is not set because LMAC rings are not accessed
  493. * from host
  494. */
  495. .reg_start = {},
  496. .reg_size = {},
  497. },
  498. #endif
  499. };
  500. /**
  501. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  502. * @hal: hal_soc data structure
  503. * @ring_type: type enum describing the ring
  504. * @ring_num: which ring of the ring type
  505. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  506. *
  507. * Return: the ring id or -EINVAL if the ring does not exist.
  508. */
  509. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  510. int ring_num, int mac_id)
  511. {
  512. struct hal_hw_srng_config *ring_config =
  513. HAL_SRNG_CONFIG(hal, ring_type);
  514. int ring_id;
  515. if (ring_num >= ring_config->max_rings) {
  516. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  517. "%s: ring_num exceeded maximum no. of supported rings\n",
  518. __func__);
  519. /* TODO: This is a programming error. Assert if this happens */
  520. return -EINVAL;
  521. }
  522. if (ring_config->lmac_ring) {
  523. ring_id = ring_config->start_ring_id + ring_num +
  524. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  525. } else {
  526. ring_id = ring_config->start_ring_id + ring_num;
  527. }
  528. return ring_id;
  529. }
  530. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  531. {
  532. /* TODO: Should we allocate srng structures dynamically? */
  533. return &(hal->srng_list[ring_id]);
  534. }
  535. #define HP_OFFSET_IN_REG_START 1
  536. #define OFFSET_FROM_HP_TO_TP 4
  537. static void hal_update_srng_hp_tp_address(void *hal_soc,
  538. int shadow_config_index,
  539. int ring_type,
  540. int ring_num)
  541. {
  542. struct hal_srng *srng;
  543. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  544. int ring_id;
  545. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  546. if (ring_id < 0)
  547. return;
  548. srng = hal_get_srng(hal_soc, ring_id);
  549. if (srng->ring_dir == HAL_SRNG_DST_RING)
  550. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  551. + hal->dev_base_addr;
  552. else
  553. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  554. + hal->dev_base_addr;
  555. }
  556. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  557. int ring_type,
  558. int ring_num)
  559. {
  560. uint32_t target_register;
  561. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  562. struct hal_hw_srng_config *srng_config = &hw_srng_table[ring_type];
  563. int shadow_config_index = hal->num_shadow_registers_configured;
  564. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  565. QDF_ASSERT(0);
  566. return QDF_STATUS_E_RESOURCES;
  567. }
  568. hal->num_shadow_registers_configured++;
  569. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  570. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  571. *ring_num);
  572. /* if the ring is a dst ring, we need to shadow the tail pointer */
  573. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  574. target_register += OFFSET_FROM_HP_TO_TP;
  575. hal->shadow_config[shadow_config_index].addr = target_register;
  576. /* update hp/tp addr in the hal_soc structure*/
  577. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  578. ring_num);
  579. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  580. "%s: target_reg %x, shadow_index %x, ring_type %d, ring num %d\n",
  581. __func__, target_register, shadow_config_index,
  582. ring_type, ring_num);
  583. return QDF_STATUS_SUCCESS;
  584. }
  585. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  586. {
  587. int ring_type, ring_num;
  588. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  589. struct hal_hw_srng_config *srng_config =
  590. &hw_srng_table[ring_type];
  591. if (ring_type == CE_SRC ||
  592. ring_type == CE_DST ||
  593. ring_type == CE_DST_STATUS)
  594. continue;
  595. if (srng_config->lmac_ring)
  596. continue;
  597. for (ring_num = 0; ring_num < srng_config->max_rings;
  598. ring_num++)
  599. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  600. }
  601. return QDF_STATUS_SUCCESS;
  602. }
  603. void hal_get_shadow_config(void *hal_soc,
  604. struct pld_shadow_reg_v2_cfg **shadow_config,
  605. int *num_shadow_registers_configured)
