synaptics_dsx_rmi_hid_i2c.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989
  1. /*
  2. * Synaptics DSX touchscreen driver
  3. *
  4. * Copyright (C) 2012-2016 Synaptics Incorporated. All rights reserved.
  5. *
  6. * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved.
  7. * Copyright (C) 2012 Alexandra Chin <[email protected]>
  8. * Copyright (C) 2012 Scott Lin <[email protected]>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
  21. * EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
  22. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
  23. * AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
  24. * IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  25. * SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
  26. * WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
  27. * AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  28. * NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
  29. * THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
  30. * NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
  31. * TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
  32. * DOLLARS.
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/module.h>
  36. #include <linux/slab.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/i2c.h>
  39. #include <linux/delay.h>
  40. #include <linux/input.h>
  41. #include <linux/gpio.h>
  42. #include <linux/types.h>
  43. #include <linux/of_gpio.h>
  44. #include <linux/platform_device.h>
  45. #include <linux/input/synaptics_dsx.h>
  46. #include "synaptics_dsx_core.h"
  47. #define SYN_I2C_RETRY_TIMES 10
  48. #define REPORT_ID_GET_BLOB 0x07
  49. #define REPORT_ID_WRITE 0x09
  50. #define REPORT_ID_READ_ADDRESS 0x0a
  51. #define REPORT_ID_READ_DATA 0x0b
  52. #define REPORT_ID_SET_RMI_MODE 0x0f
  53. #define PREFIX_USAGE_PAGE_1BYTE 0x05
  54. #define PREFIX_USAGE_PAGE_2BYTES 0x06
  55. #define PREFIX_USAGE 0x09
  56. #define PREFIX_REPORT_ID 0x85
  57. #define PREFIX_REPORT_COUNT_1BYTE 0x95
  58. #define PREFIX_REPORT_COUNT_2BYTES 0x96
  59. #define USAGE_GET_BLOB 0xc5
  60. #define USAGE_WRITE 0x02
  61. #define USAGE_READ_ADDRESS 0x03
  62. #define USAGE_READ_DATA 0x04
  63. #define USAGE_SET_MODE 0x06
  64. #define FEATURE_REPORT_TYPE 0x03
  65. #define VENDOR_DEFINED_PAGE 0xff00
  66. #define BLOB_REPORT_SIZE 256
  67. #define RESET_COMMAND 0x01
  68. #define GET_REPORT_COMMAND 0x02
  69. #define SET_REPORT_COMMAND 0x03
  70. #define SET_POWER_COMMAND 0x08
  71. #define FINGER_MODE 0x00
  72. #define RMI_MODE 0x02
  73. struct hid_report_info {
  74. unsigned char get_blob_id;
  75. unsigned char write_id;
  76. unsigned char read_addr_id;
  77. unsigned char read_data_id;
  78. unsigned char set_mode_id;
  79. unsigned int blob_size;
  80. };
  81. static struct hid_report_info hid_report;
  82. struct hid_device_descriptor {
  83. unsigned short device_descriptor_length;
  84. unsigned short format_version;
  85. unsigned short report_descriptor_length;
  86. unsigned short report_descriptor_index;
  87. unsigned short input_register_index;
  88. unsigned short input_report_max_length;
  89. unsigned short output_register_index;
  90. unsigned short output_report_max_length;
  91. unsigned short command_register_index;
  92. unsigned short data_register_index;
  93. unsigned short vendor_id;
  94. unsigned short product_id;
  95. unsigned short version_id;
  96. unsigned int reserved;
  97. };
  98. static struct hid_device_descriptor hid_dd;
  99. struct i2c_rw_buffer {
  100. unsigned char *read;
  101. unsigned char *write;
  102. unsigned int read_size;
  103. unsigned int write_size;
  104. };
