lpass-cdc-wsa-macro.c 108 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/thermal.h>
  10. #include <linux/pm_runtime.h>
  11. #include <sound/soc.h>
  12. #include <sound/soc-dapm.h>
  13. #include <sound/tlv.h>
  14. #include <soc/swr-common.h>
  15. #include <soc/swr-wcd.h>
  16. #include <asoc/msm-cdc-pinctrl.h>
  17. #include "lpass-cdc.h"
  18. #include "lpass-cdc-comp.h"
  19. #include "lpass-cdc-registers.h"
  20. #include "lpass-cdc-wsa-macro.h"
  21. #include "lpass-cdc-clk-rsc.h"
  22. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  23. #define LPASS_CDC_WSA_MACRO_MAX_OFFSET 0x1000
  24. #define LPASS_CDC_WSA_MACRO_RX_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  25. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  27. #define LPASS_CDC_WSA_MACRO_RX_MIX_RATES (SNDRV_PCM_RATE_48000 |\
  28. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  29. #define LPASS_CDC_WSA_MACRO_RX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  30. SNDRV_PCM_FMTBIT_S24_LE |\
  31. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  32. #define LPASS_CDC_WSA_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  33. SNDRV_PCM_RATE_48000)
  34. #define LPASS_CDC_WSA_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  35. SNDRV_PCM_FMTBIT_S24_LE |\
  36. SNDRV_PCM_FMTBIT_S24_3LE)
  37. #define NUM_INTERPOLATORS 2
  38. #define LPASS_CDC_WSA_MACRO_MUX_INP_SHFT 0x3
  39. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK1 0x07
  40. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK2 0x38
  41. #define LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET 0x8
  42. #define LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET 0x4
  43. #define LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET 0x40
  44. #define LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET 0x40
  45. #define LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET 0x80
  46. #define LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET 0x10
  47. #define LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET 0x4C
  48. #define LPASS_CDC_WSA_MACRO_FS_RATE_MASK 0x0F
  49. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK 0x03
  50. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK 0x18
  51. #define LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT 0x2
  52. #define LPASS_CDC_WSA_MACRO_THERMAL_MAX_STATE 11
  53. enum {
  54. LPASS_CDC_WSA_MACRO_RX0 = 0,
  55. LPASS_CDC_WSA_MACRO_RX1,
  56. LPASS_CDC_WSA_MACRO_RX_MIX,
  57. LPASS_CDC_WSA_MACRO_RX_MIX0 = LPASS_CDC_WSA_MACRO_RX_MIX,
  58. LPASS_CDC_WSA_MACRO_RX_MIX1,
  59. LPASS_CDC_WSA_MACRO_RX_MAX,
  60. };
  61. enum {
  62. LPASS_CDC_WSA_MACRO_TX0 = 0,
  63. LPASS_CDC_WSA_MACRO_TX1,
  64. LPASS_CDC_WSA_MACRO_TX_MAX,
  65. };
  66. enum {
  67. LPASS_CDC_WSA_MACRO_EC0_MUX = 0,
  68. LPASS_CDC_WSA_MACRO_EC1_MUX,
  69. LPASS_CDC_WSA_MACRO_EC_MUX_MAX,
  70. };
  71. enum {
  72. LPASS_CDC_WSA_MACRO_COMP1, /* SPK_L */
  73. LPASS_CDC_WSA_MACRO_COMP2, /* SPK_R */
  74. LPASS_CDC_WSA_MACRO_COMP_MAX
  75. };
  76. enum {
  77. LPASS_CDC_WSA_MACRO_SOFTCLIP0, /* RX0 */
  78. LPASS_CDC_WSA_MACRO_SOFTCLIP1, /* RX1 */
  79. LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX
  80. };
  81. enum {
  82. INTn_1_INP_SEL_ZERO = 0,
  83. INTn_1_INP_SEL_RX0,
  84. INTn_1_INP_SEL_RX1,
  85. INTn_1_INP_SEL_RX2,
  86. INTn_1_INP_SEL_RX3,
  87. INTn_1_INP_SEL_DEC0,
  88. INTn_1_INP_SEL_DEC1,
  89. };
  90. enum {
  91. INTn_2_INP_SEL_ZERO = 0,
  92. INTn_2_INP_SEL_RX0,
  93. INTn_2_INP_SEL_RX1,
  94. INTn_2_INP_SEL_RX2,
  95. INTn_2_INP_SEL_RX3,
  96. };
  97. enum {
  98. WSA_MODE_21DB,
  99. WSA_MODE_19P5DB,
  100. WSA_MODE_18DB,
  101. WSA_MODE_16P5DB,
  102. WSA_MODE_15DB,
  103. WSA_MODE_13P5DB,
  104. WSA_MODE_12DB,
  105. WSA_MODE_10P5DB,
  106. WSA_MODE_9DB,
  107. WSA_MODE_MAX
  108. };
  109. static u8 comp_setting_table[WSA_MODE_MAX][COMP_MAX_SETTING] =
  110. {
  111. {0x00, 0x10, 0x06, 0x18, 0x24, 0x2A, 0x2A, 0x2A, 0x00, 0x2A, 0x2A, 0xB0}, /* WSA_MODE_21DB */
  112. {0x00, 0x10, 0x06, 0x18, 0x24, 0x2A, 0x2A, 0x2A, 0xFD, 0x2A, 0x2A, 0xB0}, /* WSA_MODE_19PDB -1.5DB*/
  113. {0x00, 0x10, 0x06, 0x12, 0x1E, 0x24, 0x24, 0x24, 0xFA, 0x24, 0x2A, 0xB0}, /* WSA_MODE_18DB -3DB*/
  114. {0x00, 0x10, 0x06, 0x0C, 0x18, 0x21, 0x21, 0x21, 0xFA, 0x21, 0x2A, 0xB0}, /* WSA_MODE_16P5DB -3DB*/
  115. {0x00, 0x10, 0x06, 0x0C, 0x18, 0x21, 0x21, 0x21, 0xFA, 0x21, 0x2A, 0xB0}, /* WSA_MODE_15DB -3DB -->TODO: NEED UPDATE ENTRIES */
  116. {0x00, 0x10, 0x06, 0x12, 0x1B, 0x1B, 0x1B, 0x1B, 0xFA, 0x1B, 0x2A, 0xB0}, /* WSA_MODE_13P5DB -3DB */
  117. {0x00, 0x10, 0x06, 0x12, 0x18, 0x18, 0x18, 0x18, 0xFA, 0x18, 0x2A, 0xB0}, /* WSA_MODE_12DB -3DB */
  118. {0x00, 0x10, 0x06, 0x12, 0x18, 0x18, 0x18, 0x18, 0xFA, 0x18, 0x2A, 0xB0}, /* WSA_MODE_10P5DB -3DB --> NEED Update entries */
  119. {0x00, 0x10, 0x06, 0x12, 0x18, 0x18, 0x18, 0x18, 0xFA, 0x18, 0x2A, 0xB0}, /* WSA_MODE_9DB -3DB --> NEED Update entries */
  120. };
  121. struct interp_sample_rate {
  122. int sample_rate;
  123. int rate_val;
  124. };
  125. /*
  126. * Structure used to update codec
  127. * register defaults after reset
  128. */
  129. struct lpass_cdc_wsa_macro_reg_mask_val {
  130. u16 reg;
  131. u8 mask;
  132. u8 val;
  133. };
  134. static struct interp_sample_rate int_prim_sample_rate_val[] = {
  135. {8000, 0x0}, /* 8K */
  136. {16000, 0x1}, /* 16K */
  137. {24000, -EINVAL},/* 24K */
  138. {32000, 0x3}, /* 32K */
  139. {48000, 0x4}, /* 48K */
  140. {96000, 0x5}, /* 96K */
  141. {192000, 0x6}, /* 192K */
  142. {384000, 0x7}, /* 384K */
  143. {44100, 0x8}, /* 44.1K */
  144. };
  145. static struct interp_sample_rate int_mix_sample_rate_val[] = {
  146. {48000, 0x4}, /* 48K */
  147. {96000, 0x5}, /* 96K */
  148. {192000, 0x6}, /* 192K */
  149. };
  150. #define LPASS_CDC_WSA_MACRO_SWR_STRING_LEN 80
  151. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  152. struct snd_pcm_hw_params *params,
  153. struct snd_soc_dai *dai);
  154. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  155. unsigned int *tx_num, unsigned int *tx_slot,
  156. unsigned int *rx_num, unsigned int *rx_slot);
  157. static int lpass_cdc_wsa_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  158. /* Hold instance to soundwire platform device */
  159. struct lpass_cdc_wsa_macro_swr_ctrl_data {
  160. struct platform_device *wsa_swr_pdev;
  161. };
  162. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data {
  163. void *handle; /* holds codec private data */
  164. int (*read)(void *handle, int reg);
  165. int (*write)(void *handle, int reg, int val);
  166. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  167. int (*clk)(void *handle, bool enable);
  168. int (*core_vote)(void *handle, bool enable);
  169. int (*handle_irq)(void *handle,
  170. irqreturn_t (*swrm_irq_handler)(int irq,
  171. void *data),
  172. void *swrm_handle,
  173. int action);
  174. };
  175. struct lpass_cdc_wsa_macro_bcl_pmic_params {
  176. u8 id;
  177. u8 sid;
  178. u8 ppid;
  179. };
  180. enum {
  181. LPASS_CDC_WSA_MACRO_AIF_INVALID = 0,
  182. LPASS_CDC_WSA_MACRO_AIF1_PB,
  183. LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  184. LPASS_CDC_WSA_MACRO_AIF_VI,
  185. LPASS_CDC_WSA_MACRO_AIF_ECHO,
  186. LPASS_CDC_WSA_MACRO_MAX_DAIS,
  187. };
  188. #define LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX 3
  189. /*
  190. * @dev: wsa macro device pointer
  191. * @comp_enabled: compander enable mixer value set
  192. * @ec_hq: echo HQ enable mixer value set
  193. * @prim_int_users: Users of interpolator
  194. * @wsa_mclk_users: WSA MCLK users count
  195. * @swr_clk_users: SWR clk users count
  196. * @vi_feed_value: VI sense mask
  197. * @mclk_lock: to lock mclk operations
  198. * @swr_clk_lock: to lock swr master clock operations
  199. * @swr_ctrl_data: SoundWire data structure
  200. * @swr_plat_data: Soundwire platform data
  201. * @lpass_cdc_wsa_macro_add_child_devices_work: work for adding child devices
  202. * @wsa_swr_gpio_p: used by pinctrl API
  203. * @component: codec handle
  204. * @rx_0_count: RX0 interpolation users
  205. * @rx_1_count: RX1 interpolation users
  206. * @active_ch_mask: channel mask for all AIF DAIs
  207. * @active_ch_cnt: channel count of all AIF DAIs
  208. * @rx_port_value: mixer ctl value of WSA RX MUXes
  209. * @wsa_io_base: Base address of WSA macro addr space
  210. */
  211. struct lpass_cdc_wsa_macro_priv {
  212. struct device *dev;
  213. int comp_enabled[LPASS_CDC_WSA_MACRO_COMP_MAX];
  214. int comp_mode[LPASS_CDC_WSA_MACRO_COMP_MAX];
  215. int ec_hq[LPASS_CDC_WSA_MACRO_RX1 + 1];
  216. u16 prim_int_users[LPASS_CDC_WSA_MACRO_RX1 + 1];
  217. u16 wsa_mclk_users;
  218. u16 swr_clk_users;
  219. bool dapm_mclk_enable;
  220. bool reset_swr;
  221. unsigned int vi_feed_value;
  222. struct mutex mclk_lock;
  223. struct mutex swr_clk_lock;
  224. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data;
  225. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data swr_plat_data;
  226. struct work_struct lpass_cdc_wsa_macro_add_child_devices_work;
  227. struct device_node *wsa_swr_gpio_p;
  228. struct snd_soc_component *component;
  229. int rx_0_count;
  230. int rx_1_count;
  231. unsigned long active_ch_mask[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  232. unsigned long active_ch_cnt[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  233. int rx_port_value[LPASS_CDC_WSA_MACRO_RX_MAX];
  234. char __iomem *wsa_io_base;
  235. struct platform_device *pdev_child_devices
  236. [LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX];
  237. int child_count;
  238. int ear_spkr_gain;
  239. int spkr_gain_offset;
  240. int spkr_mode;
  241. int is_softclip_on[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  242. int softclip_clk_users[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  243. struct lpass_cdc_wsa_macro_bcl_pmic_params bcl_pmic_params;
  244. char __iomem *mclk_mode_muxsel;
  245. u16 default_clk_id;
  246. u32 pcm_rate_vi;
  247. int wsa_digital_mute_status[LPASS_CDC_WSA_MACRO_RX_MAX];
  248. struct thermal_cooling_device *tcdev;
  249. uint32_t thermal_cur_state;
  250. uint32_t thermal_max_state;
  251. };
  252. static int lpass_cdc_wsa_macro_config_ear_spkr_gain(struct snd_soc_component *component,
  253. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  254. int event, int gain_reg);
  255. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[];
  256. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  257. static const char *const rx_text[] = {
  258. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1", "DEC0", "DEC1"
  259. };
  260. static const char *const rx_mix_text[] = {
  261. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1"
  262. };
  263. static const char *const rx_mix_ec_text[] = {
  264. "ZERO", "RX_MIX_TX0", "RX_MIX_TX1"
  265. };
  266. static const char *const rx_mux_text[] = {
  267. "ZERO", "AIF1_PB", "AIF_MIX1_PB"
  268. };
  269. static const char *const rx_sidetone_mix_text[] = {
  270. "ZERO", "SRC0"
  271. };
  272. static const char * const lpass_cdc_wsa_macro_ear_spkr_pa_gain_text[] = {
  273. "G_DEFAULT", "G_0_DB", "G_1_DB", "G_2_DB", "G_3_DB",
  274. "G_4_DB", "G_5_DB", "G_6_DB"
  275. };
  276. static const char * const lpass_cdc_wsa_macro_speaker_boost_stage_text[] = {
  277. "NO_MAX_STATE", "MAX_STATE_1", "MAX_STATE_2"
  278. };
  279. static const char * const lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text[] = {
  280. "OFF", "ON"
  281. };
  282. static const char * const lpass_cdc_wsa_macro_comp_mode_text[] = {
  283. "G_21_DB", "G_19P5_DB", "G_18_DB", "G_16P5_DB", "G_15_DB",
  284. "G_13P5_DB", "G_12_DB", "G_10P5_DB", "G_9_DB"
  285. };
  286. static const struct snd_kcontrol_new wsa_int0_vbat_mix_switch[] = {
  287. SOC_DAPM_SINGLE("WSA RX0 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  288. };
  289. static const struct snd_kcontrol_new wsa_int1_vbat_mix_switch[] = {
  290. SOC_DAPM_SINGLE("WSA RX1 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  291. };
  292. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_ear_spkr_pa_gain_enum,
  293. lpass_cdc_wsa_macro_ear_spkr_pa_gain_text);
  294. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_spkr_boost_stage_enum,
  295. lpass_cdc_wsa_macro_speaker_boost_stage_text);
  296. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  297. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text);
  298. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_comp_mode_enum,
  299. lpass_cdc_wsa_macro_comp_mode_text);
  300. /* RX INT0 */
  301. static const struct soc_enum rx0_prim_inp0_chain_enum =
  302. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  303. 0, 7, rx_text);
  304. static const struct soc_enum rx0_prim_inp1_chain_enum =
  305. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  306. 3, 7, rx_text);
  307. static const struct soc_enum rx0_prim_inp2_chain_enum =
  308. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  309. 3, 7, rx_text);
  310. static const struct soc_enum rx0_mix_chain_enum =
  311. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  312. 0, 5, rx_mix_text);
  313. static const struct soc_enum rx0_sidetone_mix_enum =
  314. SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, 2, rx_sidetone_mix_text);
  315. static const struct snd_kcontrol_new rx0_prim_inp0_mux =
  316. SOC_DAPM_ENUM("WSA_RX0 INP0 Mux", rx0_prim_inp0_chain_enum);
  317. static const struct snd_kcontrol_new rx0_prim_inp1_mux =
  318. SOC_DAPM_ENUM("WSA_RX0 INP1 Mux", rx0_prim_inp1_chain_enum);
  319. static const struct snd_kcontrol_new rx0_prim_inp2_mux =
  320. SOC_DAPM_ENUM("WSA_RX0 INP2 Mux", rx0_prim_inp2_chain_enum);
  321. static const struct snd_kcontrol_new rx0_mix_mux =
  322. SOC_DAPM_ENUM("WSA_RX0 MIX Mux", rx0_mix_chain_enum);
  323. static const struct snd_kcontrol_new rx0_sidetone_mix_mux =
  324. SOC_DAPM_ENUM("WSA_RX0 SIDETONE MIX Mux", rx0_sidetone_mix_enum);
  325. /* RX INT1 */
  326. static const struct soc_enum rx1_prim_inp0_chain_enum =
  327. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  328. 0, 7, rx_text);
  329. static const struct soc_enum rx1_prim_inp1_chain_enum =
  330. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  331. 3, 7, rx_text);
  332. static const struct soc_enum rx1_prim_inp2_chain_enum =
  333. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  334. 3, 7, rx_text);
  335. static const struct soc_enum rx1_mix_chain_enum =
  336. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  337. 0, 5, rx_mix_text);
  338. static const struct snd_kcontrol_new rx1_prim_inp0_mux =
  339. SOC_DAPM_ENUM("WSA_RX1 INP0 Mux", rx1_prim_inp0_chain_enum);
  340. static const struct snd_kcontrol_new rx1_prim_inp1_mux =
  341. SOC_DAPM_ENUM("WSA_RX1 INP1 Mux", rx1_prim_inp1_chain_enum);
  342. static const struct snd_kcontrol_new rx1_prim_inp2_mux =
  343. SOC_DAPM_ENUM("WSA_RX1 INP2 Mux", rx1_prim_inp2_chain_enum);
  344. static const struct snd_kcontrol_new rx1_mix_mux =
  345. SOC_DAPM_ENUM("WSA_RX1 MIX Mux", rx1_mix_chain_enum);
  346. static const struct soc_enum rx_mix_ec0_enum =
  347. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  348. 0, 3, rx_mix_ec_text);
  349. static const struct soc_enum rx_mix_ec1_enum =
  350. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  351. 3, 3, rx_mix_ec_text);
  352. static const struct snd_kcontrol_new rx_mix_ec0_mux =
  353. SOC_DAPM_ENUM("WSA RX_MIX EC0_Mux", rx_mix_ec0_enum);
