focaltech_ex_fun.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229
  1. /*
  2. *
  3. * FocalTech TouchScreen driver.
  4. *
  5. * Copyright (c) 2012-2019, Focaltech Ltd. All rights reserved.
  6. *
  7. * This software is licensed under the terms of the GNU General Public
  8. * License version 2, as published by the Free Software Foundation, and
  9. * may be copied, distributed, and modified under those terms.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. */
  17. /*****************************************************************************
  18. *
  19. * File Name: Focaltech_ex_fun.c
  20. *
  21. * Author: Focaltech Driver Team
  22. *
  23. * Created: 2016-08-08
  24. *
  25. * Abstract:
  26. *
  27. * Reference:
  28. *
  29. *****************************************************************************/
  30. /*****************************************************************************
  31. * 1.Included header files
  32. *****************************************************************************/
  33. #include <linux/uaccess.h>
  34. #include "focaltech_core.h"
  35. /*****************************************************************************
  36. * Private constant and macro definitions using #define
  37. *****************************************************************************/
  38. #define PROC_UPGRADE 0
  39. #define PROC_READ_REGISTER 1
  40. #define PROC_WRITE_REGISTER 2
  41. #define PROC_AUTOCLB 4
  42. #define PROC_UPGRADE_INFO 5
  43. #define PROC_WRITE_DATA 6
  44. #define PROC_READ_DATA 7
  45. #define PROC_SET_TEST_FLAG 8
  46. #define PROC_SET_SLAVE_ADDR 10
  47. #define PROC_HW_RESET 11
  48. #define PROC_READ_STATUS 12
  49. #define PROC_SET_BOOT_MODE 13
  50. #define PROC_ENTER_TEST_ENVIRONMENT 14
  51. #define PROC_NAME "ftxxxx-debug"
  52. #define PROC_BUF_SIZE 256
  53. /*****************************************************************************
  54. * Private enumerations, structures and unions using typedef
  55. *****************************************************************************/
  56. enum {
  57. RWREG_OP_READ = 0,
  58. RWREG_OP_WRITE = 1,
  59. };
  60. /*****************************************************************************
  61. * Static variables
  62. *****************************************************************************/
  63. static struct rwreg_operation_t {
  64. int type; /* 0: read, 1: write */
  65. int reg; /* register */
  66. int len; /* read/write length */
  67. int val; /* length = 1; read: return value, write: op return */
  68. int res; /* 0: success, otherwise: fail */
  69. char *opbuf; /* length >= 1, read return value, write: op return */
  70. } rw_op;
  71. /*****************************************************************************
  72. * Global variable or extern global variabls/functions
  73. *****************************************************************************/
  74. /*****************************************************************************
  75. * Static function prototypes
  76. *****************************************************************************/
  77. #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
  78. static ssize_t fts_debug_write(
  79. struct file *filp, const char __user *buff, size_t count, loff_t *ppos)
  80. {
  81. u8 *writebuf = NULL;
  82. u8 tmpbuf[PROC_BUF_SIZE] = { 0 };
  83. int buflen = count;
  84. int writelen = 0;
  85. int ret = 0;
  86. char tmp[PROC_BUF_SIZE];
  87. struct fts_ts_data *ts_data = fts_data;
  88. struct ftxxxx_proc *proc = &ts_data->proc;
  89. if ((buflen <= 1) || (buflen > PAGE_SIZE)) {
  90. FTS_ERROR("apk proc wirte count(%d>%d) fail", buflen, (int)PAGE_SIZE);
  91. return -EINVAL;
  92. }
  93. if (buflen > PROC_BUF_SIZE) {
  94. writebuf = (u8 *)kzalloc(buflen * sizeof(u8), GFP_KERNEL);
  95. if (NULL == writebuf) {
  96. FTS_ERROR("apk proc wirte buf zalloc fail");
  97. return -ENOMEM;
  98. }
  99. } else {
  100. writebuf = tmpbuf;
  101. }
  102. if (copy_from_user(writebuf, buff, buflen)) {
  103. FTS_ERROR("[APK]: copy from user error!!");
  104. ret = -EFAULT;
  105. goto proc_write_err;
  106. }
  107. proc->opmode = writebuf[0];
  108. switch (proc->opmode) {
  109. case PROC_SET_TEST_FLAG:
  110. FTS_DEBUG("[APK]: PROC_SET_TEST_FLAG = %x", writebuf[1]);
  111. if (writebuf[1] == 0) {
  112. #if FTS_ESDCHECK_EN
  113. fts_esdcheck_switch(ENABLE);
  114. #endif
  115. } else {
  116. #if FTS_ESDCHECK_EN
  117. fts_esdcheck_switch(DISABLE);
  118. #endif
  119. }
