msm_cvp_buf.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #define CLEAR_USE_BITMAP(idx, inst) \
  18. do { \
  19. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  20. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  21. hash32_ptr(inst->session), smem->bitmap_index, \
  22. inst->dma_cache.usage_bitmap); \
  23. } while (0)
  24. #define SET_USE_BITMAP(idx, inst) \
  25. do { \
  26. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), idx, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. void print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  32. struct msm_cvp_smem *smem)
  33. {
  34. if (!(tag & msm_cvp_debug) || !inst || !smem)
  35. return;
  36. if (smem->dma_buf) {
  37. dprintk(tag,
  38. "%s: %x : %s size %d flags %#x iova %#x idx %d ref %d",
  39. str, hash32_ptr(inst->session), smem->dma_buf->name,
  40. smem->size, smem->flags, smem->device_addr,
  41. smem->bitmap_index, smem->refcount);
  42. }
  43. }
  44. static void print_internal_buffer(u32 tag, const char *str,
  45. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  46. {
  47. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  48. return;
  49. if (cbuf->smem->dma_buf) {
  50. dprintk(tag,
  51. "%s: %x : fd %d off %d %s size %d iova %#x",
  52. str, hash32_ptr(inst->session), cbuf->fd,
  53. cbuf->offset, cbuf->smem->dma_buf->name, cbuf->size,
  54. cbuf->smem->device_addr);
  55. } else {
  56. dprintk(tag,
  57. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  58. str, hash32_ptr(inst->session), cbuf->fd,
  59. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  60. }
  61. }
  62. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  63. struct cvp_internal_buf *cbuf)
  64. {
  65. dprintk(tag, "%s addr: %x size %u\n", str,
  66. cbuf->smem->device_addr, cbuf->size);
  67. }
  68. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  69. struct msm_cvp_smem *smem, bool logging)
  70. {
  71. print_smem(CVP_ERR, "bufdump", inst, smem);
  72. if (!logging || !snapshot)
  73. return;
  74. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  75. struct smem_data *s;
  76. s = &snapshot->smem_log[snapshot->smem_index];
  77. snapshot->smem_index++;
  78. s->size = smem->size;
  79. s->flags = smem->flags;
  80. s->device_addr = smem->device_addr;
  81. s->bitmap_index = smem->bitmap_index;
  82. s->refcount = atomic_read(&smem->refcount);
  83. }
  84. }
  85. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  86. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  87. bool logging)
  88. {
  89. struct cvp_buf_data *buf = NULL;
  90. u32 index;
  91. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  92. if (!logging)
  93. return;
  94. if (snapshot) {
  95. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  96. index = snapshot->dsp_index;
  97. buf = &snapshot->dsp_buf_log[index];
  98. snapshot->dsp_index++;
  99. } else if (prop == SMEM_PERSIST &&
  100. snapshot->persist_index < MAX_ENTRIES) {
  101. index = snapshot->persist_index;
  102. buf = &snapshot->persist_buf_log[index];
  103. snapshot->persist_index++;
  104. }
  105. if (buf) {
  106. buf->device_addr = cbuf->smem->device_addr;
  107. buf->size = cbuf->size;
  108. }
  109. }
  110. }
  111. void print_client_buffer(u32 tag, const char *str,
  112. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  113. {
  114. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  115. return;
  116. dprintk(tag,
  117. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x\n",
  118. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  119. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags);
  120. }
  121. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  122. struct eva_kmd_buffer *buf)
  123. {
  124. struct cvp_hal_session *session;
  125. struct cvp_internal_buf *cbuf = NULL;
  126. bool found = false;
  127. if (!inst || !inst->core || !buf) {
  128. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  129. return false;
  130. }
  131. if (buf->fd < 0) {
  132. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  133. return false;
  134. }
  135. if (buf->offset) {
  136. dprintk(CVP_ERR,
  137. "%s: offset is deprecated, set to 0.\n",
  138. __func__);
  139. return false;
  140. }
  141. session = (struct cvp_hal_session *)inst->session;
  142. mutex_lock(&inst->cvpdspbufs.lock);
  143. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  144. if (cbuf->fd == buf->fd) {
  145. if (cbuf->size != buf->size) {
  146. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  147. __func__);
  148. mutex_unlock(&inst->cvpdspbufs.lock);
  149. return false;
  150. }
  151. found = true;
  152. break;
  153. }
  154. }
  155. mutex_unlock(&inst->cvpdspbufs.lock);
  156. if (found) {
  157. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  158. return false;
  159. }
  160. return true;
  161. }
  162. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  163. fmode_t mask, unsigned int refs)
  164. {
  165. struct files_struct *files = task->files;
  166. struct file *file;
  167. if (!files)
  168. return NULL;
  169. rcu_read_lock();
  170. loop:
  171. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  172. file = fcheck_files(files, fd);
  173. #else
  174. file = files_lookup_fd_rcu(files, fd);
  175. #endif
  176. if (file) {
  177. /* File object ref couldn't be taken.
