hal_srng.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269
  1. /*
  2. * Copyright (c) 2016-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "hal_api.h"
  20. #include "target_type.h"
  21. #include "wcss_version.h"
  22. #include "qdf_module.h"
  23. #ifdef QCA_WIFI_QCA8074
  24. void hal_qca6290_attach(struct hal_soc *hal);
  25. #endif
  26. #ifdef QCA_WIFI_QCA8074
  27. void hal_qca8074_attach(struct hal_soc *hal);
  28. #endif
  29. #if defined(QCA_WIFI_QCA8074V2) || defined(QCA_WIFI_QCA6018)
  30. void hal_qca8074v2_attach(struct hal_soc *hal);
  31. #endif
  32. #ifdef QCA_WIFI_QCA6390
  33. void hal_qca6390_attach(struct hal_soc *hal);
  34. #endif
  35. #ifdef QCA_WIFI_QCA6490
  36. void hal_qca6490_attach(struct hal_soc *hal);
  37. #endif
  38. #ifdef QCA_WIFI_QCN9000
  39. void hal_qcn9000_attach(struct hal_soc *hal);
  40. #endif
  41. #ifdef QCA_WIFI_QCA6750
  42. void hal_qca6750_attach(struct hal_soc *hal);
  43. #endif
  44. #ifdef QCA_WIFI_QCA5018
  45. void hal_qca5018_attach(struct hal_soc *hal);
  46. #endif
  47. #ifdef ENABLE_VERBOSE_DEBUG
  48. bool is_hal_verbose_debug_enabled;
  49. #endif
  50. #ifdef ENABLE_HAL_REG_WR_HISTORY
  51. struct hal_reg_write_fail_history hal_reg_wr_hist;
  52. void hal_reg_wr_fail_history_add(struct hal_soc *hal_soc,
  53. uint32_t offset,
  54. uint32_t wr_val, uint32_t rd_val)
  55. {
  56. struct hal_reg_write_fail_entry *record;
  57. int idx;
  58. idx = hal_history_get_next_index(&hal_soc->reg_wr_fail_hist->index,
  59. HAL_REG_WRITE_HIST_SIZE);
  60. record = &hal_soc->reg_wr_fail_hist->record[idx];
  61. record->timestamp = qdf_get_log_timestamp();
  62. record->reg_offset = offset;
  63. record->write_val = wr_val;
  64. record->read_val = rd_val;
  65. }
  66. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  67. {
  68. hal->reg_wr_fail_hist = &hal_reg_wr_hist;
  69. qdf_atomic_set(&hal->reg_wr_fail_hist->index, -1);
  70. }
  71. #else
  72. static void hal_reg_write_fail_history_init(struct hal_soc *hal)
  73. {
  74. }
  75. #endif
  76. /**
  77. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  78. * @hal: hal_soc data structure
  79. * @ring_type: type enum describing the ring
  80. * @ring_num: which ring of the ring type
  81. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  82. *
  83. * Return: the ring id or -EINVAL if the ring does not exist.
  84. */
  85. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  86. int ring_num, int mac_id)
  87. {
  88. struct hal_hw_srng_config *ring_config =
  89. HAL_SRNG_CONFIG(hal, ring_type);
  90. int ring_id;
  91. if (ring_num >= ring_config->max_rings) {
  92. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  93. "%s: ring_num exceeded maximum no. of supported rings",
  94. __func__);
  95. /* TODO: This is a programming error. Assert if this happens */
  96. return -EINVAL;
  97. }
  98. if (ring_config->lmac_ring) {
  99. ring_id = ring_config->start_ring_id + ring_num +
  100. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  101. } else {
  102. ring_id = ring_config->start_ring_id + ring_num;
  103. }
  104. return ring_id;
  105. }
  106. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  107. {
  108. /* TODO: Should we allocate srng structures dynamically? */
  109. return &(hal->srng_list[ring_id]);
  110. }
  111. #define HP_OFFSET_IN_REG_START 1
  112. #define OFFSET_FROM_HP_TO_TP 4
  113. static void hal_update_srng_hp_tp_address(struct hal_soc *hal_soc,
  114. int shadow_config_index,
  115. int ring_type,
  116. int ring_num)
  117. {
  118. struct hal_srng *srng;
  119. int ring_id;
  120. struct hal_hw_srng_config *ring_config =
  121. HAL_SRNG_CONFIG(hal_soc, ring_type);
  122. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  123. if (ring_id < 0)
  124. return;
  125. srng = hal_get_srng(hal_soc, ring_id);
  126. if (ring_config->ring_dir == HAL_SRNG_DST_RING) {
  127. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  128. + hal_soc->dev_base_addr;
  129. hal_debug("tp_addr=%pK dev base addr %pK index %u",
  130. srng->u.dst_ring.tp_addr, hal_soc->dev_base_addr,
  131. shadow_config_index);
  132. } else {
  133. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  134. + hal_soc->dev_base_addr;
  135. hal_debug("hp_addr=%pK dev base addr %pK index %u",
  136. srng->u.src_ring.hp_addr,
  137. hal_soc->dev_base_addr, shadow_config_index);
  138. }
  139. }
  140. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  141. int ring_type,
  142. int ring_num)
  143. {
  144. uint32_t target_register;
  145. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  146. struct hal_hw_srng_config *srng_config = &hal->hw_srng_table[ring_type];
  147. int shadow_config_index = hal->num_shadow_registers_configured;
