dp_rx_defrag.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825
  1. /*
  2. * Copyright (c) 2017-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  31. "AES-CCM",
  32. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  33. IEEE80211_WEP_MICLEN,
  34. 0,
  35. };
  36. const struct dp_rx_defrag_cipher dp_f_tkip = {
  37. "TKIP",
  38. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  39. IEEE80211_WEP_CRCLEN,
  40. IEEE80211_WEP_MICLEN,
  41. };
  42. const struct dp_rx_defrag_cipher dp_f_wep = {
  43. "WEP",
  44. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  45. IEEE80211_WEP_CRCLEN,
  46. 0,
  47. };
  48. /*
  49. * dp_rx_defrag_frames_free(): Free fragment chain
  50. * @frames: Fragment chain
  51. *
  52. * Iterates through the fragment chain and frees them
  53. * Returns: None
  54. */
  55. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  56. {
  57. qdf_nbuf_t next, frag = frames;
  58. while (frag) {
  59. next = qdf_nbuf_next(frag);
  60. qdf_nbuf_free(frag);
  61. frag = next;
  62. }
  63. }
  64. /*
  65. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  66. * @peer: Pointer to the peer data structure
  67. * @tid: Transmit ID (TID)
  68. *
  69. * Saves MPDU descriptor info and MSDU link pointer from REO
  70. * ring descriptor. The cache is created per peer, per TID
  71. *
  72. * Returns: None
  73. */
  74. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  75. {
  76. if (peer->rx_tid[tid].dst_ring_desc)
  77. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  78. peer->rx_tid[tid].dst_ring_desc = NULL;
  79. }
  80. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  81. unsigned int tid)
  82. {
  83. struct dp_soc *soc;
  84. struct dp_pdev *pdev;
  85. struct dp_srng *dp_rxdma_srng;
  86. struct rx_desc_pool *rx_desc_pool;
  87. union dp_rx_desc_list_elem_t *head = NULL;
  88. union dp_rx_desc_list_elem_t *tail = NULL;
  89. pdev = peer->vdev->pdev;
  90. soc = pdev->soc;
  91. if (peer->rx_tid[tid].head_frag_desc) {
  92. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  93. rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
  94. dp_rx_add_to_free_desc_list(&head, &tail,
  95. peer->rx_tid[tid].head_frag_desc);
  96. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  97. 1, &head, &tail);
  98. }
  99. if (peer->rx_tid[tid].dst_ring_desc) {
  100. if (dp_rx_link_desc_return(soc,
  101. peer->rx_tid[tid].dst_ring_desc,
  102. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  103. QDF_STATUS_SUCCESS)
  104. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  105. "%s: Failed to return link desc", __func__);
  106. }
  107. }
  108. /*
  109. * dp_rx_reorder_flush_frag(): Flush the frag list
  110. * @peer: Pointer to the peer data structure
  111. * @tid: Transmit ID (TID)
  112. *
  113. * Flush the per-TID frag list
  114. *
  115. * Returns: None
  116. */
  117. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  118. unsigned int tid)
  119. {
  120. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  121. FL("Flushing TID %d"), tid);
  122. if (!peer) {
  123. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  124. "%s: NULL peer", __func__);
  125. return;
  126. }
  127. dp_rx_return_head_frag_desc(peer, tid);
  128. dp_rx_defrag_cleanup(peer, tid);
  129. }
  130. /*
  131. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  132. * @soc: DP SOC
  133. *
  134. * Flush fragments of all waitlisted TID's
  135. *
  136. * Returns: None
  137. */
  138. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  139. {
  140. struct dp_rx_tid *rx_reorder = NULL;
  141. struct dp_rx_tid *tmp;
  142. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  143. TAILQ_HEAD(, dp_rx_tid) temp_list;
  144. TAILQ_INIT(&temp_list);
  145. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  146. FL("Current time %u"), now_ms);
  147. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  148. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  149. defrag_waitlist_elem, tmp) {
  150. uint32_t tid;
  151. if (rx_reorder->defrag_timeout_ms > now_ms)
  152. break;
  153. tid = rx_reorder->tid;
  154. if (tid >= DP_MAX_TIDS) {
  155. qdf_assert(0);
  156. continue;
  157. }
  158. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  159. defrag_waitlist_elem);
  160. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  161. /* Move to temp list and clean-up later */
  162. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  163. defrag_waitlist_elem);
  164. }
  165. if (rx_reorder) {
  166. soc->rx.defrag.next_flush_ms =
  167. rx_reorder->defrag_timeout_ms;
  168. } else {
  169. soc->rx.defrag.next_flush_ms =
  170. now_ms + soc->rx.defrag.timeout_ms;
  171. }
  172. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  173. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  174. defrag_waitlist_elem, tmp) {
  175. struct dp_peer *peer, *temp_peer = NULL;
  176. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  177. TAILQ_REMOVE(&temp_list, rx_reorder,
  178. defrag_waitlist_elem);
  179. /* get address of current peer */
  180. peer =
  181. container_of(rx_reorder, struct dp_peer,
  182. rx_tid[rx_reorder->tid]);
  183. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  184. temp_peer = dp_peer_find_by_id(soc, peer->peer_ids[0]);
  185. if (temp_peer == peer) {
  186. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  187. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  188. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  189. }
  190. if (temp_peer)
  191. dp_peer_unref_del_find_by_id(temp_peer);
  192. }
  193. }
  194. /*
  195. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  196. * @peer: Pointer to the peer data structure
  197. * @tid: Transmit ID (TID)
  198. *
  199. * Appends per-tid fragments to global fragment wait list
  200. *
  201. * Returns: None
  202. */
  203. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  204. {
  205. struct dp_soc *psoc = peer->vdev->pdev->soc;
  206. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  207. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  208. FL("Adding TID %u to waitlist for peer %pK"),
  209. tid, peer);
  210. /* TODO: use LIST macros instead of TAIL macros */
  211. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  212. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  213. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  214. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  215. defrag_waitlist_elem);
  216. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  217. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  218. }
  219. /*
  220. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  221. * @peer: Pointer to the peer data structure
  222. * @tid: Transmit ID (TID)
  223. *
  224. * Remove fragments from waitlist
  225. *
  226. * Returns: None
  227. */
  228. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  229. {
  230. struct dp_pdev *pdev = peer->vdev->pdev;
  231. struct dp_soc *soc = pdev->soc;
  232. struct dp_rx_tid *rx_reorder;
  233. struct dp_rx_tid *tmp;
  234. if (tid > DP_MAX_TIDS) {
  235. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  236. "TID out of bounds: %d", tid);
  237. qdf_assert(0);
  238. return;
  239. }
  240. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  241. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  242. defrag_waitlist_elem, tmp) {
  243. struct dp_peer *peer_on_waitlist;
  244. /* get address of current peer */
  245. peer_on_waitlist =
  246. container_of(rx_reorder, struct dp_peer,
  247. rx_tid[rx_reorder->tid]);
  248. /* Ensure it is TID for same peer */
  249. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  250. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  251. rx_reorder, defrag_waitlist_elem);
  252. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  253. }
  254. }
  255. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  256. }
  257. /*
  258. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  259. * @peer: Pointer to the peer data structure
  260. * @tid: Transmit ID (TID)
  261. * @head_addr: Pointer to head list
  262. * @tail_addr: Pointer to tail list
  263. * @frag: Incoming fragment
  264. * @all_frag_present: Flag to indicate whether all fragments are received
  265. *
  266. * Build a per-tid, per-sequence fragment list.