  178. * dup2() atomicity guarantee is the reason
  179. * we loop to catch the new file (or NULL pointer)
  180. */
  181. if (file->f_mode & mask)
  182. file = NULL;
  183. else if (!get_file_rcu_many(file, refs))
  184. goto loop;
  185. }
  186. rcu_read_unlock();
  187. return file;
  188. }
  189. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  190. struct task_struct *task)
  191. {
  192. if (file->f_op != gfa_cv.dmabuf_f_op) {
  193. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  194. return ERR_PTR(-EINVAL);
  195. }
  196. return file->private_data;
  197. }
  198. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  199. {
  200. int rc = 0;
  201. struct cvp_internal_buf *cbuf = NULL;
  202. struct msm_cvp_smem *smem = NULL;
  203. struct dma_buf *dma_buf = NULL;
  204. struct file *file;
  205. if (!__is_buf_valid(inst, buf))
  206. return -EINVAL;
  207. if (!inst->task)
  208. return -EINVAL;
  209. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  210. if (file == NULL) {
  211. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  212. return -EINVAL;
  213. }
  214. dma_buf = cvp_dma_buf_get(
  215. file,
  216. buf->fd,
  217. inst->task);
  218. if (dma_buf == ERR_PTR(-EINVAL)) {
  219. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  220. rc = -EINVAL;
  221. goto exit;
  222. }
  223. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  224. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  225. if (!cbuf) {
  226. rc = -ENOMEM;
  227. goto exit;
  228. }
  229. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  230. if (!smem) {
  231. rc = -ENOMEM;
  232. goto exit;
  233. }
  234. smem->dma_buf = dma_buf;
  235. smem->bitmap_index = MAX_DMABUF_NUMS;
  236. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  237. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  238. if (rc) {
  239. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  240. goto exit;
  241. }
  242. cbuf->smem = smem;
  243. cbuf->fd = buf->fd;
  244. cbuf->size = buf->size;
  245. cbuf->offset = buf->offset;
  246. cbuf->ownership = CLIENT;
  247. cbuf->index = buf->index;
  248. buf->reserved[0] = (uint32_t)smem->device_addr;
  249. mutex_lock(&inst->cvpdspbufs.lock);
  250. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  251. mutex_unlock(&inst->cvpdspbufs.lock);
  252. return rc;
  253. exit:
  254. fput(file);
  255. if (smem) {
  256. if (smem->device_addr) {
  257. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  258. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  259. }
  260. kmem_cache_free(cvp_driver->smem_cache, smem);
  261. }
  262. if (cbuf)
  263. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  264. return rc;
  265. }
  266. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  267. {
  268. int rc = 0;
  269. bool found;
  270. struct cvp_internal_buf *cbuf;
  271. struct cvp_hal_session *session;
  272. if (!inst || !inst->core || !buf) {
  273. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  274. return -EINVAL;
  275. }
  276. session = (struct cvp_hal_session *)inst->session;
  277. if (!session) {
  278. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  279. return -EINVAL;
  280. }
  281. mutex_lock(&inst->cvpdspbufs.lock);
  282. found = false;
  283. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  284. if (cbuf->fd == buf->fd) {
  285. found = true;
  286. break;
  287. }
  288. }
  289. mutex_unlock(&inst->cvpdspbufs.lock);
  290. if (!found) {
  291. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  292. return -EINVAL;
  293. }
  294. if (cbuf->smem->device_addr) {
  295. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  296. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  297. }
  298. mutex_lock(&inst->cvpdspbufs.lock);
  299. list_del(&cbuf->list);
  300. mutex_unlock(&inst->cvpdspbufs.lock);
  301. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  302. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  303. return rc;
  304. }
  305. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  306. u32 offset, u32 size)
  307. {
  308. enum smem_cache_ops cache_op;
  309. if (msm_cvp_cacheop_disabled)
  310. return;
  311. if (!smem) {