  354. static const struct snd_kcontrol_new rx_mix_ec1_mux =
  355. SOC_DAPM_ENUM("WSA RX_MIX EC1_Mux", rx_mix_ec1_enum);
  356. static struct snd_soc_dai_ops lpass_cdc_wsa_macro_dai_ops = {
  357. .hw_params = lpass_cdc_wsa_macro_hw_params,
  358. .get_channel_map = lpass_cdc_wsa_macro_get_channel_map,
  359. .mute_stream = lpass_cdc_wsa_macro_mute_stream,
  360. };
  361. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[] = {
  362. {
  363. .name = "lpass_cdc_wsa_macro_rx1",
  364. .id = LPASS_CDC_WSA_MACRO_AIF1_PB,
  365. .playback = {
  366. .stream_name = "WSA_AIF1 Playback",
  367. .rates = LPASS_CDC_WSA_MACRO_RX_RATES,
  368. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  369. .rate_max = 384000,
  370. .rate_min = 8000,
  371. .channels_min = 1,
  372. .channels_max = 2,
  373. },
  374. .ops = &lpass_cdc_wsa_macro_dai_ops,
  375. },
  376. {
  377. .name = "lpass_cdc_wsa_macro_rx_mix",
  378. .id = LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  379. .playback = {
  380. .stream_name = "WSA_AIF_MIX1 Playback",
  381. .rates = LPASS_CDC_WSA_MACRO_RX_MIX_RATES,
  382. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  383. .rate_max = 192000,
  384. .rate_min = 48000,
  385. .channels_min = 1,
  386. .channels_max = 2,
  387. },
  388. .ops = &lpass_cdc_wsa_macro_dai_ops,
  389. },
  390. {
  391. .name = "lpass_cdc_wsa_macro_vifeedback",
  392. .id = LPASS_CDC_WSA_MACRO_AIF_VI,
  393. .capture = {
  394. .stream_name = "WSA_AIF_VI Capture",
  395. .rates = SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_48000,
  396. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  397. .rate_max = 48000,
  398. .rate_min = 8000,
  399. .channels_min = 1,
  400. .channels_max = 4,
  401. },
  402. .ops = &lpass_cdc_wsa_macro_dai_ops,
  403. },
  404. {
  405. .name = "lpass_cdc_wsa_macro_echo",
  406. .id = LPASS_CDC_WSA_MACRO_AIF_ECHO,
  407. .capture = {
  408. .stream_name = "WSA_AIF_ECHO Capture",
  409. .rates = LPASS_CDC_WSA_MACRO_ECHO_RATES,
  410. .formats = LPASS_CDC_WSA_MACRO_ECHO_FORMATS,
  411. .rate_max = 48000,
  412. .rate_min = 8000,
  413. .channels_min = 1,
  414. .channels_max = 2,
  415. },
  416. .ops = &lpass_cdc_wsa_macro_dai_ops,
  417. },
  418. };
  419. static const struct lpass_cdc_wsa_macro_reg_mask_val
  420. lpass_cdc_wsa_macro_spkr_default[] = {
  421. {LPASS_CDC_WSA_COMPANDER0_CTL3, 0x80, 0x80},
  422. {LPASS_CDC_WSA_COMPANDER1_CTL3, 0x80, 0x80},
  423. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x01, 0x01},
  424. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x01, 0x01},
  425. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x7C, 0x58},
  426. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x7C, 0x58},
  427. };
  428. static const struct lpass_cdc_wsa_macro_reg_mask_val
  429. lpass_cdc_wsa_macro_spkr_mode1[] = {
  430. {LPASS_CDC_WSA_COMPANDER0_CTL3, 0x80, 0x00},
  431. {LPASS_CDC_WSA_COMPANDER1_CTL3, 0x80, 0x00},
  432. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x01, 0x00},
  433. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x01, 0x00},
  434. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x7C, 0x44},
  435. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x7C, 0x44},
  436. };
  437. static bool lpass_cdc_wsa_macro_get_data(struct snd_soc_component *component,
  438. struct device **wsa_dev,
  439. struct lpass_cdc_wsa_macro_priv **wsa_priv,
  440. const char *func_name)
  441. {
  442. *wsa_dev = lpass_cdc_get_device_ptr(component->dev,
  443. WSA_MACRO);
  444. if (!(*wsa_dev)) {
  445. dev_err(component->dev,
  446. "%s: null device for macro!\n", func_name);
  447. return false;
  448. }
  449. *wsa_priv = dev_get_drvdata((*wsa_dev));
  450. if (!(*wsa_priv) || !(*wsa_priv)->component) {
  451. dev_err(component->dev,
  452. "%s: priv is null for macro!\n", func_name);
  453. return false;
  454. }
  455. return true;
  456. }
  457. static int lpass_cdc_wsa_macro_set_port_map(struct snd_soc_component *component,
  458. u32 usecase, u32 size, void *data)
  459. {
  460. struct device *wsa_dev = NULL;
  461. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  462. struct swrm_port_config port_cfg;
  463. int ret = 0;
  464. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  465. return -EINVAL;
  466. memset(&port_cfg, 0, sizeof(port_cfg));
  467. port_cfg.uc = usecase;
  468. port_cfg.size = size;
  469. port_cfg.params = data;
  470. if (wsa_priv->swr_ctrl_data)
  471. ret = swrm_wcd_notify(
  472. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  473. SWR_SET_PORT_MAP, &port_cfg);
  474. return ret;
  475. }
  476. /**
  477. * lpass_cdc_wsa_macro_set_spkr_gain_offset - offset the speaker path
  478. * gain with the given offset value.
  479. *
  480. * @component: codec instance
  481. * @offset: Indicates speaker path gain offset value.
  482. *
  483. * Returns 0 on success or -EINVAL on error.
  484. */
  485. int lpass_cdc_wsa_macro_set_spkr_gain_offset(struct snd_soc_component *component,
  486. int offset)
  487. {
  488. struct device *wsa_dev = NULL;
  489. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  490. if (!component) {
  491. pr_err("%s: NULL component pointer!\n", __func__);
  492. return -EINVAL;
  493. }
  494. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  495. return -EINVAL;
  496. wsa_priv->spkr_gain_offset = offset;
  497. return 0;
  498. }
  499. EXPORT_SYMBOL(lpass_cdc_wsa_macro_set_spkr_gain_offset);
  500. /**
  501. * lpass_cdc_wsa_macro_set_spkr_mode - Configures speaker compander and smartboost
  502. * settings based on speaker mode.
  503. *
  504. * @component: codec instance
  505. * @mode: Indicates speaker configuration mode.
  506. *
  507. * Returns 0 on success or -EINVAL on error.
  508. */
  509. int lpass_cdc_wsa_macro_set_spkr_mode(struct snd_soc_component *component, int mode)
  510. {
  511. int i;
  512. const struct lpass_cdc_wsa_macro_reg_mask_val *regs;
  513. int size;
  514. struct device *wsa_dev = NULL;
  515. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  516. if (!component) {
  517. pr_err("%s: NULL codec pointer!\n", __func__);
  518. return -EINVAL;
  519. }
  520. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  521. return -EINVAL;
  522. switch (mode) {
  523. case LPASS_CDC_WSA_MACRO_SPKR_MODE_1:
  524. regs = lpass_cdc_wsa_macro_spkr_mode1;
  525. size = ARRAY_SIZE(lpass_cdc_wsa_macro_spkr_mode1);
  526. break;
  527. default:
  528. regs = lpass_cdc_wsa_macro_spkr_default;
  529. size = ARRAY_SIZE(lpass_cdc_wsa_macro_spkr_default);
  530. break;
  531. }
  532. wsa_priv->spkr_mode = mode;
  533. for (i = 0; i < size; i++)
  534. snd_soc_component_update_bits(component, regs[i].reg,
  535. regs[i].mask, regs[i].val);
  536. return 0;
  537. }
  538. EXPORT_SYMBOL(lpass_cdc_wsa_macro_set_spkr_mode);
  539. static int lpass_cdc_wsa_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  540. u8 int_prim_fs_rate_reg_val,
  541. u32 sample_rate)
  542. {
  543. u8 int_1_mix1_inp;
  544. u32 j, port;
  545. u16 int_mux_cfg0, int_mux_cfg1;
  546. u16 int_fs_reg;
  547. u8 int_mux_cfg0_val, int_mux_cfg1_val;
  548. u8 inp0_sel, inp1_sel, inp2_sel;
  549. struct snd_soc_component *component = dai->component;
  550. struct device *wsa_dev = NULL;
  551. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  552. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  553. return -EINVAL;
  554. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  555. LPASS_CDC_WSA_MACRO_RX_MAX) {
  556. int_1_mix1_inp = port;
  557. if ((int_1_mix1_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  558. (int_1_mix1_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  559. dev_err(wsa_dev,
  560. "%s: Invalid RX port, Dai ID is %d\n",
  561. __func__, dai->id);
  562. return -EINVAL;
  563. }
  564. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0;
  565. /*
  566. * Loop through all interpolator MUX inputs and find out
  567. * to which interpolator input, the cdc_dma rx port
  568. * is connected
  569. */
  570. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  571. int_mux_cfg1 = int_mux_cfg0 + LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET;
  572. int_mux_cfg0_val = snd_soc_component_read(component,
  573. int_mux_cfg0);
  574. int_mux_cfg1_val = snd_soc_component_read(component,
  575. int_mux_cfg1);
  576. inp0_sel = int_mux_cfg0_val & LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  577. inp1_sel = (int_mux_cfg0_val >>
  578. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  579. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  580. inp2_sel = (int_mux_cfg1_val >>
  581. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  582. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  583. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  584. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  585. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  586. int_fs_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  587. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  588. dev_dbg(wsa_dev,
  589. "%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  590. __func__, dai->id, j);
  591. dev_dbg(wsa_dev,
  592. "%s: set INT%u_1 sample rate to %u\n",
  593. __func__, j, sample_rate);
  594. /* sample_rate is in Hz */
  595. snd_soc_component_update_bits(component,
  596. int_fs_reg,
  597. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  598. int_prim_fs_rate_reg_val);
  599. }
  600. int_mux_cfg0 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  601. }
  602. }
  603. return 0;
  604. }
  605. static int lpass_cdc_wsa_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  606. u8 int_mix_fs_rate_reg_val,
  607. u32 sample_rate)
  608. {
  609. u8 int_2_inp;
  610. u32 j, port;
  611. u16 int_mux_cfg1, int_fs_reg;
  612. u8 int_mux_cfg1_val;
  613. struct snd_soc_component *component = dai->component;
  614. struct device *wsa_dev = NULL;
  615. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  616. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  617. return -EINVAL;
  618. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  619. LPASS_CDC_WSA_MACRO_RX_MAX) {
  620. int_2_inp = port;
  621. if ((int_2_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  622. (int_2_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  623. dev_err(wsa_dev,
  624. "%s: Invalid RX port, Dai ID is %d\n",
  625. __func__, dai->id);
  626. return -EINVAL;
  627. }
  628. int_mux_cfg1 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1;
  629. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  630. int_mux_cfg1_val = snd_soc_component_read(component,
  631. int_mux_cfg1) &
  632. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  633. if (int_mux_cfg1_val == int_2_inp +
  634. INTn_2_INP_SEL_RX0) {
  635. int_fs_reg =
  636. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  637. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  638. dev_dbg(wsa_dev,
  639. "%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  640. __func__, dai->id, j);
  641. dev_dbg(wsa_dev,
  642. "%s: set INT%u_2 sample rate to %u\n",
  643. __func__, j, sample_rate);
  644. snd_soc_component_update_bits(component,
  645. int_fs_reg,
  646. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  647. int_mix_fs_rate_reg_val);
  648. }
  649. int_mux_cfg1 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  650. }
  651. }
  652. return 0;
  653. }
  654. static int lpass_cdc_wsa_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  655. u32 sample_rate)
  656. {
  657. int rate_val = 0;
  658. int i, ret;
  659. /* set mixing path rate */
  660. for (i = 0; i < ARRAY_SIZE(int_mix_sample_rate_val); i++) {
  661. if (sample_rate ==
  662. int_mix_sample_rate_val[i].sample_rate) {
  663. rate_val =
  664. int_mix_sample_rate_val[i].rate_val;
  665. break;
  666. }
  667. }
  668. if ((i == ARRAY_SIZE(int_mix_sample_rate_val)) ||
  669. (rate_val < 0))
  670. goto prim_rate;
  671. ret = lpass_cdc_wsa_macro_set_mix_interpolator_rate(dai,
  672. (u8) rate_val, sample_rate);
  673. prim_rate:
  674. /* set primary path sample rate */
  675. for (i = 0; i < ARRAY_SIZE(int_prim_sample_rate_val); i++) {
  676. if (sample_rate ==
  677. int_prim_sample_rate_val[i].sample_rate) {
  678. rate_val =
  679. int_prim_sample_rate_val[i].rate_val;
  680. break;
  681. }
  682. }
  683. if ((i == ARRAY_SIZE(int_prim_sample_rate_val)) ||
  684. (rate_val < 0))
  685. return -EINVAL;
  686. ret = lpass_cdc_wsa_macro_set_prim_interpolator_rate(dai,
  687. (u8) rate_val, sample_rate);
  688. return ret;
  689. }
  690. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  691. struct snd_pcm_hw_params *params,
  692. struct snd_soc_dai *dai)
  693. {
  694. struct snd_soc_component *component = dai->component;
  695. int ret;
  696. struct device *wsa_dev = NULL;
  697. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  698. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  699. return -EINVAL;
  700. wsa_priv = dev_get_drvdata(wsa_dev);
  701. if (!wsa_priv)
  702. return -EINVAL;
  703. dev_dbg(component->dev,
  704. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  705. dai->name, dai->id, params_rate(params),
  706. params_channels(params));
  707. switch (substream->stream) {
  708. case SNDRV_PCM_STREAM_PLAYBACK:
  709. ret = lpass_cdc_wsa_macro_set_interpolator_rate(dai, params_rate(params));
  710. if (ret) {
  711. dev_err(component->dev,
  712. "%s: cannot set sample rate: %u\n",
  713. __func__, params_rate(params));
  714. return ret;
  715. }
  716. break;
  717. case SNDRV_PCM_STREAM_CAPTURE:
  718. if (dai->id == LPASS_CDC_WSA_MACRO_AIF_VI)
  719. wsa_priv->pcm_rate_vi = params_rate(params);
  720. default:
  721. break;
  722. }
  723. return 0;
  724. }
  725. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  726. unsigned int *tx_num, unsigned int *tx_slot,
  727. unsigned int *rx_num, unsigned int *rx_slot)
  728. {
  729. struct snd_soc_component *component = dai->component;
  730. struct device *wsa_dev = NULL;
  731. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  732. u16 val = 0, mask = 0, cnt = 0, temp = 0;
  733. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  734. return -EINVAL;
  735. wsa_priv = dev_get_drvdata(wsa_dev);
  736. if (!wsa_priv)
  737. return -EINVAL;
  738. switch (dai->id) {
  739. case LPASS_CDC_WSA_MACRO_AIF_VI:
  740. *tx_slot = wsa_priv->active_ch_mask[dai->id];
  741. *tx_num = wsa_priv->active_ch_cnt[dai->id];
  742. break;
  743. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  744. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  745. for_each_set_bit(temp, &wsa_priv->active_ch_mask[dai->id],
  746. LPASS_CDC_WSA_MACRO_RX_MAX) {
  747. mask |= (1 << temp);
  748. if (++cnt == LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT)
  749. break;
  750. }
  751. if (mask & 0x0C)
  752. mask = mask >> 0x2;
  753. *rx_slot = mask;
  754. *rx_num = cnt;
  755. break;
  756. case LPASS_CDC_WSA_MACRO_AIF_ECHO:
  757. val = snd_soc_component_read(component,
  758. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  759. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK) {
  760. mask |= 0x2;
  761. cnt++;
  762. }
  763. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK) {
  764. mask |= 0x1;
  765. cnt++;
  766. }
  767. *tx_slot = mask;
  768. *tx_num = cnt;
  769. break;
  770. default:
  771. dev_err(wsa_dev, "%s: Invalid AIF\n", __func__);
  772. break;
  773. }
