msm_cvp_clocks.c 9.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include "msm_cvp_common.h"
  6. #include "cvp_hfi_api.h"
  7. #include "msm_cvp_debug.h"
  8. #include "msm_cvp_clocks.h"
  9. static struct mmrm_client *__mmrm_client_register(
  10. struct mmrm_client_desc *client)
  11. {
  12. #ifdef CVP_MMRM_ENABLED
  13. return mmrm_client_register(client);
  14. #else
  15. return NULL;
  16. #endif
  17. }
  18. static int __mmrm_client_deregister(struct mmrm_client *client)
  19. {
  20. #ifdef CVP_MMRM_ENABLED
  21. return mmrm_client_deregister(client);
  22. #else
  23. return -ENODEV;
  24. #endif
  25. }
  26. static int __mmrm_client_set_value_in_range(struct mmrm_client *client,
  27. struct mmrm_client_data *data,
  28. struct mmrm_client_res_value *val)
  29. {
  30. #ifdef CVP_MMRM_ENABLED
  31. return mmrm_client_set_value_in_range(client, data, val);
  32. #else
  33. return -ENODEV;
  34. #endif
  35. }
  36. int msm_cvp_mmrm_notifier_cb(
  37. struct mmrm_client_notifier_data *notifier_data)
  38. {
  39. if (!notifier_data) {
  40. dprintk(CVP_WARN, "%s Invalid notifier data: %pK\n",
  41. __func__, notifier_data);
  42. return -EINVAL;
  43. }
  44. if (notifier_data->cb_type == MMRM_CLIENT_RESOURCE_VALUE_CHANGE) {
  45. struct iris_hfi_device *dev = notifier_data->pvt_data;
  46. dprintk(CVP_PWR,
  47. "%s: Clock %s throttled from %ld to %ld \n",
  48. __func__, dev->mmrm_desc.client_info.desc.name,
  49. notifier_data->cb_data.val_chng.old_val,
  50. notifier_data->cb_data.val_chng.new_val);
  51. /*TODO: if need further handling to notify eva client */
  52. } else {
  53. dprintk(CVP_WARN, "%s Invalid cb type: %d\n",
  54. __func__, notifier_data->cb_type);
  55. return -EINVAL;
  56. }
  57. return 0;
  58. }
  59. int msm_cvp_set_clocks(struct msm_cvp_core *core)
  60. {
  61. struct cvp_hfi_device *hdev;
  62. int rc;
  63. if (!core || !core->device) {
  64. dprintk(CVP_ERR, "%s Invalid args: %pK\n", __func__, core);
  65. return -EINVAL;
  66. }
  67. hdev = core->device;
  68. rc = call_hfi_op(hdev, scale_clocks,
  69. hdev->hfi_device_data, core->curr_freq);
  70. return rc;
  71. }
  72. int msm_cvp_mmrm_register(struct iris_hfi_device *device)
  73. {
  74. int rc = 0;
  75. struct clock_info *cl = NULL;
  76. char *name;
  77. if (!device) {
  78. dprintk(CVP_ERR, "%s invalid device\n", __func__);
  79. return -EINVAL;
  80. }
  81. name = (char *)device->mmrm_desc.client_info.desc.name;
  82. device->mmrm_cvp=NULL;
  83. device->mmrm_desc.client_type=MMRM_CLIENT_CLOCK;
  84. device->mmrm_desc.priority=MMRM_CLIENT_PRIOR_LOW;
  85. device->mmrm_desc.pvt_data = device;
  86. device->mmrm_desc.notifier_callback_fn = msm_cvp_mmrm_notifier_cb;
  87. device->mmrm_desc.client_info.desc.client_domain=MMRM_CLIENT_DOMAIN_CVP;
  88. iris_hfi_for_each_clock(device, cl) {
  89. if (cl->has_scaling) { /* only clk source enabled in dtsi */
  90. device->mmrm_desc.client_info.desc.clk=cl->clk;
  91. device->mmrm_desc.client_info.desc.client_id=cl->clk_id;
  92. strlcpy(name, cl->name,
  93. sizeof(device->mmrm_desc.client_info.desc.name));
  94. }
  95. }
  96. dprintk(CVP_PWR,
  97. "%s: Register for %s, clk_id %d\n",
  98. __func__, device->mmrm_desc.client_info.desc.name,
  99. device->mmrm_desc.client_info.desc.client_id);
  100. device->mmrm_cvp = __mmrm_client_register(&(device->mmrm_desc));
  101. if (device->mmrm_cvp == NULL) {
  102. dprintk(CVP_ERR,
  103. "%s: Failed mmrm_client_register with mmrm_cvp: %pK\n",
  104. __func__, device->mmrm_cvp);
  105. rc = -ENOENT;
  106. } else {
  107. dprintk(CVP_PWR,
  108. "%s: mmrm_client_register done: %pK, type:%d, uid:%ld\n",
  109. __func__, device->mmrm_cvp,
  110. device->mmrm_cvp->client_type,
  111. device->mmrm_cvp->client_uid);
  112. }
