dp_txrx_wds.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801
  1. /*
  2. * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "../../../cmn_dev/fw_hdr/fw/htt.h"
  19. #include "dp_peer.h"
  20. #include "hal_rx.h"
  21. #include "hal_api.h"
  22. #include "qdf_nbuf.h"
  23. #include "dp_types.h"
  24. #include "dp_internal.h"
  25. #include "dp_tx.h"
  26. #include "enet.h"
  27. #include "dp_txrx_wds.h"
  28. /* Generic AST entry aging timer value */
  29. #define DP_AST_AGING_TIMER_DEFAULT_MS 5000
  30. #define DP_VLAN_UNTAGGED 0
  31. #define DP_VLAN_TAGGED_MULTICAST 1
  32. #define DP_VLAN_TAGGED_UNICAST 2
  33. #define DP_MAX_VLAN_IDS 4096
  34. static void dp_ast_aging_timer_fn(void *soc_hdl)
  35. {
  36. struct dp_soc *soc = (struct dp_soc *)soc_hdl;
  37. struct dp_pdev *pdev;
  38. struct dp_vdev *vdev;
  39. struct dp_peer *peer;
  40. struct dp_ast_entry *ase, *temp_ase;
  41. int i;
  42. bool check_wds_ase = false;
  43. if (soc->wds_ast_aging_timer_cnt++ >= DP_WDS_AST_AGING_TIMER_CNT) {
  44. soc->wds_ast_aging_timer_cnt = 0;
  45. check_wds_ase = true;
  46. }
  47. /* Peer list access lock */
  48. qdf_spin_lock_bh(&soc->peer_ref_mutex);
  49. /* AST list access lock */
  50. qdf_spin_lock_bh(&soc->ast_lock);
  51. for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
  52. pdev = soc->pdev_list[i];
  53. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  54. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  55. DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
  56. DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
  57. /*
  58. * Do not expire static ast entries
  59. * and HM WDS entries
  60. */
  61. if (ase->type !=
  62. CDP_TXRX_AST_TYPE_WDS &&
  63. ase->type !=
  64. CDP_TXRX_AST_TYPE_MEC &&
  65. ase->type !=
  66. CDP_TXRX_AST_TYPE_DA)
  67. continue;
  68. /* Expire MEC entry every n sec.
  69. * This needs to be expired in
  70. * case if STA backbone is made as
  71. * AP backbone, In this case it needs
  72. * to be re-added as a WDS entry.
  73. */
  74. if (ase->is_active && ase->type ==
  75. CDP_TXRX_AST_TYPE_MEC) {
  76. ase->is_active = FALSE;
  77. continue;
  78. } else if (ase->is_active &&
  79. check_wds_ase) {
  80. ase->is_active = FALSE;
  81. continue;
  82. }
  83. if (ase->type ==
  84. CDP_TXRX_AST_TYPE_MEC) {
  85. DP_STATS_INC(soc,
  86. ast.aged_out, 1);
  87. dp_peer_del_ast(soc, ase);
  88. } else if (check_wds_ase) {
  89. DP_STATS_INC(soc,
  90. ast.aged_out, 1);
  91. dp_peer_del_ast(soc, ase);
  92. }
  93. }
  94. }
  95. }
  96. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  97. }
  98. qdf_spin_unlock_bh(&soc->ast_lock);
  99. qdf_spin_unlock_bh(&soc->peer_ref_mutex);
  100. if (qdf_atomic_read(&soc->cmn_init_done))
  101. qdf_timer_mod(&soc->ast_aging_timer,
  102. DP_AST_AGING_TIMER_DEFAULT_MS);
  103. }
  104. /*
  105. * dp_soc_wds_attach() - Setup WDS timer and AST table
  106. * @soc: Datapath SOC handle
  107. *
  108. * Return: None
  109. */
  110. void dp_soc_wds_attach(struct dp_soc *soc)
  111. {
  112. soc->wds_ast_aging_timer_cnt = 0;
  113. qdf_timer_init(soc->osdev, &soc->ast_aging_timer,
  114. dp_ast_aging_timer_fn, (void *)soc,
  115. QDF_TIMER_TYPE_WAKE_APPS);
  116. qdf_timer_mod(&soc->ast_aging_timer, DP_AST_AGING_TIMER_DEFAULT_MS);
  117. }
  118. /*
  119. * dp_soc_wds_detach() - Detach WDS data structures and timers
  120. * @txrx_soc: DP SOC handle
  121. *
  122. * Return: None
  123. */
