msm_audio_ion.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804
  1. /*
  2. * Copyright (c) 2013-2018, The Linux Foundation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 and
  6. * only version 2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/init.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/err.h>
  17. #include <linux/delay.h>
  18. #include <linux/slab.h>
  19. #include <linux/mutex.h>
  20. #include <linux/list.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/dma-buf.h>
  23. #include <linux/iommu.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/of_device.h>
  26. #include <linux/export.h>
  27. #include <linux/ion_kernel.h>
  28. #include <ipc/apr.h>
  29. #include <asm/dma-iommu.h>
  30. #include <dsp/msm_audio_ion.h>
  31. #define MSM_AUDIO_ION_PROBED (1 << 0)
  32. #define MSM_AUDIO_ION_PHYS_ADDR(alloc_data) \
  33. alloc_data->table->sgl->dma_address
  34. #define MSM_AUDIO_ION_VA_START 0x10000000
  35. #define MSM_AUDIO_ION_VA_LEN 0x0FFFFFFF
  36. #define MSM_AUDIO_SMMU_SID_OFFSET 32
  37. struct msm_audio_ion_private {
  38. bool smmu_enabled;
  39. struct device *cb_dev;
  40. struct dma_iommu_mapping *mapping;
  41. u8 device_status;
  42. struct list_head alloc_list;
  43. struct mutex list_mutex;
  44. u64 smmu_sid_bits;
  45. u32 smmu_version;
  46. };
  47. struct msm_audio_alloc_data {
  48. size_t len;
  49. void *vaddr;
  50. struct dma_buf *dma_buf;
  51. struct dma_buf_attachment *attach;
  52. struct sg_table *table;
  53. struct list_head list;
  54. };
  55. static struct msm_audio_ion_private msm_audio_ion_data = {0,};
  56. static void msm_audio_ion_add_allocation(
  57. struct msm_audio_ion_private *msm_audio_ion_data,
  58. struct msm_audio_alloc_data *alloc_data)
  59. {
  60. /*
  61. * Since these APIs can be invoked by multiple
  62. * clients, there is need to make sure the list
  63. * of allocations is always protected
  64. */
  65. mutex_lock(&(msm_audio_ion_data->list_mutex));
  66. list_add_tail(&(alloc_data->list),
  67. &(msm_audio_ion_data->alloc_list));
  68. mutex_unlock(&(msm_audio_ion_data->list_mutex));
  69. }
  70. static int msm_audio_dma_buf_map(struct dma_buf *dma_buf,
  71. dma_addr_t *addr, size_t *len)
  72. {
  73. struct msm_audio_alloc_data *alloc_data;
  74. struct device *cb_dev;
  75. unsigned long ionflag = 0;
  76. int rc = 0;
  77. cb_dev = msm_audio_ion_data.cb_dev;
  78. /* Data required per buffer mapping */
  79. alloc_data = kzalloc(sizeof(*alloc_data), GFP_KERNEL);
  80. if (!alloc_data)
  81. return -ENOMEM;
  82. alloc_data->dma_buf = dma_buf;
  83. alloc_data->len = dma_buf->size;
  84. *len = dma_buf->size;
  85. /* Attach the dma_buf to context bank device */
  86. alloc_data->attach = dma_buf_attach(alloc_data->dma_buf,
  87. cb_dev);
  88. if (IS_ERR(alloc_data->attach)) {
  89. rc = PTR_ERR(alloc_data->attach);
  90. dev_err(cb_dev,
  91. "%s: Fail to attach dma_buf to CB, rc = %d\n",
  92. __func__, rc);
  93. goto free_alloc_data;
  94. }
  95. /* For uncached buffers, avoid cache maintanance */
  96. rc = dma_buf_get_flags(alloc_data->dma_buf, &ionflag);
  97. if (rc) {
  98. dev_err(cb_dev, "%s: dma_buf_get_flags failed: %d\n",
  99. __func__, rc);
  100. goto detach_dma_buf;
  101. }
  102. if (!(ionflag & ION_FLAG_CACHED))
  103. alloc_data->attach->dma_map_attrs |= DMA_ATTR_SKIP_CPU_SYNC;
  104. /*
  105. * Get the scatter-gather list.