  105. static struct i2c_rw_buffer buffer;
  106. #ifdef CONFIG_OF
  107. static int parse_dt(struct device *dev, struct synaptics_dsx_board_data *bdata)
  108. {
  109. int retval;
  110. u32 value;
  111. const char *name;
  112. struct property *prop;
  113. struct device_node *np = dev->of_node;
  114. bdata->irq_gpio = of_get_named_gpio_flags(np,
  115. "synaptics,irq-gpio", 0,
  116. (enum of_gpio_flags *)&bdata->irq_flags);
  117. retval = of_property_read_u32(np, "synaptics,irq-on-state",
  118. &value);
  119. if (retval < 0)
  120. bdata->irq_on_state = 0;
  121. else
  122. bdata->irq_on_state = value;
  123. retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);
  124. if (retval < 0)
  125. bdata->pwr_reg_name = NULL;
  126. else
  127. bdata->pwr_reg_name = name;
  128. retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);
  129. if (retval < 0)
  130. bdata->bus_reg_name = NULL;
  131. else
  132. bdata->bus_reg_name = name;
  133. prop = of_find_property(np, "synaptics,power-gpio", NULL);
  134. if (prop && prop->length) {
  135. bdata->power_gpio = of_get_named_gpio_flags(np,
  136. "synaptics,power-gpio", 0, NULL);
  137. retval = of_property_read_u32(np, "synaptics,power-on-state",
  138. &value);
  139. if (retval < 0) {
  140. dev_err(dev, "%s: Unable to read synaptics,power-on-state property\n",
  141. __func__);
  142. return retval;
  143. }
  144. bdata->power_on_state = value;
  145. } else {
  146. bdata->power_gpio = -1;
  147. }
  148. prop = of_find_property(np, "synaptics,power-delay-ms", NULL);
  149. if (prop && prop->length) {
  150. retval = of_property_read_u32(np, "synaptics,power-delay-ms",
  151. &value);
  152. if (retval < 0) {
  153. dev_err(dev, "%s: Unable to read synaptics,power-delay-ms property\n",
  154. __func__);
  155. return retval;
  156. }
  157. bdata->power_delay_ms = value;
  158. } else {
  159. bdata->power_delay_ms = 0;
  160. }
  161. prop = of_find_property(np, "synaptics,reset-gpio", NULL);
  162. if (prop && prop->length) {
  163. bdata->reset_gpio = of_get_named_gpio_flags(np,
  164. "synaptics,reset-gpio", 0, NULL);
  165. retval = of_property_read_u32(np, "synaptics,reset-on-state",
  166. &value);
  167. if (retval < 0) {
  168. dev_err(dev, "%s: Unable to read synaptics,reset-on-state property\n",
  169. __func__);
  170. return retval;
  171. }
  172. bdata->reset_on_state = value;
  173. retval = of_property_read_u32(np, "synaptics,reset-active-ms",
  174. &value);
  175. if (retval < 0) {
  176. dev_err(dev, "%s: Unable to read synaptics,reset-active-ms property\n",
  177. __func__);
  178. return retval;
  179. }
  180. bdata->reset_active_ms = value;
  181. } else {
  182. bdata->reset_gpio = -1;
  183. }
  184. prop = of_find_property(np, "synaptics,reset-delay-ms", NULL);
  185. if (prop && prop->length) {
  186. retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
  187. &value);
  188. if (retval < 0) {
  189. dev_err(dev, "%s: Unable to read synaptics,reset-delay-ms property\n",
  190. __func__);
  191. return retval;
  192. }
  193. bdata->reset_delay_ms = value;
  194. } else {
  195. bdata->reset_delay_ms = 0;
  196. }
  197. prop = of_find_property(np, "synaptics,dev-dscrptr-addr", NULL);
  198. if (prop && prop->length) {
  199. retval = of_property_read_u32(np, "synaptics,dev-dscrptr-addr",
  200. &value);
  201. if (retval < 0) {
  202. dev_err(dev, "%s: Unable to read synaptics,dev-dscrptr-addr property\n",
  203. __func__);
  204. return retval;
  205. }
  206. bdata->device_descriptor_addr = (unsigned short)value;
  207. } else {
  208. bdata->device_descriptor_addr = 0;
  209. }
  210. prop = of_find_property(np, "synaptics,max-y-for-2d", NULL);