  312. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  313. return;
  314. }
  315. switch (type) {
  316. case EVA_KMD_BUFTYPE_INPUT:
  317. cache_op = SMEM_CACHE_CLEAN;
  318. break;
  319. case EVA_KMD_BUFTYPE_OUTPUT:
  320. cache_op = SMEM_CACHE_INVALIDATE;
  321. break;
  322. default:
  323. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  324. }
  325. dprintk(CVP_MEM,
  326. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  327. __func__, smem->dma_buf, cache_op, offset, size);
  328. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  329. }
  330. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  331. struct dma_buf *dma_buf)
  332. {
  333. struct msm_cvp_smem *smem;
  334. int i;
  335. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  336. return NULL;
  337. mutex_lock(&inst->dma_cache.lock);
  338. for (i = 0; i < inst->dma_cache.nr; i++)
  339. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  340. SET_USE_BITMAP(i, inst);
  341. smem = inst->dma_cache.entries[i];
  342. smem->bitmap_index = i;
  343. atomic_inc(&smem->refcount);
  344. /*
  345. * If we find it, it means we already increased
  346. * refcount before, so we put it to avoid double
  347. * incremental.
  348. */
  349. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  350. mutex_unlock(&inst->dma_cache.lock);
  351. print_smem(CVP_MEM, "found", inst, smem);
  352. return smem;
  353. }
  354. mutex_unlock(&inst->dma_cache.lock);
  355. return NULL;
  356. }
  357. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  358. struct msm_cvp_smem *smem)
  359. {
  360. unsigned int i;
  361. struct msm_cvp_smem *smem2;
  362. mutex_lock(&inst->dma_cache.lock);
  363. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  364. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  365. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  366. smem->bitmap_index = inst->dma_cache.nr;
  367. inst->dma_cache.nr++;
  368. i = smem->bitmap_index;
  369. } else {
  370. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  371. MAX_DMABUF_NUMS);
  372. if (i < MAX_DMABUF_NUMS) {
  373. smem2 = inst->dma_cache.entries[i];
  374. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  375. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  376. kmem_cache_free(cvp_driver->smem_cache, smem2);
  377. inst->dma_cache.entries[i] = smem;
  378. smem->bitmap_index = i;
  379. SET_USE_BITMAP(i, inst);
  380. } else {
  381. dprintk(CVP_WARN, "%s: not enough memory\n", __func__);
  382. mutex_unlock(&inst->dma_cache.lock);
  383. return -ENOMEM;
  384. }
  385. }
  386. atomic_inc(&smem->refcount);
  387. mutex_unlock(&inst->dma_cache.lock);
  388. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  389. return 0;
  390. }
  391. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  392. struct cvp_buf_type *buf)
  393. {
  394. int rc = 0, found = 1;
  395. struct msm_cvp_smem *smem = NULL;
  396. struct dma_buf *dma_buf = NULL;
  397. if (buf->fd < 0) {
  398. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  399. return NULL;
  400. }
  401. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  402. if (!dma_buf) {
  403. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  404. return NULL;
  405. }
  406. smem = msm_cvp_session_find_smem(inst, dma_buf);
  407. if (!smem) {
  408. found = 0;
  409. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  410. if (!smem)
  411. return NULL;
  412. smem->dma_buf = dma_buf;
  413. smem->bitmap_index = MAX_DMABUF_NUMS;
  414. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  415. if (rc)
  416. goto exit;
  417. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  418. dprintk(CVP_ERR, "%s: invalid offset %d or size %d for a new entry\n",
  419. __func__, buf->offset, buf->size);
  420. goto exit2;
  421. }
  422. rc = msm_cvp_session_add_smem(inst, smem);
  423. if (rc && rc != -ENOMEM)
  424. goto exit2;
  425. }
  426. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  427. dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
  428. __func__, buf->offset, buf->size);
  429. if (found) {
  430. mutex_lock(&inst->dma_cache.lock);
  431. atomic_dec(&smem->refcount);
  432. mutex_unlock(&inst->dma_cache.lock);
  433. return NULL;
  434. }
  435. goto exit2;