  148. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  149. QDF_ASSERT(0);
  150. return QDF_STATUS_E_RESOURCES;
  151. }
  152. hal->num_shadow_registers_configured++;
  153. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  154. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  155. *ring_num);
  156. /* if the ring is a dst ring, we need to shadow the tail pointer */
  157. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  158. target_register += OFFSET_FROM_HP_TO_TP;
  159. hal->shadow_config[shadow_config_index].addr = target_register;
  160. /* update hp/tp addr in the hal_soc structure*/
  161. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  162. ring_num);
  163. hal_debug("target_reg %x, shadow register 0x%x shadow_index 0x%x, ring_type %d, ring num %d",
  164. target_register,
  165. SHADOW_REGISTER(shadow_config_index),
  166. shadow_config_index,
  167. ring_type, ring_num);
  168. return QDF_STATUS_SUCCESS;
  169. }
  170. qdf_export_symbol(hal_set_one_shadow_config);
  171. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  172. {
  173. int ring_type, ring_num;
  174. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  175. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  176. struct hal_hw_srng_config *srng_config =
  177. &hal->hw_srng_table[ring_type];
  178. if (ring_type == CE_SRC ||
  179. ring_type == CE_DST ||
  180. ring_type == CE_DST_STATUS)
  181. continue;
  182. if (srng_config->lmac_ring)
  183. continue;
  184. for (ring_num = 0; ring_num < srng_config->max_rings;
  185. ring_num++)
  186. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  187. }
  188. return QDF_STATUS_SUCCESS;
  189. }
  190. qdf_export_symbol(hal_construct_shadow_config);
  191. void hal_get_shadow_config(void *hal_soc,
  192. struct pld_shadow_reg_v2_cfg **shadow_config,
  193. int *num_shadow_registers_configured)
  194. {
  195. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  196. *shadow_config = hal->shadow_config;
  197. *num_shadow_registers_configured =
  198. hal->num_shadow_registers_configured;
  199. }
  200. qdf_export_symbol(hal_get_shadow_config);
  201. static void hal_validate_shadow_register(struct hal_soc *hal,
  202. uint32_t *destination,
  203. uint32_t *shadow_address)
  204. {
  205. unsigned int index;
  206. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  207. int destination_ba_offset =
  208. ((char *)destination) - (char *)hal->dev_base_addr;
  209. index = shadow_address - shadow_0_offset;
  210. if (index >= MAX_SHADOW_REGISTERS) {
  211. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  212. "%s: index %x out of bounds", __func__, index);
  213. goto error;
  214. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  215. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  216. "%s: sanity check failure, expected %x, found %x",
  217. __func__, destination_ba_offset,
  218. hal->shadow_config[index].addr);
  219. goto error;
  220. }
  221. return;
  222. error:
  223. qdf_print("%s: baddr %pK, desination %pK, shadow_address %pK s0offset %pK index %x",
  224. __func__, hal->dev_base_addr, destination, shadow_address,
  225. shadow_0_offset, index);
  226. QDF_BUG(0);
  227. return;
  228. }
  229. static void hal_target_based_configure(struct hal_soc *hal)
  230. {
  231. switch (hal->target_type) {
  232. #ifdef QCA_WIFI_QCA6290
  233. case TARGET_TYPE_QCA6290:
  234. hal->use_register_windowing = true;
  235. hal_qca6290_attach(hal);
  236. break;
  237. #endif
  238. #ifdef QCA_WIFI_QCA6390
  239. case TARGET_TYPE_QCA6390:
  240. hal->use_register_windowing = true;
  241. hal_qca6390_attach(hal);
  242. break;
  243. #endif
  244. #ifdef QCA_WIFI_QCA6490
  245. case TARGET_TYPE_QCA6490:
  246. hal->use_register_windowing = true;
  247. hal_qca6490_attach(hal);
  248. break;
  249. #endif
  250. #ifdef QCA_WIFI_QCA6750
  251. case TARGET_TYPE_QCA6750:
  252. hal->use_register_windowing = true;
  253. hal->static_window_map = true;
  254. hal_qca6750_attach(hal);
  255. break;
  256. #endif
  257. #if defined(QCA_WIFI_QCA8074) && defined(WIFI_TARGET_TYPE_3_0)
  258. case TARGET_TYPE_QCA8074:
  259. hal_qca8074_attach(hal);
  260. break;
  261. #endif
  262. #if defined(QCA_WIFI_QCA8074V2)
  263. case TARGET_TYPE_QCA8074V2:
  264. hal_qca8074v2_attach(hal);
  265. break;
  266. #endif
  267. #if defined(QCA_WIFI_QCA6018)
  268. case TARGET_TYPE_QCA6018:
  269. hal_qca8074v2_attach(hal);
  270. break;
  271. #endif
  272. #ifdef QCA_WIFI_QCN9000
  273. case TARGET_TYPE_QCN9000:
  274. hal->use_register_windowing = true;
  275. /*
  276. * Static window map is enabled for qcn9000 to use 2mb bar
  277. * size and use multiple windows to write into registers.