  106. * There is no info as this is a write buffer or
  107. * read buffer, hence the request is bi-directional
  108. * to accommodate both read and write mappings.
  109. */
  110. alloc_data->table = dma_buf_map_attachment(alloc_data->attach,
  111. DMA_BIDIRECTIONAL);
  112. if (IS_ERR(alloc_data->table)) {
  113. rc = PTR_ERR(alloc_data->table);
  114. dev_err(cb_dev,
  115. "%s: Fail to map attachment, rc = %d\n",
  116. __func__, rc);
  117. goto detach_dma_buf;
  118. }
  119. /* physical address from mapping */
  120. *addr = MSM_AUDIO_ION_PHYS_ADDR(alloc_data);
  121. msm_audio_ion_add_allocation(&msm_audio_ion_data,
  122. alloc_data);
  123. return rc;
  124. detach_dma_buf:
  125. dma_buf_detach(alloc_data->dma_buf,
  126. alloc_data->attach);
  127. free_alloc_data:
  128. kfree(alloc_data);
  129. return rc;
  130. }
  131. static int msm_audio_dma_buf_unmap(struct dma_buf *dma_buf)
  132. {
  133. int rc = 0;
  134. struct msm_audio_alloc_data *alloc_data = NULL;
  135. struct list_head *ptr, *next;
  136. struct device *cb_dev = msm_audio_ion_data.cb_dev;
  137. bool found = false;
  138. /*
  139. * Though list_for_each_safe is delete safe, lock
  140. * should be explicitly acquired to avoid race condition
  141. * on adding elements to the list.
  142. */
  143. mutex_lock(&(msm_audio_ion_data.list_mutex));
  144. list_for_each_safe(ptr, next,
  145. &(msm_audio_ion_data.alloc_list)) {
  146. alloc_data = list_entry(ptr, struct msm_audio_alloc_data,
  147. list);
  148. if (alloc_data->dma_buf == dma_buf) {
  149. found = true;
  150. dma_buf_unmap_attachment(alloc_data->attach,
  151. alloc_data->table,
  152. DMA_BIDIRECTIONAL);
  153. dma_buf_detach(alloc_data->dma_buf,
  154. alloc_data->attach);
  155. dma_buf_put(alloc_data->dma_buf);
  156. list_del(&(alloc_data->list));
  157. kfree(alloc_data);
  158. break;
  159. }
  160. }
  161. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  162. if (!found) {
  163. dev_err(cb_dev,
  164. "%s: cannot find allocation, dma_buf %pK",
  165. __func__, dma_buf);
  166. rc = -EINVAL;
  167. }
  168. return rc;
  169. }
  170. static int msm_audio_ion_get_phys(struct dma_buf *dma_buf,
  171. dma_addr_t *addr, size_t *len)
  172. {
  173. int rc = 0;
  174. rc = msm_audio_dma_buf_map(dma_buf, addr, len);
  175. if (rc) {
  176. pr_err("%s: failed to map DMA buf, err = %d\n",
  177. __func__, rc);
  178. goto err;
  179. }
  180. if (msm_audio_ion_data.smmu_enabled) {
  181. /* Append the SMMU SID information to the IOVA address */
  182. *addr |= msm_audio_ion_data.smmu_sid_bits;
  183. }
  184. pr_debug("phys=%pK, len=%zd, rc=%d\n", &(*addr), *len, rc);
  185. err:
  186. return rc;
  187. }
  188. static void *msm_audio_ion_map_kernel(struct dma_buf *dma_buf)
  189. {
  190. int rc = 0;
  191. void *addr = NULL;
  192. struct msm_audio_alloc_data *alloc_data = NULL;
  193. rc = dma_buf_begin_cpu_access(dma_buf, DMA_BIDIRECTIONAL);
  194. if (rc) {
  195. pr_err("%s: kmap dma_buf_begin_cpu_access fail\n", __func__);
  196. goto exit;
  197. }
  198. addr = dma_buf_vmap(dma_buf);
  199. if (!addr) {
  200. pr_err("%s: kernel mapping of dma_buf failed\n",
  201. __func__);
  202. goto exit;
  203. }
  204. /*
  205. * TBD: remove the below section once new API
  206. * for mapping kernel virtual address is available.
