msm_smem.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/dma-buf.h>
  6. #include <linux/dma-heap.h>
  7. #include <linux/dma-direction.h>
  8. #include <linux/iommu.h>
  9. #include <linux/msm_dma_iommu_mapping.h>
  10. #include <linux/ion.h>
  11. #include <linux/msm_ion.h>
  12. #include <linux/slab.h>
  13. #include <linux/types.h>
  14. #include "msm_cvp_core.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_resources.h"
  17. #include "cvp_core_hfi.h"
  18. #include "msm_cvp_dsp.h"
  19. static int msm_dma_get_device_address(struct dma_buf *dbuf, u32 align,
  20. dma_addr_t *iova, u32 flags, unsigned long ion_flags,
  21. struct msm_cvp_platform_resources *res,
  22. struct cvp_dma_mapping_info *mapping_info)
  23. {
  24. int rc = 0;
  25. struct dma_buf_attachment *attach;
  26. struct sg_table *table = NULL;
  27. struct context_bank_info *cb = NULL;
  28. if (!dbuf || !iova || !mapping_info) {
  29. dprintk(CVP_ERR, "Invalid params: %pK, %pK, %pK\n",
  30. dbuf, iova, mapping_info);
  31. return -EINVAL;
  32. }
  33. if (is_iommu_present(res)) {
  34. cb = msm_cvp_smem_get_context_bank((flags & SMEM_SECURE),
  35. res, ion_flags);
  36. if (!cb) {
  37. dprintk(CVP_ERR,
  38. "%s: Failed to get context bank device\n",
  39. __func__);
  40. rc = -EIO;
  41. goto mem_map_failed;
  42. }
  43. /* Prepare a dma buf for dma on the given device */
  44. attach = dma_buf_attach(dbuf, cb->dev);
  45. if (IS_ERR_OR_NULL(attach)) {
  46. rc = PTR_ERR(attach) ?: -ENOMEM;
  47. dprintk(CVP_ERR, "Failed to attach dmabuf\n");
  48. goto mem_buf_attach_failed;
  49. }
  50. /*
  51. * Get the scatterlist for the given attachment
  52. * Mapping of sg is taken care by map attachment
  53. */
  54. attach->dma_map_attrs = DMA_ATTR_DELAYED_UNMAP;
  55. /*
  56. * We do not need dma_map function to perform cache operations
  57. * on the whole buffer size and hence pass skip sync flag.
  58. * We do the required cache operations separately for the
  59. * required buffer size
  60. */
  61. attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
  62. if (res->sys_cache_present)
  63. attach->dma_map_attrs |=
  64. DMA_ATTR_IOMMU_USE_UPSTREAM_HINT;
  65. table = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
  66. if (IS_ERR_OR_NULL(table)) {
  67. rc = PTR_ERR(table) ?: -ENOMEM;
  68. dprintk(CVP_ERR, "Failed to map table\n");
  69. goto mem_map_table_failed;
  70. }
  71. if (table->sgl) {
  72. *iova = table->sgl->dma_address;
  73. } else {
  74. dprintk(CVP_ERR, "sgl is NULL\n");
  75. rc = -ENOMEM;
  76. goto mem_map_sg_failed;
  77. }
  78. mapping_info->dev = cb->dev;
  79. mapping_info->domain = cb->domain;
  80. mapping_info->table = table;
  81. mapping_info->attach = attach;
  82. mapping_info->buf = dbuf;
  83. mapping_info->cb_info = (void *)cb;
  84. } else {
  85. dprintk(CVP_MEM, "iommu not present, use phys mem addr\n");
  86. }
  87. return 0;
  88. mem_map_sg_failed:
  89. dma_buf_unmap_attachment(attach, table, DMA_BIDIRECTIONAL);
  90. mem_map_table_failed:
  91. dma_buf_detach(dbuf, attach);
  92. mem_buf_attach_failed:
  93. mem_map_failed:
  94. return rc;
  95. }
  96. static int msm_dma_put_device_address(u32 flags,
  97. struct cvp_dma_mapping_info *mapping_info)
  98. {
  99. int rc = 0;
  100. if (!mapping_info) {
  101. dprintk(CVP_WARN, "Invalid mapping_info\n");
  102. return -EINVAL;
  103. }
  104. if (!mapping_info->dev || !mapping_info->table ||
  105. !mapping_info->buf || !mapping_info->attach ||
  106. !mapping_info->cb_info) {
  107. dprintk(CVP_WARN, "Invalid params\n");
  108. return -EINVAL;
  109. }