  774. return 0;
  775. }
  776. static int lpass_cdc_wsa_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  777. {
  778. struct snd_soc_component *component = dai->component;
  779. struct device *wsa_dev = NULL;
  780. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  781. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  782. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  783. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  784. bool adie_lb = false;
  785. if (mute)
  786. return 0;
  787. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  788. return -EINVAL;
  789. switch (dai->id) {
  790. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  791. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  792. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  793. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  794. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  795. mix_reg = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  796. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  797. dsm_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  798. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET) +
  799. LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET;
  800. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  801. int_mux_cfg1 = int_mux_cfg0 + 4;
  802. int_mux_cfg0_val = snd_soc_component_read(component,
  803. int_mux_cfg0);
  804. int_mux_cfg1_val = snd_soc_component_read(component,
  805. int_mux_cfg1);
  806. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  807. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0x38))
  808. snd_soc_component_update_bits(component, reg,
  809. 0x20, 0x20);
  810. if (int_mux_cfg1_val & 0x07) {
  811. snd_soc_component_update_bits(component, reg,
  812. 0x20, 0x20);
  813. snd_soc_component_update_bits(component,
  814. mix_reg, 0x20, 0x20);
  815. }
  816. }
  817. }
  818. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  819. break;
  820. default:
  821. break;
  822. }
  823. return 0;
  824. }
  825. static int lpass_cdc_wsa_macro_mclk_enable(
  826. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  827. bool mclk_enable, bool dapm)
  828. {
  829. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  830. int ret = 0;
  831. if (regmap == NULL) {
  832. dev_err(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  833. return -EINVAL;
  834. }
  835. dev_dbg(wsa_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  836. __func__, mclk_enable, dapm, wsa_priv->wsa_mclk_users);
  837. mutex_lock(&wsa_priv->mclk_lock);
  838. if (mclk_enable) {
  839. if (wsa_priv->wsa_mclk_users == 0) {
  840. ret = lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  841. wsa_priv->default_clk_id,
  842. wsa_priv->default_clk_id,
  843. true);
  844. if (ret < 0) {
  845. dev_err_ratelimited(wsa_priv->dev,
  846. "%s: wsa request clock enable failed\n",
  847. __func__);
  848. goto exit;
  849. }
  850. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  851. true);
  852. regcache_mark_dirty(regmap);
  853. regcache_sync_region(regmap,
  854. WSA_START_OFFSET,
  855. WSA_MAX_OFFSET);
  856. /* 9.6MHz MCLK, set value 0x00 if other frequency */
  857. regmap_update_bits(regmap,
  858. LPASS_CDC_WSA_TOP_FREQ_MCLK, 0x01, 0x01);
  859. regmap_update_bits(regmap,
  860. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  861. 0x01, 0x01);
  862. regmap_update_bits(regmap,
  863. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  864. 0x01, 0x01);
  865. }
  866. wsa_priv->wsa_mclk_users++;
  867. } else {
  868. if (wsa_priv->wsa_mclk_users <= 0) {
  869. dev_err(wsa_priv->dev, "%s: clock already disabled\n",
  870. __func__);
  871. wsa_priv->wsa_mclk_users = 0;
  872. goto exit;
  873. }
  874. wsa_priv->wsa_mclk_users--;
  875. if (wsa_priv->wsa_mclk_users == 0) {
  876. regmap_update_bits(regmap,
  877. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  878. 0x01, 0x00);
  879. regmap_update_bits(regmap,
  880. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  881. 0x01, 0x00);
  882. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  883. false);
  884. lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  885. wsa_priv->default_clk_id,
  886. wsa_priv->default_clk_id,
  887. false);
  888. }
  889. }
  890. exit:
  891. mutex_unlock(&wsa_priv->mclk_lock);
  892. return ret;
  893. }
  894. static int lpass_cdc_wsa_macro_mclk_event(struct snd_soc_dapm_widget *w,
  895. struct snd_kcontrol *kcontrol, int event)
  896. {
  897. struct snd_soc_component *component =
  898. snd_soc_dapm_to_component(w->dapm);
  899. int ret = 0;
  900. struct device *wsa_dev = NULL;
  901. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  902. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  903. return -EINVAL;
  904. dev_dbg(wsa_dev, "%s: event = %d\n", __func__, event);
  905. switch (event) {
  906. case SND_SOC_DAPM_PRE_PMU:
  907. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  908. if (ret)
  909. wsa_priv->dapm_mclk_enable = false;
  910. else
  911. wsa_priv->dapm_mclk_enable = true;
  912. break;
  913. case SND_SOC_DAPM_POST_PMD:
  914. if (wsa_priv->dapm_mclk_enable)
  915. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  916. break;
  917. default:
  918. dev_err(wsa_priv->dev,
  919. "%s: invalid DAPM event %d\n", __func__, event);
  920. ret = -EINVAL;
  921. }
  922. return ret;
  923. }
  924. static int lpass_cdc_wsa_macro_event_handler(struct snd_soc_component *component,
  925. u16 event, u32 data)
  926. {
  927. struct device *wsa_dev = NULL;
  928. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  929. int ret = 0;
  930. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  931. return -EINVAL;
  932. switch (event) {
  933. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  934. trace_printk("%s, enter SSR down\n", __func__);
  935. if (wsa_priv->swr_ctrl_data) {
  936. swrm_wcd_notify(
  937. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  938. SWR_DEVICE_SSR_DOWN, NULL);
  939. }
  940. if ((!pm_runtime_enabled(wsa_dev) ||
  941. !pm_runtime_suspended(wsa_dev))) {
  942. ret = lpass_cdc_runtime_suspend(wsa_dev);
  943. if (!ret) {
  944. pm_runtime_disable(wsa_dev);
  945. pm_runtime_set_suspended(wsa_dev);
  946. pm_runtime_enable(wsa_dev);
  947. }
  948. }
  949. break;
  950. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  951. /* enable&disable WSA_CORE_CLK to reset GFMUX reg */
  952. ret = lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  953. wsa_priv->default_clk_id,
  954. WSA_CORE_CLK, true);
  955. if (ret < 0)
  956. dev_err_ratelimited(wsa_priv->dev,
  957. "%s, failed to enable clk, ret:%d\n",
  958. __func__, ret);
  959. else
  960. lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  961. wsa_priv->default_clk_id,
  962. WSA_CORE_CLK, false);
  963. break;
  964. case LPASS_CDC_MACRO_EVT_SSR_UP:
  965. trace_printk("%s, enter SSR up\n", __func__);
  966. /* reset swr after ssr/pdr */
  967. wsa_priv->reset_swr = true;
  968. if (wsa_priv->swr_ctrl_data)
  969. swrm_wcd_notify(
  970. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  971. SWR_DEVICE_SSR_UP, NULL);
  972. break;
  973. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  974. lpass_cdc_rsc_clk_reset(wsa_dev, WSA_CORE_CLK);
  975. break;
  976. }
  977. return 0;
  978. }
  979. static int lpass_cdc_wsa_macro_enable_vi_feedback(struct snd_soc_dapm_widget *w,
  980. struct snd_kcontrol *kcontrol,
  981. int event)
  982. {
  983. struct snd_soc_component *component =
  984. snd_soc_dapm_to_component(w->dapm);
  985. struct device *wsa_dev = NULL;
  986. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  987. u8 val = 0x0;
  988. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  989. return -EINVAL;
  990. switch (wsa_priv->pcm_rate_vi) {
  991. case 48000:
  992. val = 0x04;
  993. break;
  994. case 24000:
  995. val = 0x02;
  996. break;
  997. case 8000:
  998. default:
  999. val = 0x00;
  1000. break;
  1001. }
  1002. switch (event) {
  1003. case SND_SOC_DAPM_POST_PMU:
  1004. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  1005. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1006. dev_dbg(wsa_dev, "%s: spkr1 enabled\n", __func__);
  1007. /* Enable V&I sensing */
  1008. snd_soc_component_update_bits(component,
  1009. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1010. 0x20, 0x20);
  1011. snd_soc_component_update_bits(component,
  1012. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1013. 0x20, 0x20);
  1014. snd_soc_component_update_bits(component,
  1015. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1016. 0x0F, val);
  1017. snd_soc_component_update_bits(component,
  1018. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1019. 0x0F, val);
  1020. snd_soc_component_update_bits(component,
  1021. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1022. 0x10, 0x10);
  1023. snd_soc_component_update_bits(component,
  1024. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1025. 0x10, 0x10);
  1026. snd_soc_component_update_bits(component,
  1027. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1028. 0x20, 0x00);
  1029. snd_soc_component_update_bits(component,
  1030. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1031. 0x20, 0x00);
  1032. }
  1033. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  1034. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1035. dev_dbg(wsa_dev, "%s: spkr2 enabled\n", __func__);
  1036. /* Enable V&I sensing */
  1037. snd_soc_component_update_bits(component,
  1038. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1039. 0x20, 0x20);
  1040. snd_soc_component_update_bits(component,
  1041. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1042. 0x20, 0x20);
  1043. snd_soc_component_update_bits(component,
  1044. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1045. 0x0F, val);
  1046. snd_soc_component_update_bits(component,
  1047. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1048. 0x0F, val);
  1049. snd_soc_component_update_bits(component,
  1050. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1051. 0x10, 0x10);
  1052. snd_soc_component_update_bits(component,
  1053. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1054. 0x10, 0x10);
  1055. snd_soc_component_update_bits(component,
  1056. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1057. 0x20, 0x00);
  1058. snd_soc_component_update_bits(component,
  1059. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1060. 0x20, 0x00);
  1061. }
  1062. break;
  1063. case SND_SOC_DAPM_POST_PMD:
  1064. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  1065. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1066. /* Disable V&I sensing */
  1067. snd_soc_component_update_bits(component,
  1068. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1069. 0x20, 0x20);
  1070. snd_soc_component_update_bits(component,
  1071. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1072. 0x20, 0x20);
  1073. dev_dbg(wsa_dev, "%s: spkr1 disabled\n", __func__);
  1074. snd_soc_component_update_bits(component,
  1075. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1076. 0x10, 0x00);
  1077. snd_soc_component_update_bits(component,
  1078. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1079. 0x10, 0x00);
  1080. }
  1081. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  1082. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1083. /* Disable V&I sensing */
  1084. dev_dbg(wsa_dev, "%s: spkr2 disabled\n", __func__);
  1085. snd_soc_component_update_bits(component,
  1086. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1087. 0x20, 0x20);
  1088. snd_soc_component_update_bits(component,
  1089. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1090. 0x20, 0x20);
  1091. snd_soc_component_update_bits(component,
  1092. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1093. 0x10, 0x00);
  1094. snd_soc_component_update_bits(component,
  1095. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1096. 0x10, 0x00);
  1097. }
  1098. break;
  1099. }
  1100. return 0;
  1101. }
  1102. static void lpass_cdc_wsa_macro_hd2_control(struct snd_soc_component *component,
  1103. u16 reg, int event)
  1104. {
  1105. u16 hd2_scale_reg;
  1106. u16 hd2_enable_reg = 0;
  1107. if (reg == LPASS_CDC_WSA_RX0_RX_PATH_CTL) {
  1108. hd2_scale_reg = LPASS_CDC_WSA_RX0_RX_PATH_SEC3;
  1109. hd2_enable_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0;
  1110. }
  1111. if (reg == LPASS_CDC_WSA_RX1_RX_PATH_CTL) {
  1112. hd2_scale_reg = LPASS_CDC_WSA_RX1_RX_PATH_SEC3;
  1113. hd2_enable_reg = LPASS_CDC_WSA_RX1_RX_PATH_CFG0;
  1114. }
  1115. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1116. snd_soc_component_update_bits(component, hd2_scale_reg,
  1117. 0x3C, 0x10);
  1118. snd_soc_component_update_bits(component, hd2_scale_reg,
  1119. 0x03, 0x01);
  1120. snd_soc_component_update_bits(component, hd2_enable_reg,
  1121. 0x04, 0x04);
  1122. }
  1123. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1124. snd_soc_component_update_bits(component, hd2_enable_reg,
  1125. 0x04, 0x00);
  1126. snd_soc_component_update_bits(component, hd2_scale_reg,
  1127. 0x03, 0x00);
  1128. snd_soc_component_update_bits(component, hd2_scale_reg,
  1129. 0x3C, 0x00);
  1130. }
  1131. }
  1132. static int lpass_cdc_wsa_macro_enable_swr(struct snd_soc_dapm_widget *w,
  1133. struct snd_kcontrol *kcontrol, int event)
  1134. {
  1135. struct snd_soc_component *component =
  1136. snd_soc_dapm_to_component(w->dapm);
  1137. int ch_cnt;
  1138. struct device *wsa_dev = NULL;
  1139. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1140. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1141. return -EINVAL;
  1142. switch (event) {
  1143. case SND_SOC_DAPM_PRE_PMU:
  1144. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1145. !wsa_priv->rx_0_count)
  1146. wsa_priv->rx_0_count++;
  1147. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1148. !wsa_priv->rx_1_count)
  1149. wsa_priv->rx_1_count++;
  1150. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1151. if (wsa_priv->swr_ctrl_data) {
  1152. swrm_wcd_notify(
  1153. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1154. SWR_DEVICE_UP, NULL);
  1155. swrm_wcd_notify(
  1156. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1157. SWR_SET_NUM_RX_CH, &ch_cnt);
  1158. }
  1159. break;
  1160. case SND_SOC_DAPM_POST_PMD:
  1161. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1162. wsa_priv->rx_0_count)
  1163. wsa_priv->rx_0_count--;
  1164. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1165. wsa_priv->rx_1_count)
  1166. wsa_priv->rx_1_count--;
  1167. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1168. if (wsa_priv->swr_ctrl_data)
  1169. swrm_wcd_notify(
  1170. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1171. SWR_SET_NUM_RX_CH, &ch_cnt);
  1172. break;
  1173. }
  1174. dev_dbg(wsa_priv->dev, "%s: current swr ch cnt: %d\n",
  1175. __func__, wsa_priv->rx_0_count + wsa_priv->rx_1_count);
  1176. return 0;
  1177. }
  1178. static int lpass_cdc_wsa_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1179. struct snd_kcontrol *kcontrol, int event)
  1180. {
  1181. struct snd_soc_component *component =
  1182. snd_soc_dapm_to_component(w->dapm);
  1183. u16 gain_reg;
  1184. int offset_val = 0;
  1185. int val = 0;
  1186. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1187. if (!(strcmp(w->name, "WSA_RX0 MIX INP"))) {
