Files
android_kernel_samsung_sm86…/cnss_prealloc/cnss_prealloc.c
Shashank Reddy Vulupala f69aced6b8 icnss2: Update ccflags in Makefile
Add -Wmissing-prototypes ccflag for platform driver.

Change-Id: Ia375eae383fa64d0f477f3a1e2c4444ff2884ef7
CRs-Fixed: 3844455
2024-08-01 03:11:00 -07:00

407 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012,2014-2017,2019-2021 The Linux Foundation. All rights reserved.
* Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/mempool.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/version.h>
#include "cnss_common.h"
#ifdef CONFIG_CNSS_OUT_OF_TREE
#include "cnss_prealloc.h"
#else
#include <net/cnss_prealloc.h>
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0))
/* Ideally header should be from standard include path. So this is not an
* ideal way of header inclusion but use of slab struct to derive cache
* from a mem ptr helps in avoiding additional tracking and/or adding headroom
* of 8 bytes for cache in the beginning of buffer and wasting extra memory,
* particulary in the case when size of memory requested falls around the edge
* of a page boundary. We also have precedence of minidump_memory.c which
* includes mm/slab.h using this style.
*/
#include "../mm/slab.h"
#endif
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CNSS prealloc driver");
/* cnss preallocation scheme is a memory pool that always tries to keep a
* list of free memory for use in emergencies. It is implemented on kernel
* features: memorypool and kmem cache.
*/
struct cnss_pool {
size_t size;
int min;
const char name[50];
mempool_t *mp;
struct kmem_cache *cache;
};
/**
* Memory pool
* -----------
*
* How to update this table:
*
* 1. Add a new row with following elements
* size : Size of one allocation unit in bytes.
* min : Minimum units to be reserved. Used only if a regular
* allocation fails.
* name : Name of the cache/pool. Will be displayed in /proc/slabinfo
* if not merged with another pool.
* mp : A pointer to memory pool. Updated during init.
* cache : A pointer to cache. Updated during init.
* 2. Always keep the table in increasing order
* 3. Please keep the reserve pool as minimum as possible as it's always
* preallocated.
* 4. Always profile with different use cases after updating this table.
* 5. A dynamic view of this pool can be viewed at /proc/slabinfo.
* 6. Each pool has a sys node at /sys/kernel/slab/<name>
*
*/
/* size, min pool reserve, name, memorypool handler, cache handler*/
static struct cnss_pool cnss_pools_default[] = {
{8 * 1024, 16, "cnss-pool-8k", NULL, NULL},
{16 * 1024, 16, "cnss-pool-16k", NULL, NULL},
{32 * 1024, 22, "cnss-pool-32k", NULL, NULL},
{64 * 1024, 38, "cnss-pool-64k", NULL, NULL},
{128 * 1024, 10, "cnss-pool-128k", NULL, NULL},
};
static struct cnss_pool cnss_pools_adrastea[] = {
{8 * 1024, 2, "cnss-pool-8k", NULL, NULL},
{16 * 1024, 10, "cnss-pool-16k", NULL, NULL},
{32 * 1024, 8, "cnss-pool-32k", NULL, NULL},
{64 * 1024, 4, "cnss-pool-64k", NULL, NULL},
{128 * 1024, 2, "cnss-pool-128k", NULL, NULL},
};
static struct cnss_pool cnss_pools_wcn6750[] = {
{8 * 1024, 2, "cnss-pool-8k", NULL, NULL},
{16 * 1024, 8, "cnss-pool-16k", NULL, NULL},
{32 * 1024, 11, "cnss-pool-32k", NULL, NULL},
{64 * 1024, 15, "cnss-pool-64k", NULL, NULL},
{128 * 1024, 4, "cnss-pool-128k", NULL, NULL},
};
struct cnss_pool *cnss_pools;
unsigned int cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_default);
/**
* cnss_pool_alloc_threshold() - Allocation threshold
*
* Minimum memory size to be part of cnss pool.