  124. void dp_soc_wds_detach(struct dp_soc *soc)
  125. {
  126. qdf_timer_stop(&soc->ast_aging_timer);
  127. qdf_timer_free(&soc->ast_aging_timer);
  128. }
  129. /**
  130. * dp_rx_da_learn() - Add AST entry based on DA lookup
  131. * This is a WAR for HK 1.0 and will
  132. * be removed in HK 2.0
  133. *
  134. * @soc: core txrx main context
  135. * @rx_tlv_hdr : start address of rx tlvs
  136. * @ta_peer : Transmitter peer entry
  137. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  138. *
  139. */
  140. void
  141. dp_rx_da_learn(struct dp_soc *soc,
  142. uint8_t *rx_tlv_hdr,
  143. struct dp_peer *ta_peer,
  144. qdf_nbuf_t nbuf)
  145. {
  146. /* For HKv2 DA port learing is not needed */
  147. if (qdf_likely(soc->ast_override_support))
  148. return;
  149. if (qdf_unlikely(!ta_peer))
  150. return;
  151. if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
  152. return;
  153. if (!soc->da_war_enabled)
  154. return;
  155. if (qdf_unlikely(!qdf_nbuf_is_da_valid(nbuf) &&
  156. !qdf_nbuf_is_da_mcbc(nbuf))) {
  157. dp_peer_add_ast(soc,
  158. ta_peer,
  159. qdf_nbuf_data(nbuf),
  160. CDP_TXRX_AST_TYPE_DA,
  161. IEEE80211_NODE_F_WDS_HM);
  162. }
  163. }
  164. /**
  165. * dp_tx_mec_handler() - Tx MEC Notify Handler
  166. * @vdev: pointer to dp dev handler
  167. * @status : Tx completion status from HTT descriptor
  168. *
  169. * Handles MEC notify event sent from fw to Host
  170. *
  171. * Return: none
  172. */
  173. void dp_tx_mec_handler(struct dp_vdev *vdev, uint8_t *status)
  174. {
  175. struct dp_soc *soc;
  176. uint32_t flags = IEEE80211_NODE_F_WDS_HM;
  177. struct dp_peer *peer;
  178. uint8_t mac_addr[QDF_MAC_ADDR_SIZE], i;
  179. if (!vdev->mec_enabled)
  180. return;
  181. /* MEC required only in STA mode */
  182. if (vdev->opmode != wlan_op_mode_sta)
  183. return;
  184. soc = vdev->pdev->soc;
  185. peer = vdev->vap_bss_peer;
  186. if (!peer) {
  187. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  188. FL("peer is NULL"));
  189. return;
  190. }
  191. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  192. "%s Tx MEC Handler",
  193. __func__);
  194. for (i = 0; i < QDF_MAC_ADDR_SIZE; i++)
  195. mac_addr[(QDF_MAC_ADDR_SIZE - 1) - i] =
  196. status[(QDF_MAC_ADDR_SIZE - 2) + i];
  197. if (qdf_mem_cmp(mac_addr, vdev->mac_addr.raw, QDF_MAC_ADDR_SIZE))
  198. dp_peer_add_ast(soc,
  199. peer,
  200. mac_addr,
  201. CDP_TXRX_AST_TYPE_MEC,
  202. flags);
  203. }
  204. /**
  205. * dp_txrx_set_wds_rx_policy() - API to store datapath
  206. * config parameters
  207. * @soc - datapath soc handle
  208. * @vdev_id - id of datapath vdev handle
  209. * @cfg: ini parameter handle
  210. *
  211. * Return: status
  212. */
  213. #ifdef WDS_VENDOR_EXTENSION
  214. void
  215. dp_txrx_set_wds_rx_policy(struct cdp_soc_t *soc, uint8_t vdev_id, u_int32_t val)
  216. {
  217. struct dp_peer *peer;
  218. struct dp_vdev *vdev =
  219. dp_get_vdev_from_soc_vdev_id_wifi3((struct dp_soc *)soc,
  220. vdev_id);
  221. if (!vdev) {
  222. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  223. FL("vdev is NULL for vdev_id %d"), vdev_id);
  224. return;
  225. }
  226. if (vdev->opmode == wlan_op_mode_ap) {
  227. /* for ap, set it on bss_peer */
  228. TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
  229. if (peer->bss_peer) {
  230. peer->wds_ecm.wds_rx_filter = 1;
  231. peer->wds_ecm.wds_rx_ucast_4addr =
  232. (val & WDS_POLICY_RX_UCAST_4ADDR) ?