  1188. gain_reg = LPASS_CDC_WSA_RX0_RX_VOL_MIX_CTL;
  1189. } else if (!(strcmp(w->name, "WSA_RX1 MIX INP"))) {
  1190. gain_reg = LPASS_CDC_WSA_RX1_RX_VOL_MIX_CTL;
  1191. } else {
  1192. dev_err(component->dev, "%s: No gain register avail for %s\n",
  1193. __func__, w->name);
  1194. return 0;
  1195. }
  1196. switch (event) {
  1197. case SND_SOC_DAPM_PRE_PMU:
  1198. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1199. val = snd_soc_component_read(component, gain_reg);
  1200. val += offset_val;
  1201. snd_soc_component_write(component, gain_reg, val);
  1202. break;
  1203. case SND_SOC_DAPM_POST_PMD:
  1204. snd_soc_component_update_bits(component,
  1205. w->reg, 0x20, 0x00);
  1206. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1207. break;
  1208. }
  1209. return 0;
  1210. }
  1211. static int lpass_cdc_wsa_macro_config_compander(struct snd_soc_component *component,
  1212. int comp, int event)
  1213. {
  1214. u16 comp_ctl0_reg, comp_ctl8_reg, rx_path_cfg0_reg;
  1215. struct device *wsa_dev = NULL;
  1216. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1217. u16 mode = 0;
  1218. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1219. return -EINVAL;
  1220. dev_dbg(component->dev, "%s: event %d compander %d, enabled %d\n",
  1221. __func__, event, comp + 1, wsa_priv->comp_enabled[comp]);
  1222. if (!wsa_priv->comp_enabled[comp])
  1223. return 0;
  1224. mode = wsa_priv->comp_mode[comp];
  1225. comp_ctl0_reg = LPASS_CDC_WSA_COMPANDER0_CTL0 +
  1226. (comp * LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET);
  1227. comp_ctl8_reg = LPASS_CDC_WSA_COMPANDER0_CTL8 +
  1228. (comp * LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET);
  1229. rx_path_cfg0_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0 +
  1230. (comp * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  1231. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1232. lpass_cdc_update_compander_setting(component,
  1233. comp_ctl8_reg,
  1234. comp_setting_table[mode]);
  1235. /* Enable Compander Clock */
  1236. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1237. 0x01, 0x01);
  1238. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1239. 0x02, 0x02);
  1240. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1241. 0x02, 0x00);
  1242. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1243. 0x02, 0x02);
  1244. }
  1245. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1246. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1247. 0x04, 0x04);
  1248. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1249. 0x02, 0x00);
  1250. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1251. 0x02, 0x02);
  1252. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1253. 0x02, 0x00);
  1254. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1255. 0x01, 0x00);
  1256. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1257. 0x04, 0x00);
  1258. }
  1259. return 0;
  1260. }
  1261. static void lpass_cdc_wsa_macro_enable_softclip_clk(struct snd_soc_component *component,
  1262. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  1263. int path,
  1264. bool enable)
  1265. {
  1266. u16 softclip_clk_reg = LPASS_CDC_WSA_SOFTCLIP0_CRC +
  1267. (path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1268. u8 softclip_mux_mask = (1 << path);
  1269. u8 softclip_mux_value = (1 << path);
  1270. dev_dbg(component->dev, "%s: path %d, enable %d\n",
  1271. __func__, path, enable);
  1272. if (enable) {
  1273. if (wsa_priv->softclip_clk_users[path] == 0) {
  1274. snd_soc_component_update_bits(component,
  1275. softclip_clk_reg, 0x01, 0x01);
  1276. snd_soc_component_update_bits(component,
  1277. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1278. softclip_mux_mask, softclip_mux_value);
  1279. }
  1280. wsa_priv->softclip_clk_users[path]++;
  1281. } else {
  1282. wsa_priv->softclip_clk_users[path]--;
  1283. if (wsa_priv->softclip_clk_users[path] == 0) {
  1284. snd_soc_component_update_bits(component,
  1285. softclip_clk_reg, 0x01, 0x00);
  1286. snd_soc_component_update_bits(component,
  1287. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1288. softclip_mux_mask, 0x00);
  1289. }
  1290. }
  1291. }
  1292. static int lpass_cdc_wsa_macro_config_softclip(struct snd_soc_component *component,
  1293. int path, int event)
  1294. {
  1295. u16 softclip_ctrl_reg = 0;
  1296. struct device *wsa_dev = NULL;
  1297. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1298. int softclip_path = 0;
  1299. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1300. return -EINVAL;
  1301. if (path == LPASS_CDC_WSA_MACRO_COMP1)
  1302. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1303. else if (path == LPASS_CDC_WSA_MACRO_COMP2)
  1304. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1305. dev_dbg(component->dev, "%s: event %d path %d, enabled %d\n",
  1306. __func__, event, softclip_path,
  1307. wsa_priv->is_softclip_on[softclip_path]);
  1308. if (!wsa_priv->is_softclip_on[softclip_path])
  1309. return 0;
  1310. softclip_ctrl_reg = LPASS_CDC_WSA_SOFTCLIP0_SOFTCLIP_CTRL +
  1311. (softclip_path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1312. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1313. /* Enable Softclip clock and mux */
  1314. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1315. softclip_path, true);
  1316. /* Enable Softclip control */
  1317. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1318. 0x01, 0x01);
  1319. }
  1320. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1321. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1322. 0x01, 0x00);
  1323. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1324. softclip_path, false);
  1325. }
  1326. return 0;
  1327. }
  1328. static bool lpass_cdc_wsa_macro_adie_lb(struct snd_soc_component *component,
  1329. int interp_idx)
  1330. {
  1331. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1332. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1333. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1334. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1335. int_mux_cfg1 = int_mux_cfg0 + 4;
  1336. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1337. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1338. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1339. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1340. int_n_inp0 == INTn_1_INP_SEL_DEC1)
  1341. return true;
  1342. int_n_inp1 = int_mux_cfg0_val >> 4;
  1343. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1344. int_n_inp1 == INTn_1_INP_SEL_DEC1)
  1345. return true;
  1346. int_n_inp2 = int_mux_cfg1_val >> 4;
  1347. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1348. int_n_inp2 == INTn_1_INP_SEL_DEC1)
  1349. return true;
  1350. return false;
  1351. }
  1352. static int lpass_cdc_wsa_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1353. struct snd_kcontrol *kcontrol,
  1354. int event)
  1355. {
  1356. struct snd_soc_component *component =
  1357. snd_soc_dapm_to_component(w->dapm);
  1358. u16 reg = 0;
  1359. struct device *wsa_dev = NULL;
  1360. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1361. bool adie_lb = false;
  1362. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1363. return -EINVAL;
  1364. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  1365. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * w->shift;
  1366. switch (event) {
  1367. case SND_SOC_DAPM_PRE_PMU:
  1368. if (lpass_cdc_wsa_macro_adie_lb(component, w->shift)) {
  1369. adie_lb = true;
  1370. snd_soc_component_update_bits(component,
  1371. reg, 0x20, 0x20);
  1372. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  1373. }
  1374. break;
  1375. default:
  1376. break;
  1377. }
  1378. return 0;
  1379. }
  1380. static int lpass_cdc_wsa_macro_interp_get_primary_reg(u16 reg, u16 *ind)
  1381. {
  1382. u16 prim_int_reg = 0;
  1383. switch (reg) {
  1384. case LPASS_CDC_WSA_RX0_RX_PATH_CTL:
  1385. case LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL:
  1386. prim_int_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1387. *ind = 0;
  1388. break;
  1389. case LPASS_CDC_WSA_RX1_RX_PATH_CTL:
  1390. case LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL:
  1391. prim_int_reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1392. *ind = 1;
  1393. break;
  1394. }
  1395. return prim_int_reg;
  1396. }
  1397. static int lpass_cdc_wsa_macro_enable_prim_interpolator(
  1398. struct snd_soc_component *component,
  1399. u16 reg, int event)
  1400. {
  1401. u16 prim_int_reg;
  1402. u16 ind = 0;
  1403. struct device *wsa_dev = NULL;
  1404. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1405. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1406. return -EINVAL;
  1407. prim_int_reg = lpass_cdc_wsa_macro_interp_get_primary_reg(reg, &ind);
  1408. switch (event) {
  1409. case SND_SOC_DAPM_PRE_PMU:
  1410. wsa_priv->prim_int_users[ind]++;
  1411. if (wsa_priv->prim_int_users[ind] == 1) {
  1412. snd_soc_component_update_bits(component,
  1413. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET,
  1414. 0x03, 0x03);
  1415. snd_soc_component_update_bits(component, prim_int_reg,
  1416. 0x10, 0x10);
  1417. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1418. snd_soc_component_update_bits(component,
  1419. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1420. 0x1, 0x1);
  1421. }
  1422. if ((reg != prim_int_reg) &&
  1423. ((snd_soc_component_read(
  1424. component, prim_int_reg)) & 0x10))
  1425. snd_soc_component_update_bits(component, reg,
  1426. 0x10, 0x10);
  1427. break;
  1428. case SND_SOC_DAPM_POST_PMD:
  1429. wsa_priv->prim_int_users[ind]--;
  1430. if (wsa_priv->prim_int_users[ind] == 0) {
  1431. snd_soc_component_update_bits(component, prim_int_reg,
  1432. 1 << 0x5, 0 << 0x5);
  1433. snd_soc_component_update_bits(component,
  1434. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1435. 0x1, 0x0);
  1436. snd_soc_component_update_bits(component, prim_int_reg,
  1437. 0x40, 0x40);
  1438. snd_soc_component_update_bits(component, prim_int_reg,
  1439. 0x40, 0x00);
  1440. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1441. }
  1442. break;
  1443. }
  1444. dev_dbg(component->dev, "%s: primary interpolator: INT%d, users: %d\n",
  1445. __func__, ind, wsa_priv->prim_int_users[ind]);
  1446. return 0;
  1447. }
  1448. static int lpass_cdc_wsa_macro_enable_interpolator(struct snd_soc_dapm_widget *w,
  1449. struct snd_kcontrol *kcontrol,
  1450. int event)
  1451. {
  1452. struct snd_soc_component *component =
  1453. snd_soc_dapm_to_component(w->dapm);
  1454. u16 gain_reg;
  1455. u16 reg;
  1456. int val;
  1457. int offset_val = 0;
  1458. struct device *wsa_dev = NULL;
  1459. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1460. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1461. return -EINVAL;
  1462. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1463. if (!(strcmp(w->name, "WSA_RX INT0 INTERP"))) {
  1464. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1465. gain_reg = LPASS_CDC_WSA_RX0_RX_VOL_CTL;
  1466. } else if (!(strcmp(w->name, "WSA_RX INT1 INTERP"))) {
  1467. reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1468. gain_reg = LPASS_CDC_WSA_RX1_RX_VOL_CTL;
  1469. } else {
  1470. dev_err(component->dev, "%s: Interpolator reg not found\n",
  1471. __func__);
  1472. return -EINVAL;
  1473. }
  1474. switch (event) {
  1475. case SND_SOC_DAPM_PRE_PMU:
  1476. /* Reset if needed */
  1477. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1478. break;
  1479. case SND_SOC_DAPM_POST_PMU:
  1480. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1481. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1482. /* apply gain after int clk is enabled */
  1483. if ((wsa_priv->spkr_gain_offset ==
  1484. LPASS_CDC_WSA_MACRO_GAIN_OFFSET_M1P5_DB) &&
  1485. (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] ||
  1486. wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP2]) &&
  1487. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL ||
  1488. gain_reg == LPASS_CDC_WSA_RX1_RX_VOL_CTL)) {
  1489. snd_soc_component_update_bits(component,
  1490. LPASS_CDC_WSA_RX0_RX_PATH_SEC1,
  1491. 0x01, 0x01);
  1492. snd_soc_component_update_bits(component,
  1493. LPASS_CDC_WSA_RX0_RX_PATH_MIX_SEC0,
  1494. 0x01, 0x01);
  1495. snd_soc_component_update_bits(component,
  1496. LPASS_CDC_WSA_RX1_RX_PATH_SEC1,
  1497. 0x01, 0x01);
  1498. snd_soc_component_update_bits(component,
  1499. LPASS_CDC_WSA_RX1_RX_PATH_MIX_SEC0,
  1500. 0x01, 0x01);
  1501. offset_val = -2;
  1502. }
  1503. val = snd_soc_component_read(component, gain_reg);
  1504. val += offset_val;
  1505. snd_soc_component_write(component, gain_reg, val);
  1506. lpass_cdc_wsa_macro_config_ear_spkr_gain(component, wsa_priv,
  1507. event, gain_reg);
  1508. break;
  1509. case SND_SOC_DAPM_POST_PMD:
  1510. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1511. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1512. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1513. if ((wsa_priv->spkr_gain_offset ==
  1514. LPASS_CDC_WSA_MACRO_GAIN_OFFSET_M1P5_DB) &&
  1515. (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] ||
  1516. wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP2]) &&
  1517. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL ||
  1518. gain_reg == LPASS_CDC_WSA_RX1_RX_VOL_CTL)) {
  1519. snd_soc_component_update_bits(component,
  1520. LPASS_CDC_WSA_RX0_RX_PATH_SEC1,
  1521. 0x01, 0x00);
  1522. snd_soc_component_update_bits(component,
  1523. LPASS_CDC_WSA_RX0_RX_PATH_MIX_SEC0,
  1524. 0x01, 0x00);
  1525. snd_soc_component_update_bits(component,
  1526. LPASS_CDC_WSA_RX1_RX_PATH_SEC1,
  1527. 0x01, 0x00);
  1528. snd_soc_component_update_bits(component,
  1529. LPASS_CDC_WSA_RX1_RX_PATH_MIX_SEC0,
  1530. 0x01, 0x00);
  1531. offset_val = 2;
  1532. val = snd_soc_component_read(component, gain_reg);
  1533. val += offset_val;
  1534. snd_soc_component_write(component, gain_reg, val);
  1535. }
  1536. lpass_cdc_wsa_macro_config_ear_spkr_gain(component, wsa_priv,
  1537. event, gain_reg);
  1538. break;
  1539. }
  1540. return 0;
  1541. }
  1542. static int lpass_cdc_wsa_macro_config_ear_spkr_gain(struct snd_soc_component *component,
  1543. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  1544. int event, int gain_reg)
  1545. {
  1546. int comp_gain_offset, val;
  1547. switch (wsa_priv->spkr_mode) {
  1548. /* Compander gain in LPASS_CDC_WSA_MACRO_SPKR_MODE1 case is 12 dB */
  1549. case LPASS_CDC_WSA_MACRO_SPKR_MODE_1:
  1550. comp_gain_offset = -12;
  1551. break;
  1552. /* Default case compander gain is 15 dB */
  1553. default:
  1554. comp_gain_offset = -15;
  1555. break;
  1556. }
  1557. switch (event) {
  1558. case SND_SOC_DAPM_POST_PMU:
  1559. /* Apply ear spkr gain only if compander is enabled */
  1560. if (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] &&
  1561. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL) &&
  1562. (wsa_priv->ear_spkr_gain != 0)) {
  1563. /* For example, val is -8(-12+5-1) for 4dB of gain */
  1564. val = comp_gain_offset + wsa_priv->ear_spkr_gain - 1;
  1565. snd_soc_component_write(component, gain_reg, val);
  1566. dev_dbg(wsa_priv->dev, "%s: RX0 Volume %d dB\n",
  1567. __func__, val);
  1568. }
  1569. break;
  1570. case SND_SOC_DAPM_POST_PMD:
  1571. /*
  1572. * Reset RX0 volume to 0 dB if compander is enabled and
  1573. * ear_spkr_gain is non-zero.