*
* Return: Size
*
*/
static inline size_t cnss_pool_alloc_threshold(void)
{
return cnss_pools[0].size;
}
/**
* cnss_pool_int() - Initialize memory pools.
*
* Create cnss pools as configured by cnss_pools[]. It is the responsibility of
* the caller to invoke cnss_pool_deinit() routine to clean it up. This
* function needs to be called at early boot to preallocate minimum buffers in
* the pool.
*
* Return: 0 - success, otherwise error code.
*
*/
static int cnss_pool_init(void)
{
int i;
for (i = 0; i < cnss_prealloc_pool_size; i++) {
/* Create the slab cache */
cnss_pools[i].cache =
kmem_cache_create_usercopy(cnss_pools[i].name,
cnss_pools[i].size, 0,
SLAB_ACCOUNT, 0,
cnss_pools[i].size, NULL);
if (!cnss_pools[i].cache) {
pr_err("cnss_prealloc: cache %s failed\n",
cnss_pools[i].name);
continue;
}
/* Create the pool and associate to slab cache */
cnss_pools[i].mp =
mempool_create(cnss_pools[i].min, mempool_alloc_slab,
mempool_free_slab, cnss_pools[i].cache);
if (!cnss_pools[i].mp) {
pr_err("cnss_prealloc: mempool %s failed\n",
cnss_pools[i].name);
kmem_cache_destroy(cnss_pools[i].cache);
cnss_pools[i].cache = NULL;
continue;
}
pr_info("cnss_prealloc: created mempool %s of min size %d * %zu\n",
cnss_pools[i].name, cnss_pools[i].min,
cnss_pools[i].size);
}
return 0;
}
/**
* cnss_pool_deinit() - Free memory pools.
*
* Free the memory pools and return resources back to the system. It warns
* if there is any pending element in memory pool or cache.
*
*/
static void cnss_pool_deinit(void)
{
int i;
if (!cnss_pools)
return;
for (i = 0; i < cnss_prealloc_pool_size; i++) {
pr_info("cnss_prealloc: destroy mempool %s\n",
cnss_pools[i].name);
mempool_destroy(cnss_pools[i].mp);
kmem_cache_destroy(cnss_pools[i].cache);
cnss_pools[i].mp = NULL;
cnss_pools[i].cache = NULL;
}
}
static void cnss_assign_prealloc_pool(unsigned long device_id)
{
pr_info("cnss_prealloc: assign cnss pool for device id 0x%lx", device_id);
switch (device_id) {
case ADRASTEA_DEVICE_ID:
cnss_pools = cnss_pools_adrastea;
cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_adrastea);
break;
case WCN6750_DEVICE_ID:
cnss_pools = cnss_pools_wcn6750;
cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_wcn6750);
break;
case WCN6450_DEVICE_ID:
case QCA6390_DEVICE_ID:
case QCA6490_DEVICE_ID:
case MANGO_DEVICE_ID:
case PEACH_DEVICE_ID:
case KIWI_DEVICE_ID:
default:
cnss_pools = cnss_pools_default;
cnss_prealloc_pool_size = ARRAY_SIZE(cnss_pools_default);
}
}
void cnss_initialize_prealloc_pool(unsigned long device_id)
{
cnss_assign_prealloc_pool(device_id);
cnss_pool_init();
}
EXPORT_SYMBOL(cnss_initialize_prealloc_pool);
void cnss_deinitialize_prealloc_pool(void)
{
cnss_pool_deinit();
}
EXPORT_SYMBOL(cnss_deinitialize_prealloc_pool);
/**
* cnss_pool_get_index() - Get the index of memory pool
* @mem: Allocated memory
*
* Returns the index of the memory pool which fits the reqested memory. The
* complexity of this check is O(num of memory pools). Returns a negative
* value with error code in case of failure.