  606. {
  607. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  608. *shadow_config = hal->shadow_config;
  609. *num_shadow_registers_configured =
  610. hal->num_shadow_registers_configured;
  611. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  612. "%s\n", __func__);
  613. }
  614. static void hal_validate_shadow_register(struct hal_soc *hal,
  615. uint32_t *destination,
  616. uint32_t *shadow_address)
  617. {
  618. unsigned int index;
  619. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  620. int destination_ba_offset =
  621. ((char *)destination) - (char *)hal->dev_base_addr;
  622. index = shadow_address - shadow_0_offset;
  623. if (index > MAX_SHADOW_REGISTERS) {
  624. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  625. "%s: index %x out of bounds\n", __func__, index);
  626. goto error;
  627. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  628. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  629. "%s: sanity check failure, expected %x, found %x\n",
  630. __func__, destination_ba_offset,
  631. hal->shadow_config[index].addr);
  632. goto error;
  633. }
  634. return;
  635. error:
  636. qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  637. __func__, hal->dev_base_addr, destination, shadow_address,
  638. shadow_0_offset, index);
  639. QDF_BUG(0);
  640. return;
  641. }
  642. static void hal_target_based_configure(struct hal_soc *hal)
  643. {
  644. struct hif_target_info *tgt_info =
  645. hif_get_target_info_handle(hal->hif_handle);
  646. switch (tgt_info->target_type) {
  647. case TARGET_TYPE_QCA6290:
  648. hal->use_register_windowing = true;
  649. break;
  650. default:
  651. break;
  652. }
  653. }
  654. /**
  655. * hal_attach - Initalize HAL layer
  656. * @hif_handle: Opaque HIF handle
  657. * @qdf_dev: QDF device
  658. *
  659. * Return: Opaque HAL SOC handle
  660. * NULL on failure (if given ring is not available)
  661. *
  662. * This function should be called as part of HIF initialization (for accessing
  663. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  664. *
  665. */
  666. void *hal_attach(void *hif_handle, qdf_device_t qdf_dev)
  667. {
  668. struct hal_soc *hal;
  669. int i;
  670. hal = qdf_mem_malloc(sizeof(*hal));
  671. if (!hal) {
  672. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  673. "%s: hal_soc allocation failed\n", __func__);
  674. goto fail0;
  675. }
  676. hal->hif_handle = hif_handle;
  677. hal->dev_base_addr = hif_get_dev_ba(hif_handle);
  678. hal->qdf_dev = qdf_dev;
  679. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  680. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  681. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  682. if (!hal->shadow_rdptr_mem_paddr) {
  683. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  684. "%s: hal->shadow_rdptr_mem_paddr allocation failed\n",
  685. __func__);
  686. goto fail1;
  687. }
  688. hal->shadow_wrptr_mem_vaddr =
  689. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  690. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  691. &(hal->shadow_wrptr_mem_paddr));
  692. if (!hal->shadow_wrptr_mem_vaddr) {
  693. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  694. "%s: hal->shadow_wrptr_mem_vaddr allocation failed\n",
  695. __func__);
  696. goto fail2;
  697. }
  698. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  699. hal->srng_list[i].initialized = 0;
  700. hal->srng_list[i].ring_id = i;
  701. }
  702. qdf_spinlock_create(&hal->register_access_lock);
  703. hal->register_window = 0;
  704. hal_target_based_configure(hal);
  705. return (void *)hal;
  706. fail2:
  707. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  708. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  709. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  710. fail1:
  711. qdf_mem_free(hal);
  712. fail0:
  713. return NULL;
  714. }
  715. /**
  716. * hal_mem_info - Retreive hal memory base address
  717. *
  718. * @hal_soc: Opaque HAL SOC handle
  719. * @mem: pointer to structure to be updated with hal mem info
  720. */
  721. void hal_get_meminfo(void *hal_soc, struct hal_mem_info *mem )
  722. {