  267. *
  268. * Returns: Success, if inserted
  269. */
  270. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  271. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  272. uint8_t *all_frag_present)
  273. {
  274. qdf_nbuf_t next;
  275. qdf_nbuf_t prev = NULL;
  276. qdf_nbuf_t cur;
  277. uint16_t head_fragno, cur_fragno, next_fragno;
  278. uint8_t last_morefrag = 1, count = 0;
  279. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  280. uint8_t *rx_desc_info;
  281. qdf_assert(frag);
  282. qdf_assert(head_addr);
  283. qdf_assert(tail_addr);
  284. *all_frag_present = 0;
  285. rx_desc_info = qdf_nbuf_data(frag);
  286. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  287. /* If this is the first fragment */
  288. if (!(*head_addr)) {
  289. *head_addr = *tail_addr = frag;
  290. qdf_nbuf_set_next(*tail_addr, NULL);
  291. rx_tid->curr_frag_num = cur_fragno;
  292. goto insert_done;
  293. }
  294. /* In sequence fragment */
  295. if (cur_fragno > rx_tid->curr_frag_num) {
  296. qdf_nbuf_set_next(*tail_addr, frag);
  297. *tail_addr = frag;
  298. qdf_nbuf_set_next(*tail_addr, NULL);
  299. rx_tid->curr_frag_num = cur_fragno;
  300. } else {
  301. /* Out of sequence fragment */
  302. cur = *head_addr;
  303. rx_desc_info = qdf_nbuf_data(cur);
  304. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  305. if (cur_fragno == head_fragno) {
  306. qdf_nbuf_free(frag);
  307. goto insert_fail;
  308. } else if (head_fragno > cur_fragno) {
  309. qdf_nbuf_set_next(frag, cur);
  310. cur = frag;
  311. *head_addr = frag; /* head pointer to be updated */
  312. } else {
  313. while ((cur_fragno > head_fragno) && cur) {
  314. prev = cur;
  315. cur = qdf_nbuf_next(cur);
  316. rx_desc_info = qdf_nbuf_data(cur);
  317. head_fragno =
  318. dp_rx_frag_get_mpdu_frag_number(
  319. rx_desc_info);
  320. }
  321. if (cur_fragno == head_fragno) {
  322. qdf_nbuf_free(frag);
  323. goto insert_fail;
  324. }
  325. qdf_nbuf_set_next(prev, frag);
  326. qdf_nbuf_set_next(frag, cur);
  327. }
  328. }
  329. next = qdf_nbuf_next(*head_addr);
  330. rx_desc_info = qdf_nbuf_data(*tail_addr);
  331. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  332. /* TODO: optimize the loop */
  333. if (!last_morefrag) {
  334. /* Check if all fragments are present */
  335. do {
  336. rx_desc_info = qdf_nbuf_data(next);
  337. next_fragno =
  338. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  339. count++;
  340. if (next_fragno != count)
  341. break;
  342. next = qdf_nbuf_next(next);
  343. } while (next);
  344. if (!next) {
  345. *all_frag_present = 1;
  346. return QDF_STATUS_SUCCESS;
  347. }
  348. }
  349. insert_done:
  350. return QDF_STATUS_SUCCESS;
  351. insert_fail:
  352. return QDF_STATUS_E_FAILURE;
  353. }
  354. /*
  355. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  356. * @msdu: Pointer to the fragment
  357. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  358. *
  359. * decap tkip encrypted fragment
  360. *
  361. * Returns: QDF_STATUS
  362. */
  363. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  364. {
  365. uint8_t *ivp, *orig_hdr;
  366. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  367. /* start of 802.11 header info */
  368. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  369. /* TKIP header is located post 802.11 header */
  370. ivp = orig_hdr + hdrlen;
  371. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  372. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  373. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  374. return QDF_STATUS_E_DEFRAG_ERROR;
  375. }
  376. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  377. return QDF_STATUS_SUCCESS;
  378. }
  379. /*
  380. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  381. * @nbuf: Pointer to the fragment buffer
  382. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  383. *
  384. * Remove MIC information from CCMP fragment
  385. *
  386. * Returns: QDF_STATUS
  387. */
  388. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  389. {
  390. uint8_t *ivp, *orig_hdr;
  391. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  392. /* start of the 802.11 header */
  393. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  394. /* CCMP header is located after 802.11 header */
  395. ivp = orig_hdr + hdrlen;
  396. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  397. return QDF_STATUS_E_DEFRAG_ERROR;
  398. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  399. return QDF_STATUS_SUCCESS;
  400. }
  401. /*
  402. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  403. * @nbuf: Pointer to the fragment
  404. * @hdrlen: length of the header information
  405. *
  406. * decap CCMP encrypted fragment
  407. *
  408. * Returns: QDF_STATUS
  409. */
  410. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  411. {
  412. uint8_t *ivp, *origHdr;
  413. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  414. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  415. ivp = origHdr + hdrlen;
  416. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  417. return QDF_STATUS_E_DEFRAG_ERROR;
  418. /* Let's pull the header later */
  419. return QDF_STATUS_SUCCESS;
  420. }
  421. /*
  422. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  423. * @msdu: Pointer to the fragment
  424. * @hdrlen: length of the header information
  425. *
  426. * decap WEP encrypted fragment
  427. *
  428. * Returns: QDF_STATUS
  429. */
  430. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  431. {
  432. uint8_t *origHdr;
  433. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  434. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  435. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  436. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  437. return QDF_STATUS_SUCCESS;
  438. }
  439. /*
  440. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  441. * @nbuf: Pointer to the fragment
  442. *
  443. * Calculate the header size of the received fragment
  444. *
  445. * Returns: header size (uint16_t)
  446. */
  447. static uint16_t dp_rx_defrag_hdrsize(qdf_nbuf_t nbuf)
  448. {
  449. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  450. uint16_t size = sizeof(struct ieee80211_frame);
  451. uint16_t fc = 0;
  452. uint32_t to_ds, fr_ds;
  453. uint8_t frm_ctrl_valid;
  454. uint16_t frm_ctrl_field;
  455. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  456. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  457. frm_ctrl_valid = hal_rx_get_mpdu_frame_control_valid(rx_tlv_hdr);
  458. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  459. if (to_ds && fr_ds)
  460. size += QDF_MAC_ADDR_SIZE;
  461. if (frm_ctrl_valid) {
  462. fc = frm_ctrl_field;
  463. /* use 1-st byte for validation */
  464. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  465. size += sizeof(uint16_t);
  466. /* use 2-nd byte for validation */
  467. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  468. size += sizeof(struct ieee80211_htc);
  469. }
  470. }
  471. return size;
  472. }
  473. /*
  474. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  475. * @wh0: Pointer to the wireless header of the fragment
  476. * @hdr: Array to hold the pseudo header
  477. *
  478. * Calculate a pseudo MIC header
  479. *
  480. * Returns: None
  481. */
  482. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  483. uint8_t hdr[])
  484. {
  485. const struct ieee80211_frame_addr4 *wh =
  486. (const struct ieee80211_frame_addr4 *)wh0;
  487. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  488. case IEEE80211_FC1_DIR_NODS:
  489. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  490. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  491. wh->i_addr2);
  492. break;
  493. case IEEE80211_FC1_DIR_TODS:
  494. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  495. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  496. wh->i_addr2);
  497. break;
  498. case IEEE80211_FC1_DIR_FROMDS:
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  501. wh->i_addr3);
  502. break;
  503. case IEEE80211_FC1_DIR_DSTODS:
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  506. wh->i_addr4);
  507. break;
  508. }
  509. /*
  510. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  511. * it could also be set for deauth, disassoc, action, etc. for
  512. * a mgt type frame. It comes into picture for MFP.