  113. return rc;
  114. }
  115. int msm_cvp_mmrm_deregister(struct iris_hfi_device *device)
  116. {
  117. int rc = 0;
  118. struct clock_info *cl = NULL;
  119. if (!device || !device->mmrm_cvp) {
  120. dprintk(CVP_ERR,
  121. "%s invalid args: device %pK, or device->mmrm_cvp \n",
  122. __func__, device);
  123. return -EINVAL;
  124. }
  125. /* set clk value to 0 before deregister */
  126. iris_hfi_for_each_clock(device, cl) {
  127. if ((cl->has_scaling) && (__clk_is_enabled(cl->clk))){
  128. // set min freq and cur freq to 0;
  129. rc = msm_cvp_mmrm_set_value_in_range(device,
  130. 0, 0);
  131. if (rc) {
  132. dprintk(CVP_ERR,
  133. "%s Failed set clock %s: %d\n",
  134. __func__, cl->name, rc);
  135. }
  136. }
  137. }
  138. rc = __mmrm_client_deregister(device->mmrm_cvp);
  139. if (rc) {
  140. dprintk(CVP_ERR,
  141. "%s: Failed mmrm_client_deregister with rc: %d\n",
  142. __func__, rc);
  143. }
  144. device->mmrm_cvp = NULL;
  145. return rc;
  146. }
  147. int msm_cvp_mmrm_set_value_in_range(struct iris_hfi_device *device,
  148. u32 freq_min, u32 freq_cur)
  149. {
  150. int rc = 0;
  151. struct mmrm_client_res_value val;
  152. struct mmrm_client_data data;
  153. if (!device) {
  154. dprintk(CVP_ERR, "%s invalid device\n", __func__);
  155. return -EINVAL;
  156. }
  157. dprintk(CVP_PWR,
  158. "%s: set clock rate for mmrm_cvp: %pK, type :%d, uid: %ld\n",
  159. __func__, device->mmrm_cvp,
  160. device->mmrm_cvp->client_type, device->mmrm_cvp->client_uid);
  161. val.min = freq_min;
  162. val.cur = freq_cur;
  163. data.num_hw_blocks = 1;
  164. data.flags = 0; /* Not MMRM_CLIENT_DATA_FLAG_RESERVE_ONLY */
  165. dprintk(CVP_PWR,
  166. "%s: set clock rate to min %u cur %u: %d\n",
  167. __func__, val.min, val.cur, rc);
  168. rc = __mmrm_client_set_value_in_range(device->mmrm_cvp, &data, &val);
  169. if (rc) {
  170. dprintk(CVP_ERR,
  171. "%s: Failed to set clock rate to min %u cur %u: %d\n",
  172. __func__, val.min, val.cur, rc);
  173. }
  174. return rc;
  175. }
  176. int msm_cvp_set_clocks_impl(struct iris_hfi_device *device, u32 freq)
  177. {
  178. struct clock_info *cl;
  179. int rc = 0;
  180. int fsrc2clk = 3;
  181. // ratio factor for clock source : clk
  182. u32 freq_min = device->res->allowed_clks_tbl[0].clock_rate * fsrc2clk;
  183. dprintk(CVP_PWR, "%s: entering with freq : %ld\n", __func__, freq);
  184. iris_hfi_for_each_clock(device, cl) {
  185. if (cl->has_scaling) {/* has_scaling */
  186. device->clk_freq = freq;
  187. if (msm_cvp_clock_voting)
  188. freq = msm_cvp_clock_voting;
  189. freq = freq * fsrc2clk;
  190. dprintk(CVP_PWR,
  191. "%s: clock source rate set to: %ld\n",
  192. __func__, freq);
  193. if (device->mmrm_cvp != NULL) {
  194. /* min freq : 1st element value in the table */
  195. rc = msm_cvp_mmrm_set_value_in_range(device,
  196. freq_min, freq);
  197. if (rc) {
  198. dprintk(CVP_ERR,
  199. "Failed set clock %s: %d\n",
  200. cl->name, rc);
  201. return rc;
  202. }
  203. }
  204. else {
  205. dprintk(CVP_PWR,
  206. "%s: set clock with clk_set_rate\n",
  207. __func__);
  208. rc = clk_set_rate(cl->clk, freq);
  209. if (rc) {
  210. dprintk(CVP_ERR,
  211. "Failed set clock %u %s: %d\n",
  212. freq, cl->name, rc);
  213. return rc;
  214. }
  215. dprintk(CVP_PWR, "Scaling clock %s to %u\n",
  216. cl->name, freq);
  217. }
  218. }
  219. }
  220. return 0;
  221. }
  222. int msm_cvp_scale_clocks(struct iris_hfi_device *device)
  223. {
  224. int rc = 0;
  225. struct allowed_clock_rates_table *allowed_clks_tbl = NULL;
  226. u32 rate = 0;
  227. allowed_clks_tbl = device->res->allowed_clks_tbl;
  228. rate = device->clk_freq ? device->clk_freq :
  229. allowed_clks_tbl[0].clock_rate;
  230. dprintk(CVP_PWR, "%s: scale clock rate %d\n", __func__, rate);