  233. 1 : 0;
  234. peer->wds_ecm.wds_rx_mcast_4addr =
  235. (val & WDS_POLICY_RX_MCAST_4ADDR) ?
  236. 1 : 0;
  237. break;
  238. }
  239. }
  240. } else if (vdev->opmode == wlan_op_mode_sta) {
  241. peer = TAILQ_FIRST(&vdev->peer_list);
  242. peer->wds_ecm.wds_rx_filter = 1;
  243. peer->wds_ecm.wds_rx_ucast_4addr =
  244. (val & WDS_POLICY_RX_UCAST_4ADDR) ? 1 : 0;
  245. peer->wds_ecm.wds_rx_mcast_4addr =
  246. (val & WDS_POLICY_RX_MCAST_4ADDR) ? 1 : 0;
  247. }
  248. }
  249. /**
  250. * dp_txrx_peer_wds_tx_policy_update() - API to set tx wds policy
  251. *
  252. * @cdp_soc: DP soc handle
  253. * @vdev_id: id of vdev handle
  254. * @peer_mac: peer mac address
  255. * @wds_tx_ucast: policy for unicast transmission
  256. * @wds_tx_mcast: policy for multicast transmission
  257. *
  258. * Return: void
  259. */
  260. void
  261. dp_txrx_peer_wds_tx_policy_update(struct cdp_soc_t *soc, uint8_t vdev_id,
  262. uint8_t *peer_mac, int wds_tx_ucast,
  263. int wds_tx_mcast)
  264. {
  265. struct dp_peer *peer = dp_peer_find_hash_find((struct dp_soc *)soc,
  266. peer_mac, 0,
  267. vdev_id);
  268. if (!peer) {
  269. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  270. FL("peer is NULL for mac %pM vdev_id %d"),
  271. peer_mac, vdev_id);
  272. return;
  273. }
  274. if (wds_tx_ucast || wds_tx_mcast) {
  275. peer->wds_enabled = 1;
  276. peer->wds_ecm.wds_tx_ucast_4addr = wds_tx_ucast;
  277. peer->wds_ecm.wds_tx_mcast_4addr = wds_tx_mcast;
  278. } else {
  279. peer->wds_enabled = 0;
  280. peer->wds_ecm.wds_tx_ucast_4addr = 0;
  281. peer->wds_ecm.wds_tx_mcast_4addr = 0;
  282. }
  283. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  284. "Policy Update set to :\n");
  285. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  286. "peer->wds_enabled %d\n", peer->wds_enabled);
  287. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  288. "peer->wds_ecm.wds_tx_ucast_4addr %d\n",
  289. peer->wds_ecm.wds_tx_ucast_4addr);
  290. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  291. "peer->wds_ecm.wds_tx_mcast_4addr %d\n",
  292. peer->wds_ecm.wds_tx_mcast_4addr);
  293. dp_peer_unref_delete(peer);
  294. }
  295. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  296. struct dp_vdev *vdev,
  297. struct dp_peer *peer)
  298. {
  299. struct dp_peer *bss_peer;
  300. int fr_ds, to_ds, rx_3addr, rx_4addr;
  301. int rx_policy_ucast, rx_policy_mcast;
  302. int rx_mcast = hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr);
  303. if (vdev->opmode == wlan_op_mode_ap) {
  304. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  305. if (bss_peer->bss_peer) {
  306. /* if wds policy check is not enabled on this vdev, accept all frames */
  307. if (!bss_peer->wds_ecm.wds_rx_filter) {
  308. return 1;
  309. }
  310. break;
  311. }
  312. }
  313. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  314. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  315. } else { /* sta mode */
  316. if (!peer->wds_ecm.wds_rx_filter) {
  317. return 1;
  318. }
  319. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  320. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  321. }
  322. /* ------------------------------------------------
  323. * self
  324. * peer- rx rx-
  325. * wds ucast mcast dir policy accept note
  326. * ------------------------------------------------