  207. */
  208. mutex_lock(&(msm_audio_ion_data.list_mutex));
  209. list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list),
  210. list) {
  211. if (alloc_data->dma_buf == dma_buf) {
  212. alloc_data->vaddr = addr;
  213. break;
  214. }
  215. }
  216. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  217. exit:
  218. return addr;
  219. }
  220. static void msm_audio_ion_unmap_kernel(struct dma_buf *dma_buf)
  221. {
  222. int rc = 0;
  223. void *vaddr = NULL;
  224. struct msm_audio_alloc_data *alloc_data = NULL;
  225. struct device *cb_dev = msm_audio_ion_data.cb_dev;
  226. /*
  227. * TBD: remove the below section once new API
  228. * for unmapping kernel virtual address is available.
  229. */
  230. mutex_lock(&(msm_audio_ion_data.list_mutex));
  231. list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list),
  232. list) {
  233. if (alloc_data->dma_buf == dma_buf) {
  234. vaddr = alloc_data->vaddr;
  235. break;
  236. }
  237. }
  238. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  239. if (!vaddr) {
  240. dev_err(cb_dev,
  241. "%s: cannot find allocation for dma_buf %pK",
  242. __func__, dma_buf);
  243. goto err;
  244. }
  245. dma_buf_vunmap(dma_buf, vaddr);
  246. rc = dma_buf_end_cpu_access(dma_buf, DMA_BIDIRECTIONAL);
  247. if (rc) {
  248. dev_err(cb_dev, "%s: kmap dma_buf_end_cpu_access fail\n",
  249. __func__);
  250. goto err;
  251. }
  252. err:
  253. return;
  254. }
  255. static int msm_audio_ion_map_buf(struct dma_buf *dma_buf, dma_addr_t *paddr,
  256. size_t *plen, void **vaddr)
  257. {
  258. int rc = 0;
  259. rc = msm_audio_ion_get_phys(dma_buf, paddr, plen);
  260. if (rc) {
  261. pr_err("%s: ION Get Physical for AUDIO failed, rc = %d\n",
  262. __func__, rc);
  263. goto err;
  264. }
  265. *vaddr = msm_audio_ion_map_kernel(dma_buf);
  266. if (IS_ERR_OR_NULL(*vaddr)) {
  267. pr_err("%s: ION memory mapping for AUDIO failed\n", __func__);
  268. rc = -ENOMEM;
  269. goto err;
  270. }
  271. err:
  272. return rc;
  273. }
  274. static u32 msm_audio_ion_get_smmu_sid_mode32(void)
  275. {
  276. if (msm_audio_ion_data.smmu_enabled)
  277. return upper_32_bits(msm_audio_ion_data.smmu_sid_bits);
  278. else
  279. return 0;
  280. }
  281. /**
  282. * msm_audio_ion_alloc -
  283. * Allocs ION memory for given client name
  284. *
  285. * @dma_buf: dma_buf for the ION memory
  286. * @bufsz: buffer size
  287. * @paddr: Physical address to be assigned with allocated region
  288. * @plen: length of allocated region to be assigned
  289. * vaddr: virtual address to be assigned
  290. *
  291. * Returns 0 on success or error on failure
  292. */
  293. int msm_audio_ion_alloc(struct dma_buf **dma_buf, size_t bufsz,
  294. dma_addr_t *paddr, size_t *plen, void **vaddr)
  295. {
  296. int rc = -EINVAL;
  297. unsigned long err_ion_ptr = 0;
  298. if ((msm_audio_ion_data.smmu_enabled == true) &&
  299. !(msm_audio_ion_data.device_status & MSM_AUDIO_ION_PROBED)) {
  300. pr_debug("%s:probe is not done, deferred\n", __func__);
  301. return -EPROBE_DEFER;
  302. }
  303. if (!dma_buf || !paddr || !vaddr || !bufsz || !plen) {
  304. pr_err("%s: Invalid params\n", __func__);
  305. return -EINVAL;
  306. }