  1574. */
  1575. if (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] &&
  1576. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL) &&
  1577. (wsa_priv->ear_spkr_gain != 0)) {
  1578. snd_soc_component_write(component, gain_reg, 0x0);
  1579. dev_dbg(wsa_priv->dev, "%s: Reset RX0 Volume to 0 dB\n",
  1580. __func__);
  1581. }
  1582. break;
  1583. }
  1584. return 0;
  1585. }
  1586. static int lpass_cdc_wsa_macro_spk_boost_event(struct snd_soc_dapm_widget *w,
  1587. struct snd_kcontrol *kcontrol,
  1588. int event)
  1589. {
  1590. struct snd_soc_component *component =
  1591. snd_soc_dapm_to_component(w->dapm);
  1592. u16 boost_path_ctl, boost_path_cfg1;
  1593. u16 reg, reg_mix;
  1594. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1595. if (!strcmp(w->name, "WSA_RX INT0 CHAIN")) {
  1596. boost_path_ctl = LPASS_CDC_WSA_BOOST0_BOOST_PATH_CTL;
  1597. boost_path_cfg1 = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1598. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1599. reg_mix = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL;
  1600. } else if (!strcmp(w->name, "WSA_RX INT1 CHAIN")) {
  1601. boost_path_ctl = LPASS_CDC_WSA_BOOST1_BOOST_PATH_CTL;
  1602. boost_path_cfg1 = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1603. reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1604. reg_mix = LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL;
  1605. } else {
  1606. dev_err(component->dev, "%s: unknown widget: %s\n",
  1607. __func__, w->name);
  1608. return -EINVAL;
  1609. }
  1610. switch (event) {
  1611. case SND_SOC_DAPM_PRE_PMU:
  1612. snd_soc_component_update_bits(component, boost_path_cfg1,
  1613. 0x01, 0x01);
  1614. snd_soc_component_update_bits(component, boost_path_ctl,
  1615. 0x10, 0x10);
  1616. if ((snd_soc_component_read(component, reg_mix)) & 0x10)
  1617. snd_soc_component_update_bits(component, reg_mix,
  1618. 0x10, 0x00);
  1619. break;
  1620. case SND_SOC_DAPM_POST_PMU:
  1621. snd_soc_component_update_bits(component, reg, 0x10, 0x00);
  1622. break;
  1623. case SND_SOC_DAPM_POST_PMD:
  1624. snd_soc_component_update_bits(component, boost_path_ctl,
  1625. 0x10, 0x00);
  1626. snd_soc_component_update_bits(component, boost_path_cfg1,
  1627. 0x01, 0x00);
  1628. break;
  1629. }
  1630. return 0;
  1631. }
  1632. static int lpass_cdc_wsa_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  1633. struct snd_kcontrol *kcontrol,
  1634. int event)
  1635. {
  1636. struct snd_soc_component *component =
  1637. snd_soc_dapm_to_component(w->dapm);
  1638. struct device *wsa_dev = NULL;
  1639. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1640. u16 vbat_path_cfg = 0;
  1641. int softclip_path = 0;
  1642. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1643. return -EINVAL;
  1644. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1645. if (!strcmp(w->name, "WSA_RX INT0 VBAT")) {
  1646. vbat_path_cfg = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1647. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1648. } else if (!strcmp(w->name, "WSA_RX INT1 VBAT")) {
  1649. vbat_path_cfg = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1650. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1651. }
  1652. switch (event) {
  1653. case SND_SOC_DAPM_PRE_PMU:
  1654. /* Enable clock for VBAT block */
  1655. snd_soc_component_update_bits(component,
  1656. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  1657. /* Enable VBAT block */
  1658. snd_soc_component_update_bits(component,
  1659. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x01);
  1660. /* Update interpolator with 384K path */
  1661. snd_soc_component_update_bits(component, vbat_path_cfg,
  1662. 0x80, 0x80);
  1663. /* Use attenuation mode */
  1664. snd_soc_component_update_bits(component,
  1665. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x02, 0x00);
  1666. /*
  1667. * BCL block needs softclip clock and mux config to be enabled
  1668. */
  1669. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1670. softclip_path, true);
  1671. /* Enable VBAT at channel level */
  1672. snd_soc_component_update_bits(component, vbat_path_cfg,
  1673. 0x02, 0x02);
  1674. /* Set the ATTK1 gain */
  1675. snd_soc_component_update_bits(component,
  1676. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1677. 0xFF, 0xFF);
  1678. snd_soc_component_update_bits(component,
  1679. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1680. 0xFF, 0x03);
  1681. snd_soc_component_update_bits(component,
  1682. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1683. 0xFF, 0x00);
  1684. /* Set the ATTK2 gain */
  1685. snd_soc_component_update_bits(component,
  1686. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1687. 0xFF, 0xFF);
  1688. snd_soc_component_update_bits(component,
  1689. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1690. 0xFF, 0x03);
  1691. snd_soc_component_update_bits(component,
  1692. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1693. 0xFF, 0x00);
  1694. /* Set the ATTK3 gain */
  1695. snd_soc_component_update_bits(component,
  1696. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1697. 0xFF, 0xFF);
  1698. snd_soc_component_update_bits(component,
  1699. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1700. 0xFF, 0x03);
  1701. snd_soc_component_update_bits(component,
  1702. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1703. 0xFF, 0x00);
  1704. break;
  1705. case SND_SOC_DAPM_POST_PMD:
  1706. snd_soc_component_update_bits(component, vbat_path_cfg,
  1707. 0x80, 0x00);
  1708. snd_soc_component_update_bits(component,
  1709. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  1710. 0x02, 0x02);
  1711. snd_soc_component_update_bits(component, vbat_path_cfg,
  1712. 0x02, 0x00);
  1713. snd_soc_component_update_bits(component,
  1714. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1715. 0xFF, 0x00);
  1716. snd_soc_component_update_bits(component,
  1717. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1718. 0xFF, 0x00);
  1719. snd_soc_component_update_bits(component,
  1720. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1721. 0xFF, 0x00);
  1722. snd_soc_component_update_bits(component,
  1723. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1724. 0xFF, 0x00);
  1725. snd_soc_component_update_bits(component,
  1726. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1727. 0xFF, 0x00);
  1728. snd_soc_component_update_bits(component,
  1729. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1730. 0xFF, 0x00);
  1731. snd_soc_component_update_bits(component,
  1732. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1733. 0xFF, 0x00);
  1734. snd_soc_component_update_bits(component,
  1735. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1736. 0xFF, 0x00);
  1737. snd_soc_component_update_bits(component,
  1738. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1739. 0xFF, 0x00);
  1740. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1741. softclip_path, false);
  1742. snd_soc_component_update_bits(component,
  1743. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x00);
  1744. snd_soc_component_update_bits(component,
  1745. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  1746. break;
  1747. default:
  1748. dev_err(wsa_dev, "%s: Invalid event %d\n", __func__, event);
  1749. break;
  1750. }
  1751. return 0;
  1752. }
  1753. static int lpass_cdc_wsa_macro_enable_echo(struct snd_soc_dapm_widget *w,
  1754. struct snd_kcontrol *kcontrol,
  1755. int event)
  1756. {
  1757. struct snd_soc_component *component =
  1758. snd_soc_dapm_to_component(w->dapm);
  1759. struct device *wsa_dev = NULL;
  1760. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1761. u16 val, ec_tx = 0, ec_hq_reg;
  1762. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1763. return -EINVAL;
  1764. dev_dbg(wsa_dev, "%s %d %s\n", __func__, event, w->name);
  1765. val = snd_soc_component_read(component,
  1766. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  1767. if (!(strcmp(w->name, "WSA RX_MIX EC0_MUX")))
  1768. ec_tx = (val & 0x07) - 1;
  1769. else
  1770. ec_tx = ((val & 0x38) >> 0x3) - 1;
  1771. if (ec_tx < 0 || ec_tx >= (LPASS_CDC_WSA_MACRO_RX1 + 1)) {
  1772. dev_err(wsa_dev, "%s: EC mix control not set correctly\n",
  1773. __func__);
  1774. return -EINVAL;
  1775. }
  1776. if (wsa_priv->ec_hq[ec_tx]) {
  1777. snd_soc_component_update_bits(component,
  1778. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  1779. 0x1 << ec_tx, 0x1 << ec_tx);
  1780. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_PATH_CTL +
  1781. 0x40 * ec_tx;
  1782. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  1783. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_CFG0 +
  1784. 0x40 * ec_tx;
  1785. /* default set to 48k */
  1786. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  1787. }
  1788. return 0;
  1789. }
  1790. static int lpass_cdc_wsa_macro_get_ec_hq(struct snd_kcontrol *kcontrol,
  1791. struct snd_ctl_elem_value *ucontrol)
  1792. {
  1793. struct snd_soc_component *component =
  1794. snd_soc_kcontrol_component(kcontrol);
  1795. int ec_tx = ((struct soc_multi_mixer_control *)
  1796. kcontrol->private_value)->shift;
  1797. struct device *wsa_dev = NULL;
  1798. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1799. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1800. return -EINVAL;
  1801. ucontrol->value.integer.value[0] = wsa_priv->ec_hq[ec_tx];
  1802. return 0;
  1803. }
  1804. static int lpass_cdc_wsa_macro_set_ec_hq(struct snd_kcontrol *kcontrol,
  1805. struct snd_ctl_elem_value *ucontrol)
  1806. {
  1807. struct snd_soc_component *component =
  1808. snd_soc_kcontrol_component(kcontrol);
  1809. int ec_tx = ((struct soc_multi_mixer_control *)
  1810. kcontrol->private_value)->shift;
  1811. int value = ucontrol->value.integer.value[0];
  1812. struct device *wsa_dev = NULL;
  1813. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1814. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1815. return -EINVAL;
  1816. dev_dbg(wsa_dev, "%s: enable current %d, new %d\n",
  1817. __func__, wsa_priv->ec_hq[ec_tx], value);
  1818. wsa_priv->ec_hq[ec_tx] = value;
  1819. return 0;
  1820. }
  1821. static int lpass_cdc_wsa_macro_get_rx_mute_status(struct snd_kcontrol *kcontrol,
  1822. struct snd_ctl_elem_value *ucontrol)
  1823. {
  1824. struct snd_soc_component *component =
  1825. snd_soc_kcontrol_component(kcontrol);
  1826. struct device *wsa_dev = NULL;
  1827. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1828. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1829. kcontrol->private_value)->shift;
  1830. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1831. return -EINVAL;
  1832. ucontrol->value.integer.value[0] =
  1833. wsa_priv->wsa_digital_mute_status[wsa_rx_shift];
  1834. return 0;
  1835. }
  1836. static int lpass_cdc_wsa_macro_set_rx_mute_status(struct snd_kcontrol *kcontrol,
  1837. struct snd_ctl_elem_value *ucontrol)
  1838. {
  1839. struct snd_soc_component *component =
  1840. snd_soc_kcontrol_component(kcontrol);
  1841. struct device *wsa_dev = NULL;
  1842. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1843. int value = ucontrol->value.integer.value[0];
  1844. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1845. kcontrol->private_value)->shift;
  1846. int ret = 0;
  1847. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1848. return -EINVAL;
  1849. pm_runtime_get_sync(wsa_priv->dev);
  1850. switch (wsa_rx_shift) {
  1851. case 0:
  1852. snd_soc_component_update_bits(component,
  1853. LPASS_CDC_WSA_RX0_RX_PATH_CTL,
  1854. 0x10, value << 4);
  1855. break;
  1856. case 1:
  1857. snd_soc_component_update_bits(component,
  1858. LPASS_CDC_WSA_RX1_RX_PATH_CTL,
  1859. 0x10, value << 4);
  1860. break;
  1861. case 2:
  1862. snd_soc_component_update_bits(component,
  1863. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL,
  1864. 0x10, value << 4);
  1865. break;
  1866. case 3:
  1867. snd_soc_component_update_bits(component,
  1868. LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL,
  1869. 0x10, value << 4);
  1870. break;
  1871. default:
  1872. pr_err("%s: invalid argument rx_shift = %d\n", __func__,
  1873. wsa_rx_shift);
  1874. ret = -EINVAL;
  1875. }
  1876. pm_runtime_mark_last_busy(wsa_priv->dev);
  1877. pm_runtime_put_autosuspend(wsa_priv->dev);
  1878. dev_dbg(component->dev, "%s: WSA Digital Mute RX %d Enable %d\n",
  1879. __func__, wsa_rx_shift, value);
  1880. wsa_priv->wsa_digital_mute_status[wsa_rx_shift] = value;
  1881. return ret;
  1882. }
  1883. static int lpass_cdc_wsa_macro_get_compander(struct snd_kcontrol *kcontrol,
  1884. struct snd_ctl_elem_value *ucontrol)
  1885. {
  1886. struct snd_soc_component *component =
  1887. snd_soc_kcontrol_component(kcontrol);
  1888. int comp = ((struct soc_multi_mixer_control *)
  1889. kcontrol->private_value)->shift;
  1890. struct device *wsa_dev = NULL;
  1891. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1892. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1893. return -EINVAL;
  1894. ucontrol->value.integer.value[0] = wsa_priv->comp_enabled[comp];
  1895. return 0;
  1896. }
  1897. static int lpass_cdc_wsa_macro_set_compander(struct snd_kcontrol *kcontrol,
  1898. struct snd_ctl_elem_value *ucontrol)
  1899. {
  1900. struct snd_soc_component *component =
  1901. snd_soc_kcontrol_component(kcontrol);
  1902. int comp = ((struct soc_multi_mixer_control *)
  1903. kcontrol->private_value)->shift;
  1904. int value = ucontrol->value.integer.value[0];
  1905. struct device *wsa_dev = NULL;
  1906. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1907. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1908. return -EINVAL;
  1909. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1910. __func__, comp + 1, wsa_priv->comp_enabled[comp], value);
  1911. wsa_priv->comp_enabled[comp] = value;
  1912. return 0;
  1913. }
  1914. static int lpass_cdc_wsa_macro_ear_spkr_pa_gain_get(struct snd_kcontrol *kcontrol,
  1915. struct snd_ctl_elem_value *ucontrol)
  1916. {
  1917. struct snd_soc_component *component =
  1918. snd_soc_kcontrol_component(kcontrol);
  1919. struct device *wsa_dev = NULL;
  1920. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1921. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1922. return -EINVAL;
  1923. ucontrol->value.integer.value[0] = wsa_priv->ear_spkr_gain;
  1924. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1925. __func__, ucontrol->value.integer.value[0]);
  1926. return 0;
  1927. }
  1928. static int lpass_cdc_wsa_macro_ear_spkr_pa_gain_put(struct snd_kcontrol *kcontrol,
  1929. struct snd_ctl_elem_value *ucontrol)
  1930. {
  1931. struct snd_soc_component *component =
  1932. snd_soc_kcontrol_component(kcontrol);
  1933. struct device *wsa_dev = NULL;
  1934. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1935. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1936. return -EINVAL;
  1937. wsa_priv->ear_spkr_gain = ucontrol->value.integer.value[0];
  1938. dev_dbg(component->dev, "%s: gain = %d\n", __func__,
  1939. wsa_priv->ear_spkr_gain);
  1940. return 0;
  1941. }
  1942. static int lpass_cdc_wsa_macro_comp_mode_get(struct snd_kcontrol *kcontrol,
  1943. struct snd_ctl_elem_value *ucontrol)
  1944. {
  1945. struct snd_soc_component *component =
  1946. snd_soc_kcontrol_component(kcontrol);
  1947. struct device *wsa_dev = NULL;
  1948. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1949. u16 idx = 0;
  1950. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1951. return -EINVAL;
  1952. if (strnstr(kcontrol->id.name, "RX0", sizeof("WSA_RX0")))
  1953. idx = LPASS_CDC_WSA_MACRO_COMP1;
  1954. if (strnstr(kcontrol->id.name, "RX1", sizeof("WSA_RX1")))
  1955. idx = LPASS_CDC_WSA_MACRO_COMP2;
  1956. ucontrol->value.integer.value[0] = wsa_priv->comp_mode[idx];
  1957. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1958. __func__, ucontrol->value.integer.value[0]);
  1959. return 0;
  1960. }
  1961. static int lpass_cdc_wsa_macro_comp_mode_put(struct snd_kcontrol *kcontrol,
  1962. struct snd_ctl_elem_value *ucontrol)
  1963. {
  1964. struct snd_soc_component *component =
  1965. snd_soc_kcontrol_component(kcontrol);
  1966. struct device *wsa_dev = NULL;
  1967. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1968. u16 idx = 0;
  1969. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1970. return -EINVAL;
  1971. if (strnstr(kcontrol->id.name, "RX0", sizeof("WSA_RX0")))
  1972. idx = LPASS_CDC_WSA_MACRO_COMP1;
  1973. if (strnstr(kcontrol->id.name, "RX1", sizeof("WSA_RX1")))
  1974. idx = LPASS_CDC_WSA_MACRO_COMP2;
  1975. wsa_priv->comp_mode[idx] = ucontrol->value.integer.value[0];
  1976. dev_dbg(component->dev, "%s: comp_mode = %d\n", __func__,
  1977. wsa_priv->comp_mode[idx]);
  1978. return 0;
  1979. }
  1980. static int lpass_cdc_wsa_macro_spkr_left_boost_stage_get(struct snd_kcontrol *kcontrol,
  1981. struct snd_ctl_elem_value *ucontrol)
  1982. {
  1983. u8 bst_state_max = 0;
  1984. struct snd_soc_component *component =
  1985. snd_soc_kcontrol_component(kcontrol);
  1986. bst_state_max = snd_soc_component_read(component,
  1987. LPASS_CDC_WSA_BOOST0_BOOST_CTL);
  1988. bst_state_max = (bst_state_max & 0x0c) >> 2;
  1989. ucontrol->value.integer.value[0] = bst_state_max;
  1990. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1991. __func__, ucontrol->value.integer.value[0]);
  1992. return 0;
  1993. }
  1994. static int lpass_cdc_wsa_macro_spkr_left_boost_stage_put(struct snd_kcontrol *kcontrol,
  1995. struct snd_ctl_elem_value *ucontrol)
  1996. {
  1997. u8 bst_state_max;
  1998. struct snd_soc_component *component =
  1999. snd_soc_kcontrol_component(kcontrol);
  2000. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2001. __func__, ucontrol->value.integer.value[0]);
  2002. bst_state_max = ucontrol->value.integer.value[0] << 2;
  2003. /* lpass_cdc does not need to limit the boost levels */
  2004. return 0;
  2005. }
  2006. static int lpass_cdc_wsa_macro_spkr_right_boost_stage_get(struct snd_kcontrol *kcontrol,
  2007. struct snd_ctl_elem_value *ucontrol)
  2008. {
  2009. u8 bst_state_max = 0;
  2010. struct snd_soc_component *component =
  2011. snd_soc_kcontrol_component(kcontrol);
  2012. bst_state_max = snd_soc_component_read(component,
  2013. LPASS_CDC_WSA_BOOST1_BOOST_CTL);
  2014. bst_state_max = (bst_state_max & 0x0c) >> 2;
  2015. ucontrol->value.integer.value[0] = bst_state_max;
  2016. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2017. __func__, ucontrol->value.integer.value[0]);
  2018. return 0;
  2019. }
  2020. static int lpass_cdc_wsa_macro_spkr_right_boost_stage_put(struct snd_kcontrol *kcontrol,
  2021. struct snd_ctl_elem_value *ucontrol)
  2022. {
  2023. u8 bst_state_max;
  2024. struct snd_soc_component *component =
  2025. snd_soc_kcontrol_component(kcontrol);
  2026. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2027. __func__, ucontrol->value.integer.value[0]);
  2028. bst_state_max = ucontrol->value.integer.value[0] << 2;
  2029. /* lpass_cdc does not need to limit the boost levels */
  2030. return 0;
  2031. }
  2032. static int lpass_cdc_wsa_macro_rx_mux_get(struct snd_kcontrol *kcontrol,
  2033. struct snd_ctl_elem_value *ucontrol)
  2034. {
  2035. struct snd_soc_dapm_widget *widget =
  2036. snd_soc_dapm_kcontrol_widget(kcontrol);
  2037. struct snd_soc_component *component =
  2038. snd_soc_dapm_to_component(widget->dapm);
  2039. struct device *wsa_dev = NULL;
  2040. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2041. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2042. return -EINVAL;
  2043. ucontrol->value.integer.value[0] =
  2044. wsa_priv->rx_port_value[widget->shift];
  2045. return 0;
  2046. }
  2047. static int lpass_cdc_wsa_macro_rx_mux_put(struct snd_kcontrol *kcontrol,
  2048. struct snd_ctl_elem_value *ucontrol)
  2049. {
  2050. struct snd_soc_dapm_widget *widget =
  2051. snd_soc_dapm_kcontrol_widget(kcontrol);
  2052. struct snd_soc_component *component =
  2053. snd_soc_dapm_to_component(widget->dapm);
  2054. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2055. struct snd_soc_dapm_update *update = NULL;
  2056. u32 rx_port_value = ucontrol->value.integer.value[0];
  2057. u32 bit_input = 0;
  2058. u32 aif_rst;
  2059. struct device *wsa_dev = NULL;
  2060. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2061. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2062. return -EINVAL;
  2063. aif_rst = wsa_priv->rx_port_value[widget->shift];
  2064. if (!rx_port_value) {
  2065. if (aif_rst == 0) {
  2066. dev_err(wsa_dev, "%s: AIF reset already\n", __func__);
  2067. return 0;
  2068. }
  2069. if (aif_rst >= LPASS_CDC_WSA_MACRO_RX_MAX) {
  2070. dev_err(wsa_dev, "%s: Invalid AIF reset\n", __func__);
  2071. return 0;
  2072. }
  2073. }
  2074. wsa_priv->rx_port_value[widget->shift] = rx_port_value;
  2075. bit_input = widget->shift;
  2076. dev_dbg(wsa_dev,
  2077. "%s: mux input: %d, mux output: %d, bit: %d\n",
  2078. __func__, rx_port_value, widget->shift, bit_input);
  2079. switch (rx_port_value) {
  2080. case 0:
  2081. if (wsa_priv->active_ch_cnt[aif_rst]) {
  2082. clear_bit(bit_input,
  2083. &wsa_priv->active_ch_mask[aif_rst]);
  2084. wsa_priv->active_ch_cnt[aif_rst]--;
  2085. }
  2086. break;
  2087. case 1:
  2088. case 2:
  2089. set_bit(bit_input,
  2090. &wsa_priv->active_ch_mask[rx_port_value]);
  2091. wsa_priv->active_ch_cnt[rx_port_value]++;
  2092. break;
  2093. default:
  2094. dev_err(wsa_dev,
  2095. "%s: Invalid AIF_ID for WSA RX MUX %d\n",
  2096. __func__, rx_port_value);
  2097. return -EINVAL;
  2098. }
  2099. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2100. rx_port_value, e, update);
  2101. return 0;
  2102. }
  2103. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2104. struct snd_ctl_elem_value *ucontrol)
  2105. {
  2106. struct snd_soc_component *component =
  2107. snd_soc_kcontrol_component(kcontrol);
  2108. ucontrol->value.integer.value[0] =
  2109. ((snd_soc_component_read(
  2110. component, LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG) & 0x04) ?