  211. if (prop && prop->length) {
  212. retval = of_property_read_u32(np, "synaptics,max-y-for-2d",
  213. &value);
  214. if (retval < 0) {
  215. dev_err(dev, "%s: Unable to read synaptics,max-y-for-2d property\n",
  216. __func__);
  217. return retval;
  218. }
  219. bdata->max_y_for_2d = value;
  220. } else {
  221. bdata->max_y_for_2d = -1;
  222. }
  223. prop = of_find_property(np, "synaptics,swap-axes", NULL);
  224. bdata->swap_axes = prop > 0 ? true : false;
  225. prop = of_find_property(np, "synaptics,x-flip", NULL);
  226. bdata->x_flip = prop > 0 ? true : false;
  227. prop = of_find_property(np, "synaptics,y-flip", NULL);
  228. bdata->y_flip = prop > 0 ? true : false;
  229. prop = of_find_property(np, "synaptics,ub-i2c-addr", NULL);
  230. if (prop && prop->length) {
  231. retval = of_property_read_u32(np, "synaptics,ub-i2c-addr",
  232. &value);
  233. if (retval < 0) {
  234. dev_err(dev, "%s: Unable to read synaptics,ub-i2c-addr property\n",
  235. __func__);
  236. return retval;
  237. }
  238. bdata->ub_i2c_addr = (unsigned short)value;
  239. } else {
  240. bdata->ub_i2c_addr = -1;
  241. }
  242. prop = of_find_property(np, "synaptics,cap-button-codes", NULL);
  243. if (prop && prop->length) {
  244. bdata->cap_button_map->map = devm_kzalloc(dev,
  245. prop->length,
  246. GFP_KERNEL);
  247. if (!bdata->cap_button_map->map)
  248. return -ENOMEM;
  249. bdata->cap_button_map->nbuttons = prop->length / sizeof(u32);
  250. retval = of_property_read_u32_array(np,
  251. "synaptics,cap-button-codes",
  252. bdata->cap_button_map->map,
  253. bdata->cap_button_map->nbuttons);
  254. if (retval < 0) {
  255. bdata->cap_button_map->nbuttons = 0;
  256. bdata->cap_button_map->map = NULL;
  257. }
  258. } else {
  259. bdata->cap_button_map->nbuttons = 0;
  260. bdata->cap_button_map->map = NULL;
  261. }
  262. prop = of_find_property(np, "synaptics,vir-button-codes", NULL);
  263. if (prop && prop->length) {
  264. bdata->vir_button_map->map = devm_kzalloc(dev,
  265. prop->length,
  266. GFP_KERNEL);
  267. if (!bdata->vir_button_map->map)
  268. return -ENOMEM;
  269. bdata->vir_button_map->nbuttons = prop->length / sizeof(u32);
  270. bdata->vir_button_map->nbuttons /= 5;
  271. retval = of_property_read_u32_array(np,
  272. "synaptics,vir-button-codes",
  273. bdata->vir_button_map->map,
  274. bdata->vir_button_map->nbuttons * 5);
  275. if (retval < 0) {
  276. bdata->vir_button_map->nbuttons = 0;
  277. bdata->vir_button_map->map = NULL;
  278. }
  279. } else {
  280. bdata->vir_button_map->nbuttons = 0;
  281. bdata->vir_button_map->map = NULL;
  282. }
  283. return 0;
  284. }
  285. #endif
  286. static int do_i2c_transfer(struct i2c_client *client, struct i2c_msg *msg)
  287. {
  288. unsigned char retry;
  289. for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
  290. if (i2c_transfer(client->adapter, msg, 1) == 1)
  291. break;
  292. dev_err(&client->dev,
  293. "%s: I2C retry %d\n",
  294. __func__, retry + 1);
  295. msleep(20);
  296. }
  297. if (retry == SYN_I2C_RETRY_TIMES) {
  298. dev_err(&client->dev,
  299. "%s: I2C transfer over retry limit\n",
  300. __func__);
  301. return -EIO;
  302. }
  303. return 0;
  304. }
  305. static int check_buffer(unsigned char **buffer, unsigned int *buffer_size,
  306. unsigned int length)
  307. {
  308. if (*buffer_size < length) {
  309. if (*buffer_size)
  310. kfree(*buffer);
  311. *buffer = kzalloc(length, GFP_KERNEL);
  312. if (!(*buffer))
  313. return -ENOMEM;
  314. *buffer_size = length;
  315. }
  316. return 0;
  317. }
  318. static int generic_read(struct i2c_client *client, unsigned short length)