  723. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  724. mem->dev_base_addr = (void *)hal->dev_base_addr;
  725. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  726. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  727. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  728. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  729. hif_read_phy_mem_base(hal->hif_handle, (qdf_dma_addr_t *)&mem->dev_base_paddr);
  730. return;
  731. }
  732. /**
  733. * hal_detach - Detach HAL layer
  734. * @hal_soc: HAL SOC handle
  735. *
  736. * Return: Opaque HAL SOC handle
  737. * NULL on failure (if given ring is not available)
  738. *
  739. * This function should be called as part of HIF initialization (for accessing
  740. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  741. *
  742. */
  743. extern void hal_detach(void *hal_soc)
  744. {
  745. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  746. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  747. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  748. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  749. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  750. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  751. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  752. qdf_mem_free(hal);
  753. return;
  754. }
  755. /**
  756. * hal_srng_src_hw_init - Private function to initialize SRNG
  757. * source ring HW
  758. * @hal_soc: HAL SOC handle
  759. * @srng: SRNG ring pointer
  760. */
  761. static inline void hal_srng_src_hw_init(struct hal_soc *hal,
  762. struct hal_srng *srng)
  763. {
  764. uint32_t reg_val = 0;
  765. uint64_t tp_addr = 0;
  766. HIF_DBG("%s: hw_init srng %d", __func__, srng->ring_id);
  767. if (srng->flags & HAL_SRNG_MSI_INTR) {
  768. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_LSB,
  769. srng->msi_addr & 0xffffffff);
  770. reg_val = SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB, ADDR),
  771. (uint64_t)(srng->msi_addr) >> 32) |
  772. SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB,
  773. MSI1_ENABLE), 1);
  774. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  775. SRNG_SRC_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  776. }
  777. SRNG_SRC_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  778. reg_val = SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  779. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  780. SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_SIZE),
  781. srng->entry_size * srng->num_entries);
  782. SRNG_SRC_REG_WRITE(srng, BASE_MSB, reg_val);
  783. #if defined(WCSS_VERSION) && \
  784. ((defined(CONFIG_WIN) && (WCSS_VERSION > 81)) || \
  785. (defined(CONFIG_MCL) && (WCSS_VERSION >= 72)))
  786. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  787. #else
  788. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, RING_ID), srng->ring_id) |
  789. SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  790. #endif
  791. SRNG_SRC_REG_WRITE(srng, ID, reg_val);
  792. /**
  793. * Interrupt setup:
  794. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  795. * if level mode is required
  796. */
  797. reg_val = 0;
  798. /*
  799. * WAR - Hawkeye v1 has a hardware bug which requires timer value to be
  800. * programmed in terms of 1us resolution instead of 8us resolution as
  801. * given in MLD.
  802. */
  803. if (srng->intr_timer_thres_us) {
  804. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  805. INTERRUPT_TIMER_THRESHOLD),
  806. srng->intr_timer_thres_us);
  807. /* For HK v2 this should be (srng->intr_timer_thres_us >> 3) */
  808. }
  809. if (srng->intr_batch_cntr_thres_entries) {
  810. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  811. BATCH_COUNTER_THRESHOLD),
  812. srng->intr_batch_cntr_thres_entries *
  813. srng->entry_size);
  814. }
  815. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX0, reg_val);
  816. reg_val = 0;
  817. if (srng->flags & HAL_SRNG_LOW_THRES_INTR_ENABLE) {
  818. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX1,
  819. LOW_THRESHOLD), srng->u.src_ring.low_threshold);
  820. }
  821. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX1, reg_val);