  307. if (msm_audio_ion_data.smmu_enabled == true) {
  308. pr_debug("%s: system heap is used\n", __func__);
  309. *dma_buf = ion_alloc(bufsz, ION_HEAP(ION_SYSTEM_HEAP_ID), 0);
  310. } else {
  311. pr_debug("%s: audio heap is used\n", __func__);
  312. *dma_buf = ion_alloc(bufsz, ION_HEAP(ION_AUDIO_HEAP_ID), 0);
  313. }
  314. if (IS_ERR_OR_NULL((void *)(*dma_buf))) {
  315. if (IS_ERR((void *)(*dma_buf)))
  316. err_ion_ptr = PTR_ERR((int *)(*dma_buf));
  317. pr_err("%s: ION alloc fail err ptr=%ld, smmu_enabled=%d\n",
  318. __func__, err_ion_ptr, msm_audio_ion_data.smmu_enabled);
  319. rc = -ENOMEM;
  320. goto err;
  321. }
  322. rc = msm_audio_ion_map_buf(*dma_buf, paddr, plen, vaddr);
  323. if (rc) {
  324. pr_err("%s: failed to map ION buf, rc = %d\n", __func__, rc);
  325. goto err_dma_buf;
  326. }
  327. pr_debug("%s: mapped address = %pK, size=%zd\n", __func__,
  328. *vaddr, bufsz);
  329. memset(*vaddr, 0, bufsz);
  330. return rc;
  331. err_dma_buf:
  332. dma_buf_put(*dma_buf);
  333. err:
  334. return rc;
  335. }
  336. EXPORT_SYMBOL(msm_audio_ion_alloc);
  337. /**
  338. * msm_audio_ion_import-
  339. * Import ION buffer with given file descriptor
  340. *
  341. * @dma_buf: dma_buf for the ION memory
  342. * @fd: file descriptor for the ION memory
  343. * @ionflag: flags associated with ION buffer
  344. * @bufsz: buffer size
  345. * @paddr: Physical address to be assigned with allocated region
  346. * @plen: length of allocated region to be assigned
  347. * vaddr: virtual address to be assigned
  348. *
  349. * Returns 0 on success or error on failure
  350. */
  351. int msm_audio_ion_import(struct dma_buf **dma_buf, int fd,
  352. unsigned long *ionflag, size_t bufsz,
  353. dma_addr_t *paddr, size_t *plen, void **vaddr)
  354. {
  355. int rc = 0;
  356. if ((msm_audio_ion_data.smmu_enabled == true) &&
  357. !(msm_audio_ion_data.device_status & MSM_AUDIO_ION_PROBED)) {
  358. pr_debug("%s: probe is not done, deferred\n", __func__);
  359. return -EPROBE_DEFER;
  360. }
  361. if (!dma_buf || !paddr || !vaddr || !plen) {
  362. pr_err("%s: Invalid params\n", __func__);
  363. return -EINVAL;
  364. }
  365. /* bufsz should be 0 and fd shouldn't be 0 as of now */
  366. *dma_buf = dma_buf_get(fd);
  367. pr_debug("%s: dma_buf =%pK, fd=%d\n", __func__, *dma_buf, fd);
  368. if (IS_ERR_OR_NULL((void *)(*dma_buf))) {
  369. pr_err("%s: dma_buf_get failed\n", __func__);
  370. rc = -EINVAL;
  371. goto err;
  372. }
  373. if (ionflag != NULL) {
  374. rc = dma_buf_get_flags(*dma_buf, ionflag);
  375. if (rc) {
  376. pr_err("%s: could not get flags for the dma_buf\n",
  377. __func__);
  378. goto err_ion_flag;
  379. }
  380. }
  381. rc = msm_audio_ion_map_buf(*dma_buf, paddr, plen, vaddr);
  382. if (rc) {
  383. pr_err("%s: failed to map ION buf, rc = %d\n", __func__, rc);
  384. goto err_ion_flag;
  385. }
  386. pr_debug("%s: mapped address = %pK, size=%zd\n", __func__,
  387. *vaddr, bufsz);
  388. return 0;
  389. err_ion_flag:
  390. dma_buf_put(*dma_buf);
  391. err:
  392. *dma_buf = NULL;
  393. return rc;
  394. }
  395. EXPORT_SYMBOL(msm_audio_ion_import);
  396. /**
  397. * msm_audio_ion_free -
  398. * fress ION memory for given client and handle
  399. *