  436. }
  437. return smem;
  438. exit2:
  439. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  440. exit:
  441. msm_cvp_smem_put_dma_buf(dma_buf);
  442. kmem_cache_free(cvp_driver->smem_cache, smem);
  443. smem = NULL;
  444. return smem;
  445. }
  446. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  447. struct cvp_buf_type *buf)
  448. {
  449. u32 iova = 0;
  450. struct msm_cvp_smem *smem = NULL;
  451. struct cvp_internal_buf *pbuf;
  452. if (!inst) {
  453. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  454. return -EINVAL;
  455. }
  456. pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  457. if (!pbuf)
  458. return 0;
  459. smem = msm_cvp_session_get_smem(inst, buf);
  460. if (!smem)
  461. goto exit;
  462. smem->flags |= SMEM_PERSIST;
  463. pbuf->smem = smem;
  464. pbuf->fd = buf->fd;
  465. pbuf->size = buf->size;
  466. pbuf->offset = buf->offset;
  467. pbuf->ownership = CLIENT;
  468. mutex_lock(&inst->persistbufs.lock);
  469. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  470. mutex_unlock(&inst->persistbufs.lock);
  471. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  472. iova = smem->device_addr + buf->offset;
  473. return iova;
  474. exit:
  475. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  476. return 0;
  477. }
  478. u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  479. struct cvp_buf_type *buf,
  480. struct msm_cvp_frame *frame)
  481. {
  482. u32 iova = 0;
  483. struct msm_cvp_smem *smem = NULL;
  484. u32 nr;
  485. u32 type;
  486. if (!inst || !frame) {
  487. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  488. return 0;
  489. }
  490. nr = frame->nr;
  491. if (nr == MAX_FRAME_BUFFER_NUMS) {
  492. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  493. return 0;
  494. }
  495. smem = msm_cvp_session_get_smem(inst, buf);
  496. if (!smem)
  497. return 0;
  498. frame->bufs[nr].fd = buf->fd;
  499. frame->bufs[nr].smem = smem;
  500. frame->bufs[nr].size = buf->size;
  501. frame->bufs[nr].offset = buf->offset;
  502. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  503. frame->nr++;
  504. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  505. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  506. iova = smem->device_addr + buf->offset;
  507. return iova;
  508. }
  509. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  510. struct msm_cvp_frame *frame)
  511. {
  512. u32 i;
  513. u32 type;
  514. struct msm_cvp_smem *smem = NULL;
  515. struct cvp_internal_buf *buf;
  516. type = EVA_KMD_BUFTYPE_OUTPUT;
  517. for (i = 0; i < frame->nr; ++i) {
  518. buf = &frame->bufs[i];
  519. smem = buf->smem;
  520. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  521. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  522. /* smem not in dmamap cache */
  523. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  524. dma_heap_buffer_free(smem->dma_buf);
  525. kmem_cache_free(cvp_driver->smem_cache, smem);
  526. buf->smem = NULL;
  527. } else {
  528. mutex_lock(&inst->dma_cache.lock);
  529. if (atomic_dec_and_test(&smem->refcount)) {
  530. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  531. print_smem(CVP_MEM, "Map dereference",
  532. inst, smem);
  533. }
  534. mutex_unlock(&inst->dma_cache.lock);
  535. }
  536. }
  537. kmem_cache_free(cvp_driver->frame_cache, frame);
  538. }
  539. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  540. {
  541. struct msm_cvp_frame *frame, *dummy1;
  542. bool found;
  543. if (!inst) {
  544. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  545. return;
  546. }
  547. ktid &= (FENCE_BIT - 1);
  548. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  549. __func__, hash32_ptr(inst->session), ktid);
  550. found = false;
  551. mutex_lock(&inst->frames.lock);
  552. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  553. if (frame->ktid == ktid) {
  554. found = true;
  555. list_del(&frame->list);
  556. break;
  557. }
  558. }
  559. mutex_unlock(&inst->frames.lock);
  560. if (found)
  561. msm_cvp_unmap_frame_buf(inst, frame);
  562. else
  563. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  564. }
  565. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  566. struct eva_kmd_hfi_packet *in_pkt,