  822. /* As per HW team, TP_ADDR and HP_ADDR for Idle link ring should
  823. * remain 0 to avoid some WBM stability issues. Remote head/tail
  824. * pointers are not required since this ring is completly managed
  825. * by WBM HW */
  826. if (srng->ring_id != HAL_SRNG_WBM_IDLE_LINK) {
  827. tp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  828. ((unsigned long)(srng->u.src_ring.tp_addr) -
  829. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  830. SRNG_SRC_REG_WRITE(srng, TP_ADDR_LSB, tp_addr & 0xffffffff);
  831. SRNG_SRC_REG_WRITE(srng, TP_ADDR_MSB, tp_addr >> 32);
  832. }
  833. /* Initilaize head and tail pointers to indicate ring is empty */
  834. SRNG_SRC_REG_WRITE(srng, HP, 0);
  835. SRNG_SRC_REG_WRITE(srng, TP, 0);
  836. *(srng->u.src_ring.tp_addr) = 0;
  837. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  838. SRNG_SM(SRNG_SRC_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  839. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  840. SRNG_SM(SRNG_SRC_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  841. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  842. SRNG_SM(SRNG_SRC_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  843. /* Loop count is not used for SRC rings */
  844. reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, LOOPCNT_DISABLE), 1);
  845. /*
  846. * reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, SRNG_ENABLE), 1);
  847. * todo: update fw_api and replace with above line
  848. * (when SRNG_ENABLE field for the MISC register is available in fw_api)
  849. * (WCSS_UMAC_CE_0_SRC_WFSS_CE_CHANNEL_SRC_R0_SRC_RING_MISC)
  850. */
  851. reg_val |= 0x40;
  852. SRNG_SRC_REG_WRITE(srng, MISC, reg_val);
  853. }
  854. /**
  855. * hal_ce_dst_setup - Initialize CE destination ring registers
  856. * @hal_soc: HAL SOC handle
  857. * @srng: SRNG ring pointer
  858. */
  859. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  860. int ring_num)
  861. {
  862. uint32_t reg_val = 0;
  863. uint32_t reg_addr;
  864. struct hal_hw_srng_config *ring_config =
  865. HAL_SRNG_CONFIG(hal, CE_DST);
  866. /* set DEST_MAX_LENGTH according to ce assignment */
  867. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  868. ring_config->reg_start[R0_INDEX] +
  869. (ring_num * ring_config->reg_size[R0_INDEX]));
  870. reg_val = HAL_REG_READ(hal, reg_addr);
  871. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  872. reg_val |= srng->u.dst_ring.max_buffer_length &
  873. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  874. HAL_REG_WRITE(hal, reg_addr, reg_val);
  875. }
  876. /**
  877. * hal_reo_remap_IX0 - Remap REO ring destination
  878. * @hal: HAL SOC handle
  879. * @remap_val: Remap value
  880. */
  881. void hal_reo_remap_IX0(struct hal_soc *hal, uint32_t remap_val)
  882. {
  883. uint32_t reg_offset = HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  884. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  885. HAL_REG_WRITE(hal, reg_offset, remap_val);
  886. }
  887. /**
  888. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  889. * @srng: sring pointer
  890. * @paddr: physical address
  891. */
  892. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  893. uint64_t paddr)
  894. {
  895. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  896. paddr & 0xffffffff);
  897. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  898. paddr >> 32);
  899. }
  900. /**
  901. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  902. * @srng: sring pointer
  903. * @vaddr: virtual address
  904. */
  905. void hal_srng_dst_init_hp(struct hal_srng *srng,
  906. uint32_t *vaddr)
  907. {
  908. srng->u.dst_ring.hp_addr = vaddr;
  909. SRNG_DST_REG_WRITE(srng, HP, srng->u.dst_ring.cached_hp);
  910. *(srng->u.dst_ring.hp_addr) = srng->u.dst_ring.cached_hp;
  911. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  912. "hp_addr=%pK, cached_hp=%d, hp=%d\n",
  913. (void *)srng->u.dst_ring.hp_addr, srng->u.dst_ring.cached_hp,
  914. *(srng->u.dst_ring.hp_addr));
  915. }
  916. /**
  917. * hal_srng_dst_hw_init - Private function to initialize SRNG
  918. * destination ring HW
  919. * @hal_soc: HAL SOC handle
  920. * @srng: SRNG ring pointer
  921. */