  120. break;
  121. case PROC_READ_REGISTER:
  122. proc->cmd[0] = writebuf[1];
  123. break;
  124. case PROC_WRITE_REGISTER:
  125. ret = fts_write_reg(writebuf[1], writebuf[2]);
  126. if (ret < 0) {
  127. FTS_ERROR("PROC_WRITE_REGISTER write error");
  128. goto proc_write_err;
  129. }
  130. break;
  131. case PROC_READ_DATA:
  132. writelen = buflen - 1;
  133. if (writelen >= FTX_MAX_COMMMAND_LENGTH) {
  134. FTS_ERROR("cmd(PROC_READ_DATA) len(%d) fail", writelen);
  135. goto proc_write_err;
  136. }
  137. memcpy(proc->cmd, writebuf + 1, writelen);
  138. proc->cmd_len = writelen;
  139. ret = fts_write(writebuf + 1, writelen);
  140. if (ret < 0) {
  141. FTS_ERROR("PROC_READ_DATA write error");
  142. goto proc_write_err;
  143. }
  144. break;
  145. case PROC_WRITE_DATA:
  146. writelen = buflen - 1;
  147. ret = fts_write(writebuf + 1, writelen);
  148. if (ret < 0) {
  149. FTS_ERROR("PROC_WRITE_DATA write error");
  150. goto proc_write_err;
  151. }
  152. break;
  153. case PROC_SET_SLAVE_ADDR:
  154. break;
  155. case PROC_HW_RESET:
  156. snprintf(tmp, PROC_BUF_SIZE, "%s", writebuf + 1);
  157. tmp[buflen - 1] = '\0';
  158. if (strncmp(tmp, "focal_driver", 12) == 0) {
  159. FTS_INFO("APK execute HW Reset");
  160. fts_reset_proc(0);
  161. }
  162. break;
  163. case PROC_SET_BOOT_MODE:
  164. FTS_DEBUG("[APK]: PROC_SET_BOOT_MODE = %x", writebuf[1]);
  165. if (0 == writebuf[1]) {
  166. ts_data->fw_is_running = true;
  167. } else {
  168. ts_data->fw_is_running = false;
  169. }
  170. break;
  171. case PROC_ENTER_TEST_ENVIRONMENT:
  172. FTS_DEBUG("[APK]: PROC_ENTER_TEST_ENVIRONMENT = %x", writebuf[1]);
  173. if (0 == writebuf[1]) {
  174. fts_enter_test_environment(0);
  175. } else {
  176. fts_enter_test_environment(1);
  177. }
  178. break;
  179. default:
  180. break;
  181. }
  182. ret = buflen;
  183. proc_write_err:
  184. if ((buflen > PROC_BUF_SIZE) && writebuf) {
  185. kfree(writebuf);
  186. writebuf = NULL;
  187. }
  188. return ret;
  189. }
  190. static ssize_t fts_debug_read(
  191. struct file *filp, char __user *buff, size_t count, loff_t *ppos)
  192. {
  193. int ret = 0;
  194. int num_read_chars = 0;
  195. int buflen = count;
  196. u8 *readbuf = NULL;
  197. u8 tmpbuf[PROC_BUF_SIZE] = { 0 };
  198. struct fts_ts_data *ts_data = fts_data;
  199. struct ftxxxx_proc *proc = &ts_data->proc;
  200. if ((buflen <= 0) || (buflen > PAGE_SIZE)) {
  201. FTS_ERROR("apk proc read count(%d>%d) fail", buflen, (int)PAGE_SIZE);
  202. return -EINVAL;
  203. }
  204. if (buflen > PROC_BUF_SIZE) {
  205. readbuf = (u8 *)kzalloc(buflen * sizeof(u8), GFP_KERNEL);
  206. if (NULL == readbuf) {
  207. FTS_ERROR("apk proc wirte buf zalloc fail");
  208. return -ENOMEM;
  209. }
  210. } else {
  211. readbuf = tmpbuf;
  212. }
  213. #if FTS_ESDCHECK_EN
  214. fts_esdcheck_proc_busy(1);
  215. #endif
  216. switch (proc->opmode) {
  217. case PROC_READ_REGISTER:
  218. num_read_chars = 1;
  219. ret = fts_read_reg(proc->cmd[0], &readbuf[0]);
  220. if (ret < 0) {
  221. FTS_ERROR("PROC_READ_REGISTER read error");
  222. goto proc_read_err;
  223. }
  224. break;
  225. case PROC_WRITE_REGISTER:
  226. break;
  227. case PROC_READ_DATA:
  228. num_read_chars = buflen;
  229. ret = fts_read(NULL, 0, readbuf, num_read_chars);
  230. if (ret < 0) {
  231. FTS_ERROR("PROC_READ_DATA read error");
  232. goto proc_read_err;
  233. }
  234. break;
  235. case PROC_WRITE_DATA:
  236. break;
  237. default:
  238. break;
  239. }
  240. #if FTS_ESDCHECK_EN
  241. fts_esdcheck_proc_busy(0);
  242. #endif
  243. if (copy_to_user(buff, readbuf, num_read_chars)) {
  244. FTS_ERROR("copy to user error");
  245. ret = -EFAULT;
  246. goto proc_read_err;
  247. }
  248. ret = num_read_chars;
  249. proc_read_err:
  250. if ((buflen > PROC_BUF_SIZE) && readbuf) {
  251. kfree(readbuf);
  252. readbuf = NULL;
  253. }
  254. return ret;
  255. }
  256. static const struct proc_ops fts_proc_fops = {
  257. .proc_read = fts_debug_read,
  258. .proc_write = fts_debug_write,
  259. };
  260. #else
  261. static int fts_debug_write(struct file *filp,
  262. const char __user *buff, unsigned long len, void *data)
  263. {
  264. u8 *writebuf = NULL;
  265. u8 tmpbuf[PROC_BUF_SIZE] = { 0 };
  266. int buflen = count;
  267. int writelen = 0;
  268. int ret = 0;
  269. char tmp[PROC_BUF_SIZE];
  270. struct fts_ts_data *ts_data = fts_data;
  271. struct ftxxxx_proc *proc = &ts_data->proc;
  272. if ((buflen <= 1) || (buflen > PAGE_SIZE)) {