  319. {
  320. int retval;
  321. struct i2c_msg msg[] = {
  322. {
  323. .addr = client->addr,
  324. .flags = I2C_M_RD,
  325. .len = length,
  326. }
  327. };
  328. check_buffer(&buffer.read, &buffer.read_size, length);
  329. msg[0].buf = buffer.read;
  330. retval = do_i2c_transfer(client, msg);
  331. return retval;
  332. }
  333. static int generic_write(struct i2c_client *client, unsigned short length)
  334. {
  335. int retval;
  336. struct i2c_msg msg[] = {
  337. {
  338. .addr = client->addr,
  339. .flags = 0,
  340. .len = length,
  341. .buf = buffer.write,
  342. }
  343. };
  344. retval = do_i2c_transfer(client, msg);
  345. return retval;
  346. }
  347. static void traverse_report_descriptor(unsigned int *index)
  348. {
  349. unsigned char size;
  350. unsigned char *buf = buffer.read;
  351. size = buf[*index] & MASK_2BIT;
  352. switch (size) {
  353. case 0: /* 0 bytes */
  354. *index += 1;
  355. break;
  356. case 1: /* 1 byte */
  357. *index += 2;
  358. break;
  359. case 2: /* 2 bytes */
  360. *index += 3;
  361. break;
  362. case 3: /* 4 bytes */
  363. *index += 5;
  364. break;
  365. default:
  366. break;
  367. }
  368. }
  369. static void find_blob_size(unsigned int index)
  370. {
  371. unsigned int ii = index;
  372. unsigned char *buf = buffer.read;
  373. while (ii < hid_dd.report_descriptor_length) {
  374. if (buf[ii] == PREFIX_REPORT_COUNT_1BYTE) {
  375. hid_report.blob_size = buf[ii + 1];
  376. return;
  377. } else if (buf[ii] == PREFIX_REPORT_COUNT_2BYTES) {
  378. hid_report.blob_size = buf[ii + 1] | (buf[ii + 2] << 8);
  379. return;
  380. }
  381. traverse_report_descriptor(&ii);
  382. }
  383. }
  384. static void find_reports(unsigned int index)
  385. {
  386. unsigned int ii = index;
  387. unsigned char *buf = buffer.read;
  388. static unsigned int report_id_index;
  389. static unsigned char report_id;
  390. static unsigned short usage_page;
  391. if (buf[ii] == PREFIX_REPORT_ID) {
  392. report_id = buf[ii + 1];
  393. report_id_index = ii;
  394. return;
  395. }
  396. if (buf[ii] == PREFIX_USAGE_PAGE_1BYTE) {
  397. usage_page = buf[ii + 1];
  398. return;
  399. } else if (buf[ii] == PREFIX_USAGE_PAGE_2BYTES) {
  400. usage_page = buf[ii + 1] | (buf[ii + 2] << 8);
  401. return;
  402. }
  403. if ((usage_page == VENDOR_DEFINED_PAGE) && (buf[ii] == PREFIX_USAGE)) {
  404. switch (buf[ii + 1]) {
  405. case USAGE_GET_BLOB:
  406. hid_report.get_blob_id = report_id;
  407. find_blob_size(report_id_index);
  408. break;
  409. case USAGE_WRITE:
  410. hid_report.write_id = report_id;
  411. break;
  412. case USAGE_READ_ADDRESS:
  413. hid_report.read_addr_id = report_id;
  414. break;
  415. case USAGE_READ_DATA:
  416. hid_report.read_data_id = report_id;
  417. break;
  418. case USAGE_SET_MODE:
  419. hid_report.set_mode_id = report_id;
  420. break;
  421. default:
  422. break;
  423. }
  424. }
  425. }
  426. static int parse_report_descriptor(struct synaptics_rmi4_data *rmi4_data)
  427. {
  428. int retval;
  429. unsigned int ii = 0;
  430. unsigned char *buf;
  431. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  432. buffer.write[0] = hid_dd.report_descriptor_index & MASK_8BIT;
  433. buffer.write[1] = hid_dd.report_descriptor_index >> 8;
  434. retval = generic_write(i2c, 2);
  435. if (retval < 0)
  436. return retval;
  437. retval = generic_read(i2c, hid_dd.report_descriptor_length);
  438. if (retval < 0)
  439. return retval;
  440. buf = buffer.read;
  441. hid_report.get_blob_id = REPORT_ID_GET_BLOB;
  442. hid_report.write_id = REPORT_ID_WRITE;
  443. hid_report.read_addr_id = REPORT_ID_READ_ADDRESS;