  922. static inline void hal_srng_dst_hw_init(struct hal_soc *hal,
  923. struct hal_srng *srng)
  924. {
  925. uint32_t reg_val = 0;
  926. uint64_t hp_addr = 0;
  927. HIF_DBG("%s: hw_init srng %d", __func__, srng->ring_id);
  928. if (srng->flags & HAL_SRNG_MSI_INTR) {
  929. SRNG_DST_REG_WRITE(srng, MSI1_BASE_LSB,
  930. srng->msi_addr & 0xffffffff);
  931. reg_val = SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB, ADDR),
  932. (uint64_t)(srng->msi_addr) >> 32) |
  933. SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB,
  934. MSI1_ENABLE), 1);
  935. SRNG_DST_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  936. SRNG_DST_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  937. }
  938. SRNG_DST_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  939. reg_val = SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  940. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  941. SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_SIZE),
  942. srng->entry_size * srng->num_entries);
  943. SRNG_DST_REG_WRITE(srng, BASE_MSB, reg_val);
  944. reg_val = SRNG_SM(SRNG_DST_FLD(ID, RING_ID), srng->ring_id) |
  945. SRNG_SM(SRNG_DST_FLD(ID, ENTRY_SIZE), srng->entry_size);
  946. SRNG_DST_REG_WRITE(srng, ID, reg_val);
  947. /**
  948. * Interrupt setup:
  949. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  950. * if level mode is required
  951. */
  952. reg_val = 0;
  953. if (srng->intr_timer_thres_us) {
  954. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  955. INTERRUPT_TIMER_THRESHOLD),
  956. srng->intr_timer_thres_us >> 3);
  957. }
  958. if (srng->intr_batch_cntr_thres_entries) {
  959. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  960. BATCH_COUNTER_THRESHOLD),
  961. srng->intr_batch_cntr_thres_entries *
  962. srng->entry_size);
  963. }
  964. SRNG_DST_REG_WRITE(srng, PRODUCER_INT_SETUP, reg_val);
  965. hp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  966. ((unsigned long)(srng->u.dst_ring.hp_addr) -
  967. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  968. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB, hp_addr & 0xffffffff);
  969. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB, hp_addr >> 32);
  970. /* Initilaize head and tail pointers to indicate ring is empty */
  971. SRNG_DST_REG_WRITE(srng, HP, 0);
  972. SRNG_DST_REG_WRITE(srng, TP, 0);
  973. *(srng->u.dst_ring.hp_addr) = 0;
  974. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  975. SRNG_SM(SRNG_DST_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  976. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  977. SRNG_SM(SRNG_DST_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  978. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  979. SRNG_SM(SRNG_DST_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  980. /*
  981. * reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, SRNG_ENABLE), 1);
  982. * todo: update fw_api and replace with above line
  983. * (when SRNG_ENABLE field for the MISC register is available in fw_api)
  984. * (WCSS_UMAC_CE_0_SRC_WFSS_CE_CHANNEL_SRC_R0_SRC_RING_MISC)
  985. */
  986. reg_val |= 0x40;
  987. SRNG_DST_REG_WRITE(srng, MISC, reg_val);
  988. }
  989. /**
  990. * hal_srng_hw_init - Private function to initialize SRNG HW
  991. * @hal_soc: HAL SOC handle
  992. * @srng: SRNG ring pointer
  993. */
  994. static inline void hal_srng_hw_init(struct hal_soc *hal,
  995. struct hal_srng *srng)
  996. {
  997. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  998. hal_srng_src_hw_init(hal, srng);
  999. else
  1000. hal_srng_dst_hw_init(hal, srng);
  1001. }
  1002. #ifdef CONFIG_SHADOW_V2
  1003. #define ignore_shadow false
  1004. #define CHECK_SHADOW_REGISTERS true
  1005. #else
  1006. #define ignore_shadow true
  1007. #define CHECK_SHADOW_REGISTERS false
  1008. #endif
  1009. /**
  1010. * hal_srng_setup - Initalize HW SRNG ring.
  1011. * @hal_soc: Opaque HAL SOC handle
  1012. * @ring_type: one of the types from hal_ring_type
  1013. * @ring_num: Ring number if there are multiple rings of same type (staring
  1014. * from 0)
  1015. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  1016. * @ring_params: SRNG ring params in hal_srng_params structure.