  110. dma_buf_unmap_attachment(mapping_info->attach,
  111. mapping_info->table, DMA_BIDIRECTIONAL);
  112. dma_buf_detach(mapping_info->buf, mapping_info->attach);
  113. mapping_info->dev = NULL;
  114. mapping_info->domain = NULL;
  115. mapping_info->table = NULL;
  116. mapping_info->attach = NULL;
  117. mapping_info->buf = NULL;
  118. mapping_info->cb_info = NULL;
  119. return rc;
  120. }
  121. struct dma_buf *msm_cvp_smem_get_dma_buf(int fd)
  122. {
  123. struct dma_buf *dma_buf;
  124. dma_buf = dma_buf_get(fd);
  125. if (IS_ERR_OR_NULL(dma_buf)) {
  126. dprintk(CVP_ERR, "Failed to get dma_buf for %d, error %ld\n",
  127. fd, PTR_ERR(dma_buf));
  128. dma_buf = NULL;
  129. }
  130. return dma_buf;
  131. }
  132. void msm_cvp_smem_put_dma_buf(void *dma_buf)
  133. {
  134. if (!dma_buf) {
  135. dprintk(CVP_ERR, "%s: NULL dma_buf\n", __func__);
  136. return;
  137. }
  138. dma_heap_buffer_free((struct dma_buf *)dma_buf);
  139. }
  140. int msm_cvp_map_smem(struct msm_cvp_inst *inst,
  141. struct msm_cvp_smem *smem,
  142. const char *str)
  143. {
  144. int rc = 0;
  145. dma_addr_t iova = 0;
  146. u32 temp = 0;
  147. u32 align = SZ_4K;
  148. struct dma_buf *dma_buf;
  149. unsigned long ion_flags = 0;
  150. if (!inst || !smem) {
  151. dprintk(CVP_ERR, "%s: Invalid params: %pK %pK\n",
  152. __func__, inst, smem);
  153. return -EINVAL;
  154. }
  155. dma_buf = smem->dma_buf;
  156. rc = dma_buf_get_flags(dma_buf, &ion_flags);
  157. if (rc) {
  158. dprintk(CVP_ERR, "Failed to get dma buf flags: %d\n", rc);
  159. goto exit;
  160. }
  161. if (ion_flags & ION_FLAG_CACHED)
  162. smem->flags |= SMEM_CACHED;
  163. if (ion_flags & ION_FLAG_SECURE)
  164. smem->flags |= SMEM_SECURE;
  165. rc = msm_dma_get_device_address(dma_buf, align, &iova, smem->flags,
  166. ion_flags, &(inst->core->resources),
  167. &smem->mapping_info);
  168. if (rc) {
  169. dprintk(CVP_ERR, "Failed to get device address: %d\n", rc);
  170. goto exit;
  171. }
  172. temp = (u32)iova;
  173. if ((dma_addr_t)temp != iova) {
  174. dprintk(CVP_ERR, "iova(%pa) truncated to %#x", &iova, temp);
  175. rc = -EINVAL;
  176. goto exit;
  177. }
  178. smem->size = dma_buf->size;
  179. smem->device_addr = (u32)iova;
  180. print_smem(CVP_MEM, str, inst, smem);
  181. return rc;
  182. exit:
  183. smem->device_addr = 0x0;
  184. return rc;
  185. }
  186. int msm_cvp_unmap_smem(struct msm_cvp_inst *inst,
  187. struct msm_cvp_smem *smem,
  188. const char *str)
  189. {
  190. int rc = 0;
  191. if (!smem) {
  192. dprintk(CVP_ERR, "%s: Invalid params: %pK\n", __func__, smem);
  193. rc = -EINVAL;
  194. goto exit;
  195. }
  196. print_smem(CVP_MEM, str, inst, smem);
  197. rc = msm_dma_put_device_address(smem->flags, &smem->mapping_info);
  198. if (rc) {
  199. dprintk(CVP_ERR, "Failed to put device address: %d\n", rc);
  200. goto exit;
  201. }
  202. smem->device_addr = 0x0;
  203. exit:
  204. return rc;
  205. }
  206. static int alloc_dma_mem(size_t size, u32 align, u32 flags, int map_kernel,
  207. struct msm_cvp_platform_resources *res, struct msm_cvp_smem *mem)
  208. {
  209. dma_addr_t iova = 0;
  210. unsigned long heap_mask = 0;
  211. int rc = 0;
  212. int ion_flags = 0;
  213. struct dma_buf *dbuf = NULL;
  214. struct dma_heap *heap;
  215. if (!res) {
  216. dprintk(CVP_ERR, "%s: NULL res\n", __func__);
  217. return -EINVAL;
  218. }
  219. align = ALIGN(align, SZ_4K);
  220. size = ALIGN(size, SZ_4K);
  221. if (is_iommu_present(res)) {
  222. if (flags & SMEM_ADSP) {
  223. dprintk(CVP_MEM, "Allocating from ADSP heap\n");