  444. hid_report.read_data_id = REPORT_ID_READ_DATA;
  445. hid_report.set_mode_id = REPORT_ID_SET_RMI_MODE;
  446. hid_report.blob_size = BLOB_REPORT_SIZE;
  447. while (ii < hid_dd.report_descriptor_length) {
  448. find_reports(ii);
  449. traverse_report_descriptor(&ii);
  450. }
  451. return 0;
  452. }
  453. static int switch_to_rmi(struct synaptics_rmi4_data *rmi4_data)
  454. {
  455. int retval;
  456. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  457. mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
  458. check_buffer(&buffer.write, &buffer.write_size, 11);
  459. /* set rmi mode */
  460. buffer.write[0] = hid_dd.command_register_index & MASK_8BIT;
  461. buffer.write[1] = hid_dd.command_register_index >> 8;
  462. buffer.write[2] = (FEATURE_REPORT_TYPE << 4) | hid_report.set_mode_id;
  463. buffer.write[3] = SET_REPORT_COMMAND;
  464. buffer.write[4] = hid_report.set_mode_id;
  465. buffer.write[5] = hid_dd.data_register_index & MASK_8BIT;
  466. buffer.write[6] = hid_dd.data_register_index >> 8;
  467. buffer.write[7] = 0x04;
  468. buffer.write[8] = 0x00;
  469. buffer.write[9] = hid_report.set_mode_id;
  470. buffer.write[10] = RMI_MODE;
  471. retval = generic_write(i2c, 11);
  472. mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
  473. return retval;
  474. }
  475. static int check_report_mode(struct synaptics_rmi4_data *rmi4_data)
  476. {
  477. int retval;
  478. unsigned short report_size;
  479. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  480. mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
  481. check_buffer(&buffer.write, &buffer.write_size, 7);
  482. buffer.write[0] = hid_dd.command_register_index & MASK_8BIT;
  483. buffer.write[1] = hid_dd.command_register_index >> 8;
  484. buffer.write[2] = (FEATURE_REPORT_TYPE << 4) | hid_report.set_mode_id;
  485. buffer.write[3] = GET_REPORT_COMMAND;
  486. buffer.write[4] = hid_report.set_mode_id;
  487. buffer.write[5] = hid_dd.data_register_index & MASK_8BIT;
  488. buffer.write[6] = hid_dd.data_register_index >> 8;
  489. retval = generic_write(i2c, 7);
  490. if (retval < 0)
  491. goto exit;
  492. retval = generic_read(i2c, 2);
  493. if (retval < 0)
  494. goto exit;
  495. report_size = (buffer.read[1] << 8) | buffer.read[0];
  496. retval = generic_write(i2c, 7);
  497. if (retval < 0)
  498. goto exit;
  499. retval = generic_read(i2c, report_size);
  500. if (retval < 0)
  501. goto exit;
  502. retval = buffer.read[3];
  503. dev_dbg(rmi4_data->pdev->dev.parent,
  504. "%s: Report mode = %d\n",
  505. __func__, retval);
  506. exit:
  507. mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
  508. return retval;
  509. }
  510. static int hid_i2c_init(struct synaptics_rmi4_data *rmi4_data)
  511. {
  512. int retval;
  513. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  514. const struct synaptics_dsx_board_data *bdata =
  515. rmi4_data->hw_if->board_data;
  516. mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
  517. check_buffer(&buffer.write, &buffer.write_size, 6);
  518. /* read device descriptor */
  519. buffer.write[0] = bdata->device_descriptor_addr & MASK_8BIT;
  520. buffer.write[1] = bdata->device_descriptor_addr >> 8;
  521. retval = generic_write(i2c, 2);
  522. if (retval < 0)
  523. goto exit;
  524. retval = generic_read(i2c, sizeof(hid_dd));
  525. if (retval < 0)
  526. goto exit;
  527. retval = secure_memcpy((unsigned char *)&hid_dd,
  528. sizeof(struct hid_device_descriptor),
  529. buffer.read,
  530. buffer.read_size,
  531. sizeof(hid_dd));
  532. if (retval < 0) {
  533. dev_err(rmi4_data->pdev->dev.parent,