*
*/
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0))
static int cnss_pool_get_index(void *mem)
{
struct slab *slab;
struct kmem_cache *cache;
int i;
if (!virt_addr_valid(mem))
return -EINVAL;
/* mem -> slab -> cache */
slab = virt_to_slab(mem);
if (!slab)
return -ENOENT;
cache = slab->slab_cache;
if (!cache)
return -ENOENT;
/* Check if memory belongs to a pool */
for (i = 0; i < cnss_prealloc_pool_size; i++) {
if (cnss_pools[i].cache == cache)
return i;
}
return -ENOENT;
}
#else /* (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0)) */
static int cnss_pool_get_index(void *mem)
{
struct page *page;
struct kmem_cache *cache;
int i;
if (!virt_addr_valid(mem))
return -EINVAL;
/* mem -> page -> cache */
page = virt_to_head_page(mem);
if (!page)
return -ENOENT;
cache = page->slab_cache;
if (!cache)
return -ENOENT;
/* Check if memory belongs to a pool */
for (i = 0; i < cnss_prealloc_pool_size; i++) {
if (cnss_pools[i].cache == cache)
return i;
}
return -ENOENT;
}
#endif /* (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 17, 0)) */
/**
* wcnss_prealloc_get() - Get preallocated memory from a pool
* @size: Size to allocate
*
* Memory pool is chosen based on the size. If memory is not available in a
* given pool it goes to next higher sized pool until it succeeds.
*
* Return: A void pointer to allocated memory
*/
void *wcnss_prealloc_get(size_t size)
{
void *mem = NULL;
gfp_t gfp_mask = __GFP_ZERO;
int i;
if (!cnss_pools)
return mem;
if (in_interrupt() || !preemptible() || rcu_preempt_depth())
gfp_mask |= GFP_ATOMIC;
else
gfp_mask |= GFP_KERNEL;
if (size >= cnss_pool_alloc_threshold()) {
for (i = 0; i < cnss_prealloc_pool_size; i++) {
if (cnss_pools[i].size >= size && cnss_pools[i].mp) {
mem = mempool_alloc(cnss_pools[i].mp, gfp_mask);
if (mem)
break;
}
}
}
if (!mem && size >= cnss_pool_alloc_threshold()) {
pr_debug("cnss_prealloc: not available for size %zu, flag %x\n",
size, gfp_mask);
}
return mem;
}
EXPORT_SYMBOL(wcnss_prealloc_get);
/**
* wcnss_prealloc_put() - Relase allocated memory
* @mem: Allocated memory
*
* Free the memory got by wcnss_prealloc_get() to slab or pool reserve if memory
* pool doesn't have enough elements.
*
* Return: 1 - success
* 0 - fail
*/
int wcnss_prealloc_put(void *mem)
{
int i;
if (!mem || !cnss_pools)
return 0;
i = cnss_pool_get_index(mem);
if (i >= 0 && i < cnss_prealloc_pool_size && cnss_pools[i].mp) {
mempool_free(mem, cnss_pools[i].mp);
return 1;
}
return 0;
}
EXPORT_SYMBOL(wcnss_prealloc_put);
/* Not implemented. Make use of Linux SLAB features. */
void wcnss_prealloc_check_memory_leak(void) {}
EXPORT_SYMBOL(wcnss_prealloc_check_memory_leak);
/* Not implemented. Make use of Linux SLAB features. */
int wcnss_pre_alloc_reset(void) { return -EOPNOTSUPP; }
EXPORT_SYMBOL(wcnss_pre_alloc_reset);
/**
* cnss_prealloc_is_valid_dt_node_found - Check if valid device tree node
* present
*
* Valid device tree node means a node with "qcom,wlan" property present
* and "status" property not disabled.
*
* Return: true if valid device tree node found, false if not found
*/
static bool cnss_prealloc_is_valid_dt_node_found(void)
{
struct device_node *dn = NULL;
for_each_node_with_property(dn, "qcom,wlan") {
if (of_device_is_available(dn))
break;
}
if (dn)
return true;
return false;
}
static int __init cnss_prealloc_init(void)
{
if (!cnss_prealloc_is_valid_dt_node_found())
return -ENODEV;
return 0;
}
static void __exit cnss_prealloc_exit(void)
{
return;
}
module_init(cnss_prealloc_init);
module_exit(cnss_prealloc_exit);