  2111. 1 : 0);
  2112. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2113. ucontrol->value.integer.value[0]);
  2114. return 0;
  2115. }
  2116. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2117. struct snd_ctl_elem_value *ucontrol)
  2118. {
  2119. struct snd_soc_component *component =
  2120. snd_soc_kcontrol_component(kcontrol);
  2121. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2122. ucontrol->value.integer.value[0]);
  2123. /* Set Vbat register configuration for GSM mode bit based on value */
  2124. if (ucontrol->value.integer.value[0])
  2125. snd_soc_component_update_bits(component,
  2126. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  2127. 0x04, 0x04);
  2128. else
  2129. snd_soc_component_update_bits(component,
  2130. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  2131. 0x04, 0x00);
  2132. return 0;
  2133. }
  2134. static int lpass_cdc_wsa_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2135. struct snd_ctl_elem_value *ucontrol)
  2136. {
  2137. struct snd_soc_component *component =
  2138. snd_soc_kcontrol_component(kcontrol);
  2139. struct device *wsa_dev = NULL;
  2140. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2141. int path = ((struct soc_multi_mixer_control *)
  2142. kcontrol->private_value)->shift;
  2143. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2144. return -EINVAL;
  2145. ucontrol->value.integer.value[0] = wsa_priv->is_softclip_on[path];
  2146. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2147. __func__, ucontrol->value.integer.value[0]);
  2148. return 0;
  2149. }
  2150. static int lpass_cdc_wsa_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2151. struct snd_ctl_elem_value *ucontrol)
  2152. {
  2153. struct snd_soc_component *component =
  2154. snd_soc_kcontrol_component(kcontrol);
  2155. struct device *wsa_dev = NULL;
  2156. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2157. int path = ((struct soc_multi_mixer_control *)
  2158. kcontrol->private_value)->shift;
  2159. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2160. return -EINVAL;
  2161. wsa_priv->is_softclip_on[path] = ucontrol->value.integer.value[0];
  2162. dev_dbg(component->dev, "%s: soft clip enable for %d: %d\n", __func__,
  2163. path, wsa_priv->is_softclip_on[path]);
  2164. return 0;
  2165. }
  2166. static const struct snd_kcontrol_new lpass_cdc_wsa_macro_snd_controls[] = {
  2167. SOC_ENUM_EXT("EAR SPKR PA Gain", lpass_cdc_wsa_macro_ear_spkr_pa_gain_enum,
  2168. lpass_cdc_wsa_macro_ear_spkr_pa_gain_get,
  2169. lpass_cdc_wsa_macro_ear_spkr_pa_gain_put),
  2170. SOC_ENUM_EXT("SPKR Left Boost Max State",
  2171. lpass_cdc_wsa_macro_spkr_boost_stage_enum,
  2172. lpass_cdc_wsa_macro_spkr_left_boost_stage_get,
  2173. lpass_cdc_wsa_macro_spkr_left_boost_stage_put),
  2174. SOC_ENUM_EXT("SPKR Right Boost Max State",
  2175. lpass_cdc_wsa_macro_spkr_boost_stage_enum,
  2176. lpass_cdc_wsa_macro_spkr_right_boost_stage_get,
  2177. lpass_cdc_wsa_macro_spkr_right_boost_stage_put),
  2178. SOC_ENUM_EXT("GSM mode Enable", lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  2179. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get,
  2180. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put),
  2181. SOC_ENUM_EXT("WSA_RX0 comp_mode", lpass_cdc_wsa_macro_comp_mode_enum,
  2182. lpass_cdc_wsa_macro_comp_mode_get,
  2183. lpass_cdc_wsa_macro_comp_mode_put),
  2184. SOC_ENUM_EXT("WSA_RX1 comp_mode", lpass_cdc_wsa_macro_comp_mode_enum,
  2185. lpass_cdc_wsa_macro_comp_mode_get,
  2186. lpass_cdc_wsa_macro_comp_mode_put),
  2187. SOC_SINGLE_EXT("WSA_Softclip0 Enable", SND_SOC_NOPM,
  2188. LPASS_CDC_WSA_MACRO_SOFTCLIP0, 1, 0,
  2189. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2190. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2191. SOC_SINGLE_EXT("WSA_Softclip1 Enable", SND_SOC_NOPM,
  2192. LPASS_CDC_WSA_MACRO_SOFTCLIP1, 1, 0,
  2193. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2194. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2195. SOC_SINGLE_S8_TLV("WSA_RX0 Digital Volume",
  2196. LPASS_CDC_WSA_RX0_RX_VOL_CTL,
  2197. -84, 40, digital_gain),
  2198. SOC_SINGLE_S8_TLV("WSA_RX1 Digital Volume",
  2199. LPASS_CDC_WSA_RX1_RX_VOL_CTL,
  2200. -84, 40, digital_gain),
  2201. SOC_SINGLE_EXT("WSA_RX0 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 1,
  2202. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2203. lpass_cdc_wsa_macro_set_rx_mute_status),
  2204. SOC_SINGLE_EXT("WSA_RX1 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 1,
  2205. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2206. lpass_cdc_wsa_macro_set_rx_mute_status),
  2207. SOC_SINGLE_EXT("WSA_RX0_MIX Digital Mute", SND_SOC_NOPM,
  2208. LPASS_CDC_WSA_MACRO_RX_MIX0, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2209. lpass_cdc_wsa_macro_set_rx_mute_status),
  2210. SOC_SINGLE_EXT("WSA_RX1_MIX Digital Mute", SND_SOC_NOPM,
  2211. LPASS_CDC_WSA_MACRO_RX_MIX1, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2212. lpass_cdc_wsa_macro_set_rx_mute_status),
  2213. SOC_SINGLE_EXT("WSA_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP1, 1, 0,
  2214. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2215. SOC_SINGLE_EXT("WSA_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP2, 1, 0,
  2216. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2217. SOC_SINGLE_EXT("WSA_RX0 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0,
  2218. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2219. SOC_SINGLE_EXT("WSA_RX1 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1,
  2220. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2221. };
  2222. static const struct soc_enum rx_mux_enum =
  2223. SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(rx_mux_text), rx_mux_text);
  2224. static const struct snd_kcontrol_new rx_mux[LPASS_CDC_WSA_MACRO_RX_MAX] = {
  2225. SOC_DAPM_ENUM_EXT("WSA RX0 Mux", rx_mux_enum,
  2226. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2227. SOC_DAPM_ENUM_EXT("WSA RX1 Mux", rx_mux_enum,
  2228. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2229. SOC_DAPM_ENUM_EXT("WSA RX_MIX0 Mux", rx_mux_enum,
  2230. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2231. SOC_DAPM_ENUM_EXT("WSA RX_MIX1 Mux", rx_mux_enum,
  2232. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2233. };
  2234. static int lpass_cdc_wsa_macro_vi_feed_mixer_get(struct snd_kcontrol *kcontrol,
  2235. struct snd_ctl_elem_value *ucontrol)
  2236. {
  2237. struct snd_soc_dapm_widget *widget =
  2238. snd_soc_dapm_kcontrol_widget(kcontrol);
  2239. struct snd_soc_component *component =
  2240. snd_soc_dapm_to_component(widget->dapm);
  2241. struct soc_multi_mixer_control *mixer =
  2242. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2243. u32 dai_id = widget->shift;
  2244. u32 spk_tx_id = mixer->shift;
  2245. struct device *wsa_dev = NULL;
  2246. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2247. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2248. return -EINVAL;
  2249. if (test_bit(spk_tx_id, &wsa_priv->active_ch_mask[dai_id]))
  2250. ucontrol->value.integer.value[0] = 1;
  2251. else
  2252. ucontrol->value.integer.value[0] = 0;
  2253. return 0;
  2254. }
  2255. static int lpass_cdc_wsa_macro_vi_feed_mixer_put(struct snd_kcontrol *kcontrol,
  2256. struct snd_ctl_elem_value *ucontrol)
  2257. {
  2258. struct snd_soc_dapm_widget *widget =
  2259. snd_soc_dapm_kcontrol_widget(kcontrol);
  2260. struct snd_soc_component *component =
  2261. snd_soc_dapm_to_component(widget->dapm);
  2262. struct soc_multi_mixer_control *mixer =
  2263. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2264. u32 spk_tx_id = mixer->shift;
  2265. u32 enable = ucontrol->value.integer.value[0];
  2266. struct device *wsa_dev = NULL;
  2267. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2268. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2269. return -EINVAL;
  2270. wsa_priv->vi_feed_value = ucontrol->value.integer.value[0];
  2271. if (enable) {
  2272. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2273. !test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2274. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2275. set_bit(LPASS_CDC_WSA_MACRO_TX0,
  2276. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2277. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2278. }
  2279. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2280. !test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2281. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2282. set_bit(LPASS_CDC_WSA_MACRO_TX1,
  2283. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2284. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2285. }
  2286. } else {
  2287. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2288. test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2289. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2290. clear_bit(LPASS_CDC_WSA_MACRO_TX0,
  2291. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2292. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2293. }
  2294. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2295. test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2296. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2297. clear_bit(LPASS_CDC_WSA_MACRO_TX1,
  2298. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2299. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2300. }
  2301. }
  2302. snd_soc_dapm_mixer_update_power(widget->dapm, kcontrol, enable, NULL);
  2303. return 0;
  2304. }
  2305. static const struct snd_kcontrol_new aif_vi_mixer[] = {
  2306. SOC_SINGLE_EXT("WSA_SPKR_VI_1", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX0, 1, 0,
  2307. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2308. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2309. SOC_SINGLE_EXT("WSA_SPKR_VI_2", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX1, 1, 0,
  2310. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2311. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2312. };
  2313. static const struct snd_soc_dapm_widget lpass_cdc_wsa_macro_dapm_widgets[] = {
  2314. SND_SOC_DAPM_AIF_IN("WSA AIF1 PB", "WSA_AIF1 Playback", 0,
  2315. SND_SOC_NOPM, 0, 0),
  2316. SND_SOC_DAPM_AIF_IN("WSA AIF_MIX1 PB", "WSA_AIF_MIX1 Playback", 0,
  2317. SND_SOC_NOPM, 0, 0),
  2318. SND_SOC_DAPM_AIF_OUT_E("WSA AIF_VI", "WSA_AIF_VI Capture", 0,
  2319. SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI, 0,
  2320. lpass_cdc_wsa_macro_enable_vi_feedback,
  2321. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
  2322. SND_SOC_DAPM_AIF_OUT("WSA AIF_ECHO", "WSA_AIF_ECHO Capture", 0,
  2323. SND_SOC_NOPM, 0, 0),
  2324. SND_SOC_DAPM_MIXER("WSA_AIF_VI Mixer", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI,
  2325. 0, aif_vi_mixer, ARRAY_SIZE(aif_vi_mixer)),
  2326. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC0_MUX", SND_SOC_NOPM,
  2327. LPASS_CDC_WSA_MACRO_EC0_MUX, 0,
  2328. &rx_mix_ec0_mux, lpass_cdc_wsa_macro_enable_echo,
  2329. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2330. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC1_MUX", SND_SOC_NOPM,
  2331. LPASS_CDC_WSA_MACRO_EC1_MUX, 0,
  2332. &rx_mix_ec1_mux, lpass_cdc_wsa_macro_enable_echo,
  2333. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2334. SND_SOC_DAPM_MUX("WSA RX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 0,
  2335. &rx_mux[LPASS_CDC_WSA_MACRO_RX0]),
  2336. SND_SOC_DAPM_MUX("WSA RX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 0,
  2337. &rx_mux[LPASS_CDC_WSA_MACRO_RX1]),
  2338. SND_SOC_DAPM_MUX("WSA RX_MIX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX0, 0,
  2339. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX0]),
  2340. SND_SOC_DAPM_MUX("WSA RX_MIX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX1, 0,
  2341. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX1]),
  2342. SND_SOC_DAPM_MIXER("WSA RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2343. SND_SOC_DAPM_MIXER("WSA RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2344. SND_SOC_DAPM_MIXER("WSA RX_MIX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2345. SND_SOC_DAPM_MIXER("WSA RX_MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2346. SND_SOC_DAPM_MUX_E("WSA_RX0 INP0", SND_SOC_NOPM, 0, 0,
  2347. &rx0_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2348. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2349. SND_SOC_DAPM_MUX_E("WSA_RX0 INP1", SND_SOC_NOPM, 0, 0,
  2350. &rx0_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2351. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2352. SND_SOC_DAPM_MUX_E("WSA_RX0 INP2", SND_SOC_NOPM, 0, 0,
  2353. &rx0_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2354. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2355. SND_SOC_DAPM_MUX_E("WSA_RX0 MIX INP", SND_SOC_NOPM,
  2356. 0, 0, &rx0_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2357. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2358. SND_SOC_DAPM_MUX_E("WSA_RX1 INP0", SND_SOC_NOPM, 0, 0,
  2359. &rx1_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2360. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2361. SND_SOC_DAPM_MUX_E("WSA_RX1 INP1", SND_SOC_NOPM, 0, 0,
  2362. &rx1_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2363. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2364. SND_SOC_DAPM_MUX_E("WSA_RX1 INP2", SND_SOC_NOPM, 0, 0,
  2365. &rx1_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2366. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2367. SND_SOC_DAPM_MUX_E("WSA_RX1 MIX INP", SND_SOC_NOPM,
  2368. 0, 0, &rx1_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2369. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2370. SND_SOC_DAPM_PGA_E("WSA_RX INT0 MIX", SND_SOC_NOPM,
  2371. 0, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2372. SND_SOC_DAPM_PRE_PMU),
  2373. SND_SOC_DAPM_PGA_E("WSA_RX INT1 MIX", SND_SOC_NOPM,
  2374. 1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2375. SND_SOC_DAPM_PRE_PMU),
  2376. SND_SOC_DAPM_MIXER("WSA_RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2377. SND_SOC_DAPM_MIXER("WSA_RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2378. SND_SOC_DAPM_MUX_E("WSA_RX0 INT0 SIDETONE MIX",
  2379. LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 4, 0,
  2380. &rx0_sidetone_mix_mux, lpass_cdc_wsa_macro_enable_swr,
  2381. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2382. SND_SOC_DAPM_INPUT("WSA SRC0_INP"),
  2383. SND_SOC_DAPM_INPUT("WSA_TX DEC0_INP"),
  2384. SND_SOC_DAPM_INPUT("WSA_TX DEC1_INP"),
  2385. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 INTERP", SND_SOC_NOPM,
  2386. LPASS_CDC_WSA_MACRO_COMP1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2387. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2388. SND_SOC_DAPM_POST_PMD),
  2389. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 INTERP", SND_SOC_NOPM,