  534. "%s: Failed to copy device descriptor data\n",
  535. __func__);
  536. goto exit;
  537. }
  538. retval = parse_report_descriptor(rmi4_data);
  539. if (retval < 0)
  540. goto exit;
  541. /* set power */
  542. buffer.write[0] = hid_dd.command_register_index & MASK_8BIT;
  543. buffer.write[1] = hid_dd.command_register_index >> 8;
  544. buffer.write[2] = 0x00;
  545. buffer.write[3] = SET_POWER_COMMAND;
  546. retval = generic_write(i2c, 4);
  547. if (retval < 0)
  548. goto exit;
  549. /* reset */
  550. buffer.write[0] = hid_dd.command_register_index & MASK_8BIT;
  551. buffer.write[1] = hid_dd.command_register_index >> 8;
  552. buffer.write[2] = 0x00;
  553. buffer.write[3] = RESET_COMMAND;
  554. retval = generic_write(i2c, 4);
  555. if (retval < 0)
  556. goto exit;
  557. while (gpio_get_value(bdata->irq_gpio))
  558. msleep(20);
  559. retval = generic_read(i2c, hid_dd.input_report_max_length);
  560. if (retval < 0)
  561. goto exit;
  562. /* get blob */
  563. buffer.write[0] = hid_dd.command_register_index & MASK_8BIT;
  564. buffer.write[1] = hid_dd.command_register_index >> 8;
  565. buffer.write[2] = (FEATURE_REPORT_TYPE << 4) | hid_report.get_blob_id;
  566. buffer.write[3] = 0x02;
  567. buffer.write[4] = hid_dd.data_register_index & MASK_8BIT;
  568. buffer.write[5] = hid_dd.data_register_index >> 8;
  569. retval = generic_write(i2c, 6);
  570. if (retval < 0)
  571. goto exit;
  572. msleep(20);
  573. retval = generic_read(i2c, hid_report.blob_size + 3);
  574. if (retval < 0)
  575. goto exit;
  576. exit:
  577. mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
  578. if (retval < 0) {
  579. dev_err(rmi4_data->pdev->dev.parent,
  580. "%s: Failed to initialize HID/I2C interface\n",
  581. __func__);
  582. return retval;
  583. }
  584. retval = switch_to_rmi(rmi4_data);
  585. return retval;
  586. }
  587. static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
  588. unsigned short addr, unsigned char *data, unsigned int length)
  589. {
  590. int retval;
  591. unsigned char retry;
  592. unsigned char recover = 1;
  593. unsigned short report_length;
  594. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  595. struct i2c_msg msg[] = {
  596. {
  597. .addr = i2c->addr,
  598. .flags = 0,
  599. .len = hid_dd.output_report_max_length + 2,
  600. },
  601. {
  602. .addr = i2c->addr,
  603. .flags = I2C_M_RD,
  604. .len = (unsigned short)(length + 4),
  605. },
  606. };
  607. recover:
  608. mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
  609. check_buffer(&buffer.write, &buffer.write_size,
  610. hid_dd.output_report_max_length + 2);
  611. msg[0].buf = buffer.write;
  612. buffer.write[0] = hid_dd.output_register_index & MASK_8BIT;
  613. buffer.write[1] = hid_dd.output_register_index >> 8;
  614. buffer.write[2] = hid_dd.output_report_max_length & MASK_8BIT;
  615. buffer.write[3] = hid_dd.output_report_max_length >> 8;
  616. buffer.write[4] = hid_report.read_addr_id;
  617. buffer.write[5] = 0x00;
  618. buffer.write[6] = addr & MASK_8BIT;
  619. buffer.write[7] = addr >> 8;
  620. buffer.write[8] = (unsigned char)length;
  621. buffer.write[9] = (unsigned char)(length >> 8);
  622. check_buffer(&buffer.read, &buffer.read_size, length + 4);
  623. msg[1].buf = buffer.read;
  624. retval = do_i2c_transfer(i2c, &msg[0]);
  625. if (retval != 0)
  626. goto exit;
  627. retry = 0;
  628. do {
  629. retval = do_i2c_transfer(i2c, &msg[1]);
  630. if (retval == 0)
  631. retval = length;
  632. else
  633. goto exit;
  634. report_length = (buffer.read[1] << 8) | buffer.read[0];
  635. if (report_length == hid_dd.input_report_max_length) {
  636. retval = secure_memcpy(&data[0], length,