  327. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  328. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  329. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  330. * 1 1 0 00 x1 0 bad frame, won't see it
  331. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  332. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  333. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  334. * 1 0 1 00 1x 0 bad frame, won't see it
  335. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  336. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  337. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  338. * 1 1 0 00 x0 0 bad frame, won't see it
  339. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  340. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  341. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  342. * 1 0 1 00 0x 0 bad frame, won't see it
  343. *
  344. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  345. * 0 x x 01 xx 1
  346. * 0 x x 10 xx 0
  347. * 0 x x 00 xx 0 bad frame, won't see it
  348. * ------------------------------------------------
  349. */
  350. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  351. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  352. rx_3addr = fr_ds ^ to_ds;
  353. rx_4addr = fr_ds & to_ds;
  354. if (vdev->opmode == wlan_op_mode_ap) {
  355. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  356. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  357. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  358. return 1;
  359. }
  360. } else { /* sta mode */
  361. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  362. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  363. return 1;
  364. }
  365. }
  366. return 0;
  367. }
  368. #endif
  369. /**
  370. * dp_tx_add_groupkey_metadata - Add group key in metadata
  371. * @vdev: DP vdev handle
  372. * @msdu_info: MSDU info to be setup in MSDU descriptor
  373. * @group_key: Group key index programmed in metadata
  374. *
  375. * Return: void
  376. */
  377. #ifdef QCA_MULTIPASS_SUPPORT
  378. static
  379. void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
  380. struct dp_tx_msdu_info_s *msdu_info, uint16_t group_key)
  381. {
  382. struct htt_tx_msdu_desc_ext2_t *meta_data =
  383. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  384. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  385. /*
  386. * When attempting to send a multicast packet with multi-passphrase,
  387. * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
  388. * ref htt.h indicating the group_id field in "key_flags" also having
  389. * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
  390. */
  391. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0], 1);
  392. HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
  393. }
  394. /**
  395. * dp_tx_remove_vlan_tag - Remove 4 bytes of vlan tag
  396. * @vdev: DP vdev handle
  397. * @tx_desc: Tx Descriptor Handle
  398. *
  399. * Return: void
  400. */
  401. static
  402. void dp_tx_remove_vlan_tag(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  403. {
  404. struct vlan_ethhdr veth_hdr;
  405. struct vlan_ethhdr *veh = (struct vlan_ethhdr *)nbuf->data;
  406. /*
  407. * Extract VLAN header of 4 bytes:
  408. * Frame Format : {dst_addr[6], src_addr[6], 802.1Q header[4], EtherType[2], Payload}
  409. * Before Removal : xx xx xx xx xx xx xx xx xx xx xx xx 81 00 00 02 08 00 45 00 00...
  410. * After Removal : xx xx xx xx xx xx xx xx xx xx xx xx 08 00 45 00 00...