  513. */
  514. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  515. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  516. IEEE80211_FC1_DIR_DSTODS) {
  517. const struct ieee80211_qosframe_addr4 *qwh =
  518. (const struct ieee80211_qosframe_addr4 *)wh;
  519. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  520. } else {
  521. const struct ieee80211_qosframe *qwh =
  522. (const struct ieee80211_qosframe *)wh;
  523. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  524. }
  525. } else {
  526. hdr[12] = 0;
  527. }
  528. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  529. }
  530. /*
  531. * dp_rx_defrag_mic(): Calculate MIC header
  532. * @key: Pointer to the key
  533. * @wbuf: fragment buffer
  534. * @off: Offset
  535. * @data_len: Data length
  536. * @mic: Array to hold MIC
  537. *
  538. * Calculate a pseudo MIC header
  539. *
  540. * Returns: QDF_STATUS
  541. */
  542. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  543. uint16_t off, uint16_t data_len, uint8_t mic[])
  544. {
  545. uint8_t hdr[16] = { 0, };
  546. uint32_t l, r;
  547. const uint8_t *data;
  548. uint32_t space;
  549. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  550. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  551. + rx_desc_len), hdr);
  552. l = dp_rx_get_le32(key);
  553. r = dp_rx_get_le32(key + 4);
  554. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  555. l ^= dp_rx_get_le32(hdr);
  556. dp_rx_michael_block(l, r);
  557. l ^= dp_rx_get_le32(&hdr[4]);
  558. dp_rx_michael_block(l, r);
  559. l ^= dp_rx_get_le32(&hdr[8]);
  560. dp_rx_michael_block(l, r);
  561. l ^= dp_rx_get_le32(&hdr[12]);
  562. dp_rx_michael_block(l, r);
  563. /* first buffer has special handling */
  564. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  565. space = qdf_nbuf_len(wbuf) - off;
  566. for (;; ) {
  567. if (space > data_len)
  568. space = data_len;
  569. /* collect 32-bit blocks from current buffer */
  570. while (space >= sizeof(uint32_t)) {
  571. l ^= dp_rx_get_le32(data);
  572. dp_rx_michael_block(l, r);
  573. data += sizeof(uint32_t);
  574. space -= sizeof(uint32_t);
  575. data_len -= sizeof(uint32_t);
  576. }
  577. if (data_len < sizeof(uint32_t))
  578. break;
  579. wbuf = qdf_nbuf_next(wbuf);
  580. if (!wbuf)
  581. return QDF_STATUS_E_DEFRAG_ERROR;
  582. if (space != 0) {
  583. const uint8_t *data_next;
  584. /*
  585. * Block straddles buffers, split references.
  586. */
  587. data_next =
  588. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  589. if ((qdf_nbuf_len(wbuf)) <
  590. sizeof(uint32_t) - space) {
  591. return QDF_STATUS_E_DEFRAG_ERROR;
  592. }
  593. switch (space) {
  594. case 1:
  595. l ^= dp_rx_get_le32_split(data[0],
  596. data_next[0], data_next[1],
  597. data_next[2]);
  598. data = data_next + 3;
  599. space = (qdf_nbuf_len(wbuf) - off) - 3;
  600. break;
  601. case 2:
  602. l ^= dp_rx_get_le32_split(data[0], data[1],
  603. data_next[0], data_next[1]);
  604. data = data_next + 2;
  605. space = (qdf_nbuf_len(wbuf) - off) - 2;
  606. break;
  607. case 3:
  608. l ^= dp_rx_get_le32_split(data[0], data[1],
  609. data[2], data_next[0]);
  610. data = data_next + 1;
  611. space = (qdf_nbuf_len(wbuf) - off) - 1;
  612. break;
  613. }
  614. dp_rx_michael_block(l, r);
  615. data_len -= sizeof(uint32_t);
  616. } else {
  617. /*
  618. * Setup for next buffer.