  400. * @dma_buf: dma_buf for the ION memory
  401. *
  402. * Returns 0 on success or error on failure
  403. */
  404. int msm_audio_ion_free(struct dma_buf *dma_buf)
  405. {
  406. if (!dma_buf) {
  407. pr_err("%s: dma_buf invalid\n", __func__);
  408. return -EINVAL;
  409. }
  410. msm_audio_ion_unmap_kernel(dma_buf);
  411. msm_audio_dma_buf_unmap(dma_buf);
  412. return 0;
  413. }
  414. EXPORT_SYMBOL(msm_audio_ion_free);
  415. /**
  416. * msm_audio_ion_mmap -
  417. * Audio ION memory map
  418. *
  419. * @abuff: audio buf pointer
  420. * @vma: virtual mem area
  421. *
  422. * Returns 0 on success or error on failure
  423. */
  424. int msm_audio_ion_mmap(struct audio_buffer *abuff,
  425. struct vm_area_struct *vma)
  426. {
  427. struct msm_audio_alloc_data *alloc_data = NULL;
  428. struct sg_table *table;
  429. unsigned long addr = vma->vm_start;
  430. unsigned long offset = vma->vm_pgoff * PAGE_SIZE;
  431. struct scatterlist *sg;
  432. unsigned int i;
  433. struct page *page;
  434. int ret = 0;
  435. bool found = false;
  436. struct device *cb_dev = msm_audio_ion_data.cb_dev;
  437. mutex_lock(&(msm_audio_ion_data.list_mutex));
  438. list_for_each_entry(alloc_data, &(msm_audio_ion_data.alloc_list),
  439. list) {
  440. if (alloc_data->dma_buf == abuff->dma_buf) {
  441. found = true;
  442. table = alloc_data->table;
  443. break;
  444. }
  445. }
  446. mutex_unlock(&(msm_audio_ion_data.list_mutex));
  447. if (!found) {
  448. dev_err(cb_dev,
  449. "%s: cannot find allocation, dma_buf %pK",
  450. __func__, abuff->dma_buf);
  451. return -EINVAL;
  452. }
  453. /* uncached */
  454. vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
  455. /* We need to check if a page is associated with this sg list because:
  456. * If the allocation came from a carveout we currently don't have
  457. * pages associated with carved out memory. This might change in the
  458. * future and we can remove this check and the else statement.
  459. */
  460. page = sg_page(table->sgl);
  461. if (page) {
  462. pr_debug("%s: page is NOT null\n", __func__);
  463. for_each_sg(table->sgl, sg, table->nents, i) {
  464. unsigned long remainder = vma->vm_end - addr;
  465. unsigned long len = sg->length;
  466. page = sg_page(sg);
  467. if (offset >= len) {
  468. offset -= len;
  469. continue;
  470. } else if (offset) {
  471. page += offset / PAGE_SIZE;
  472. len -= offset;
  473. offset = 0;
  474. }
  475. len = min(len, remainder);
  476. pr_debug("vma=%pK, addr=%x len=%ld vm_start=%x vm_end=%x vm_page_prot=%lu\n",
  477. vma, (unsigned int)addr, len,
  478. (unsigned int)vma->vm_start,
  479. (unsigned int)vma->vm_end,
  480. (unsigned long)pgprot_val(vma->vm_page_prot));
  481. remap_pfn_range(vma, addr, page_to_pfn(page), len,
  482. vma->vm_page_prot);
  483. addr += len;
  484. if (addr >= vma->vm_end)
  485. return 0;
  486. }
  487. } else {
  488. pr_debug("%s: page is NULL\n", __func__);
  489. ret = -EINVAL;
  490. }
  491. return ret;
  492. }
  493. EXPORT_SYMBOL(msm_audio_ion_mmap);
  494. /**
  495. * msm_audio_ion_cache_operations-
  496. * Cache operations on cached Audio ION buffers
  497. *
  498. * @abuff: audio buf pointer
  499. * @cache_op: cache operation to be performed