  231. rc = msm_cvp_set_clocks_impl(device, rate);
  232. return rc;
  233. }
  234. int msm_cvp_prepare_enable_clk(struct iris_hfi_device *device,
  235. const char *name)
  236. {
  237. struct clock_info *cl = NULL;
  238. int rc = 0;
  239. if (!device) {
  240. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  241. return -EINVAL;
  242. }
  243. iris_hfi_for_each_clock(device, cl) {
  244. if (strcmp(cl->name, name))
  245. continue;
  246. /*
  247. * For the clocks we control, set the rate prior to preparing
  248. * them. Since we don't really have a load at this point,
  249. * scale it to the lowest frequency possible
  250. */
  251. if (cl->has_scaling) {
  252. if (device->mmrm_cvp != NULL) {
  253. // set min freq and cur freq to 0;
  254. rc = msm_cvp_mmrm_set_value_in_range(device,
  255. 0, 0);
  256. if (rc)
  257. dprintk(CVP_ERR,
  258. "%s Failed set clock %s: %d\n",
  259. __func__, cl->name, rc);
  260. }
  261. else {
  262. dprintk(CVP_PWR,
  263. "%s: set clock with clk_set_rate\n",
  264. __func__);
  265. clk_set_rate(cl->clk,
  266. clk_round_rate(cl->clk, 0));
  267. }
  268. }
  269. rc = clk_prepare_enable(cl->clk);
  270. if (rc) {
  271. dprintk(CVP_ERR, "Failed to enable clock %s\n",
  272. cl->name);
  273. return rc;
  274. }
  275. if (!__clk_is_enabled(cl->clk)) {
  276. dprintk(CVP_ERR, "%s: clock %s not enabled\n",
  277. __func__, cl->name);
  278. clk_disable_unprepare(cl->clk);
  279. return -EINVAL;
  280. }
  281. dprintk(CVP_PWR, "Clock: %s prepared and enabled\n",
  282. cl->name);
  283. return 0;
  284. }
  285. dprintk(CVP_ERR, "%s clock %s not found\n", __func__, name);
  286. return -EINVAL;
  287. }
  288. int msm_cvp_disable_unprepare_clk(struct iris_hfi_device *device,
  289. const char *name)
  290. {
  291. struct clock_info *cl;
  292. int rc = 0;
  293. if (!device) {
  294. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  295. return -EINVAL;
  296. }
  297. iris_hfi_for_each_clock_reverse(device, cl) {
  298. if (strcmp(cl->name, name))
  299. continue;
  300. clk_disable_unprepare(cl->clk);
  301. dprintk(CVP_PWR, "Clock: %s disable and unprepare\n",
  302. cl->name);
  303. if (cl->has_scaling) {
  304. if (device->mmrm_cvp != NULL) {
  305. // set min freq and cur freq to 0;
  306. rc = msm_cvp_mmrm_set_value_in_range(device,
  307. 0, 0);
  308. if (rc)
  309. dprintk(CVP_ERR,
  310. "%s Failed set clock %s: %d\n",
  311. __func__, cl->name, rc);
  312. }
  313. }
  314. return 0;
  315. }
  316. dprintk(CVP_ERR, "%s clock %s not found\n", __func__, name);
  317. return -EINVAL;
  318. }
  319. int msm_cvp_init_clocks(struct iris_hfi_device *device)
  320. {
  321. int rc = 0;
  322. struct clock_info *cl = NULL;
  323. if (!device) {
  324. dprintk(CVP_ERR, "Invalid params: %pK\n", device);
  325. return -EINVAL;
  326. }
  327. iris_hfi_for_each_clock(device, cl) {
  328. dprintk(CVP_PWR, "%s: scalable? %d, count %d\n",
  329. cl->name, cl->has_scaling, cl->count);
  330. }
  331. iris_hfi_for_each_clock(device, cl) {
  332. if (!cl->clk) {
  333. cl->clk = clk_get(&device->res->pdev->dev, cl->name);
  334. if (IS_ERR_OR_NULL(cl->clk)) {
  335. dprintk(CVP_ERR,
  336. "Failed to get clock: %s\n", cl->name);
  337. rc = PTR_ERR(cl->clk) ? : -EINVAL;
  338. cl->clk = NULL;
  339. goto err_clk_get;
  340. }
  341. }
  342. }
  343. device->clk_freq = 0;
  344. return 0;
  345. err_clk_get:
  346. msm_cvp_deinit_clocks(device);
  347. return rc;
  348. }
  349. void msm_cvp_deinit_clocks(struct iris_hfi_device *device)
  350. {
  351. struct clock_info *cl;
  352. device->clk_freq = 0;
  353. iris_hfi_for_each_clock_reverse(device, cl) {
  354. if (cl->clk) {
  355. clk_put(cl->clk);
  356. cl->clk = NULL;
  357. }
  358. }
  359. }