  619. */
  620. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  621. space = qdf_nbuf_len(wbuf) - off;
  622. }
  623. }
  624. /* Last block and padding (0x5a, 4..7 x 0) */
  625. switch (data_len) {
  626. case 0:
  627. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  628. break;
  629. case 1:
  630. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  631. break;
  632. case 2:
  633. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  634. break;
  635. case 3:
  636. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  637. break;
  638. }
  639. dp_rx_michael_block(l, r);
  640. dp_rx_michael_block(l, r);
  641. dp_rx_put_le32(mic, l);
  642. dp_rx_put_le32(mic + 4, r);
  643. return QDF_STATUS_SUCCESS;
  644. }
  645. /*
  646. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  647. * @key: Pointer to the key
  648. * @msdu: fragment buffer
  649. * @hdrlen: Length of the header information
  650. *
  651. * Remove MIC information from the TKIP frame
  652. *
  653. * Returns: QDF_STATUS
  654. */
  655. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  656. qdf_nbuf_t msdu, uint16_t hdrlen)
  657. {
  658. QDF_STATUS status;
  659. uint32_t pktlen = 0;
  660. uint8_t mic[IEEE80211_WEP_MICLEN];
  661. uint8_t mic0[IEEE80211_WEP_MICLEN];
  662. qdf_nbuf_t prev = NULL, next;
  663. next = msdu;
  664. while (next) {
  665. pktlen += (qdf_nbuf_len(next) - hdrlen);
  666. prev = next;
  667. dp_debug("%s pktlen %u", __func__,
  668. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  669. next = qdf_nbuf_next(next);
  670. }
  671. if (!prev) {
  672. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  673. "%s Defrag chaining failed !\n", __func__);
  674. return QDF_STATUS_E_DEFRAG_ERROR;
  675. }
  676. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  677. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  678. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  679. pktlen -= dp_f_tkip.ic_miclen;
  680. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  681. pktlen, mic);
  682. if (QDF_IS_STATUS_ERROR(status))
  683. return status;
  684. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  685. return QDF_STATUS_E_DEFRAG_ERROR;
  686. return QDF_STATUS_SUCCESS;
  687. }
  688. /*
  689. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  690. * @nbuf: buffer pointer
  691. * @hdrsize: size of the header to be pulled
  692. *
  693. * Pull the RXTLV & the 802.11 headers
  694. *
  695. * Returns: None
  696. */
  697. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  698. {
  699. qdf_nbuf_pull_head(nbuf,
  700. RX_PKT_TLVS_LEN + hdrsize);
  701. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  702. "%s: final pktlen %d .11len %d",
  703. __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  704. }
  705. /*
  706. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  707. * @peer: Pointer to the peer
  708. * @head: Pointer to list of fragments
  709. * @hdrsize: Size of the header to be pulled
  710. *
  711. * Construct a nbuf fraglist
  712. *
  713. * Returns: None
  714. */
  715. static void
  716. dp_rx_construct_fraglist(struct dp_peer *peer,
  717. qdf_nbuf_t head, uint16_t hdrsize)
  718. {
  719. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  720. qdf_nbuf_t rx_nbuf = msdu;
  721. uint32_t len = 0;
  722. while (msdu) {
  723. dp_rx_frag_pull_hdr(msdu, hdrsize);
  724. len += qdf_nbuf_len(msdu);
  725. msdu = qdf_nbuf_next(msdu);
  726. }
  727. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  728. qdf_nbuf_set_next(head, NULL);
  729. qdf_nbuf_set_is_frag(head, 1);
  730. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  731. "%s: head len %d ext len %d data len %d ",
  732. __func__,
  733. (uint32_t)qdf_nbuf_len(head),
  734. (uint32_t)qdf_nbuf_len(rx_nbuf),
  735. (uint32_t)(head->data_len));
  736. }
  737. /**
  738. * dp_rx_defrag_err() - rx err handler
  739. * @pdev: handle to pdev object
  740. * @vdev_id: vdev id
  741. * @peer_mac_addr: peer mac address
  742. * @tid: TID
  743. * @tsf32: TSF
  744. * @err_type: error type
  745. * @rx_frame: rx frame
  746. * @pn: PN Number
  747. * @key_id: key id
  748. *
  749. * This function handles rx error and send MIC error notification
  750. *
  751. * Return: None
  752. */
  753. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  754. {
  755. struct ol_if_ops *tops = NULL;
  756. struct dp_pdev *pdev = vdev->pdev;
  757. int rx_desc_len = sizeof(struct rx_pkt_tlvs);
  758. uint8_t *orig_hdr;
  759. struct ieee80211_frame *wh;
  760. struct cdp_rx_mic_err_info mic_failure_info;
  761. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  762. wh = (struct ieee80211_frame *)orig_hdr;
  763. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  764. (struct qdf_mac_addr *)&wh->i_addr1);
  765. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  766. (struct qdf_mac_addr *)&wh->i_addr2);
  767. mic_failure_info.key_id = 0;
  768. mic_failure_info.multicast =
  769. IEEE80211_IS_MULTICAST(wh->i_addr1);
  770. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  771. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  772. mic_failure_info.data = (uint8_t *)wh;
  773. mic_failure_info.vdev_id = vdev->vdev_id;
  774. tops = pdev->soc->cdp_soc.ol_ops;
  775. if (tops->rx_mic_error)
  776. tops->rx_mic_error(pdev->ctrl_pdev, &mic_failure_info);
  777. }
  778. /*
  779. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  780. * @nbuf: Pointer to the fragment buffer
  781. * @hdrsize: Size of headers
  782. *
  783. * Transcap the fragment from 802.11 to 802.3
  784. *
  785. * Returns: None
  786. */
  787. static void
  788. dp_rx_defrag_nwifi_to_8023(qdf_nbuf_t nbuf, uint16_t hdrsize)
  789. {
  790. struct llc_snap_hdr_t *llchdr;
  791. struct ethernet_hdr_t *eth_hdr;
  792. uint8_t ether_type[2];
  793. uint16_t fc = 0;
  794. union dp_align_mac_addr mac_addr;
  795. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  796. if (!rx_desc_info) {
  797. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  798. "%s: Memory alloc failed ! ", __func__);
  799. QDF_ASSERT(0);
  800. return;
  801. }
  802. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  803. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  804. RX_PKT_TLVS_LEN + hdrsize);
  805. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  806. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  807. sizeof(struct llc_snap_hdr_t) -
  808. sizeof(struct ethernet_hdr_t)));
  809. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  810. if (hal_rx_get_mpdu_frame_control_valid(rx_desc_info))
  811. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  812. dp_debug("%s: frame control type: 0x%x", __func__, fc);
  813. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  814. case IEEE80211_FC1_DIR_NODS:
  815. hal_rx_mpdu_get_addr1(rx_desc_info,
  816. &mac_addr.raw[0]);
  817. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  818. QDF_MAC_ADDR_SIZE);
  819. hal_rx_mpdu_get_addr2(rx_desc_info,
  820. &mac_addr.raw[0]);
  821. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  822. QDF_MAC_ADDR_SIZE);
  823. break;
  824. case IEEE80211_FC1_DIR_TODS:
  825. hal_rx_mpdu_get_addr3(rx_desc_info,
  826. &mac_addr.raw[0]);
  827. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  828. QDF_MAC_ADDR_SIZE);
  829. hal_rx_mpdu_get_addr2(rx_desc_info,
  830. &mac_addr.raw[0]);
  831. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  832. QDF_MAC_ADDR_SIZE);
  833. break;