  273. FTS_ERROR("apk proc wirte count(%d>%d) fail", buflen, (int)PAGE_SIZE);
  274. return -EINVAL;
  275. }
  276. if (buflen > PROC_BUF_SIZE) {
  277. writebuf = (u8 *)kzalloc(buflen * sizeof(u8), GFP_KERNEL);
  278. if (NULL == writebuf) {
  279. FTS_ERROR("apk proc wirte buf zalloc fail");
  280. return -ENOMEM;
  281. }
  282. } else {
  283. writebuf = tmpbuf;
  284. }
  285. if (copy_from_user(writebuf, buff, buflen)) {
  286. FTS_ERROR("[APK]: copy from user error!!");
  287. ret = -EFAULT;
  288. goto proc_write_err;
  289. }
  290. proc->opmode = writebuf[0];
  291. switch (proc->opmode) {
  292. case PROC_SET_TEST_FLAG:
  293. FTS_DEBUG("[APK]: PROC_SET_TEST_FLAG = %x", writebuf[1]);
  294. if (writebuf[1] == 0) {
  295. #if FTS_ESDCHECK_EN
  296. fts_esdcheck_switch(ENABLE);
  297. #endif
  298. } else {
  299. #if FTS_ESDCHECK_EN
  300. fts_esdcheck_switch(DISABLE);
  301. #endif
  302. }
  303. break;
  304. case PROC_READ_REGISTER:
  305. proc->cmd[0] = writebuf[1];
  306. break;
  307. case PROC_WRITE_REGISTER:
  308. ret = fts_write_reg(writebuf[1], writebuf[2]);
  309. if (ret < 0) {
  310. FTS_ERROR("PROC_WRITE_REGISTER write error");
  311. goto proc_write_err;
  312. }
  313. break;
  314. case PROC_READ_DATA:
  315. writelen = buflen - 1;
  316. if (writelen >= FTX_MAX_COMMMAND_LENGTH) {
  317. FTS_ERROR("cmd(PROC_READ_DATA) length(%d) fail", writelen);
  318. goto proc_write_err;
  319. }
  320. memcpy(proc->cmd, writebuf + 1, writelen);
  321. proc->cmd_len = writelen;
  322. ret = fts_write(writebuf + 1, writelen);
  323. if (ret < 0) {
  324. FTS_ERROR("PROC_READ_DATA write error");
  325. goto proc_write_err;
  326. }
  327. break;
  328. case PROC_WRITE_DATA:
  329. writelen = buflen - 1;
  330. ret = fts_write(writebuf + 1, writelen);
  331. if (ret < 0) {
  332. FTS_ERROR("PROC_WRITE_DATA write error");
  333. goto proc_write_err;
  334. }
  335. break;
  336. case PROC_SET_SLAVE_ADDR:
  337. break;
  338. case PROC_HW_RESET:
  339. snprintf(tmp, PROC_BUF_SIZE, "%s", writebuf + 1);
  340. tmp[buflen - 1] = '\0';
  341. if (strncmp(tmp, "focal_driver", 12) == 0) {
  342. FTS_INFO("APK execute HW Reset");
  343. fts_reset_proc(0);
  344. }
  345. break;
  346. case PROC_SET_BOOT_MODE:
  347. FTS_DEBUG("[APK]: PROC_SET_BOOT_MODE = %x", writebuf[1]);
  348. if (0 == writebuf[1]) {
  349. ts_data->fw_is_running = true;
  350. } else {
  351. ts_data->fw_is_running = false;
  352. }
  353. break;
  354. case PROC_ENTER_TEST_ENVIRONMENT:
  355. FTS_DEBUG("[APK]: PROC_ENTER_TEST_ENVIRONMENT = %x", writebuf[1]);
  356. if (0 == writebuf[1]) {
  357. fts_enter_test_environment(0);
  358. } else {
  359. fts_enter_test_environment(1);
  360. }
  361. break;
  362. default:
  363. break;
  364. }
  365. ret = buflen;
  366. proc_write_err:
  367. if ((buflen > PROC_BUF_SIZE) && writebuf) {
  368. kfree(writebuf);
  369. writebuf = NULL;
  370. }
  371. return ret;
  372. }
  373. static int fts_debug_read(
  374. char *page, char **start, off_t off, int count, int *eof, void *data )
  375. {
  376. int ret = 0;
  377. int num_read_chars = 0;
  378. int buflen = count;
  379. u8 *readbuf = NULL;
  380. u8 tmpbuf[PROC_BUF_SIZE] = { 0 };
  381. struct fts_ts_data *ts_data = fts_data;
  382. struct ftxxxx_proc *proc = &ts_data->proc;
  383. if ((buflen <= 0) || (buflen > PAGE_SIZE)) {
  384. FTS_ERROR("apk proc read count(%d>%d) fail", buflen, (int)PAGE_SIZE);
  385. return -EINVAL;
  386. }
  387. if (buflen > PROC_BUF_SIZE) {
  388. readbuf = (u8 *)kzalloc(buflen * sizeof(u8), GFP_KERNEL);
  389. if (NULL == readbuf) {
  390. FTS_ERROR("apk proc wirte buf zalloc fail");
  391. return -ENOMEM;
  392. }
  393. } else {
  394. readbuf = tmpbuf;
  395. }
  396. #if FTS_ESDCHECK_EN
  397. fts_esdcheck_proc_busy(1);
  398. #endif
  399. switch (proc->opmode) {
  400. case PROC_READ_REGISTER:
  401. num_read_chars = 1;
  402. ret = fts_read_reg(proc->cmd[0], &readbuf[0]);
  403. if (ret < 0) {
  404. FTS_ERROR("PROC_READ_REGISTER read error");
  405. goto proc_read_err;
  406. }
  407. break;
  408. case PROC_WRITE_REGISTER:
  409. break;
  410. case PROC_READ_DATA:
  411. num_read_chars = buflen;
  412. ret = fts_read(NULL, 0, readbuf, num_read_chars);
  413. if (ret < 0) {
  414. FTS_ERROR("PROC_READ_DATA read error");
  415. goto proc_read_err;
  416. }
  417. break;
  418. case PROC_WRITE_DATA:
  419. break;
  420. default:
  421. break;
  422. }
  423. #if FTS_ESDCHECK_EN
  424. fts_esdcheck_proc_busy(0);
  425. #endif
  426. if (copy_to_user(buff, readbuf, num_read_chars)) {