  567. unsigned int offset, unsigned int buf_num)
  568. {
  569. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  570. struct cvp_internal_buf *pbuf, *dummy;
  571. u64 ktid;
  572. int rc = 0;
  573. struct msm_cvp_smem *smem = NULL;
  574. if (!offset || !buf_num)
  575. return rc;
  576. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  577. ktid = cmd_hdr->client_data.kdata & (FENCE_BIT - 1);
  578. mutex_lock(&inst->persistbufs.lock);
  579. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list, list) {
  580. if (pbuf->ktid == ktid && pbuf->ownership == CLIENT) {
  581. list_del(&pbuf->list);
  582. smem = pbuf->smem;
  583. dprintk(CVP_MEM, "unmap persist: %x %d %d %#x",
  584. hash32_ptr(inst->session), pbuf->fd,
  585. pbuf->size, smem->device_addr);
  586. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  587. /* smem not in dmamap cache */
  588. msm_cvp_unmap_smem(inst, smem,
  589. "unmap cpu");
  590. dma_heap_buffer_free(smem->dma_buf);
  591. kmem_cache_free(
  592. cvp_driver->smem_cache,
  593. smem);
  594. pbuf->smem = NULL;
  595. } else {
  596. mutex_lock(&inst->dma_cache.lock);
  597. if (atomic_dec_and_test(&smem->refcount))
  598. CLEAR_USE_BITMAP(
  599. smem->bitmap_index,
  600. inst);
  601. mutex_unlock(&inst->dma_cache.lock);
  602. }
  603. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  604. }
  605. }
  606. mutex_unlock(&inst->persistbufs.lock);
  607. return rc;
  608. }
  609. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  610. struct eva_kmd_hfi_packet *in_pkt,
  611. unsigned int offset, unsigned int buf_num)
  612. {
  613. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  614. struct cvp_internal_buf *pbuf, *dummy;
  615. u64 ktid;
  616. struct cvp_buf_type *buf;
  617. int i, rc = 0;
  618. if (!offset || !buf_num)
  619. return 0;
  620. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  621. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  622. ktid &= (FENCE_BIT - 1);
  623. cmd_hdr->client_data.kdata = ktid;
  624. for (i = 0; i < buf_num; i++) {
  625. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  626. offset += sizeof(*buf) >> 2;
  627. if (buf->fd < 0 || !buf->size)
  628. continue;
  629. mutex_lock(&inst->persistbufs.lock);
  630. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list,
  631. list) {
  632. if (pbuf->ownership == CLIENT) {
  633. if (pbuf->fd == buf->fd &&
  634. pbuf->size == buf->size)
  635. buf->fd = pbuf->smem->device_addr;
  636. rc = 1;
  637. break;
  638. }
  639. }
  640. mutex_unlock(&inst->persistbufs.lock);
  641. if (!rc) {
  642. dprintk(CVP_ERR, "%s No persist buf %d found\n",
  643. __func__, buf->fd);
  644. rc = -EFAULT;
  645. break;
  646. }
  647. pbuf->ktid = ktid;
  648. rc = 0;
  649. }
  650. return rc;
  651. }
  652. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  653. struct eva_kmd_hfi_packet *in_pkt,
  654. unsigned int offset, unsigned int buf_num)
  655. {
  656. struct cvp_buf_type *buf;
  657. int i;
  658. u32 iova;
  659. if (!offset || !buf_num)
  660. return 0;
  661. for (i = 0; i < buf_num; i++) {
  662. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  663. offset += sizeof(*buf) >> 2;
  664. if (buf->fd < 0 || !buf->size)
  665. continue;
  666. iova = msm_cvp_map_user_persist_buf(inst, buf);
  667. if (!iova) {
  668. dprintk(CVP_ERR,
  669. "%s: buf %d register failed.\n",
  670. __func__, i);
  671. return -EINVAL;
  672. }
  673. buf->fd = iova;
  674. }
  675. return 0;
  676. }
  677. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  678. struct eva_kmd_hfi_packet *in_pkt,
  679. unsigned int offset, unsigned int buf_num)
  680. {
  681. struct cvp_buf_type *buf;
  682. int i;
  683. u32 iova;
  684. u64 ktid;
  685. struct msm_cvp_frame *frame;
  686. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  687. if (!offset || !buf_num)
  688. return 0;
  689. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  690. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  691. ktid &= (FENCE_BIT - 1);
  692. cmd_hdr->client_data.kdata = ktid;
  693. frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
  694. if (!frame)
  695. return -ENOMEM;
  696. frame->ktid = ktid;
  697. frame->nr = 0;