  500. *
  501. * Returns 0 on success or error on failure
  502. */
  503. int msm_audio_ion_cache_operations(struct audio_buffer *abuff, int cache_op)
  504. {
  505. unsigned long ionflag = 0;
  506. int rc = 0;
  507. if (!abuff) {
  508. pr_err("%s: Invalid params: %pK\n", __func__, abuff);
  509. return -EINVAL;
  510. }
  511. rc = dma_buf_get_flags(abuff->dma_buf, &ionflag);
  512. if (rc) {
  513. pr_err("%s: dma_buf_get_flags failed: %d\n", __func__, rc);
  514. goto cache_op_failed;
  515. }
  516. /* Has to be CACHED */
  517. if (ionflag & ION_FLAG_CACHED) {
  518. /* MSM_AUDIO_ION_INV_CACHES or MSM_AUDIO_ION_CLEAN_CACHES */
  519. switch (cache_op) {
  520. case MSM_AUDIO_ION_INV_CACHES:
  521. case MSM_AUDIO_ION_CLEAN_CACHES:
  522. dma_buf_begin_cpu_access(abuff->dma_buf,
  523. DMA_BIDIRECTIONAL);
  524. dma_buf_end_cpu_access(abuff->dma_buf,
  525. DMA_BIDIRECTIONAL);
  526. break;
  527. default:
  528. pr_err("%s: Invalid cache operation %d\n",
  529. __func__, cache_op);
  530. }
  531. } else {
  532. pr_err("%s: Cache ops called on uncached buffer: %pK\n",
  533. __func__, abuff->dma_buf);
  534. rc = -EINVAL;
  535. }
  536. cache_op_failed:
  537. return rc;
  538. }
  539. EXPORT_SYMBOL(msm_audio_ion_cache_operations);
  540. /**
  541. * msm_audio_populate_upper_32_bits -
  542. * retrieve upper 32bits of 64bit address
  543. *
  544. * @pa: 64bit physical address
  545. *
  546. */
  547. u32 msm_audio_populate_upper_32_bits(dma_addr_t pa)
  548. {
  549. if (sizeof(dma_addr_t) == sizeof(u32))
  550. return msm_audio_ion_get_smmu_sid_mode32();
  551. else
  552. return upper_32_bits(pa);
  553. }
  554. EXPORT_SYMBOL(msm_audio_populate_upper_32_bits);
  555. static int msm_audio_smmu_init(struct device *dev)
  556. {
  557. struct dma_iommu_mapping *mapping;
  558. int ret;
  559. mapping = arm_iommu_create_mapping(&platform_bus_type,
  560. MSM_AUDIO_ION_VA_START,
  561. MSM_AUDIO_ION_VA_LEN);
  562. if (IS_ERR(mapping))
  563. return PTR_ERR(mapping);
  564. ret = arm_iommu_attach_device(dev, mapping);
  565. if (ret) {
  566. dev_err(dev, "%s: Attach failed, err = %d\n",
  567. __func__, ret);
  568. goto fail_attach;
  569. }
  570. msm_audio_ion_data.cb_dev = dev;
  571. msm_audio_ion_data.mapping = mapping;
  572. INIT_LIST_HEAD(&msm_audio_ion_data.alloc_list);
  573. mutex_init(&(msm_audio_ion_data.list_mutex));
  574. return 0;
  575. fail_attach:
  576. arm_iommu_release_mapping(mapping);
  577. return ret;
  578. }
  579. static const struct of_device_id msm_audio_ion_dt_match[] = {
  580. { .compatible = "qcom,msm-audio-ion" },
  581. { }
  582. };
  583. MODULE_DEVICE_TABLE(of, msm_audio_ion_dt_match);
  584. static int msm_audio_ion_probe(struct platform_device *pdev)
  585. {
  586. int rc = 0;
  587. u64 smmu_sid = 0;
  588. u64 smmu_sid_mask = 0;
  589. const char *msm_audio_ion_dt = "qcom,smmu-enabled";
  590. const char *msm_audio_ion_smmu = "qcom,smmu-version";
  591. const char *msm_audio_ion_smmu_sid_mask = "qcom,smmu-sid-mask";
  592. bool smmu_enabled;
  593. enum apr_subsys_state q6_state;
  594. struct device *dev = &pdev->dev;
  595. struct of_phandle_args iommuspec;
  596. if (dev->of_node == NULL) {
  597. dev_err(dev,