  427. FTS_ERROR("copy to user error");
  428. ret = -EFAULT;
  429. goto proc_read_err;
  430. }
  431. ret = num_read_chars;
  432. proc_read_err:
  433. if ((buflen > PROC_BUF_SIZE) && readbuf) {
  434. kfree(readbuf);
  435. readbuf = NULL;
  436. }
  437. return ret;
  438. }
  439. #endif
  440. int fts_create_apk_debug_channel(struct fts_ts_data *ts_data)
  441. {
  442. struct ftxxxx_proc *proc = &ts_data->proc;
  443. #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
  444. proc->proc_entry = proc_create(PROC_NAME, 0777, NULL, &fts_proc_fops);
  445. if (NULL == proc->proc_entry) {
  446. FTS_ERROR("create proc entry fail");
  447. return -ENOMEM;
  448. }
  449. #else
  450. proc->proc_entry = create_proc_entry(PROC_NAME, 0777, NULL);
  451. if (NULL == proc->proc_entry) {
  452. FTS_ERROR("create proc entry fail");
  453. return -ENOMEM;
  454. }
  455. proc->proc_entry->write_proc = fts_debug_write;
  456. proc->proc_entry->read_proc = fts_debug_read;
  457. #endif
  458. FTS_INFO("Create proc entry success!");
  459. return 0;
  460. }
  461. void fts_release_apk_debug_channel(struct fts_ts_data *ts_data)
  462. {
  463. struct ftxxxx_proc *proc = &ts_data->proc;
  464. if (proc->proc_entry) {
  465. #if (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 10, 0))
  466. proc_remove(proc->proc_entry);
  467. #else
  468. remove_proc_entry(PROC_NAME, NULL);
  469. #endif
  470. }
  471. }
  472. /************************************************************************
  473. * sysfs interface
  474. ***********************************************************************/
  475. /* fts_hw_reset interface */
  476. static ssize_t fts_hw_reset_show(
  477. struct device *dev, struct device_attribute *attr, char *buf)
  478. {
  479. struct input_dev *input_dev = fts_data->input_dev;
  480. ssize_t count = 0;
  481. mutex_lock(&input_dev->mutex);
  482. fts_reset_proc(0);
  483. count = snprintf(buf, PAGE_SIZE, "hw reset executed\n");
  484. mutex_unlock(&input_dev->mutex);
  485. return count;
  486. }
  487. static ssize_t fts_hw_reset_store(
  488. struct device *dev,
  489. struct device_attribute *attr, const char *buf, size_t count)
  490. {
  491. return -EPERM;
  492. }
  493. /* fts_irq interface */
  494. static ssize_t fts_irq_show(
  495. struct device *dev, struct device_attribute *attr, char *buf)
  496. {
  497. ssize_t count = 0;
  498. struct irq_desc *desc = irq_to_desc(fts_data->irq);
  499. count = snprintf(buf, PAGE_SIZE, "irq_depth:%d\n", desc->depth);
  500. return count;
  501. }
  502. static ssize_t fts_irq_store(
  503. struct device *dev,
  504. struct device_attribute *attr, const char *buf, size_t count)
  505. {
  506. struct input_dev *input_dev = fts_data->input_dev;
  507. mutex_lock(&input_dev->mutex);
  508. if (FTS_SYSFS_ECHO_ON(buf)) {
  509. FTS_INFO("enable irq");
  510. fts_irq_enable();
  511. } else if (FTS_SYSFS_ECHO_OFF(buf)) {
  512. FTS_INFO("disable irq");
  513. fts_irq_disable();
  514. }
  515. mutex_unlock(&input_dev->mutex);
  516. return count;
  517. }
  518. /* fts_boot_mode interface */
  519. static ssize_t fts_bootmode_store(
  520. struct device *dev,
  521. struct device_attribute *attr, const char *buf, size_t count)
  522. {
  523. struct input_dev *input_dev = fts_data->input_dev;
  524. FTS_FUNC_ENTER();
  525. mutex_lock(&input_dev->mutex);
  526. if (FTS_SYSFS_ECHO_ON(buf)) {
  527. FTS_INFO("[EX-FUN]set to boot mode");
  528. fts_data->fw_is_running = false;
  529. } else if (FTS_SYSFS_ECHO_OFF(buf)) {
  530. FTS_INFO("[EX-FUN]set to fw mode");
  531. fts_data->fw_is_running = true;
  532. }
  533. mutex_unlock(&input_dev->mutex);
  534. FTS_FUNC_EXIT();
  535. return count;
  536. }
  537. static ssize_t fts_bootmode_show(
  538. struct device *dev, struct device_attribute *attr, char *buf)
  539. {
  540. ssize_t count = 0;
  541. struct input_dev *input_dev = fts_data->input_dev;
  542. FTS_FUNC_ENTER();
  543. mutex_lock(&input_dev->mutex);
  544. if (true == fts_data->fw_is_running) {
  545. count = snprintf(buf, PAGE_SIZE, "tp is in fw mode\n");
  546. } else {
  547. count = snprintf(buf, PAGE_SIZE, "tp is in boot mode\n");
  548. }
  549. mutex_unlock(&input_dev->mutex);
  550. FTS_FUNC_EXIT();
  551. return count;
  552. }
  553. /* fts_tpfwver interface */
  554. static ssize_t fts_fw_version_show(
  555. struct device *dev, struct device_attribute *attr, char *buf)
  556. {
  557. struct fts_ts_data *ts_data = fts_data;
  558. struct input_dev *input_dev = ts_data->input_dev;
  559. ssize_t num_read_chars = 0;