  698. frame->pkt_type = cmd_hdr->packet_type;
  699. for (i = 0; i < buf_num; i++) {
  700. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  701. offset += sizeof(*buf) >> 2;
  702. if (buf->fd < 0 || !buf->size)
  703. continue;
  704. iova = msm_cvp_map_frame_buf(inst, buf, frame);
  705. if (!iova) {
  706. dprintk(CVP_ERR,
  707. "%s: buf %d register failed.\n",
  708. __func__, i);
  709. msm_cvp_unmap_frame_buf(inst, frame);
  710. return -EINVAL;
  711. }
  712. buf->fd = iova;
  713. }
  714. mutex_lock(&inst->frames.lock);
  715. list_add_tail(&frame->list, &inst->frames.list);
  716. mutex_unlock(&inst->frames.lock);
  717. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  718. return 0;
  719. }
  720. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  721. {
  722. int rc = 0, i;
  723. struct cvp_internal_buf *cbuf, *dummy;
  724. struct msm_cvp_frame *frame, *dummy1;
  725. struct msm_cvp_smem *smem;
  726. struct cvp_hal_session *session;
  727. session = (struct cvp_hal_session *)inst->session;
  728. mutex_lock(&inst->frames.lock);
  729. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  730. list_del(&frame->list);
  731. msm_cvp_unmap_frame_buf(inst, frame);
  732. }
  733. mutex_unlock(&inst->frames.lock);
  734. mutex_lock(&inst->dma_cache.lock);
  735. for (i = 0; i < inst->dma_cache.nr; i++) {
  736. smem = inst->dma_cache.entries[i];
  737. if (atomic_read(&smem->refcount) == 0) {
  738. print_smem(CVP_MEM, "free", inst, smem);
  739. } else if (!(smem->flags & SMEM_PERSIST)) {
  740. print_smem(CVP_WARN, "in use", inst, smem);
  741. }
  742. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  743. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  744. kmem_cache_free(cvp_driver->smem_cache, smem);
  745. inst->dma_cache.entries[i] = NULL;
  746. }
  747. mutex_unlock(&inst->dma_cache.lock);
  748. mutex_lock(&inst->cvpdspbufs.lock);
  749. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  750. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  751. if (cbuf->ownership == CLIENT) {
  752. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  753. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  754. cbuf->offset, cbuf->index,
  755. (uint32_t)cbuf->smem->device_addr);
  756. if (rc)
  757. dprintk(CVP_ERR,
  758. "%s: failed dsp deregistration fd=%d rc=%d",
  759. __func__, cbuf->fd, rc);
  760. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  761. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  762. } else if (cbuf->ownership == DSP) {
  763. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  764. if (rc)
  765. dprintk(CVP_ERR,
  766. "%s: failed to unmap buf from DSP\n",
  767. __func__);
  768. rc = cvp_release_dsp_buffers(inst, cbuf);
  769. if (rc)
  770. dprintk(CVP_ERR,
  771. "%s Fail to free buffer 0x%x\n",
  772. __func__, rc);
  773. }
  774. list_del(&cbuf->list);
  775. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  776. }
  777. mutex_unlock(&inst->cvpdspbufs.lock);
  778. return rc;
  779. }
  780. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  781. {
  782. struct cvp_internal_buf *buf;
  783. struct msm_cvp_core *core;
  784. struct inst_snapshot *snap = NULL;
  785. int i;
  786. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  787. if (log && core->log.snapshot_index < 16) {
  788. snap = &core->log.snapshot[core->log.snapshot_index];
  789. snap->session = inst->session;
  790. core->log.snapshot_index++;
  791. }
  792. if (!inst) {
  793. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  794. __func__, inst);
  795. return;
  796. }
  797. dprintk(CVP_ERR, "active session cmd %d\n", inst->cur_cmd_type);
  798. dprintk(CVP_ERR,
  799. "---Buffer details for inst: %pK of type: %d---\n",
  800. inst, inst->session_type);
  801. mutex_lock(&inst->dma_cache.lock);
  802. dprintk(CVP_ERR, "dma cache:\n");
  803. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  804. for (i = 0; i < inst->dma_cache.nr; i++)
  805. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  806. mutex_unlock(&inst->dma_cache.lock);
  807. mutex_lock(&inst->cvpdspbufs.lock);
  808. dprintk(CVP_ERR, "dsp buffer list:\n");