  598. "%s: device tree is not found\n",
  599. __func__);
  600. msm_audio_ion_data.smmu_enabled = 0;
  601. return 0;
  602. }
  603. smmu_enabled = of_property_read_bool(dev->of_node,
  604. msm_audio_ion_dt);
  605. msm_audio_ion_data.smmu_enabled = smmu_enabled;
  606. if (!smmu_enabled) {
  607. dev_dbg(dev, "%s: SMMU is Disabled\n", __func__);
  608. goto exit;
  609. }
  610. q6_state = apr_get_q6_state();
  611. if (q6_state == APR_SUBSYS_DOWN) {
  612. dev_dbg(dev,
  613. "defering %s, adsp_state %d\n",
  614. __func__, q6_state);
  615. return -EPROBE_DEFER;
  616. }
  617. dev_dbg(dev, "%s: adsp is ready\n", __func__);
  618. rc = of_property_read_u32(dev->of_node,
  619. msm_audio_ion_smmu,
  620. &msm_audio_ion_data.smmu_version);
  621. if (rc) {
  622. dev_err(dev,
  623. "%s: qcom,smmu_version missing in DT node\n",
  624. __func__);
  625. return rc;
  626. }
  627. dev_dbg(dev, "%s: SMMU is Enabled. SMMU version is (%d)",
  628. __func__, msm_audio_ion_data.smmu_version);
  629. /* Get SMMU SID information from Devicetree */
  630. rc = of_property_read_u64(dev->of_node,
  631. msm_audio_ion_smmu_sid_mask,
  632. &smmu_sid_mask);
  633. if (rc) {
  634. dev_err(dev,
  635. "%s: qcom,smmu-sid-mask missing in DT node, using default\n",
  636. __func__);
  637. smmu_sid_mask = 0xFFFFFFFFFFFFFFFF;
  638. }
  639. rc = of_parse_phandle_with_args(dev->of_node, "iommus",
  640. "#iommu-cells", 0, &iommuspec);
  641. if (rc)
  642. dev_err(dev, "%s: could not get smmu SID, ret = %d\n",
  643. __func__, rc);
  644. else
  645. smmu_sid = (iommuspec.args[0] & smmu_sid_mask);
  646. msm_audio_ion_data.smmu_sid_bits =
  647. smmu_sid << MSM_AUDIO_SMMU_SID_OFFSET;
  648. if (msm_audio_ion_data.smmu_version == 0x2) {
  649. rc = msm_audio_smmu_init(dev);
  650. } else {
  651. dev_err(dev, "%s: smmu version invalid %d\n",
  652. __func__, msm_audio_ion_data.smmu_version);
  653. rc = -EINVAL;
  654. }
  655. if (rc)
  656. dev_err(dev, "%s: smmu init failed, err = %d\n",
  657. __func__, rc);
  658. exit:
  659. if (!rc)
  660. msm_audio_ion_data.device_status |= MSM_AUDIO_ION_PROBED;
  661. return rc;
  662. }
  663. static int msm_audio_ion_remove(struct platform_device *pdev)
  664. {
  665. struct dma_iommu_mapping *mapping;
  666. struct device *audio_cb_dev;
  667. mapping = msm_audio_ion_data.mapping;
  668. audio_cb_dev = msm_audio_ion_data.cb_dev;
  669. if (audio_cb_dev && mapping) {
  670. arm_iommu_detach_device(audio_cb_dev);
  671. arm_iommu_release_mapping(mapping);
  672. }
  673. msm_audio_ion_data.smmu_enabled = 0;
  674. msm_audio_ion_data.device_status = 0;
  675. return 0;
  676. }
  677. static struct platform_driver msm_audio_ion_driver = {
  678. .driver = {
  679. .name = "msm-audio-ion",
  680. .owner = THIS_MODULE,
  681. .of_match_table = msm_audio_ion_dt_match,
  682. },
  683. .probe = msm_audio_ion_probe,
  684. .remove = msm_audio_ion_remove,
  685. };
  686. int __init msm_audio_ion_init(void)
  687. {
  688. return platform_driver_register(&msm_audio_ion_driver);
  689. }
  690. void msm_audio_ion_exit(void)
  691. {
  692. platform_driver_unregister(&msm_audio_ion_driver);
  693. }
  694. MODULE_DESCRIPTION("MSM Audio ION module");
  695. MODULE_LICENSE("GPL v2");