  560. u8 fwver = 0;
  561. mutex_lock(&input_dev->mutex);
  562. #if FTS_ESDCHECK_EN
  563. fts_esdcheck_proc_busy(1);
  564. #endif
  565. fts_read_reg(FTS_REG_FW_VER, &fwver);
  566. #if FTS_ESDCHECK_EN
  567. fts_esdcheck_proc_busy(0);
  568. #endif
  569. if ((fwver == 0xFF) || (fwver == 0x00))
  570. num_read_chars = snprintf(buf, PAGE_SIZE, "get tp fw version fail!\n");
  571. else
  572. num_read_chars = snprintf(buf, PAGE_SIZE, "%02x\n", fwver);
  573. mutex_unlock(&input_dev->mutex);
  574. return num_read_chars;
  575. }
  576. static ssize_t fts_fw_version_store(
  577. struct device *dev,
  578. struct device_attribute *attr, const char *buf, size_t count)
  579. {
  580. return -EPERM;
  581. }
  582. /* fts_rw_reg */
  583. static ssize_t fts_tprwreg_show(
  584. struct device *dev, struct device_attribute *attr, char *buf)
  585. {
  586. int count;
  587. int i;
  588. struct input_dev *input_dev = fts_data->input_dev;
  589. mutex_lock(&input_dev->mutex);
  590. if (rw_op.len < 0) {
  591. count = snprintf(buf, PAGE_SIZE, "Invalid cmd line\n");
  592. } else if (rw_op.len == 1) {
  593. if (RWREG_OP_READ == rw_op.type) {
  594. if (rw_op.res == 0) {
  595. count = snprintf(buf, PAGE_SIZE, "Read %02X: %02X\n", rw_op.reg, rw_op.val);
  596. } else {
  597. count = snprintf(buf, PAGE_SIZE, "Read %02X failed, ret: %d\n", rw_op.reg, rw_op.res);
  598. }
  599. } else {
  600. if (rw_op.res == 0) {
  601. count = snprintf(buf, PAGE_SIZE, "Write %02X, %02X success\n", rw_op.reg, rw_op.val);
  602. } else {
  603. count = snprintf(buf, PAGE_SIZE, "Write %02X failed, ret: %d\n", rw_op.reg, rw_op.res);
  604. }
  605. }
  606. } else {
  607. if (RWREG_OP_READ == rw_op.type) {
  608. count = snprintf(buf, PAGE_SIZE, "Read Reg: [%02X]-[%02X]\n", rw_op.reg, rw_op.reg + rw_op.len);
  609. count += snprintf(buf + count, PAGE_SIZE, "Result: ");
  610. if (rw_op.res) {
  611. count += snprintf(buf + count, PAGE_SIZE, "failed, ret: %d\n", rw_op.res);
  612. } else {
  613. if (rw_op.opbuf) {
  614. for (i = 0; i < rw_op.len; i++) {
  615. count += snprintf(buf + count, PAGE_SIZE, "%02X ", rw_op.opbuf[i]);
  616. }
  617. count += snprintf(buf + count, PAGE_SIZE, "\n");
  618. }
  619. }
  620. } else {
  621. count = snprintf(buf, PAGE_SIZE, "Write Reg: [%02X]-[%02X]\n", rw_op.reg, rw_op.reg + rw_op.len - 1);
  622. count += snprintf(buf + count, PAGE_SIZE, "Write Data: ");
  623. if (rw_op.opbuf) {
  624. for (i = 1; i < rw_op.len; i++) {
  625. count += snprintf(buf + count, PAGE_SIZE, "%02X ", rw_op.opbuf[i]);
  626. }
  627. count += snprintf(buf + count, PAGE_SIZE, "\n");
  628. }
  629. if (rw_op.res) {
  630. count += snprintf(buf + count, PAGE_SIZE, "Result: failed, ret: %d\n", rw_op.res);
  631. } else {
  632. count += snprintf(buf + count, PAGE_SIZE, "Result: success\n");
  633. }
  634. }
  635. /*if (rw_op.opbuf) {
  636. * kfree(rw_op.opbuf);
  637. * rw_op.opbuf = NULL;
  638. *}
  639. */
  640. }
  641. mutex_unlock(&input_dev->mutex);
  642. return count;
  643. }
  644. static int shex_to_int(const char *hex_buf, int size)
  645. {
  646. int i;
  647. int base = 1;
  648. int value = 0;
  649. char single;
  650. for (i = size - 1; i >= 0; i--) {
  651. single = hex_buf[i];
  652. if ((single >= '0') && (single <= '9')) {
  653. value += (single - '0') * base;
  654. } else if ((single >= 'a') && (single <= 'z')) {
  655. value += (single - 'a' + 10) * base;
  656. } else if ((single >= 'A') && (single <= 'Z')) {
  657. value += (single - 'A' + 10) * base;
  658. } else {
  659. return -EINVAL;
  660. }
  661. base *= 16;
  662. }
  663. return value;
  664. }
  665. static u8 shex_to_u8(const char *hex_buf, int size)
  666. {
  667. return (u8)shex_to_int(hex_buf, size);
  668. }
  669. /*
  670. * Format buf:
  671. * [0]: '0' write, '1' read(reserved)
  672. * [1-2]: addr, hex
  673. * [3-4]: length, hex
  674. * [5-6]...[n-(n+1)]: data, hex
  675. */
  676. static int fts_parse_buf(const char *buf, size_t cmd_len)
  677. {
  678. int length;
  679. int i;
  680. char *tmpbuf;
  681. rw_op.reg = shex_to_u8(buf + 1, 2);
  682. length = shex_to_int(buf + 3, 2);
  683. if (buf[0] == '1') {
  684. rw_op.len = length;
  685. rw_op.type = RWREG_OP_READ;
  686. FTS_DEBUG("read %02X, %d bytes", rw_op.reg, rw_op.len);
  687. } else {
  688. if (cmd_len < (length * 2 + 5)) {
  689. pr_err("data invalided!\n");
  690. return -EINVAL;
  691. }
  692. FTS_DEBUG("write %02X, %d bytes", rw_op.reg, length);
  693. /* first byte is the register addr */