  637. &buffer.read[4], buffer.read_size - 4,
  638. length);
  639. if (retval < 0) {
  640. dev_err(rmi4_data->pdev->dev.parent,
  641. "%s: Failed to copy data\n",
  642. __func__);
  643. } else {
  644. retval = length;
  645. }
  646. goto exit;
  647. }
  648. msleep(20);
  649. retry++;
  650. } while (retry < SYN_I2C_RETRY_TIMES);
  651. dev_err(rmi4_data->pdev->dev.parent,
  652. "%s: Failed to receive read report\n",
  653. __func__);
  654. retval = -EIO;
  655. exit:
  656. mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
  657. if ((retval != length) && (recover == 1)) {
  658. recover = 0;
  659. if (check_report_mode(rmi4_data) != RMI_MODE) {
  660. retval = hid_i2c_init(rmi4_data);
  661. if (retval == 0)
  662. goto recover;
  663. }
  664. }
  665. return retval;
  666. }
  667. static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
  668. unsigned short addr, unsigned char *data, unsigned int length)
  669. {
  670. int retval;
  671. unsigned char recover = 1;
  672. unsigned int msg_length;
  673. struct i2c_client *i2c = to_i2c_client(rmi4_data->pdev->dev.parent);
  674. struct i2c_msg msg[] = {
  675. {
  676. .addr = i2c->addr,
  677. .flags = 0,
  678. }
  679. };
  680. if ((length + 10) < (hid_dd.output_report_max_length + 2))
  681. msg_length = hid_dd.output_report_max_length + 2;
  682. else
  683. msg_length = length + 10;
  684. recover:
  685. mutex_lock(&rmi4_data->rmi4_io_ctrl_mutex);
  686. check_buffer(&buffer.write, &buffer.write_size, msg_length);
  687. msg[0].len = (unsigned short)msg_length;
  688. msg[0].buf = buffer.write;
  689. buffer.write[0] = hid_dd.output_register_index & MASK_8BIT;
  690. buffer.write[1] = hid_dd.output_register_index >> 8;
  691. buffer.write[2] = hid_dd.output_report_max_length & MASK_8BIT;
  692. buffer.write[3] = hid_dd.output_report_max_length >> 8;
  693. buffer.write[4] = hid_report.write_id;
  694. buffer.write[5] = 0x00;
  695. buffer.write[6] = addr & MASK_8BIT;
  696. buffer.write[7] = addr >> 8;
  697. buffer.write[8] = (unsigned char)length;
  698. buffer.write[9] = (unsigned char)(length >> 8);
  699. retval = secure_memcpy(&buffer.write[10], buffer.write_size - 10,
  700. &data[0], length, length);
  701. if (retval < 0) {
  702. dev_err(rmi4_data->pdev->dev.parent,
  703. "%s: Failed to copy data\n",
  704. __func__);
  705. } else {
  706. retval = do_i2c_transfer(i2c, msg);
  707. if (retval == 0)
  708. retval = length;
  709. }
  710. mutex_unlock(&rmi4_data->rmi4_io_ctrl_mutex);
  711. if ((retval != length) && (recover == 1)) {
  712. recover = 0;
  713. if (check_report_mode(rmi4_data) != RMI_MODE) {
  714. retval = hid_i2c_init(rmi4_data);
  715. if (retval == 0)
  716. goto recover;
  717. }
  718. }
  719. return retval;
  720. }
  721. static struct synaptics_dsx_bus_access bus_access = {
  722. .type = BUS_I2C,
  723. .read = synaptics_rmi4_i2c_read,
  724. .write = synaptics_rmi4_i2c_write,
  725. };
  726. static struct synaptics_dsx_hw_interface hw_if;
  727. static struct platform_device *synaptics_dsx_i2c_device;
  728. static void synaptics_rmi4_i2c_dev_release(struct device *dev)
  729. {
  730. kfree(synaptics_dsx_i2c_device);
  731. }
  732. static int synaptics_rmi4_i2c_probe(struct i2c_client *client,
  733. const struct i2c_device_id *dev_id)
  734. {
  735. int retval;
  736. if (!i2c_check_functionality(client->adapter,
  737. I2C_FUNC_SMBUS_BYTE_DATA)) {
  738. dev_err(&client->dev,
  739. "%s: SMBus byte data commands not supported by host\n",
  740. __func__);
  741. return -EIO;
  742. }
  743. synaptics_dsx_i2c_device = kzalloc(
  744. sizeof(struct platform_device),