  809. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  810. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  811. mutex_unlock(&inst->cvpdspbufs.lock);
  812. mutex_lock(&inst->persistbufs.lock);
  813. dprintk(CVP_ERR, "persist buffer list:\n");
  814. list_for_each_entry(buf, &inst->persistbufs.list, list)
  815. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  816. mutex_unlock(&inst->persistbufs.lock);
  817. }
  818. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  819. u32 buffer_size)
  820. {
  821. struct cvp_internal_buf *buf;
  822. struct msm_cvp_list *buf_list;
  823. u32 smem_flags = SMEM_UNCACHED;
  824. int rc = 0;
  825. if (!inst) {
  826. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  827. return NULL;
  828. }
  829. buf_list = &inst->persistbufs;
  830. if (!buffer_size)
  831. return NULL;
  832. /* PERSIST buffer requires secure mapping
  833. * Disable and wait for hyp_assign available
  834. */
  835. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  836. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  837. if (!buf) {
  838. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  839. goto fail_kzalloc;
  840. }
  841. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  842. if (!buf->smem) {
  843. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  844. goto fail_kzalloc;
  845. }
  846. buf->smem->flags = smem_flags;
  847. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  848. &(inst->core->resources), buf->smem);
  849. if (rc) {
  850. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  851. goto err_no_mem;
  852. }
  853. buf->size = buf->smem->size;
  854. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  855. buf->ownership = DRIVER;
  856. mutex_lock(&buf_list->lock);
  857. list_add_tail(&buf->list, &buf_list->list);
  858. mutex_unlock(&buf_list->lock);
  859. return buf;
  860. err_no_mem:
  861. kmem_cache_free(cvp_driver->buf_cache, buf);
  862. fail_kzalloc:
  863. return NULL;
  864. }
  865. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  866. {
  867. struct msm_cvp_smem *smem;
  868. struct list_head *ptr, *next;
  869. struct cvp_internal_buf *buf;
  870. int rc = 0;
  871. struct msm_cvp_core *core;
  872. struct cvp_hfi_device *hdev;
  873. if (!inst) {
  874. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  875. return -EINVAL;
  876. }
  877. core = inst->core;
  878. if (!core) {
  879. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  880. return -EINVAL;
  881. }
  882. hdev = core->device;
  883. if (!hdev) {
  884. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  885. return -EINVAL;
  886. }
  887. dprintk(CVP_MEM, "release persist buffer!\n");
  888. mutex_lock(&inst->persistbufs.lock);
  889. /* Workaround for FW: release buffer means release all */
  890. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  891. rc = call_hfi_op(hdev, session_release_buffers,
  892. (void *)inst->session);
  893. if (!rc) {
  894. mutex_unlock(&inst->persistbufs.lock);
  895. rc = wait_for_sess_signal_receipt(inst,
  896. HAL_SESSION_RELEASE_BUFFER_DONE);
  897. if (rc)
  898. dprintk(CVP_WARN,
  899. "%s: wait for signal failed, rc %d\n",
  900. __func__, rc);
  901. mutex_lock(&inst->persistbufs.lock);
  902. } else {
  903. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  904. }
  905. }
  906. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  907. buf = list_entry(ptr, struct cvp_internal_buf, list);
  908. smem = buf->smem;
  909. if (!smem) {
  910. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  911. mutex_unlock(&inst->persistbufs.lock);
  912. return -EINVAL;
  913. }
  914. list_del(&buf->list);
  915. if (buf->ownership == DRIVER) {
  916. dprintk(CVP_MEM,
  917. "%s: %x : fd %d %s size %d",
  918. "free arp", hash32_ptr(inst->session), buf->fd,
  919. smem->dma_buf->name, buf->size);
  920. msm_cvp_smem_free(smem);
  921. kmem_cache_free(cvp_driver->smem_cache, smem);
  922. }
  923. buf->smem = NULL;
  924. kmem_cache_free(cvp_driver->buf_cache, buf);
  925. }
  926. mutex_unlock(&inst->persistbufs.lock);
  927. return rc;
  928. }
  929. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  930. struct cvp_internal_buf *buf,
  931. u32 buffer_size,
  932. u32 secure_type)
  933. {
  934. u32 smem_flags = SMEM_UNCACHED;