  694. rw_op.type = RWREG_OP_WRITE;
  695. rw_op.len = length + 1;
  696. }
  697. if (rw_op.len > 0) {
  698. tmpbuf = (char *)kzalloc(rw_op.len, GFP_KERNEL);
  699. if (!tmpbuf) {
  700. FTS_ERROR("allocate memory failed!\n");
  701. return -ENOMEM;
  702. }
  703. if (RWREG_OP_WRITE == rw_op.type) {
  704. tmpbuf[0] = rw_op.reg & 0xFF;
  705. FTS_DEBUG("write buffer: ");
  706. for (i = 1; i < rw_op.len; i++) {
  707. tmpbuf[i] = shex_to_u8(buf + 5 + i * 2 - 2, 2);
  708. FTS_DEBUG("buf[%d]: %02X", i, tmpbuf[i] & 0xFF);
  709. }
  710. }
  711. rw_op.opbuf = tmpbuf;
  712. }
  713. return rw_op.len;
  714. }
  715. static ssize_t fts_tprwreg_store(
  716. struct device *dev,
  717. struct device_attribute *attr, const char *buf, size_t count)
  718. {
  719. struct input_dev *input_dev = fts_data->input_dev;
  720. ssize_t cmd_length = 0;
  721. mutex_lock(&input_dev->mutex);
  722. cmd_length = count - 1;
  723. if (rw_op.opbuf) {
  724. kfree(rw_op.opbuf);
  725. rw_op.opbuf = NULL;
  726. }
  727. FTS_DEBUG("cmd len: %d, buf: %s", (int)cmd_length, buf);
  728. /* compatible old ops */
  729. if (2 == cmd_length) {
  730. rw_op.type = RWREG_OP_READ;
  731. rw_op.len = 1;
  732. rw_op.reg = shex_to_int(buf, 2);
  733. } else if (4 == cmd_length) {
  734. rw_op.type = RWREG_OP_WRITE;
  735. rw_op.len = 1;
  736. rw_op.reg = shex_to_int(buf, 2);
  737. rw_op.val = shex_to_int(buf + 2, 2);
  738. } else if (cmd_length < 5) {
  739. FTS_ERROR("Invalid cmd buffer");
  740. mutex_unlock(&input_dev->mutex);
  741. return -EINVAL;
  742. } else {
  743. rw_op.len = fts_parse_buf(buf, cmd_length);
  744. }
  745. #if FTS_ESDCHECK_EN
  746. fts_esdcheck_proc_busy(1);
  747. #endif
  748. if (rw_op.len < 0) {
  749. FTS_ERROR("cmd buffer error!");
  750. goto exit;
  751. }
  752. if (RWREG_OP_READ == rw_op.type) {
  753. if (rw_op.len == 1) {
  754. u8 reg, val;
  755. reg = rw_op.reg & 0xFF;
  756. rw_op.res = fts_read_reg(reg, &val);
  757. rw_op.val = val;
  758. } else {
  759. char reg;
  760. reg = rw_op.reg & 0xFF;
  761. rw_op.res = fts_read(&reg, 1, rw_op.opbuf, rw_op.len);
  762. }
  763. if (rw_op.res < 0) {
  764. FTS_ERROR("Could not read 0x%02x", rw_op.reg);
  765. } else {
  766. FTS_INFO("read 0x%02x, %d bytes successful", rw_op.reg, rw_op.len);
  767. rw_op.res = 0;
  768. }
  769. } else {
  770. if (rw_op.len == 1) {
  771. u8 reg, val;
  772. reg = rw_op.reg & 0xFF;
  773. val = rw_op.val & 0xFF;
  774. rw_op.res = fts_write_reg(reg, val);
  775. } else {
  776. rw_op.res = fts_write(rw_op.opbuf, rw_op.len);
  777. }
  778. if (rw_op.res < 0) {
  779. FTS_ERROR("Could not write 0x%02x", rw_op.reg);
  780. } else {
  781. FTS_INFO("Write 0x%02x, %d bytes successful", rw_op.val, rw_op.len);
  782. rw_op.res = 0;
  783. }
  784. }
  785. exit:
  786. #if FTS_ESDCHECK_EN
  787. fts_esdcheck_proc_busy(0);
  788. #endif
  789. mutex_unlock(&input_dev->mutex);
  790. return count;
  791. }
  792. /* fts_driver_info interface */
  793. static ssize_t fts_driverinfo_show(
  794. struct device *dev, struct device_attribute *attr, char *buf)
  795. {
  796. int count = 0;
  797. struct fts_ts_data *ts_data = fts_data;
  798. struct fts_ts_platform_data *pdata = ts_data->pdata;
  799. struct input_dev *input_dev = ts_data->input_dev;
  800. mutex_lock(&input_dev->mutex);
  801. count += scnprintf(buf + count, PAGE_SIZE, "Driver Ver:%s\n", FTS_DRIVER_VERSION);
  802. count += snprintf(buf + count, PAGE_SIZE, "Resolution:(%d,%d)~(%d,%d)\n",
  803. pdata->x_min, pdata->y_min, pdata->x_max, pdata->y_max);
  804. count += snprintf(buf + count, PAGE_SIZE, "Max Touchs:%d\n", pdata->max_touch_number);
  805. count += scnprintf(buf + count, PAGE_SIZE, "reset gpio:%d,int gpio:%d,irq:%d\n",
  806. pdata->reset_gpio, pdata->irq_gpio, ts_data->irq);
  807. count += scnprintf(buf + count, PAGE_SIZE, "IC ID:0x%02x%02x\n",
  808. ts_data->ic_info.ids.chip_idh, ts_data->ic_info.ids.chip_idl);
  809. if (ts_data->bus_type == BUS_TYPE_I2C)
  810. count += scnprintf(buf + count, PAGE_SIZE, "BUS:%s,addr:0x%x\n",
  811. "I2C", ts_data->client->addr);
  812. else
  813. count += scnprintf(buf + count, PAGE_SIZE,
  814. "BUS:%s,mode:%d,max_freq:%d\n", "SPI",
  815. ts_data->spi->mode, ts_data->spi->max_speed_hz);
  816. mutex_unlock(&input_dev->mutex);
  817. return count;
  818. }
  819. static ssize_t fts_driverinfo_store(struct device *dev,
  820. struct device_attribute *attr, const char *buf, size_t count)
  821. {
  822. return -EPERM;
  823. }
  824. /* fts_dump_reg interface */
  825. static ssize_t fts_dumpreg_show(