  411. */
  412. qdf_mem_copy(&veth_hdr, veh, sizeof(veth_hdr));
  413. qdf_nbuf_pull_head(nbuf, ETHERTYPE_VLAN_LEN);
  414. veh = (struct vlan_ethhdr *)nbuf->data;
  415. qdf_mem_copy(veh, &veth_hdr, 2 * QDF_MAC_ADDR_SIZE);
  416. return;
  417. }
  418. /**
  419. * dp_tx_need_multipass_process - If frame needs multipass phrase processing
  420. * @vdev: DP vdev handle
  421. * @tx_desc: Tx Descriptor Handle
  422. * @vlan_id: vlan id of frame
  423. *
  424. * Return: whether peer is special or classic
  425. */
  426. static
  427. uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  428. qdf_nbuf_t buf, uint16_t *vlan_id)
  429. {
  430. struct dp_peer *peer = NULL;
  431. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
  432. struct vlan_ethhdr *veh = NULL;
  433. bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
  434. (htons(eh->ether_type) != ETH_P_8021Q));
  435. if (qdf_unlikely(not_vlan))
  436. return DP_VLAN_UNTAGGED;
  437. veh = (struct vlan_ethhdr *)eh;
  438. *vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
  439. if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
  440. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  441. TAILQ_FOREACH(peer, &vdev->mpass_peer_list,
  442. mpass_peer_list_elem) {
  443. if (*vlan_id == peer->vlan_id) {
  444. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  445. return DP_VLAN_TAGGED_MULTICAST;
  446. }
  447. }
  448. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  449. return DP_VLAN_UNTAGGED;
  450. }
  451. peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL);
  452. if (qdf_unlikely(peer == NULL))
  453. return DP_VLAN_UNTAGGED;
  454. /*
  455. * Do not drop the frame when vlan_id doesn't match.
  456. * Send the frame as it is.
  457. */
  458. if (*vlan_id == peer->vlan_id) {
  459. dp_peer_unref_delete(peer);
  460. return DP_VLAN_TAGGED_UNICAST;
  461. }
  462. dp_peer_unref_delete(peer);
  463. return DP_VLAN_UNTAGGED;
  464. }
  465. /**
  466. * dp_tx_multipass_process - Process vlan frames in tx path
  467. * @soc: dp soc handle
  468. * @vdev: DP vdev handle
  469. * @nbuf: skb
  470. * @msdu_info: msdu descriptor
  471. *
  472. * Return: status whether frame needs to be dropped or transmitted
  473. */
  474. bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  475. qdf_nbuf_t nbuf,
  476. struct dp_tx_msdu_info_s *msdu_info)
  477. {
  478. uint16_t vlan_id = 0;
  479. uint16_t group_key = 0;
  480. uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
  481. qdf_nbuf_t nbuf_copy = NULL;
  482. if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0])) {
  483. return true;
  484. }
  485. is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
  486. if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
  487. (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
  488. return true;
  489. if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
  490. dp_tx_remove_vlan_tag(vdev, nbuf);
  491. return true;
  492. }
  493. /* AP can have classic clients, special clients &
  494. * classic repeaters.
  495. * 1. Classic clients & special client:
  496. * Remove vlan header, find corresponding group key
  497. * index, fill in metaheader and enqueue multicast
  498. * frame to TCL.
  499. * 2. Classic repeater:
  500. * Pass through to classic repeater with vlan tag
  501. * intact without any group key index. Hardware
  502. * will know which key to use to send frame to
  503. * repeater.
  504. */
  505. nbuf_copy = qdf_nbuf_copy(nbuf);
  506. /*
  507. * Send multicast frame to special peers even
  508. * if pass through to classic repeater fails.
  509. */
  510. if (nbuf_copy) {
  511. struct dp_tx_msdu_info_s msdu_info_copy;
  512. qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
  513. msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
  514. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
  515. nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy, &msdu_info_copy, HTT_INVALID_PEER, NULL);
  516. if (nbuf_copy) {
  517. qdf_nbuf_free(nbuf_copy);
  518. qdf_err("nbuf_copy send failed");
  519. }
  520. }
  521. group_key = vdev->iv_vlan_map[vlan_id];
  522. /*
  523. * If group key is not installed, drop the frame.