  834. case IEEE80211_FC1_DIR_FROMDS:
  835. hal_rx_mpdu_get_addr1(rx_desc_info,
  836. &mac_addr.raw[0]);
  837. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  838. QDF_MAC_ADDR_SIZE);
  839. hal_rx_mpdu_get_addr3(rx_desc_info,
  840. &mac_addr.raw[0]);
  841. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  842. QDF_MAC_ADDR_SIZE);
  843. break;
  844. case IEEE80211_FC1_DIR_DSTODS:
  845. hal_rx_mpdu_get_addr3(rx_desc_info,
  846. &mac_addr.raw[0]);
  847. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  848. QDF_MAC_ADDR_SIZE);
  849. hal_rx_mpdu_get_addr4(rx_desc_info,
  850. &mac_addr.raw[0]);
  851. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  852. QDF_MAC_ADDR_SIZE);
  853. break;
  854. default:
  855. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  856. "%s: Unknown frame control type: 0x%x", __func__, fc);
  857. }
  858. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  859. sizeof(ether_type));
  860. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  861. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  862. qdf_mem_free(rx_desc_info);
  863. }
  864. /*
  865. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  866. * @peer: Pointer to the peer
  867. * @tid: Transmit Identifier
  868. * @head: Buffer to be reinjected back
  869. *
  870. * Reinject the fragment chain back into REO
  871. *
  872. * Returns: QDF_STATUS
  873. */
  874. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  875. unsigned tid, qdf_nbuf_t head)
  876. {
  877. struct dp_pdev *pdev = peer->vdev->pdev;
  878. struct dp_soc *soc = pdev->soc;
  879. struct hal_buf_info buf_info;
  880. void *link_desc_va;
  881. void *msdu0, *msdu_desc_info;
  882. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  883. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  884. qdf_dma_addr_t paddr;
  885. uint32_t nbuf_len, seq_no, dst_ind;
  886. uint32_t *mpdu_wrd;
  887. uint32_t ret, cookie;
  888. hal_ring_desc_t dst_ring_desc =
  889. peer->rx_tid[tid].dst_ring_desc;
  890. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  891. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  892. if (!ent_ring_desc) {
  893. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  894. "HAL src ring next entry NULL");
  895. return QDF_STATUS_E_FAILURE;
  896. }
  897. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  898. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  899. qdf_assert(link_desc_va);
  900. msdu0 = (uint8_t *)link_desc_va +
  901. RX_MSDU_LINK_8_RX_MSDU_DETAILS_MSDU_0_OFFSET;
  902. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  903. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  904. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  905. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  906. /* msdu reconfig */
  907. msdu_desc_info = (uint8_t *)msdu0 +
  908. RX_MSDU_DETAILS_2_RX_MSDU_DESC_INFO_RX_MSDU_DESC_INFO_DETAILS_OFFSET;
  909. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  910. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  911. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  912. FIRST_MSDU_IN_MPDU_FLAG, 1);
  913. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  914. LAST_MSDU_IN_MPDU_FLAG, 1);
  915. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  916. MSDU_CONTINUATION, 0x0);
  917. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  918. REO_DESTINATION_INDICATION, dst_ind);
  919. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  920. MSDU_LENGTH, nbuf_len);
  921. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  922. SA_IS_VALID, 1);
  923. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  924. DA_IS_VALID, 1);
  925. /* change RX TLV's */
  926. hal_rx_msdu_start_msdu_len_set(
  927. qdf_nbuf_data(head), nbuf_len);
  928. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  929. /* map the nbuf before reinject it into HW */
  930. ret = qdf_nbuf_map_single(soc->osdev, head,
  931. QDF_DMA_FROM_DEVICE);
  932. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  933. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  934. "%s: nbuf map failed !", __func__);
  935. return QDF_STATUS_E_FAILURE;
  936. }
  937. dp_ipa_handle_rx_buf_smmu_mapping(soc, head, true);
  938. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  939. ret = check_x86_paddr(soc, &head, &paddr, pdev);
  940. if (ret == QDF_STATUS_E_FAILURE) {
  941. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  942. "%s: x86 check failed !", __func__);
  943. return QDF_STATUS_E_FAILURE;
  944. }
  945. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_WBM2SW_RBM);
  946. /* Lets fill entrance ring now !!! */
  947. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  948. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  949. "HAL RING Access For REO entrance SRNG Failed: %pK",
  950. hal_srng);
  951. return QDF_STATUS_E_FAILURE;
  952. }
  953. paddr = (uint64_t)buf_info.paddr;
  954. /* buf addr */
  955. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  956. buf_info.sw_cookie,
  957. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  958. /* mpdu desc info */
  959. ent_mpdu_desc_info = (uint8_t *)ent_ring_desc +
  960. RX_MPDU_DETAILS_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  961. dst_mpdu_desc_info = (uint8_t *)dst_ring_desc +
  962. REO_DESTINATION_RING_2_RX_MPDU_DESC_INFO_RX_MPDU_DESC_INFO_DETAILS_OFFSET;
  963. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  964. sizeof(struct rx_mpdu_desc_info));
  965. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  966. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  967. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  968. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  969. MSDU_COUNT, 0x1);
  970. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  971. MPDU_SEQUENCE_NUMBER, seq_no);
  972. /* unset frag bit */
  973. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  974. FRAGMENT_FLAG, 0x0);
  975. /* set sa/da valid bits */
  976. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  977. SA_IS_VALID, 0x1);
  978. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  979. DA_IS_VALID, 0x1);
  980. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  981. RAW_MPDU, 0x0);
  982. /* qdesc addr */
  983. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  984. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  985. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  986. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  987. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  988. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  989. REO_DESTINATION_INDICATION, dst_ind);
  990. hal_srng_access_end(soc->hal_soc, hal_srng);
  991. DP_STATS_INC(soc, rx.reo_reinject, 1);
  992. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  993. "%s: reinjection done !", __func__);
  994. return QDF_STATUS_SUCCESS;
  995. }
  996. /*
  997. * dp_rx_defrag(): Defragment the fragment chain
  998. * @peer: Pointer to the peer
  999. * @tid: Transmit Identifier
  1000. * @frag_list_head: Pointer to head list
  1001. * @frag_list_tail: Pointer to tail list
  1002. *
  1003. * Defragment the fragment chain
  1004. *
  1005. * Returns: QDF_STATUS
  1006. */
  1007. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1008. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1009. {
  1010. qdf_nbuf_t tmp_next, prev;
  1011. qdf_nbuf_t cur = frag_list_head, msdu;
  1012. uint32_t index, tkip_demic = 0;