  1017. * Callers are expected to allocate contiguous ring memory of size
  1018. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  1019. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  1020. * hal_srng_params structure. Ring base address should be 8 byte aligned
  1021. * and size of each ring entry should be queried using the API
  1022. * hal_srng_get_entrysize
  1023. *
  1024. * Return: Opaque pointer to ring on success
  1025. * NULL on failure (if given ring is not available)
  1026. */
  1027. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  1028. int mac_id, struct hal_srng_params *ring_params)
  1029. {
  1030. int ring_id;
  1031. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1032. struct hal_srng *srng;
  1033. struct hal_hw_srng_config *ring_config =
  1034. HAL_SRNG_CONFIG(hal, ring_type);
  1035. void *dev_base_addr;
  1036. int i;
  1037. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  1038. if (ring_id < 0)
  1039. return NULL;
  1040. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1041. "%s: mac_id %d ring_id %d\n",
  1042. __func__, mac_id, ring_id);
  1043. srng = hal_get_srng(hal_soc, ring_id);
  1044. if (srng->initialized) {
  1045. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1046. "%s: Ring (ring_type, ring_num) already initialized\n",
  1047. __func__);
  1048. return NULL;
  1049. }
  1050. dev_base_addr = hal->dev_base_addr;
  1051. srng->ring_id = ring_id;
  1052. srng->ring_dir = ring_config->ring_dir;
  1053. srng->ring_base_paddr = ring_params->ring_base_paddr;
  1054. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  1055. srng->entry_size = ring_config->entry_size;
  1056. srng->num_entries = ring_params->num_entries;
  1057. srng->ring_size = srng->num_entries * srng->entry_size;
  1058. srng->ring_size_mask = srng->ring_size - 1;
  1059. srng->msi_addr = ring_params->msi_addr;
  1060. srng->msi_data = ring_params->msi_data;
  1061. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  1062. srng->intr_batch_cntr_thres_entries =
  1063. ring_params->intr_batch_cntr_thres_entries;
  1064. srng->hal_soc = hal_soc;
  1065. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  1066. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  1067. + (ring_num * ring_config->reg_size[i]);
  1068. }
  1069. /* Zero out the entire ring memory */
  1070. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  1071. srng->num_entries) << 2);
  1072. srng->flags = ring_params->flags;
  1073. #ifdef BIG_ENDIAN_HOST
  1074. /* TODO: See if we should we get these flags from caller */
  1075. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  1076. srng->flags |= HAL_SRNG_MSI_SWAP;
  1077. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  1078. #endif
  1079. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1080. srng->u.src_ring.hp = 0;
  1081. srng->u.src_ring.reap_hp = srng->ring_size -
  1082. srng->entry_size;
  1083. srng->u.src_ring.tp_addr =
  1084. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1085. srng->u.src_ring.low_threshold =
  1086. ring_params->low_threshold * srng->entry_size;
  1087. if (ring_config->lmac_ring) {
  1088. /* For LMAC rings, head pointer updates will be done
  1089. * through FW by writing to a shared memory location
  1090. */
  1091. srng->u.src_ring.hp_addr =
  1092. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1093. HAL_SRNG_LMAC1_ID_START]);
  1094. srng->flags |= HAL_SRNG_LMAC_RING;
  1095. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  1096. srng->u.src_ring.hp_addr = SRNG_SRC_ADDR(srng, HP);
  1097. if (CHECK_SHADOW_REGISTERS) {
  1098. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1099. QDF_TRACE_LEVEL_ERROR,
  1100. "%s: Ring (%d, %d) missing shadow config\n",
  1101. __func__, ring_type, ring_num);
  1102. }
  1103. } else {
  1104. hal_validate_shadow_register(hal,
  1105. SRNG_SRC_ADDR(srng, HP),
  1106. srng->u.src_ring.hp_addr);
  1107. }
  1108. } else {
  1109. /* During initialization loop count in all the descriptors
  1110. * will be set to zero, and HW will set it to 1 on completing
  1111. * descriptor update in first loop, and increments it by 1 on
  1112. * subsequent loops (loop count wraps around after reaching
  1113. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  1114. * loop count in descriptors updated by HW (to be processed
  1115. * by SW).