  524. */
  525. if (!group_key)
  526. return false;
  527. dp_tx_remove_vlan_tag(vdev, nbuf);
  528. dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
  529. msdu_info->exception_fw = 1;
  530. return true;
  531. }
  532. /**
  533. * dp_rx_multipass_process - insert vlan tag on frames for traffic separation
  534. * @vdev: DP vdev handle
  535. * @nbuf: skb
  536. * @tid: traffic priority
  537. *
  538. * Return: bool: true if tag is inserted else false
  539. */
  540. bool dp_rx_multipass_process(struct dp_peer *peer, qdf_nbuf_t nbuf, uint8_t tid)
  541. {
  542. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  543. struct vlan_ethhdr vethhdr;
  544. if (qdf_unlikely(!peer->vlan_id))
  545. return false;
  546. if (qdf_unlikely(qdf_nbuf_headroom(nbuf) < ETHERTYPE_VLAN_LEN))
  547. return false;
  548. /*
  549. * Form the VLAN header and insert in nbuf
  550. */
  551. qdf_mem_copy(vethhdr.h_dest, eh->ether_dhost, QDF_MAC_ADDR_SIZE);
  552. qdf_mem_copy(vethhdr.h_source, eh->ether_shost, QDF_MAC_ADDR_SIZE);
  553. vethhdr.h_vlan_proto = htons(QDF_ETH_TYPE_8021Q);
  554. vethhdr.h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
  555. (peer->vlan_id & VLAN_VID_MASK));
  556. /*
  557. * Packet format : DSTMAC | SRCMAC | <VLAN HEADERS TO BE INSERTED> | ETHERTYPE | IP HEADER
  558. * DSTMAC: 6 BYTES
  559. * SRCMAC: 6 BYTES
  560. * VLAN HEADER: 4 BYTES ( TPID | PCP | VLAN ID)
  561. * ETHERTYPE: 2 BYTES
  562. */
  563. qdf_nbuf_push_head(nbuf, sizeof(struct vlan_hdr));
  564. qdf_mem_copy(qdf_nbuf_data(nbuf), &vethhdr,
  565. sizeof(struct vlan_ethhdr)- ETHERNET_TYPE_LEN);
  566. return true;
  567. }
  568. /**
  569. * dp_peer_multipass_list_remove: remove peer from list
  570. * @peer: pointer to peer
  571. *
  572. * return: void
  573. */
  574. void dp_peer_multipass_list_remove(struct dp_peer *peer)
  575. {
  576. struct dp_vdev *vdev = peer->vdev;
  577. struct dp_peer *tpeer = NULL;
  578. bool found = 0;
  579. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  580. TAILQ_FOREACH(tpeer, &vdev->mpass_peer_list, mpass_peer_list_elem) {
  581. if (tpeer == peer) {
  582. found = 1;
  583. TAILQ_REMOVE(&vdev->mpass_peer_list, peer, mpass_peer_list_elem);
  584. break;
  585. }
  586. }
  587. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  588. if (found)
  589. dp_peer_unref_delete(peer);
  590. }
  591. /**
  592. * dp_peer_multipass_list_add: add to new multipass list
  593. * @dp_soc: soc handle
  594. * @dp_vdev: vdev handle
  595. * @peer_mac: mac address
  596. *
  597. * return: void
  598. */
  599. static void dp_peer_multipass_list_add(struct dp_soc *soc, struct dp_vdev *vdev,
  600. uint8_t *peer_mac)
  601. {
  602. struct dp_peer *peer = dp_peer_find_hash_find(soc, peer_mac, 0,
  603. vdev->vdev_id);
  604. if (!peer) {
  605. return;
  606. }
  607. /*
  608. * Ref_cnt is incremented inside dp_peer_find_hash_find().
  609. * Decrement it when element is deleted from the list.