  1013. uint16_t hdr_space;
  1014. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1015. struct dp_vdev *vdev = peer->vdev;
  1016. struct dp_soc *soc = vdev->pdev->soc;
  1017. uint8_t status = 0;
  1018. hdr_space = dp_rx_defrag_hdrsize(cur);
  1019. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1020. dp_sec_mcast : dp_sec_ucast;
  1021. /* Remove FCS from all fragments */
  1022. while (cur) {
  1023. tmp_next = qdf_nbuf_next(cur);
  1024. qdf_nbuf_set_next(cur, NULL);
  1025. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1026. prev = cur;
  1027. qdf_nbuf_set_next(cur, tmp_next);
  1028. cur = tmp_next;
  1029. }
  1030. cur = frag_list_head;
  1031. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1032. "%s: index %d Security type: %d", __func__,
  1033. index, peer->security[index].sec_type);
  1034. switch (peer->security[index].sec_type) {
  1035. case cdp_sec_type_tkip:
  1036. tkip_demic = 1;
  1037. case cdp_sec_type_tkip_nomic:
  1038. while (cur) {
  1039. tmp_next = qdf_nbuf_next(cur);
  1040. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1041. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1042. QDF_TRACE_LEVEL_ERROR,
  1043. "dp_rx_defrag: TKIP decap failed");
  1044. return QDF_STATUS_E_DEFRAG_ERROR;
  1045. }
  1046. cur = tmp_next;
  1047. }
  1048. /* If success, increment header to be stripped later */
  1049. hdr_space += dp_f_tkip.ic_header;
  1050. break;
  1051. case cdp_sec_type_aes_ccmp:
  1052. while (cur) {
  1053. tmp_next = qdf_nbuf_next(cur);
  1054. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1055. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1056. QDF_TRACE_LEVEL_ERROR,
  1057. "dp_rx_defrag: CCMP demic failed");
  1058. return QDF_STATUS_E_DEFRAG_ERROR;
  1059. }
  1060. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1061. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1062. QDF_TRACE_LEVEL_ERROR,
  1063. "dp_rx_defrag: CCMP decap failed");
  1064. return QDF_STATUS_E_DEFRAG_ERROR;
  1065. }
  1066. cur = tmp_next;
  1067. }
  1068. /* If success, increment header to be stripped later */
  1069. hdr_space += dp_f_ccmp.ic_header;
  1070. break;
  1071. case cdp_sec_type_wep40:
  1072. case cdp_sec_type_wep104:
  1073. case cdp_sec_type_wep128:
  1074. while (cur) {
  1075. tmp_next = qdf_nbuf_next(cur);
  1076. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1077. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1078. QDF_TRACE_LEVEL_ERROR,
  1079. "dp_rx_defrag: WEP decap failed");
  1080. return QDF_STATUS_E_DEFRAG_ERROR;
  1081. }
  1082. cur = tmp_next;
  1083. }
  1084. /* If success, increment header to be stripped later */
  1085. hdr_space += dp_f_wep.ic_header;
  1086. break;
  1087. default:
  1088. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1089. QDF_TRACE_LEVEL_ERROR,
  1090. "dp_rx_defrag: Did not match any security type");
  1091. break;
  1092. }
  1093. if (tkip_demic) {
  1094. msdu = frag_list_head;
  1095. if (soc->cdp_soc.ol_ops->rx_frag_tkip_demic) {
  1096. status = soc->cdp_soc.ol_ops->rx_frag_tkip_demic(
  1097. (void *)peer->ctrl_peer, msdu, hdr_space);
  1098. } else {
  1099. qdf_mem_copy(key,
  1100. &peer->security[index].michael_key[0],
  1101. IEEE80211_WEP_MICLEN);
  1102. status = dp_rx_defrag_tkip_demic(key, msdu,
  1103. RX_PKT_TLVS_LEN +
  1104. hdr_space);
  1105. if (status) {
  1106. dp_rx_defrag_err(vdev, frag_list_head);
  1107. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1108. QDF_TRACE_LEVEL_ERROR,
  1109. "%s: TKIP demic failed status %d",
  1110. __func__, status);
  1111. return QDF_STATUS_E_DEFRAG_ERROR;
  1112. }
  1113. }
  1114. }
  1115. /* Convert the header to 802.3 header */
  1116. dp_rx_defrag_nwifi_to_8023(frag_list_head, hdr_space);
  1117. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1118. return QDF_STATUS_SUCCESS;
  1119. }
  1120. /*
  1121. * dp_rx_defrag_cleanup(): Clean up activities
  1122. * @peer: Pointer to the peer
  1123. * @tid: Transmit Identifier
  1124. *
  1125. * Returns: None
  1126. */
  1127. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1128. {
  1129. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1130. peer->rx_tid[tid].array;
  1131. if (!rx_reorder_array_elem) {
  1132. /*
  1133. * if this condition is hit then somebody
  1134. * must have reset this pointer to NULL.
  1135. * array pointer usually points to base variable
  1136. * of TID queue structure: "struct dp_rx_tid"
  1137. */
  1138. QDF_ASSERT(0);
  1139. return;
  1140. }
  1141. /* Free up nbufs */
  1142. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1143. /* Free up saved ring descriptors */
  1144. dp_rx_clear_saved_desc_info(peer, tid);
  1145. rx_reorder_array_elem->head = NULL;
  1146. rx_reorder_array_elem->tail = NULL;
  1147. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1148. peer->rx_tid[tid].curr_frag_num = 0;
  1149. peer->rx_tid[tid].curr_seq_num = 0;
  1150. peer->rx_tid[tid].head_frag_desc = NULL;
  1151. }
  1152. /*
  1153. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1154. * @ring_desc: Pointer to the dst ring descriptor
  1155. * @peer: Pointer to the peer
  1156. * @tid: Transmit Identifier
  1157. *
  1158. * Returns: None
  1159. */
  1160. static QDF_STATUS
  1161. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1162. struct dp_rx_desc *rx_desc,
  1163. struct dp_peer *peer,
  1164. unsigned int tid)
  1165. {
  1166. void *dst_ring_desc = qdf_mem_malloc(
  1167. sizeof(struct reo_destination_ring));
  1168. if (!dst_ring_desc) {
  1169. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1170. "%s: Memory alloc failed !", __func__);
  1171. QDF_ASSERT(0);
  1172. return QDF_STATUS_E_NOMEM;
  1173. }
  1174. qdf_mem_copy(dst_ring_desc, ring_desc,
  1175. sizeof(struct reo_destination_ring));
  1176. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1177. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1178. return QDF_STATUS_SUCCESS;
  1179. }
  1180. /*
  1181. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1182. * @soc: Pointer to the SOC data structure
  1183. * @ring_desc: Pointer to the ring descriptor
  1184. * @mpdu_desc_info: MPDU descriptor info
  1185. * @tid: Traffic Identifier
  1186. * @rx_desc: Pointer to rx descriptor
  1187. * @rx_bfs: Number of bfs consumed
  1188. *
  1189. * Returns: QDF_STATUS
  1190. */
  1191. static QDF_STATUS
  1192. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1193. hal_ring_desc_t ring_desc,
  1194. union dp_rx_desc_list_elem_t **head,
  1195. union dp_rx_desc_list_elem_t **tail,
  1196. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1197. unsigned int tid, struct dp_rx_desc *rx_desc,
  1198. uint32_t *rx_bfs)
  1199. {
  1200. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1201. struct dp_pdev *pdev;
  1202. struct dp_peer *peer;
  1203. uint16_t peer_id;
  1204. uint8_t fragno, more_frag, all_frag_present = 0;
  1205. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1206. QDF_STATUS status;
  1207. struct dp_rx_tid *rx_tid;
  1208. uint8_t mpdu_sequence_control_valid;
  1209. uint8_t mpdu_frame_control_valid;
  1210. qdf_nbuf_t frag = rx_desc->nbuf;
  1211. /* Check if the packet is from a valid peer */
  1212. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1213. mpdu_desc_info->peer_meta_data);
  1214. peer = dp_peer_find_by_id(soc, peer_id);
  1215. if (!peer) {
  1216. /* We should not receive anything from unknown peer
  1217. * however, that might happen while we are in the monitor mode.