  2390. LPASS_CDC_WSA_MACRO_COMP2, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2391. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2392. SND_SOC_DAPM_POST_PMD),
  2393. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 CHAIN", SND_SOC_NOPM, 0, 0,
  2394. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2395. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2396. SND_SOC_DAPM_POST_PMD),
  2397. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 CHAIN", SND_SOC_NOPM, 0, 0,
  2398. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2399. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2400. SND_SOC_DAPM_POST_PMD),
  2401. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 VBAT", SND_SOC_NOPM,
  2402. 0, 0, wsa_int0_vbat_mix_switch,
  2403. ARRAY_SIZE(wsa_int0_vbat_mix_switch),
  2404. lpass_cdc_wsa_macro_enable_vbat,
  2405. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2406. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 VBAT", SND_SOC_NOPM,
  2407. 0, 0, wsa_int1_vbat_mix_switch,
  2408. ARRAY_SIZE(wsa_int1_vbat_mix_switch),
  2409. lpass_cdc_wsa_macro_enable_vbat,
  2410. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2411. SND_SOC_DAPM_INPUT("VIINPUT_WSA"),
  2412. SND_SOC_DAPM_OUTPUT("WSA_SPK1 OUT"),
  2413. SND_SOC_DAPM_OUTPUT("WSA_SPK2 OUT"),
  2414. SND_SOC_DAPM_SUPPLY_S("WSA_MCLK", 0, SND_SOC_NOPM, 0, 0,
  2415. lpass_cdc_wsa_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2416. };
  2417. static const struct snd_soc_dapm_route wsa_audio_map[] = {
  2418. /* VI Feedback */
  2419. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_1", "VIINPUT_WSA"},
  2420. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_2", "VIINPUT_WSA"},
  2421. {"WSA AIF_VI", NULL, "WSA_AIF_VI Mixer"},
  2422. {"WSA AIF_VI", NULL, "WSA_MCLK"},
  2423. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2424. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2425. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2426. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2427. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC0_MUX"},
  2428. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC1_MUX"},
  2429. {"WSA AIF_ECHO", NULL, "WSA_MCLK"},
  2430. {"WSA AIF1 PB", NULL, "WSA_MCLK"},
  2431. {"WSA AIF_MIX1 PB", NULL, "WSA_MCLK"},
  2432. {"WSA RX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2433. {"WSA RX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2434. {"WSA RX_MIX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2435. {"WSA RX_MIX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2436. {"WSA RX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2437. {"WSA RX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2438. {"WSA RX_MIX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2439. {"WSA RX_MIX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2440. {"WSA RX0", NULL, "WSA RX0 MUX"},
  2441. {"WSA RX1", NULL, "WSA RX1 MUX"},
  2442. {"WSA RX_MIX0", NULL, "WSA RX_MIX0 MUX"},
  2443. {"WSA RX_MIX1", NULL, "WSA RX_MIX1 MUX"},
  2444. {"WSA_RX0 INP0", "RX0", "WSA RX0"},
  2445. {"WSA_RX0 INP0", "RX1", "WSA RX1"},
  2446. {"WSA_RX0 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2447. {"WSA_RX0 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2448. {"WSA_RX0 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2449. {"WSA_RX0 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2450. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP0"},
  2451. {"WSA_RX0 INP1", "RX0", "WSA RX0"},
  2452. {"WSA_RX0 INP1", "RX1", "WSA RX1"},
  2453. {"WSA_RX0 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2454. {"WSA_RX0 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2455. {"WSA_RX0 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2456. {"WSA_RX0 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2457. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP1"},
  2458. {"WSA_RX0 INP2", "RX0", "WSA RX0"},
  2459. {"WSA_RX0 INP2", "RX1", "WSA RX1"},
  2460. {"WSA_RX0 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2461. {"WSA_RX0 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2462. {"WSA_RX0 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2463. {"WSA_RX0 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2464. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP2"},
  2465. {"WSA_RX0 MIX INP", "RX0", "WSA RX0"},
  2466. {"WSA_RX0 MIX INP", "RX1", "WSA RX1"},
  2467. {"WSA_RX0 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2468. {"WSA_RX0 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2469. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX0 MIX INP"},
  2470. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX INT0 MIX"},
  2471. {"WSA_RX INT0 INTERP", NULL, "WSA_RX INT0 SEC MIX"},
  2472. {"WSA_RX0 INT0 SIDETONE MIX", "SRC0", "WSA SRC0_INP"},
  2473. {"WSA_RX INT0 INTERP", NULL, "WSA_RX0 INT0 SIDETONE MIX"},
  2474. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 INTERP"},
  2475. {"WSA_RX INT0 VBAT", "WSA RX0 VBAT Enable", "WSA_RX INT0 INTERP"},
  2476. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 VBAT"},
  2477. {"WSA_SPK1 OUT", NULL, "WSA_RX INT0 CHAIN"},
  2478. {"WSA_SPK1 OUT", NULL, "WSA_MCLK"},
  2479. {"WSA_RX1 INP0", "RX0", "WSA RX0"},
  2480. {"WSA_RX1 INP0", "RX1", "WSA RX1"},
  2481. {"WSA_RX1 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2482. {"WSA_RX1 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2483. {"WSA_RX1 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2484. {"WSA_RX1 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2485. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP0"},
  2486. {"WSA_RX1 INP1", "RX0", "WSA RX0"},
  2487. {"WSA_RX1 INP1", "RX1", "WSA RX1"},
  2488. {"WSA_RX1 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2489. {"WSA_RX1 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2490. {"WSA_RX1 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2491. {"WSA_RX1 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2492. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP1"},
  2493. {"WSA_RX1 INP2", "RX0", "WSA RX0"},
  2494. {"WSA_RX1 INP2", "RX1", "WSA RX1"},
  2495. {"WSA_RX1 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2496. {"WSA_RX1 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2497. {"WSA_RX1 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2498. {"WSA_RX1 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2499. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP2"},
  2500. {"WSA_RX1 MIX INP", "RX0", "WSA RX0"},
  2501. {"WSA_RX1 MIX INP", "RX1", "WSA RX1"},
  2502. {"WSA_RX1 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2503. {"WSA_RX1 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2504. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX1 MIX INP"},
  2505. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX INT1 MIX"},
  2506. {"WSA_RX INT1 INTERP", NULL, "WSA_RX INT1 SEC MIX"},
  2507. {"WSA_RX INT1 VBAT", "WSA RX1 VBAT Enable", "WSA_RX INT1 INTERP"},
  2508. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 VBAT"},
  2509. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 INTERP"},
  2510. {"WSA_SPK2 OUT", NULL, "WSA_RX INT1 CHAIN"},
  2511. {"WSA_SPK2 OUT", NULL, "WSA_MCLK"},
  2512. };
  2513. static const struct lpass_cdc_wsa_macro_reg_mask_val
  2514. lpass_cdc_wsa_macro_reg_init[] = {
  2515. {LPASS_CDC_WSA_BOOST0_BOOST_CFG1, 0x3F, 0x12},
  2516. {LPASS_CDC_WSA_BOOST0_BOOST_CFG2, 0x1C, 0x08},
  2517. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x1E, 0x0C},
  2518. {LPASS_CDC_WSA_BOOST1_BOOST_CFG1, 0x3F, 0x12},
  2519. {LPASS_CDC_WSA_BOOST1_BOOST_CFG2, 0x1C, 0x08},
  2520. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x1E, 0x0C},
  2521. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x70, 0x58},
  2522. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x70, 0x58},
  2523. {LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 0x08, 0x08},
  2524. {LPASS_CDC_WSA_RX1_RX_PATH_CFG1, 0x08, 0x08},
  2525. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x02, 0x02},
  2526. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x01, 0x01},
  2527. {LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2528. {LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2529. {LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2530. {LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2531. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x01, 0x01},
  2532. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x01, 0x01},
  2533. {LPASS_CDC_WSA_RX0_RX_PATH_CFG0, 0x01, 0x01},
  2534. {LPASS_CDC_WSA_RX1_RX_PATH_CFG0, 0x01, 0x01},
  2535. {LPASS_CDC_WSA_RX0_RX_PATH_MIX_CFG, 0x01, 0x01},
  2536. {LPASS_CDC_WSA_RX1_RX_PATH_MIX_CFG, 0x01, 0x01},
  2537. };
  2538. static void lpass_cdc_wsa_macro_init_bcl_pmic_reg(struct snd_soc_component *component)
  2539. {
  2540. struct device *wsa_dev = NULL;
  2541. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2542. if (!component) {
  2543. pr_err("%s: NULL component pointer!\n", __func__);
  2544. return;
  2545. }
  2546. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2547. return;
  2548. switch (wsa_priv->bcl_pmic_params.id) {
  2549. case 0:
  2550. break;
  2551. case 1:
  2552. break;
  2553. default:
  2554. dev_err(wsa_dev, "%s: PMIC ID is invalid %d\n",
  2555. __func__, wsa_priv->bcl_pmic_params.id);
  2556. break;
  2557. }
  2558. }
  2559. static void lpass_cdc_wsa_macro_init_reg(struct snd_soc_component *component)
  2560. {
  2561. int i;
  2562. for (i = 0; i < ARRAY_SIZE(lpass_cdc_wsa_macro_reg_init); i++)
  2563. snd_soc_component_update_bits(component,
  2564. lpass_cdc_wsa_macro_reg_init[i].reg,
  2565. lpass_cdc_wsa_macro_reg_init[i].mask,
  2566. lpass_cdc_wsa_macro_reg_init[i].val);
  2567. lpass_cdc_wsa_macro_init_bcl_pmic_reg(component);
  2568. }
  2569. static int lpass_cdc_wsa_macro_core_vote(void *handle, bool enable)
  2570. {
  2571. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2572. if (wsa_priv == NULL) {
  2573. pr_err("%s: wsa priv data is NULL\n", __func__);
  2574. return -EINVAL;
  2575. }
  2576. if (enable) {
  2577. pm_runtime_get_sync(wsa_priv->dev);
  2578. pm_runtime_put_autosuspend(wsa_priv->dev);
  2579. pm_runtime_mark_last_busy(wsa_priv->dev);
  2580. }
  2581. if (lpass_cdc_check_core_votes(wsa_priv->dev))
  2582. return 0;
  2583. else
  2584. return -EINVAL;
  2585. }
  2586. static int wsa_swrm_clock(void *handle, bool enable)
  2587. {
  2588. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2589. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  2590. int ret = 0;
  2591. if (regmap == NULL) {
  2592. dev_err(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  2593. return -EINVAL;
  2594. }
  2595. mutex_lock(&wsa_priv->swr_clk_lock);
  2596. trace_printk("%s: %s swrm clock %s\n",
  2597. dev_name(wsa_priv->dev), __func__,
  2598. (enable ? "enable" : "disable"));
  2599. dev_dbg(wsa_priv->dev, "%s: swrm clock %s\n",
  2600. __func__, (enable ? "enable" : "disable"));
  2601. if (enable) {
  2602. pm_runtime_get_sync(wsa_priv->dev);
  2603. if (wsa_priv->swr_clk_users == 0) {
  2604. ret = msm_cdc_pinctrl_select_active_state(
  2605. wsa_priv->wsa_swr_gpio_p);
  2606. if (ret < 0) {
  2607. dev_err_ratelimited(wsa_priv->dev,
  2608. "%s: wsa swr pinctrl enable failed\n",
  2609. __func__);
  2610. pm_runtime_mark_last_busy(wsa_priv->dev);
  2611. pm_runtime_put_autosuspend(wsa_priv->dev);
  2612. goto exit;
  2613. }
  2614. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  2615. if (ret < 0) {
  2616. msm_cdc_pinctrl_select_sleep_state(
  2617. wsa_priv->wsa_swr_gpio_p);
  2618. dev_err_ratelimited(wsa_priv->dev,
  2619. "%s: wsa request clock enable failed\n",
  2620. __func__);
  2621. pm_runtime_mark_last_busy(wsa_priv->dev);
  2622. pm_runtime_put_autosuspend(wsa_priv->dev);
  2623. goto exit;
  2624. }
  2625. if (wsa_priv->reset_swr)
  2626. regmap_update_bits(regmap,
  2627. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2628. 0x02, 0x02);
  2629. regmap_update_bits(regmap,
  2630. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2631. 0x01, 0x01);
  2632. if (wsa_priv->reset_swr)
  2633. regmap_update_bits(regmap,
  2634. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2635. 0x02, 0x00);
  2636. regmap_update_bits(regmap,
  2637. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2638. 0x1C, 0x0C);
  2639. wsa_priv->reset_swr = false;
  2640. }
  2641. wsa_priv->swr_clk_users++;
  2642. pm_runtime_mark_last_busy(wsa_priv->dev);
  2643. pm_runtime_put_autosuspend(wsa_priv->dev);
  2644. } else {
  2645. if (wsa_priv->swr_clk_users <= 0) {
  2646. dev_err(wsa_priv->dev, "%s: clock already disabled\n",
  2647. __func__);
  2648. wsa_priv->swr_clk_users = 0;
  2649. goto exit;
  2650. }
  2651. wsa_priv->swr_clk_users--;
  2652. if (wsa_priv->swr_clk_users == 0) {
  2653. regmap_update_bits(regmap,
  2654. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2655. 0x01, 0x00);
  2656. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  2657. ret = msm_cdc_pinctrl_select_sleep_state(
  2658. wsa_priv->wsa_swr_gpio_p);
  2659. if (ret < 0) {
  2660. dev_err_ratelimited(wsa_priv->dev,
  2661. "%s: wsa swr pinctrl disable failed\n",
  2662. __func__);
  2663. goto exit;
  2664. }
  2665. }
  2666. }
  2667. trace_printk("%s: %s swrm clock users: %d\n",
  2668. dev_name(wsa_priv->dev), __func__,
  2669. wsa_priv->swr_clk_users);
  2670. dev_dbg(wsa_priv->dev, "%s: swrm clock users %d\n",
  2671. __func__, wsa_priv->swr_clk_users);
  2672. exit:
  2673. mutex_unlock(&wsa_priv->swr_clk_lock);
  2674. return ret;
  2675. }
  2676. /* Thermal Functions */
  2677. static int lpass_cdc_wsa_macro_get_max_state(
  2678. struct thermal_cooling_device *cdev,
  2679. unsigned long *state)
  2680. {
  2681. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  2682. if (!wsa_priv) {
  2683. pr_err("%s: cdev->devdata is NULL\n", __func__);
  2684. return -EINVAL;
  2685. }
  2686. *state = wsa_priv->thermal_max_state;
  2687. return 0;
  2688. }
  2689. static int lpass_cdc_wsa_macro_get_cur_state(
  2690. struct thermal_cooling_device *cdev,
  2691. unsigned long *state)
  2692. {
  2693. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  2694. if (!wsa_priv) {
  2695. pr_err("%s: cdev->devdata is NULL\n", __func__);
  2696. return -EINVAL;
  2697. }
  2698. *state = wsa_priv->thermal_cur_state;
  2699. pr_debug("%s: thermal current state:%lu\n", __func__, *state);
  2700. return 0;
  2701. }
  2702. static int lpass_cdc_wsa_macro_set_cur_state(
  2703. struct thermal_cooling_device *cdev,
  2704. unsigned long state)
  2705. {
  2706. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  2707. u8 gain = 0;
  2708. if (!wsa_priv) {
  2709. pr_err("%s: cdev->devdata is NULL\n", __func__);
  2710. return -EINVAL;
  2711. }