  610. */
  611. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  612. TAILQ_INSERT_HEAD(&vdev->mpass_peer_list, peer, mpass_peer_list_elem);
  613. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  614. }
  615. /**
  616. * dp_peer_set_vlan_id: set vlan_id for this peer
  617. * @cdp_soc: soc handle
  618. * @peer_mac: mac address
  619. * @vlan_id: vlan id for peer
  620. *
  621. * return: void
  622. */
  623. void dp_peer_set_vlan_id(struct cdp_soc_t *cdp_soc,
  624. struct cdp_vdev *vdev_handle, uint8_t *peer_mac,
  625. uint16_t vlan_id)
  626. {
  627. struct dp_soc *soc = (struct dp_soc *)cdp_soc;
  628. struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
  629. struct dp_peer *peer = NULL;
  630. if (!vdev->multipass_en)
  631. return;
  632. peer = dp_peer_find_hash_find(soc, peer_mac, 0, vdev->vdev_id);
  633. if (qdf_unlikely(!peer)) {
  634. qdf_err("NULL peer");
  635. return;
  636. }
  637. peer->vlan_id = vlan_id;
  638. /* Ref_cnt is incremented inside dp_peer_find_hash_find().
  639. * Decrement it here.
  640. */
  641. dp_peer_unref_delete(peer);
  642. dp_peer_multipass_list_add(soc, vdev, peer_mac);
  643. }
  644. /**
  645. * dp_set_vlan_groupkey: set vlan map for vdev
  646. * @vdev_handle: pointer to vdev
  647. * @vlan_id: vlan_id
  648. * @group_key: group key for vlan
  649. *
  650. * return: set success/failure
  651. */
  652. QDF_STATUS dp_set_vlan_groupkey(struct cdp_vdev *vdev_handle,
  653. uint16_t vlan_id, uint16_t group_key)
  654. {
  655. struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
  656. if (!vdev->multipass_en)
  657. return QDF_STATUS_E_INVAL;
  658. if (!vdev->iv_vlan_map) {
  659. uint16_t vlan_map_size = (sizeof(uint16_t))*DP_MAX_VLAN_IDS;
  660. vdev->iv_vlan_map = (uint16_t *)qdf_mem_malloc(vlan_map_size);
  661. if (!vdev->iv_vlan_map) {
  662. QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "iv_vlan_map");
  663. return QDF_STATUS_E_NOMEM;
  664. }
  665. /*
  666. * 0 is invalid group key.
  667. * Initilalize array with invalid group keys.
  668. */
  669. qdf_mem_zero(vdev->iv_vlan_map, vlan_map_size);
  670. }
  671. if (vlan_id >= DP_MAX_VLAN_IDS)
  672. return QDF_STATUS_E_INVAL;
  673. vdev->iv_vlan_map[vlan_id] = group_key;
  674. return QDF_STATUS_SUCCESS;
  675. }
  676. /**
  677. * dp_tx_vdev_multipass_deinit: set vlan map for vdev
  678. * @vdev_handle: pointer to vdev
  679. *
  680. * return: void
  681. */
  682. void dp_tx_vdev_multipass_deinit(struct dp_vdev *vdev)
  683. {
  684. struct dp_peer *peer = NULL;
  685. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  686. TAILQ_FOREACH(peer, &vdev->mpass_peer_list, mpass_peer_list_elem)
  687. qdf_err("Peers present in mpass list : %llx",
  688. peer->mac_addr.raw);
  689. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  690. if (vdev->iv_vlan_map) {
  691. qdf_mem_free(vdev->iv_vlan_map);
  692. vdev->iv_vlan_map = NULL;
  693. }
  694. qdf_spinlock_destroy(&vdev->mpass_peer_mutex);
  695. }
  696. /**
  697. * dp_peer_multipass_list_init: initialize peer mulitpass list
  698. * @vdev_handle: pointer to vdev
  699. *
  700. * return: set success/failure
  701. */
  702. void dp_peer_multipass_list_init(struct dp_vdev *vdev)
  703. {
  704. /*
  705. * vdev->iv_vlan_map is allocated when the first configuration command
  706. * is issued to avoid unnecessary allocation for regular mode VAP.
  707. */
  708. TAILQ_INIT(&vdev->mpass_peer_list);
  709. qdf_spinlock_create(&vdev->mpass_peer_mutex);
  710. }
  711. #endif