  1218. * We don't need to handle that here
  1219. */
  1220. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1221. "Unknown peer, dropping the fragment");
  1222. goto discard_frag;
  1223. }
  1224. pdev = peer->vdev->pdev;
  1225. rx_tid = &peer->rx_tid[tid];
  1226. mpdu_sequence_control_valid =
  1227. hal_rx_get_mpdu_sequence_control_valid(rx_desc->rx_buf_start);
  1228. /* Invalid MPDU sequence control field, MPDU is of no use */
  1229. if (!mpdu_sequence_control_valid) {
  1230. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1231. "Invalid MPDU seq control field, dropping MPDU");
  1232. qdf_assert(0);
  1233. goto discard_frag;
  1234. }
  1235. mpdu_frame_control_valid =
  1236. hal_rx_get_mpdu_frame_control_valid(rx_desc->rx_buf_start);
  1237. /* Invalid frame control field */
  1238. if (!mpdu_frame_control_valid) {
  1239. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1240. "Invalid frame control field, dropping MPDU");
  1241. qdf_assert(0);
  1242. goto discard_frag;
  1243. }
  1244. /* Current mpdu sequence */
  1245. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1246. /* HW does not populate the fragment number as of now
  1247. * need to get from the 802.11 header
  1248. */
  1249. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1250. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1251. if (!rx_reorder_array_elem) {
  1252. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1253. "Rcvd Fragmented pkt before peer_tid is setup");
  1254. goto discard_frag;
  1255. }
  1256. /*
  1257. * !more_frag: no more fragments to be delivered
  1258. * !frag_no: packet is not fragmented
  1259. * !rx_reorder_array_elem->head: no saved fragments so far
  1260. */
  1261. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1262. /* We should not get into this situation here.
  1263. * It means an unfragmented packet with fragment flag
  1264. * is delivered over the REO exception ring.
  1265. * Typically it follows normal rx path.
  1266. */
  1267. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1268. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1269. qdf_assert(0);
  1270. goto discard_frag;
  1271. }
  1272. /* Check if the fragment is for the same sequence or a different one */
  1273. if (rx_reorder_array_elem->head) {
  1274. if (rxseq != rx_tid->curr_seq_num) {
  1275. /* Drop stored fragments if out of sequence
  1276. * fragment is received
  1277. */
  1278. dp_rx_reorder_flush_frag(peer, tid);
  1279. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1280. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1281. "%s mismatch, dropping earlier sequence ",
  1282. (rxseq == rx_tid->curr_seq_num)
  1283. ? "address"
  1284. : "seq number");
  1285. /*
  1286. * The sequence number for this fragment becomes the
  1287. * new sequence number to be processed
  1288. */
  1289. rx_tid->curr_seq_num = rxseq;
  1290. }
  1291. } else {
  1292. /* Start of a new sequence */
  1293. dp_rx_defrag_cleanup(peer, tid);
  1294. rx_tid->curr_seq_num = rxseq;
  1295. }
  1296. /*
  1297. * If the earlier sequence was dropped, this will be the fresh start.
  1298. * Else, continue with next fragment in a given sequence
  1299. */
  1300. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1301. &rx_reorder_array_elem->tail, frag,
  1302. &all_frag_present);
  1303. /*
  1304. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1305. * packet sequence has more than 6 MSDUs for some reason, we will
  1306. * have to use the next MSDU link descriptor and chain them together
  1307. * before reinjection
  1308. */
  1309. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1310. (rx_reorder_array_elem->head == frag)) {
  1311. qdf_assert_always(ring_desc);
  1312. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1313. rx_desc, peer, tid);
  1314. if (status != QDF_STATUS_SUCCESS) {
  1315. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1316. "%s: Unable to store ring desc !", __func__);
  1317. goto discard_frag;
  1318. }
  1319. } else {
  1320. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1321. *rx_bfs = 1;
  1322. /* Return the non-head link desc */
  1323. if (ring_desc &&
  1324. dp_rx_link_desc_return(soc, ring_desc,
  1325. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1326. QDF_STATUS_SUCCESS)
  1327. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1328. "%s: Failed to return link desc", __func__);
  1329. }
  1330. if (pdev->soc->rx.flags.defrag_timeout_check)
  1331. dp_rx_defrag_waitlist_remove(peer, tid);
  1332. /* Yet to receive more fragments for this sequence number */
  1333. if (!all_frag_present) {
  1334. uint32_t now_ms =
  1335. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1336. peer->rx_tid[tid].defrag_timeout_ms =
  1337. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1338. dp_rx_defrag_waitlist_add(peer, tid);
  1339. dp_peer_unref_del_find_by_id(peer);
  1340. return QDF_STATUS_SUCCESS;
  1341. }
  1342. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1343. "All fragments received for sequence: %d", rxseq);
  1344. /* Process the fragments */
  1345. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1346. rx_reorder_array_elem->tail);
  1347. if (QDF_IS_STATUS_ERROR(status)) {
  1348. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1349. "Fragment processing failed");
  1350. dp_rx_add_to_free_desc_list(head, tail,
  1351. peer->rx_tid[tid].head_frag_desc);
  1352. *rx_bfs = 1;
  1353. if (dp_rx_link_desc_return(soc,
  1354. peer->rx_tid[tid].dst_ring_desc,
  1355. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1356. QDF_STATUS_SUCCESS)
  1357. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1358. "%s: Failed to return link desc",
  1359. __func__);
  1360. dp_rx_defrag_cleanup(peer, tid);
  1361. goto end;
  1362. }
  1363. /* Re-inject the fragments back to REO for further processing */
  1364. status = dp_rx_defrag_reo_reinject(peer, tid,
  1365. rx_reorder_array_elem->head);
  1366. if (QDF_IS_STATUS_SUCCESS(status)) {
  1367. rx_reorder_array_elem->head = NULL;
  1368. rx_reorder_array_elem->tail = NULL;
  1369. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1370. "Fragmented sequence successfully reinjected");
  1371. } else {
  1372. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1373. "Fragmented sequence reinjection failed");
  1374. dp_rx_return_head_frag_desc(peer, tid);
  1375. }
  1376. dp_rx_defrag_cleanup(peer, tid);
  1377. dp_peer_unref_del_find_by_id(peer);
  1378. return QDF_STATUS_SUCCESS;
  1379. discard_frag:
  1380. qdf_nbuf_free(frag);
  1381. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1382. if (dp_rx_link_desc_return(soc, ring_desc,
  1383. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1384. QDF_STATUS_SUCCESS)
  1385. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1386. "%s: Failed to return link desc", __func__);
  1387. *rx_bfs = 1;
  1388. end:
  1389. if (peer)
  1390. dp_peer_unref_del_find_by_id(peer);
  1391. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1392. return QDF_STATUS_E_DEFRAG_ERROR;
  1393. }
  1394. /**
  1395. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1396. *
  1397. * @soc: core txrx main context
  1398. * @ring_desc: opaque pointer to the REO error ring descriptor
  1399. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1400. * @head: head of the local descriptor free-list
  1401. * @tail: tail of the local descriptor free-list
  1402. * @quota: No. of units (packets) that can be serviced in one shot.