  935. int rc = 0;
  936. if (!inst) {
  937. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  938. return -EINVAL;
  939. }
  940. if (!buf)
  941. return -EINVAL;
  942. if (!buffer_size)
  943. return -EINVAL;
  944. switch (secure_type) {
  945. case 0:
  946. break;
  947. case 1:
  948. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  949. break;
  950. case 2:
  951. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  952. break;
  953. default:
  954. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  955. __func__, secure_type);
  956. return -EINVAL;
  957. }
  958. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  959. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  960. if (!buf->smem) {
  961. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  962. goto fail_kzalloc_smem_cache;
  963. }
  964. buf->smem->flags = smem_flags;
  965. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  966. &(inst->core->resources), buf->smem);
  967. if (rc) {
  968. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  969. goto err_no_mem;
  970. }
  971. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  972. buf->size = buf->smem->size;
  973. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  974. buf->ownership = DSP;
  975. return rc;
  976. err_no_mem:
  977. kmem_cache_free(cvp_driver->smem_cache, buf->smem);
  978. fail_kzalloc_smem_cache:
  979. return rc;
  980. }
  981. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  982. struct cvp_internal_buf *buf)
  983. {
  984. struct msm_cvp_smem *smem;
  985. int rc = 0;
  986. if (!inst) {
  987. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  988. return -EINVAL;
  989. }
  990. if (!buf) {
  991. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  992. return -EINVAL;
  993. }
  994. smem = buf->smem;
  995. if (!smem) {
  996. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  997. return -EINVAL;
  998. }
  999. if (buf->ownership == DSP) {
  1000. dprintk(CVP_MEM,
  1001. "%s: %x : fd %x %s size %d",
  1002. __func__, hash32_ptr(inst->session), buf->fd,
  1003. smem->dma_buf->name, buf->size);
  1004. msm_cvp_smem_free(smem);
  1005. kmem_cache_free(cvp_driver->smem_cache, smem);
  1006. } else {
  1007. dprintk(CVP_ERR,
  1008. "%s: wrong owner %d %x : fd %x %s size %d",
  1009. __func__, buf->ownership, hash32_ptr(inst->session),
  1010. buf->fd, smem->dma_buf->name, buf->size);
  1011. }
  1012. return rc;
  1013. }
  1014. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1015. struct eva_kmd_buffer *buf)
  1016. {
  1017. struct cvp_hfi_device *hdev;
  1018. struct cvp_hal_session *session;
  1019. struct msm_cvp_inst *s;
  1020. int rc = 0;
  1021. if (!inst || !inst->core || !buf) {
  1022. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1023. return -EINVAL;
  1024. }
  1025. if (!buf->index)
  1026. return 0;
  1027. s = cvp_get_inst_validate(inst->core, inst);
  1028. if (!s)
  1029. return -ECONNRESET;
  1030. inst->cur_cmd_type = EVA_KMD_REGISTER_BUFFER;
  1031. session = (struct cvp_hal_session *)inst->session;
  1032. if (!session) {
  1033. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1034. rc = -EINVAL;
  1035. goto exit;
  1036. }
  1037. hdev = inst->core->device;
  1038. print_client_buffer(CVP_HFI, "register", inst, buf);
  1039. rc = msm_cvp_map_buf_dsp(inst, buf);
  1040. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1041. buf->fd, buf->reserved[0]);
  1042. exit:
  1043. inst->cur_cmd_type = 0;
  1044. cvp_put_inst(s);
  1045. return rc;
  1046. }
  1047. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1048. struct eva_kmd_buffer *buf)
  1049. {
  1050. struct msm_cvp_inst *s;
  1051. int rc = 0;
  1052. if (!inst || !inst->core || !buf) {
  1053. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1054. return -EINVAL;
  1055. }
  1056. if (!buf->index)
  1057. return 0;
  1058. s = cvp_get_inst_validate(inst->core, inst);
  1059. if (!s)
  1060. return -ECONNRESET;
  1061. inst->cur_cmd_type = EVA_KMD_UNREGISTER_BUFFER;
  1062. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1063. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1064. inst->cur_cmd_type = 0;
  1065. cvp_put_inst(s);
  1066. return rc;
  1067. }