  826. struct device *dev, struct device_attribute *attr, char *buf)
  827. {
  828. int count = 0;
  829. u8 val = 0;
  830. struct input_dev *input_dev = fts_data->input_dev;
  831. mutex_lock(&input_dev->mutex);
  832. #if FTS_ESDCHECK_EN
  833. fts_esdcheck_proc_busy(1);
  834. #endif
  835. fts_read_reg(FTS_REG_POWER_MODE, &val);
  836. count += snprintf(buf + count, PAGE_SIZE, "Power Mode:0x%02x\n", val);
  837. fts_read_reg(FTS_REG_FW_VER, &val);
  838. count += snprintf(buf + count, PAGE_SIZE, "FW Ver:0x%02x\n", val);
  839. fts_read_reg(FTS_REG_LIC_VER, &val);
  840. count += snprintf(buf + count, PAGE_SIZE, "LCD Initcode Ver:0x%02x\n", val);
  841. fts_read_reg(FTS_REG_IDE_PARA_VER_ID, &val);
  842. count += snprintf(buf + count, PAGE_SIZE, "Param Ver:0x%02x\n", val);
  843. fts_read_reg(FTS_REG_IDE_PARA_STATUS, &val);
  844. count += snprintf(buf + count, PAGE_SIZE, "Param status:0x%02x\n", val);
  845. fts_read_reg(FTS_REG_VENDOR_ID, &val);
  846. count += snprintf(buf + count, PAGE_SIZE, "Vendor ID:0x%02x\n", val);
  847. fts_read_reg(FTS_REG_LCD_BUSY_NUM, &val);
  848. count += snprintf(buf + count, PAGE_SIZE, "LCD Busy Number:0x%02x\n", val);
  849. fts_read_reg(FTS_REG_GESTURE_EN, &val);
  850. count += snprintf(buf + count, PAGE_SIZE, "Gesture Mode:0x%02x\n", val);
  851. fts_read_reg(FTS_REG_CHARGER_MODE_EN, &val);
  852. count += snprintf(buf + count, PAGE_SIZE, "charge stat:0x%02x\n", val);
  853. fts_read_reg(FTS_REG_INT_CNT, &val);
  854. count += snprintf(buf + count, PAGE_SIZE, "INT count:0x%02x\n", val);
  855. fts_read_reg(FTS_REG_FLOW_WORK_CNT, &val);
  856. count += snprintf(buf + count, PAGE_SIZE, "ESD count:0x%02x\n", val);
  857. #if FTS_ESDCHECK_EN
  858. fts_esdcheck_proc_busy(0);
  859. #endif
  860. mutex_unlock(&input_dev->mutex);
  861. return count;
  862. }
  863. static ssize_t fts_dumpreg_store(
  864. struct device *dev,
  865. struct device_attribute *attr, const char *buf, size_t count)
  866. {
  867. return -EPERM;
  868. }
  869. /* fts_dump_reg interface */
  870. static ssize_t fts_tpbuf_show(
  871. struct device *dev, struct device_attribute *attr, char *buf)
  872. {
  873. int count = 0;
  874. int i = 0;
  875. struct input_dev *input_dev = fts_data->input_dev;
  876. mutex_lock(&input_dev->mutex);
  877. count += snprintf(buf + count, PAGE_SIZE, "touch point buffer:\n");
  878. for (i = 0; i < fts_data->pnt_buf_size; i++) {
  879. count += snprintf(buf + count, PAGE_SIZE, "%02x ",
  880. fts_data->point_buf[i]);
  881. }
  882. count += snprintf(buf + count, PAGE_SIZE, "\n");
  883. mutex_unlock(&input_dev->mutex);
  884. return count;
  885. }
  886. static ssize_t fts_tpbuf_store(
  887. struct device *dev,
  888. struct device_attribute *attr, const char *buf, size_t count)
  889. {
  890. return -EPERM;
  891. }
  892. /* fts_log_level interface */
  893. static ssize_t fts_log_level_show(
  894. struct device *dev, struct device_attribute *attr, char *buf)
  895. {
  896. int count = 0;
  897. struct input_dev *input_dev = fts_data->input_dev;
  898. mutex_lock(&input_dev->mutex);
  899. count += snprintf(buf + count, PAGE_SIZE, "log level:%d\n",
  900. fts_data->log_level);
  901. mutex_unlock(&input_dev->mutex);
  902. return count;
  903. }
  904. static ssize_t fts_log_level_store(
  905. struct device *dev,
  906. struct device_attribute *attr, const char *buf, size_t count)
  907. {
  908. int value = 0;
  909. struct input_dev *input_dev = fts_data->input_dev;
  910. FTS_FUNC_ENTER();
  911. mutex_lock(&input_dev->mutex);
  912. sscanf(buf, "%d", &value);
  913. FTS_DEBUG("log level:%d->%d", fts_data->log_level, value);
  914. fts_data->log_level = value;
  915. mutex_unlock(&input_dev->mutex);
  916. FTS_FUNC_EXIT();
  917. return count;
  918. }
  919. #ifdef CONFIG_FTS_TRUSTED_TOUCH
  920. static ssize_t trusted_touch_enable_show(struct device *dev,
  921. struct device_attribute *attr, char *buf)
  922. {
  923. struct fts_ts_data *info = fts_data;
  924. return scnprintf(buf, PAGE_SIZE, "%d",
  925. atomic_read(&info->trusted_touch_enabled));
  926. }
  927. static ssize_t trusted_touch_enable_store(struct device *dev,
  928. struct device_attribute *attr, const char *buf, size_t count)
  929. {
  930. struct fts_ts_data *info = fts_data;
  931. unsigned long value;
  932. int err = 0;
  933. if (count > 2)
  934. return -EINVAL;
  935. err = kstrtoul(buf, 10, &value);
  936. if (err != 0)
  937. return err;
  938. if (!atomic_read(&info->trusted_touch_initialized))
  939. return -EIO;