  1403. *
  1404. * This function implements RX 802.11 fragmentation handling
  1405. * The handling is mostly same as legacy fragmentation handling.
  1406. * If required, this function can re-inject the frames back to
  1407. * REO ring (with proper setting to by-pass fragmentation check
  1408. * but use duplicate detection / re-ordering and routing these frames
  1409. * to a different core.
  1410. *
  1411. * Return: uint32_t: No. of elements processed
  1412. */
  1413. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1414. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1415. struct dp_rx_desc *rx_desc,
  1416. uint8_t *mac_id,
  1417. uint32_t quota)
  1418. {
  1419. uint32_t rx_bufs_used = 0;
  1420. qdf_nbuf_t msdu = NULL;
  1421. uint32_t tid, msdu_len;
  1422. int rx_bfs = 0;
  1423. struct dp_pdev *pdev;
  1424. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1425. qdf_assert(soc);
  1426. qdf_assert(mpdu_desc_info);
  1427. qdf_assert(rx_desc);
  1428. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
  1429. "Number of MSDUs to process, num_msdus: %d",
  1430. mpdu_desc_info->msdu_count);
  1431. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1432. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1433. "Not sufficient MSDUs to process");
  1434. return rx_bufs_used;
  1435. }
  1436. /* all buffers in MSDU link belong to same pdev */
  1437. pdev = soc->pdev_list[rx_desc->pool_id];
  1438. *mac_id = rx_desc->pool_id;
  1439. msdu = rx_desc->nbuf;
  1440. qdf_nbuf_unmap_single(soc->osdev, msdu, QDF_DMA_FROM_DEVICE);
  1441. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1442. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1443. qdf_nbuf_set_pktlen(msdu, (msdu_len + RX_PKT_TLVS_LEN));
  1444. qdf_nbuf_append_ext_list(msdu, NULL, 0);
  1445. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1446. /* Process fragment-by-fragment */
  1447. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1448. &pdev->free_list_head,
  1449. &pdev->free_list_tail,
  1450. mpdu_desc_info,
  1451. tid, rx_desc, &rx_bfs);
  1452. if (rx_bfs)
  1453. rx_bufs_used++;
  1454. if (!QDF_IS_STATUS_SUCCESS(status))
  1455. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1456. "Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1457. mpdu_desc_info->mpdu_seq,
  1458. mpdu_desc_info->msdu_count,
  1459. mpdu_desc_info->mpdu_flags);
  1460. return rx_bufs_used;
  1461. }
  1462. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1463. struct dp_peer *peer, uint16_t tid,
  1464. uint16_t rxseq, qdf_nbuf_t nbuf)
  1465. {
  1466. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1467. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1468. uint8_t all_frag_present;
  1469. uint32_t msdu_len;
  1470. QDF_STATUS status;
  1471. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1472. /*
  1473. * HW may fill in unexpected peer_id in RX PKT TLV,
  1474. * if this peer_id related peer is valid by coincidence,
  1475. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1476. * self peer), then invalid access to rx_reorder_array_elem happened.
  1477. */
  1478. if (!rx_reorder_array_elem) {
  1479. dp_verbose_debug(
  1480. "peer id:%d mac:" QDF_MAC_ADDR_STR "drop rx frame!",
  1481. peer->peer_ids[0],
  1482. QDF_MAC_ADDR_ARRAY(peer->mac_addr.raw));
  1483. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1484. qdf_nbuf_free(nbuf);
  1485. goto fail;
  1486. }
  1487. if (rx_reorder_array_elem->head &&
  1488. rxseq != rx_tid->curr_seq_num) {
  1489. /* Drop stored fragments if out of sequence
  1490. * fragment is received
  1491. */
  1492. dp_rx_reorder_flush_frag(peer, tid);
  1493. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1494. "%s: No list found for TID %d Seq# %d",
  1495. __func__, tid, rxseq);
  1496. qdf_nbuf_free(nbuf);
  1497. goto fail;
  1498. }
  1499. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1500. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1501. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1502. &rx_reorder_array_elem->head,
  1503. &rx_reorder_array_elem->tail, nbuf,
  1504. &all_frag_present);
  1505. if (QDF_IS_STATUS_ERROR(status)) {
  1506. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1507. "%s Fragment insert failed", __func__);
  1508. goto fail;
  1509. }
  1510. if (soc->rx.flags.defrag_timeout_check)
  1511. dp_rx_defrag_waitlist_remove(peer, tid);
  1512. if (!all_frag_present) {
  1513. uint32_t now_ms =
  1514. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1515. peer->rx_tid[tid].defrag_timeout_ms =
  1516. now_ms + soc->rx.defrag.timeout_ms;
  1517. dp_rx_defrag_waitlist_add(peer, tid);
  1518. return QDF_STATUS_SUCCESS;
  1519. }
  1520. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1521. rx_reorder_array_elem->tail);
  1522. if (QDF_IS_STATUS_ERROR(status)) {
  1523. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1524. "%s Fragment processing failed", __func__);
  1525. dp_rx_return_head_frag_desc(peer, tid);
  1526. dp_rx_defrag_cleanup(peer, tid);
  1527. goto fail;
  1528. }
  1529. /* Re-inject the fragments back to REO for further processing */
  1530. status = dp_rx_defrag_reo_reinject(peer, tid,
  1531. rx_reorder_array_elem->head);
  1532. if (QDF_IS_STATUS_SUCCESS(status)) {
  1533. rx_reorder_array_elem->head = NULL;
  1534. rx_reorder_array_elem->tail = NULL;
  1535. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1536. "%s: Frag seq successfully reinjected",
  1537. __func__);
  1538. } else {
  1539. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1540. "%s: Frag seq reinjection failed", __func__);
  1541. dp_rx_return_head_frag_desc(peer, tid);
  1542. }
  1543. dp_rx_defrag_cleanup(peer, tid);
  1544. return QDF_STATUS_SUCCESS;
  1545. fail:
  1546. return QDF_STATUS_E_DEFRAG_ERROR;
  1547. }