  2712. if (state < wsa_priv->thermal_max_state)
  2713. wsa_priv->thermal_cur_state = state;
  2714. else
  2715. wsa_priv->thermal_cur_state = wsa_priv->thermal_max_state;
  2716. gain = (u8)(gain - wsa_priv->thermal_cur_state);
  2717. dev_dbg(wsa_priv->dev,
  2718. "%s: requested state:%d, actual state: %d, gain: %#x\n",
  2719. __func__, state, wsa_priv->thermal_cur_state, gain);
  2720. snd_soc_component_update_bits(wsa_priv->component,
  2721. LPASS_CDC_WSA_RX0_RX_VOL_CTL, 0xFF, gain);
  2722. snd_soc_component_update_bits(wsa_priv->component,
  2723. LPASS_CDC_WSA_RX1_RX_VOL_CTL, 0xFF, gain);
  2724. return 0;
  2725. }
  2726. static struct thermal_cooling_device_ops wsa_cooling_ops = {
  2727. .get_max_state = lpass_cdc_wsa_macro_get_max_state,
  2728. .get_cur_state = lpass_cdc_wsa_macro_get_cur_state,
  2729. .set_cur_state = lpass_cdc_wsa_macro_set_cur_state,
  2730. };
  2731. static int lpass_cdc_wsa_macro_init(struct snd_soc_component *component)
  2732. {
  2733. struct snd_soc_dapm_context *dapm =
  2734. snd_soc_component_get_dapm(component);
  2735. int ret;
  2736. struct device *wsa_dev = NULL;
  2737. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2738. wsa_dev = lpass_cdc_get_device_ptr(component->dev, WSA_MACRO);
  2739. if (!wsa_dev) {
  2740. dev_err(component->dev,
  2741. "%s: null device for macro!\n", __func__);
  2742. return -EINVAL;
  2743. }
  2744. wsa_priv = dev_get_drvdata(wsa_dev);
  2745. if (!wsa_priv) {
  2746. dev_err(component->dev,
  2747. "%s: priv is null for macro!\n", __func__);
  2748. return -EINVAL;
  2749. }
  2750. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_wsa_macro_dapm_widgets,
  2751. ARRAY_SIZE(lpass_cdc_wsa_macro_dapm_widgets));
  2752. if (ret < 0) {
  2753. dev_err(wsa_dev, "%s: Failed to add controls\n", __func__);
  2754. return ret;
  2755. }
  2756. ret = snd_soc_dapm_add_routes(dapm, wsa_audio_map,
  2757. ARRAY_SIZE(wsa_audio_map));
  2758. if (ret < 0) {
  2759. dev_err(wsa_dev, "%s: Failed to add routes\n", __func__);
  2760. return ret;
  2761. }
  2762. ret = snd_soc_dapm_new_widgets(dapm->card);
  2763. if (ret < 0) {
  2764. dev_err(wsa_dev, "%s: Failed to add widgets\n", __func__);
  2765. return ret;
  2766. }
  2767. ret = snd_soc_add_component_controls(component, lpass_cdc_wsa_macro_snd_controls,
  2768. ARRAY_SIZE(lpass_cdc_wsa_macro_snd_controls));
  2769. if (ret < 0) {
  2770. dev_err(wsa_dev, "%s: Failed to add snd_ctls\n", __func__);
  2771. return ret;
  2772. }
  2773. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF1 Playback");
  2774. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_MIX1 Playback");
  2775. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_VI Capture");
  2776. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_ECHO Capture");
  2777. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK1 OUT");
  2778. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK2 OUT");
  2779. snd_soc_dapm_ignore_suspend(dapm, "VIINPUT_WSA");
  2780. snd_soc_dapm_ignore_suspend(dapm, "WSA SRC0_INP");
  2781. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC0_INP");
  2782. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC1_INP");
  2783. snd_soc_dapm_sync(dapm);
  2784. wsa_priv->component = component;
  2785. wsa_priv->spkr_gain_offset = LPASS_CDC_WSA_MACRO_GAIN_OFFSET_0_DB;
  2786. lpass_cdc_wsa_macro_init_reg(component);
  2787. return 0;
  2788. }
  2789. static int lpass_cdc_wsa_macro_deinit(struct snd_soc_component *component)
  2790. {
  2791. struct device *wsa_dev = NULL;
  2792. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2793. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2794. return -EINVAL;
  2795. wsa_priv->component = NULL;
  2796. return 0;
  2797. }
  2798. static void lpass_cdc_wsa_macro_add_child_devices(struct work_struct *work)
  2799. {
  2800. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2801. struct platform_device *pdev;
  2802. struct device_node *node;
  2803. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data = NULL, *temp;
  2804. int ret;
  2805. u16 count = 0, ctrl_num = 0;
  2806. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data *platdata;
  2807. char plat_dev_name[LPASS_CDC_WSA_MACRO_SWR_STRING_LEN];
  2808. wsa_priv = container_of(work, struct lpass_cdc_wsa_macro_priv,
  2809. lpass_cdc_wsa_macro_add_child_devices_work);
  2810. if (!wsa_priv) {
  2811. pr_err("%s: Memory for wsa_priv does not exist\n",
  2812. __func__);
  2813. return;
  2814. }
  2815. if (!wsa_priv->dev || !wsa_priv->dev->of_node) {
  2816. dev_err(wsa_priv->dev,
  2817. "%s: DT node for wsa_priv does not exist\n", __func__);
  2818. return;
  2819. }
  2820. platdata = &wsa_priv->swr_plat_data;
  2821. wsa_priv->child_count = 0;
  2822. for_each_available_child_of_node(wsa_priv->dev->of_node, node) {
  2823. if (strnstr(node->name, "wsa_swr_master",
  2824. strlen("wsa_swr_master")) != NULL)
  2825. strlcpy(plat_dev_name, "wsa_swr_ctrl",
  2826. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  2827. else if (strnstr(node->name, "msm_cdc_pinctrl",
  2828. strlen("msm_cdc_pinctrl")) != NULL)
  2829. strlcpy(plat_dev_name, node->name,
  2830. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  2831. else
  2832. continue;
  2833. pdev = platform_device_alloc(plat_dev_name, -1);
  2834. if (!pdev) {
  2835. dev_err(wsa_priv->dev, "%s: pdev memory alloc failed\n",
  2836. __func__);
  2837. ret = -ENOMEM;
  2838. goto err;
  2839. }
  2840. pdev->dev.parent = wsa_priv->dev;
  2841. pdev->dev.of_node = node;
  2842. if (strnstr(node->name, "wsa_swr_master",
  2843. strlen("wsa_swr_master")) != NULL) {
  2844. ret = platform_device_add_data(pdev, platdata,
  2845. sizeof(*platdata));
  2846. if (ret) {
  2847. dev_err(&pdev->dev,
  2848. "%s: cannot add plat data ctrl:%d\n",
  2849. __func__, ctrl_num);
  2850. goto fail_pdev_add;
  2851. }
  2852. }
  2853. ret = platform_device_add(pdev);
  2854. if (ret) {
  2855. dev_err(&pdev->dev,
  2856. "%s: Cannot add platform device\n",
  2857. __func__);
  2858. goto fail_pdev_add;
  2859. }
  2860. if (!strcmp(node->name, "wsa_swr_master")) {
  2861. temp = krealloc(swr_ctrl_data,
  2862. (ctrl_num + 1) * sizeof(
  2863. struct lpass_cdc_wsa_macro_swr_ctrl_data),
  2864. GFP_KERNEL);
  2865. if (!temp) {
  2866. dev_err(&pdev->dev, "out of memory\n");
  2867. ret = -ENOMEM;
  2868. goto err;
  2869. }
  2870. swr_ctrl_data = temp;
  2871. swr_ctrl_data[ctrl_num].wsa_swr_pdev = pdev;
  2872. ctrl_num++;
  2873. dev_dbg(&pdev->dev,
  2874. "%s: Added soundwire ctrl device(s)\n",
  2875. __func__);
  2876. wsa_priv->swr_ctrl_data = swr_ctrl_data;
  2877. }
  2878. if (wsa_priv->child_count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX)
  2879. wsa_priv->pdev_child_devices[
  2880. wsa_priv->child_count++] = pdev;
  2881. else
  2882. goto err;
  2883. }
  2884. return;
  2885. fail_pdev_add:
  2886. for (count = 0; count < wsa_priv->child_count; count++)
  2887. platform_device_put(wsa_priv->pdev_child_devices[count]);
  2888. err:
  2889. return;
  2890. }
  2891. static void lpass_cdc_wsa_macro_init_ops(struct macro_ops *ops,
  2892. char __iomem *wsa_io_base)
  2893. {
  2894. memset(ops, 0, sizeof(struct macro_ops));
  2895. ops->init = lpass_cdc_wsa_macro_init;
  2896. ops->exit = lpass_cdc_wsa_macro_deinit;
  2897. ops->io_base = wsa_io_base;
  2898. ops->dai_ptr = lpass_cdc_wsa_macro_dai;
  2899. ops->num_dais = ARRAY_SIZE(lpass_cdc_wsa_macro_dai);
  2900. ops->event_handler = lpass_cdc_wsa_macro_event_handler;
  2901. ops->set_port_map = lpass_cdc_wsa_macro_set_port_map;
  2902. }
  2903. static int lpass_cdc_wsa_macro_probe(struct platform_device *pdev)
  2904. {
  2905. struct macro_ops ops;
  2906. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2907. u32 wsa_base_addr, default_clk_id, thermal_max_state;
  2908. char __iomem *wsa_io_base;
  2909. int ret = 0;
  2910. u8 bcl_pmic_params[3];
  2911. u32 is_used_wsa_swr_gpio = 1;
  2912. const char *is_used_wsa_swr_gpio_dt = "qcom,is-used-swr-gpio";
  2913. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  2914. dev_err(&pdev->dev,
  2915. "%s: va-macro not registered yet, defer\n", __func__);
  2916. return -EPROBE_DEFER;
  2917. }
  2918. wsa_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_wsa_macro_priv),
  2919. GFP_KERNEL);
  2920. if (!wsa_priv)
  2921. return -ENOMEM;
  2922. wsa_priv->dev = &pdev->dev;
  2923. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  2924. &wsa_base_addr);
  2925. if (ret) {
  2926. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  2927. __func__, "reg");
  2928. return ret;
  2929. }
  2930. if (of_find_property(pdev->dev.of_node, is_used_wsa_swr_gpio_dt,
  2931. NULL)) {
  2932. ret = of_property_read_u32(pdev->dev.of_node,
  2933. is_used_wsa_swr_gpio_dt,
  2934. &is_used_wsa_swr_gpio);
  2935. if (ret) {
  2936. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  2937. __func__, is_used_wsa_swr_gpio_dt);
  2938. is_used_wsa_swr_gpio = 1;
  2939. }
  2940. }
  2941. wsa_priv->wsa_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  2942. "qcom,wsa-swr-gpios", 0);
  2943. if (!wsa_priv->wsa_swr_gpio_p && is_used_wsa_swr_gpio) {
  2944. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  2945. __func__);
  2946. return -EINVAL;
  2947. }
  2948. if (msm_cdc_pinctrl_get_state(wsa_priv->wsa_swr_gpio_p) < 0 &&
  2949. is_used_wsa_swr_gpio) {
  2950. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  2951. __func__);
  2952. return -EPROBE_DEFER;
  2953. }
  2954. msm_cdc_pinctrl_set_wakeup_capable(
  2955. wsa_priv->wsa_swr_gpio_p, false);
  2956. wsa_io_base = devm_ioremap(&pdev->dev,
  2957. wsa_base_addr, LPASS_CDC_WSA_MACRO_MAX_OFFSET);
  2958. if (!wsa_io_base) {
  2959. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  2960. return -EINVAL;
  2961. }
  2962. wsa_priv->wsa_io_base = wsa_io_base;
  2963. wsa_priv->reset_swr = true;
  2964. INIT_WORK(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work,
  2965. lpass_cdc_wsa_macro_add_child_devices);
  2966. wsa_priv->swr_plat_data.handle = (void *) wsa_priv;
  2967. wsa_priv->swr_plat_data.read = NULL;
  2968. wsa_priv->swr_plat_data.write = NULL;
  2969. wsa_priv->swr_plat_data.bulk_write = NULL;
  2970. wsa_priv->swr_plat_data.clk = wsa_swrm_clock;
  2971. wsa_priv->swr_plat_data.core_vote = lpass_cdc_wsa_macro_core_vote;
  2972. wsa_priv->swr_plat_data.handle_irq = NULL;
  2973. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  2974. &default_clk_id);
  2975. if (ret) {
  2976. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  2977. __func__, "qcom,mux0-clk-id");
  2978. default_clk_id = WSA_CORE_CLK;
  2979. }
  2980. ret = of_property_read_u8_array(pdev->dev.of_node,
  2981. "qcom,wsa-bcl-pmic-params", bcl_pmic_params,
  2982. sizeof(bcl_pmic_params));
  2983. if (ret) {
  2984. dev_dbg(&pdev->dev, "%s: could not find %s entry in dt\n",
  2985. __func__, "qcom,wsa-bcl-pmic-params");
  2986. } else {
  2987. wsa_priv->bcl_pmic_params.id = bcl_pmic_params[0];
  2988. wsa_priv->bcl_pmic_params.sid = bcl_pmic_params[1];
  2989. wsa_priv->bcl_pmic_params.ppid = bcl_pmic_params[2];
  2990. }
  2991. wsa_priv->default_clk_id = default_clk_id;
  2992. dev_set_drvdata(&pdev->dev, wsa_priv);
  2993. mutex_init(&wsa_priv->mclk_lock);
  2994. mutex_init(&wsa_priv->swr_clk_lock);
  2995. lpass_cdc_wsa_macro_init_ops(&ops, wsa_io_base);
  2996. ops.clk_id_req = wsa_priv->default_clk_id;
  2997. ops.default_clk_id = wsa_priv->default_clk_id;
  2998. ret = lpass_cdc_register_macro(&pdev->dev, WSA_MACRO, &ops);
  2999. if (ret < 0) {
  3000. dev_err(&pdev->dev, "%s: register macro failed\n", __func__);
  3001. goto reg_macro_fail;
  3002. }
  3003. schedule_work(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work);
  3004. if (of_find_property(wsa_priv->dev->of_node, "#cooling-cells", NULL)) {
  3005. ret = of_property_read_u32(pdev->dev.of_node,
  3006. "qcom,thermal-max-state",
  3007. &thermal_max_state);
  3008. if (ret) {
  3009. dev_info(&pdev->dev, "%s: could not find %s entry in dt\n",
  3010. __func__, "qcom,thermal-max-state");
  3011. wsa_priv->thermal_max_state =
  3012. LPASS_CDC_WSA_MACRO_THERMAL_MAX_STATE;
  3013. } else {
  3014. wsa_priv->thermal_max_state = thermal_max_state;
  3015. }
  3016. wsa_priv->tcdev = devm_thermal_of_cooling_device_register(
  3017. &pdev->dev,
  3018. wsa_priv->dev->of_node,
  3019. "wsa", wsa_priv,
  3020. &wsa_cooling_ops);
  3021. if (IS_ERR(wsa_priv->tcdev)) {
  3022. dev_err(&pdev->dev,
  3023. "%s: failed to register wsa macro as cooling device\n",
  3024. __func__);
  3025. wsa_priv->tcdev = NULL;
  3026. }
  3027. }
  3028. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  3029. pm_runtime_use_autosuspend(&pdev->dev);
  3030. pm_runtime_set_suspended(&pdev->dev);
  3031. pm_suspend_ignore_children(&pdev->dev, true);
  3032. pm_runtime_enable(&pdev->dev);
  3033. return ret;
  3034. reg_macro_fail:
  3035. mutex_destroy(&wsa_priv->mclk_lock);
  3036. mutex_destroy(&wsa_priv->swr_clk_lock);
  3037. return ret;
  3038. }
  3039. static int lpass_cdc_wsa_macro_remove(struct platform_device *pdev)
  3040. {
  3041. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  3042. u16 count = 0;
  3043. wsa_priv = dev_get_drvdata(&pdev->dev);
  3044. if (!wsa_priv)
  3045. return -EINVAL;
  3046. if (wsa_priv->tcdev)
  3047. thermal_cooling_device_unregister(wsa_priv->tcdev);
  3048. for (count = 0; count < wsa_priv->child_count &&
  3049. count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX; count++)
  3050. platform_device_unregister(wsa_priv->pdev_child_devices[count]);
  3051. pm_runtime_disable(&pdev->dev);
  3052. pm_runtime_set_suspended(&pdev->dev);
  3053. lpass_cdc_unregister_macro(&pdev->dev, WSA_MACRO);
  3054. mutex_destroy(&wsa_priv->mclk_lock);
  3055. mutex_destroy(&wsa_priv->swr_clk_lock);
  3056. return 0;
  3057. }
  3058. static const struct of_device_id lpass_cdc_wsa_macro_dt_match[] = {
  3059. {.compatible = "qcom,lpass-cdc-wsa-macro"},
  3060. {}
  3061. };
  3062. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  3063. SET_SYSTEM_SLEEP_PM_OPS(
  3064. pm_runtime_force_suspend,
  3065. pm_runtime_force_resume
  3066. )
  3067. SET_RUNTIME_PM_OPS(
  3068. lpass_cdc_runtime_suspend,
  3069. lpass_cdc_runtime_resume,
  3070. NULL
  3071. )
  3072. };
  3073. static struct platform_driver lpass_cdc_wsa_macro_driver = {
  3074. .driver = {
  3075. .name = "lpass_cdc_wsa_macro",
  3076. .owner = THIS_MODULE,
  3077. .pm = &lpass_cdc_dev_pm_ops,
  3078. .of_match_table = lpass_cdc_wsa_macro_dt_match,
  3079. .suppress_bind_attrs = true,
  3080. },
  3081. .probe = lpass_cdc_wsa_macro_probe,
  3082. .remove = lpass_cdc_wsa_macro_remove,
  3083. };
  3084. module_platform_driver(lpass_cdc_wsa_macro_driver);
  3085. MODULE_DESCRIPTION("WSA macro driver");
  3086. MODULE_LICENSE("GPL v2");