  224. heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
  225. } else {
  226. heap_mask = ION_HEAP(ION_SYSTEM_HEAP_ID);
  227. }
  228. } else {
  229. dprintk(CVP_MEM,
  230. "allocate shared memory from adsp heap size %zx align %d\n",
  231. size, align);
  232. heap_mask = ION_HEAP(ION_ADSP_HEAP_ID);
  233. }
  234. if (flags & SMEM_CACHED)
  235. ion_flags |= ION_FLAG_CACHED;
  236. if (flags & SMEM_NON_PIXEL)
  237. ion_flags |= ION_FLAG_CP_NON_PIXEL;
  238. if (flags & SMEM_PIXEL)
  239. ion_flags |= ION_FLAG_CP_PIXEL;
  240. if (flags & SMEM_SECURE) {
  241. ion_flags |= ION_FLAG_SECURE;
  242. heap_mask = ION_HEAP(ION_SECURE_HEAP_ID);
  243. }
  244. heap = dma_heap_find("qcom,system");
  245. dbuf = dma_heap_buffer_alloc(heap, size, 0, 0);
  246. if (IS_ERR_OR_NULL(dbuf)) {
  247. dprintk(CVP_ERR,
  248. "Failed to allocate shared memory = %x bytes, %llx, %x %x\n",
  249. size, heap_mask, ion_flags, PTR_ERR(dbuf));
  250. rc = -ENOMEM;
  251. goto fail_shared_mem_alloc;
  252. }
  253. if (!gfa_cv.dmabuf_f_op)
  254. gfa_cv.dmabuf_f_op = (const struct file_operations *)dbuf->file->f_op;
  255. mem->flags = flags;
  256. mem->ion_flags = ion_flags;
  257. mem->size = size;
  258. mem->dma_buf = dbuf;
  259. mem->kvaddr = NULL;
  260. rc = msm_dma_get_device_address(dbuf, align, &iova, flags,
  261. ion_flags, res, &mem->mapping_info);
  262. if (rc) {
  263. dprintk(CVP_ERR, "Failed to get device address: %d\n",
  264. rc);
  265. goto fail_device_address;
  266. }
  267. mem->device_addr = (u32)iova;
  268. if ((dma_addr_t)mem->device_addr != iova) {
  269. dprintk(CVP_ERR, "iova(%pa) truncated to %#x",
  270. &iova, mem->device_addr);
  271. goto fail_device_address;
  272. }
  273. if (map_kernel) {
  274. dma_buf_begin_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  275. mem->kvaddr = dma_buf_vmap(dbuf);
  276. if (!mem->kvaddr) {
  277. dprintk(CVP_ERR,
  278. "Failed to map shared mem in kernel\n");
  279. rc = -EIO;
  280. goto fail_map;
  281. }
  282. }
  283. dprintk(CVP_MEM,
  284. "%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x, flags = %#lx\n",
  285. __func__, mem->dma_buf, mem->device_addr, mem->size,
  286. mem->kvaddr, mem->ion_flags, mem->flags);
  287. return rc;
  288. fail_map:
  289. if (map_kernel)
  290. dma_buf_end_cpu_access(dbuf, DMA_BIDIRECTIONAL);
  291. fail_device_address:
  292. dma_heap_buffer_free(dbuf);
  293. fail_shared_mem_alloc:
  294. return rc;
  295. }
  296. static int free_dma_mem(struct msm_cvp_smem *mem)
  297. {
  298. dprintk(CVP_MEM,
  299. "%s: dma_buf = %pK, device_addr = %x, size = %d, kvaddr = %pK, ion_flags = %#x\n",
  300. __func__, mem->dma_buf, mem->device_addr, mem->size,
  301. mem->kvaddr, mem->ion_flags);
  302. if (mem->device_addr) {
  303. msm_dma_put_device_address(mem->flags, &mem->mapping_info);
  304. mem->device_addr = 0x0;
  305. }
  306. if (mem->kvaddr) {
  307. dma_buf_vunmap(mem->dma_buf, mem->kvaddr);
  308. mem->kvaddr = NULL;
  309. dma_buf_end_cpu_access(mem->dma_buf, DMA_BIDIRECTIONAL);
  310. }
  311. if (mem->dma_buf) {
  312. dma_heap_buffer_free(mem->dma_buf);
  313. mem->dma_buf = NULL;
  314. }
  315. return 0;
  316. }
  317. int msm_cvp_smem_alloc(size_t size, u32 align, u32 flags, int map_kernel,
  318. void *res, struct msm_cvp_smem *smem)
  319. {
  320. int rc = 0;
  321. if (!smem || !size) {
  322. dprintk(CVP_ERR, "%s: NULL smem or %d size\n",
  323. __func__, (u32)size);
  324. return -EINVAL;
  325. }
  326. rc = alloc_dma_mem(size, align, flags, map_kernel,
  327. (struct msm_cvp_platform_resources *)res,
  328. smem);