  1116. */
  1117. srng->u.dst_ring.loop_cnt = 1;
  1118. srng->u.dst_ring.tp = 0;
  1119. srng->u.dst_ring.hp_addr =
  1120. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  1121. if (ring_config->lmac_ring) {
  1122. /* For LMAC rings, tail pointer updates will be done
  1123. * through FW by writing to a shared memory location
  1124. */
  1125. srng->u.dst_ring.tp_addr =
  1126. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  1127. HAL_SRNG_LMAC1_ID_START]);
  1128. srng->flags |= HAL_SRNG_LMAC_RING;
  1129. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  1130. srng->u.dst_ring.tp_addr = SRNG_DST_ADDR(srng, TP);
  1131. if (CHECK_SHADOW_REGISTERS) {
  1132. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1133. QDF_TRACE_LEVEL_ERROR,
  1134. "%s: Ring (%d, %d) missing shadow config\n",
  1135. __func__, ring_type, ring_num);
  1136. }
  1137. } else {
  1138. hal_validate_shadow_register(hal,
  1139. SRNG_DST_ADDR(srng, TP),
  1140. srng->u.dst_ring.tp_addr);
  1141. }
  1142. }
  1143. if (!(ring_config->lmac_ring)) {
  1144. hal_srng_hw_init(hal, srng);
  1145. if (ring_type == CE_DST) {
  1146. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1147. hal_ce_dst_setup(hal, srng, ring_num);
  1148. }
  1149. }
  1150. SRNG_LOCK_INIT(&srng->lock);
  1151. srng->initialized = true;
  1152. return (void *)srng;
  1153. }
  1154. /**
  1155. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1156. * @hal_soc: Opaque HAL SOC handle
  1157. * @hal_srng: Opaque HAL SRNG pointer
  1158. */
  1159. void hal_srng_cleanup(void *hal_soc, void *hal_srng)
  1160. {
  1161. struct hal_srng *srng = (struct hal_srng *)hal_srng;
  1162. SRNG_LOCK_DESTROY(&srng->lock);
  1163. srng->initialized = 0;
  1164. }
  1165. /**
  1166. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1167. * @hal_soc: Opaque HAL SOC handle
  1168. * @ring_type: one of the types from hal_ring_type
  1169. *
  1170. */
  1171. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1172. {
  1173. struct hal_hw_srng_config *ring_config =
  1174. HAL_SRNG_CONFIG(hal, ring_type);
  1175. return ring_config->entry_size << 2;
  1176. }
  1177. /**
  1178. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1179. * @hal_soc: Opaque HAL SOC handle
  1180. * @ring_type: one of the types from hal_ring_type
  1181. *
  1182. * Return: Maximum number of entries for the given ring_type
  1183. */
  1184. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1185. {
  1186. struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type);
  1187. return SRNG_MAX_SIZE_DWORDS / ring_config->entry_size;
  1188. }
  1189. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1190. {
  1191. struct hal_hw_srng_config *ring_config =
  1192. HAL_SRNG_CONFIG(hal, ring_type);
  1193. return ring_config->ring_dir;
  1194. }
  1195. /**
  1196. * hal_srng_dump - Dump ring status
  1197. * @srng: hal srng pointer
  1198. */
  1199. void hal_srng_dump(struct hal_srng *srng)
  1200. {
  1201. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1202. qdf_print("=== SRC RING %d ===", srng->ring_id);
  1203. qdf_print("hp %u, reap_hp %u, tp %u, cached tp %u",
  1204. srng->u.src_ring.hp,
  1205. srng->u.src_ring.reap_hp,
  1206. *srng->u.src_ring.tp_addr,
  1207. srng->u.src_ring.cached_tp);
  1208. } else {
  1209. qdf_print("=== DST RING %d ===", srng->ring_id);
  1210. qdf_print("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1211. srng->u.dst_ring.tp,
  1212. *srng->u.dst_ring.hp_addr,
  1213. srng->u.dst_ring.cached_hp,
  1214. srng->u.dst_ring.loop_cnt);
  1215. }
  1216. }
  1217. /**
  1218. * hal_get_srng_params - Retreive SRNG parameters for a given ring from HAL
  1219. *
  1220. * @hal_soc: Opaque HAL SOC handle
  1221. * @hal_ring: Ring pointer (Source or Destination ring)
  1222. * @ring_params: SRNG parameters will be returned through this structure
  1223. */
  1224. extern void hal_get_srng_params(void *hal_soc, void *hal_ring,
  1225. struct hal_srng_params *ring_params)
  1226. {
  1227. struct hal_srng *srng = (struct hal_srng *)hal_ring;
  1228. int i =0;
  1229. ring_params->ring_id = srng->ring_id;
  1230. ring_params->ring_dir = srng->ring_dir;
  1231. ring_params->entry_size = srng->entry_size;
  1232. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1233. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1234. ring_params->num_entries = srng->num_entries;
  1235. ring_params->msi_addr = srng->msi_addr;
  1236. ring_params->msi_data = srng->msi_data;
  1237. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1238. ring_params->intr_batch_cntr_thres_entries =
  1239. srng->intr_batch_cntr_thres_entries;
  1240. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1241. ring_params->flags = srng->flags;
  1242. ring_params->ring_id = srng->ring_id;
  1243. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1244. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1245. }