  745. GFP_KERNEL);
  746. if (!synaptics_dsx_i2c_device) {
  747. dev_err(&client->dev,
  748. "%s: Failed to allocate memory for synaptics_dsx_i2c_device\n",
  749. __func__);
  750. return -ENOMEM;
  751. }
  752. #ifdef CONFIG_OF
  753. if (client->dev.of_node) {
  754. hw_if.board_data = devm_kzalloc(&client->dev,
  755. sizeof(struct synaptics_dsx_board_data),
  756. GFP_KERNEL);
  757. if (!hw_if.board_data) {
  758. dev_err(&client->dev,
  759. "%s: Failed to allocate memory for board data\n",
  760. __func__);
  761. return -ENOMEM;
  762. }
  763. hw_if.board_data->cap_button_map = devm_kzalloc(&client->dev,
  764. sizeof(struct synaptics_dsx_button_map),
  765. GFP_KERNEL);
  766. if (!hw_if.board_data->cap_button_map) {
  767. dev_err(&client->dev,
  768. "%s: Failed to allocate memory for 0D button map\n",
  769. __func__);
  770. return -ENOMEM;
  771. }
  772. hw_if.board_data->vir_button_map = devm_kzalloc(&client->dev,
  773. sizeof(struct synaptics_dsx_button_map),
  774. GFP_KERNEL);
  775. if (!hw_if.board_data->vir_button_map) {
  776. dev_err(&client->dev,
  777. "%s: Failed to allocate memory for virtual button map\n",
  778. __func__);
  779. return -ENOMEM;
  780. }
  781. parse_dt(&client->dev, hw_if.board_data);
  782. }
  783. #else
  784. hw_if.board_data = client->dev.platform_data;
  785. #endif
  786. hw_if.bus_access = &bus_access;
  787. hw_if.bl_hw_init = switch_to_rmi;
  788. hw_if.ui_hw_init = hid_i2c_init;
  789. synaptics_dsx_i2c_device->name = PLATFORM_DRIVER_NAME;
  790. synaptics_dsx_i2c_device->id = 0;
  791. synaptics_dsx_i2c_device->num_resources = 0;
  792. synaptics_dsx_i2c_device->dev.parent = &client->dev;
  793. synaptics_dsx_i2c_device->dev.platform_data = &hw_if;
  794. synaptics_dsx_i2c_device->dev.release = synaptics_rmi4_i2c_dev_release;
  795. retval = platform_device_register(synaptics_dsx_i2c_device);
  796. if (retval) {
  797. dev_err(&client->dev,
  798. "%s: Failed to register platform device\n",
  799. __func__);
  800. return -ENODEV;
  801. }
  802. return 0;
  803. }
  804. static int synaptics_rmi4_i2c_remove(struct i2c_client *client)
  805. {
  806. if (buffer.read_size)
  807. kfree(buffer.read);
  808. if (buffer.write_size)
  809. kfree(buffer.write);
  810. platform_device_unregister(synaptics_dsx_i2c_device);
  811. return 0;
  812. }
  813. static const struct i2c_device_id synaptics_rmi4_id_table[] = {
  814. {I2C_DRIVER_NAME, 0},
  815. {},
  816. };
  817. MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table);
  818. #ifdef CONFIG_OF
  819. static const struct of_device_id synaptics_rmi4_of_match_table[] = {
  820. {
  821. .compatible = "synaptics,dsx-rmi-hid-i2c",
  822. },
  823. {},
  824. };
  825. MODULE_DEVICE_TABLE(of, synaptics_rmi4_of_match_table);
  826. #else
  827. #define synaptics_rmi4_of_match_table NULL
  828. #endif
  829. static struct i2c_driver synaptics_rmi4_i2c_driver = {
  830. .driver = {
  831. .name = I2C_DRIVER_NAME,
  832. .owner = THIS_MODULE,
  833. .of_match_table = synaptics_rmi4_of_match_table,
  834. },
  835. .probe = synaptics_rmi4_i2c_probe,
  836. .remove = synaptics_rmi4_i2c_remove,
  837. .id_table = synaptics_rmi4_id_table,
  838. };
  839. int synaptics_rmi4_bus_init(void)
  840. {
  841. return i2c_add_driver(&synaptics_rmi4_i2c_driver);
  842. }
  843. EXPORT_SYMBOL(synaptics_rmi4_bus_init);
  844. void synaptics_rmi4_bus_exit(void)
  845. {
  846. i2c_del_driver(&synaptics_rmi4_i2c_driver);
  847. }
  848. EXPORT_SYMBOL(synaptics_rmi4_bus_exit);
  849. MODULE_AUTHOR("Synaptics, Inc.");
  850. MODULE_DESCRIPTION("Synaptics DSX I2C Bus Support Module");
  851. MODULE_LICENSE("GPL v2");