  329. return rc;
  330. }
  331. int msm_cvp_smem_free(struct msm_cvp_smem *smem)
  332. {
  333. int rc = 0;
  334. if (!smem) {
  335. dprintk(CVP_ERR, "NULL smem passed\n");
  336. return -EINVAL;
  337. }
  338. rc = free_dma_mem(smem);
  339. return rc;
  340. };
  341. int msm_cvp_smem_cache_operations(struct dma_buf *dbuf,
  342. enum smem_cache_ops cache_op, unsigned long offset, unsigned long size)
  343. {
  344. int rc = 0;
  345. unsigned long flags = 0;
  346. if (!dbuf) {
  347. dprintk(CVP_ERR, "%s: Invalid params\n", __func__);
  348. return -EINVAL;
  349. }
  350. /* Return if buffer doesn't support caching */
  351. rc = dma_buf_get_flags(dbuf, &flags);
  352. if (rc) {
  353. dprintk(CVP_ERR, "%s: dma_buf_get_flags failed, err %d\n",
  354. __func__, rc);
  355. return rc;
  356. } else if (!(flags & ION_FLAG_CACHED)) {
  357. return rc;
  358. }
  359. switch (cache_op) {
  360. case SMEM_CACHE_CLEAN:
  361. case SMEM_CACHE_CLEAN_INVALIDATE:
  362. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  363. offset, size);
  364. if (rc)
  365. break;
  366. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_BIDIRECTIONAL,
  367. offset, size);
  368. break;
  369. case SMEM_CACHE_INVALIDATE:
  370. rc = dma_buf_begin_cpu_access_partial(dbuf, DMA_TO_DEVICE,
  371. offset, size);
  372. if (rc)
  373. break;
  374. rc = dma_buf_end_cpu_access_partial(dbuf, DMA_FROM_DEVICE,
  375. offset, size);
  376. break;
  377. default:
  378. dprintk(CVP_ERR, "%s: cache (%d) operation not supported\n",
  379. __func__, cache_op);
  380. rc = -EINVAL;
  381. break;
  382. }
  383. return rc;
  384. }
  385. struct context_bank_info *msm_cvp_smem_get_context_bank(bool is_secure,
  386. struct msm_cvp_platform_resources *res, unsigned long ion_flags)
  387. {
  388. struct context_bank_info *cb = NULL, *match = NULL;
  389. char *search_str;
  390. char *non_secure_cb = "cvp_hlos";
  391. char *secure_nonpixel_cb = "cvp_sec_nonpixel";
  392. char *secure_pixel_cb = "cvp_sec_pixel";
  393. if (ion_flags & ION_FLAG_CP_PIXEL)
  394. search_str = secure_pixel_cb;
  395. else if (ion_flags & ION_FLAG_CP_NON_PIXEL)
  396. search_str = secure_nonpixel_cb;
  397. else
  398. search_str = non_secure_cb;
  399. list_for_each_entry(cb, &res->context_banks, list) {
  400. if (cb->is_secure == is_secure &&
  401. !strcmp(search_str, cb->name)) {
  402. match = cb;
  403. break;
  404. }
  405. }
  406. if (!match)
  407. dprintk(CVP_ERR,
  408. "%s: cb not found for ion_flags %x, is_secure %d\n",
  409. __func__, ion_flags, is_secure);
  410. return match;
  411. }
  412. int msm_cvp_map_ipcc_regs(u32 *iova)
  413. {
  414. struct context_bank_info *cb;
  415. struct msm_cvp_core *core;
  416. struct cvp_hfi_device *hfi_ops;
  417. struct iris_hfi_device *dev = NULL;
  418. phys_addr_t paddr;
  419. u32 size;
  420. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  421. if (core) {
  422. hfi_ops = core->device;
  423. if (hfi_ops)
  424. dev = hfi_ops->hfi_device_data;
  425. }
  426. if (!dev)
  427. return -EINVAL;
  428. paddr = dev->res->ipcc_reg_base;
  429. size = dev->res->ipcc_reg_size;
  430. if (!paddr || !size)
  431. return -EINVAL;
  432. cb = msm_cvp_smem_get_context_bank(false, dev->res, 0);
  433. if (!cb) {
  434. dprintk(CVP_ERR, "%s: fail to get context bank\n", __func__);
  435. return -EINVAL;
  436. }
  437. *iova = dma_map_resource(cb->dev, paddr, size, DMA_BIDIRECTIONAL, 0);
  438. if (*iova == DMA_MAPPING_ERROR) {
  439. dprintk(CVP_WARN, "%s: fail to map IPCC regs\n", __func__);
  440. return -EFAULT;
  441. }
  442. return 0;
  443. }