  940. #ifdef CONFIG_ARCH_QTI_VM
  941. err = fts_ts_handle_trusted_touch_tvm(info, value);
  942. if (err) {
  943. pr_err("Failed to handle trusted touch in tvm\n");
  944. return -EINVAL;
  945. }
  946. #else
  947. err = fts_ts_handle_trusted_touch_pvm(info, value);
  948. if (err) {
  949. pr_err("Failed to handle trusted touch in pvm\n");
  950. return -EINVAL;
  951. }
  952. #endif
  953. err = count;
  954. return err;
  955. }
  956. static ssize_t trusted_touch_event_show(struct device *dev,
  957. struct device_attribute *attr, char *buf)
  958. {
  959. struct fts_ts_data *info = fts_data;
  960. return scnprintf(buf, PAGE_SIZE, "%d",
  961. atomic_read(&info->trusted_touch_event));
  962. }
  963. static ssize_t trusted_touch_event_store(struct device *dev,
  964. struct device_attribute *attr, const char *buf, size_t count)
  965. {
  966. struct fts_ts_data *info = fts_data;
  967. unsigned long value;
  968. int err = 0;
  969. if (count > 2)
  970. return -EINVAL;
  971. err = kstrtoul(buf, 10, &value);
  972. if (err != 0)
  973. return err;
  974. if (!atomic_read(&info->trusted_touch_initialized))
  975. return -EIO;
  976. if (value)
  977. return -EIO;
  978. atomic_set(&info->trusted_touch_event, value);
  979. return count;
  980. }
  981. static ssize_t trusted_touch_type_show(struct device *dev,
  982. struct device_attribute *attr, char *buf)
  983. {
  984. struct fts_ts_data *info = fts_data;
  985. return scnprintf(buf, PAGE_SIZE, "%s", info->vm_info->trusted_touch_type);
  986. }
  987. #endif
  988. /* get the fw version example:cat fw_version */
  989. static DEVICE_ATTR_RW(fts_fw_version);
  990. /* read and write register(s)
  991. * All data type is **HEX**
  992. * Single Byte:
  993. * read: echo 88 > rw_reg ---read register 0x88
  994. * write: echo 8807 > rw_reg ---write 0x07 into register 0x88
  995. * Multi-bytes:
  996. * [0:rw-flag][1-2: reg addr, hex][3-4: length, hex][5-6...n-n+1: write data, hex]
  997. * rw-flag: 0, write; 1, read
  998. * read: echo 10005 > rw_reg ---read reg 0x00-0x05
  999. * write: echo 000050102030405 > rw_reg ---write reg 0x00-0x05 as 01,02,03,04,05
  1000. * Get result:
  1001. * cat rw_reg
  1002. */
  1003. static DEVICE_ATTR(fts_rw_reg, S_IRUGO | S_IWUSR, fts_tprwreg_show, fts_tprwreg_store);
  1004. static DEVICE_ATTR(fts_driver_info, S_IRUGO | S_IWUSR, fts_driverinfo_show, fts_driverinfo_store);
  1005. static DEVICE_ATTR(fts_dump_reg, S_IRUGO | S_IWUSR, fts_dumpreg_show, fts_dumpreg_store);
  1006. static DEVICE_ATTR(fts_hw_reset, S_IRUGO | S_IWUSR, fts_hw_reset_show, fts_hw_reset_store);
  1007. static DEVICE_ATTR(fts_irq, S_IRUGO | S_IWUSR, fts_irq_show, fts_irq_store);
  1008. static DEVICE_ATTR(fts_boot_mode, S_IRUGO | S_IWUSR, fts_bootmode_show, fts_bootmode_store);
  1009. static DEVICE_ATTR(fts_touch_point, S_IRUGO | S_IWUSR, fts_tpbuf_show, fts_tpbuf_store);
  1010. static DEVICE_ATTR(fts_log_level, S_IRUGO | S_IWUSR, fts_log_level_show, fts_log_level_store);
  1011. #ifdef CONFIG_FTS_TRUSTED_TOUCH
  1012. static DEVICE_ATTR_RW(trusted_touch_enable);
  1013. static DEVICE_ATTR_RW(trusted_touch_event);
  1014. static DEVICE_ATTR_RO(trusted_touch_type);
  1015. #endif
  1016. /* add your attr in here*/
  1017. static struct attribute *fts_attributes[] = {
  1018. &dev_attr_fts_fw_version.attr,
  1019. &dev_attr_fts_rw_reg.attr,
  1020. &dev_attr_fts_dump_reg.attr,
  1021. &dev_attr_fts_driver_info.attr,
  1022. &dev_attr_fts_hw_reset.attr,
  1023. &dev_attr_fts_irq.attr,
  1024. &dev_attr_fts_boot_mode.attr,
  1025. &dev_attr_fts_touch_point.attr,
  1026. &dev_attr_fts_log_level.attr,
  1027. #ifdef CONFIG_FTS_TRUSTED_TOUCH
  1028. &dev_attr_trusted_touch_enable.attr,
  1029. &dev_attr_trusted_touch_event.attr,
  1030. &dev_attr_trusted_touch_type.attr,
  1031. #endif
  1032. NULL
  1033. };
  1034. static struct attribute_group fts_attribute_group = {
  1035. .attrs = fts_attributes
  1036. };
  1037. int fts_create_sysfs(struct fts_ts_data *ts_data)
  1038. {
  1039. int ret = 0;
  1040. ret = sysfs_create_group(&ts_data->dev->kobj, &fts_attribute_group);
  1041. if (ret) {
  1042. FTS_ERROR("[EX]: sysfs_create_group() failed!!");
  1043. sysfs_remove_group(&ts_data->dev->kobj, &fts_attribute_group);
  1044. return -ENOMEM;
  1045. } else {
  1046. FTS_INFO("[EX]: sysfs_create_group() succeeded!!");
  1047. }
  1048. return ret;
  1049. }
  1050. int fts_remove_sysfs(struct fts_ts_data *ts_data)
  1051. {
  1052. sysfs_remove_group(&ts_data->dev->kobj, &fts_attribute_group);
  1053. return 0;
  1054. }