  278. */
  279. hal->static_window_map = true;
  280. hal_qcn9000_attach(hal);
  281. break;
  282. #endif
  283. #ifdef QCA_WIFI_QCA5018
  284. case TARGET_TYPE_QCA5018:
  285. hal_qca5018_attach(hal);
  286. break;
  287. #endif
  288. default:
  289. break;
  290. }
  291. }
  292. uint32_t hal_get_target_type(hal_soc_handle_t hal_soc_hdl)
  293. {
  294. struct hal_soc *hal_soc = (struct hal_soc *)hal_soc_hdl;
  295. struct hif_target_info *tgt_info =
  296. hif_get_target_info_handle(hal_soc->hif_handle);
  297. return tgt_info->target_type;
  298. }
  299. qdf_export_symbol(hal_get_target_type);
  300. #ifdef FEATURE_HAL_DELAYED_REG_WRITE
  301. #ifdef MEMORY_DEBUG
  302. /*
  303. * Length of the queue(array) used to hold delayed register writes.
  304. * Must be a multiple of 2.
  305. */
  306. #define HAL_REG_WRITE_QUEUE_LEN 128
  307. #else
  308. #define HAL_REG_WRITE_QUEUE_LEN 32
  309. #endif
  310. /**
  311. * hal_is_reg_write_tput_level_high() - throughput level for delayed reg writes
  312. * @hal: hal_soc pointer
  313. *
  314. * Return: true if throughput is high, else false.
  315. */
  316. static inline bool hal_is_reg_write_tput_level_high(struct hal_soc *hal)
  317. {
  318. int bw_level = hif_get_bandwidth_level(hal->hif_handle);
  319. return (bw_level >= PLD_BUS_WIDTH_MEDIUM) ? true : false;
  320. }
  321. /**
  322. * hal_process_reg_write_q_elem() - process a regiter write queue element
  323. * @hal: hal_soc pointer
  324. * @q_elem: pointer to hal regiter write queue element
  325. *
  326. * Return: None
  327. */
  328. static void hal_process_reg_write_q_elem(struct hal_soc *hal,
  329. struct hal_reg_write_q_elem *q_elem)
  330. {
  331. struct hal_srng *srng = q_elem->srng;
  332. SRNG_LOCK(&srng->lock);
  333. srng->reg_write_in_progress = false;
  334. srng->wstats.dequeues++;
  335. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  336. q_elem->dequeue_val = srng->u.src_ring.hp;
  337. hal_write_address_32_mb(hal,
  338. srng->u.src_ring.hp_addr,
  339. srng->u.src_ring.hp, false);
  340. } else {
  341. q_elem->dequeue_val = srng->u.dst_ring.tp;
  342. hal_write_address_32_mb(hal,
  343. srng->u.dst_ring.tp_addr,
  344. srng->u.dst_ring.tp, false);
  345. }
  346. SRNG_UNLOCK(&srng->lock);
  347. }
  348. /**
  349. * hal_reg_write_fill_sched_delay_hist() - fill reg write delay histogram in hal
  350. * @hal: hal_soc pointer
  351. * @delay: delay in us
  352. *
  353. * Return: None
  354. */
  355. static inline void hal_reg_write_fill_sched_delay_hist(struct hal_soc *hal,
  356. uint64_t delay_us)
  357. {
  358. uint32_t *hist;
  359. hist = hal->stats.wstats.sched_delay;
  360. if (delay_us < 100)
  361. hist[REG_WRITE_SCHED_DELAY_SUB_100us]++;
  362. else if (delay_us < 1000)
  363. hist[REG_WRITE_SCHED_DELAY_SUB_1000us]++;
  364. else if (delay_us < 5000)
  365. hist[REG_WRITE_SCHED_DELAY_SUB_5000us]++;
  366. else
  367. hist[REG_WRITE_SCHED_DELAY_GT_5000us]++;
  368. }
  369. /**
  370. * hal_reg_write_work() - Worker to process delayed writes
  371. * @arg: hal_soc pointer
  372. *
  373. * Return: None
  374. */
  375. static void hal_reg_write_work(void *arg)
  376. {
  377. int32_t q_depth;
  378. struct hal_soc *hal = arg;
  379. struct hal_reg_write_q_elem *q_elem;
  380. uint64_t delta_us;
  381. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  382. if (!q_elem->valid)
  383. return;
  384. q_depth = qdf_atomic_read(&hal->stats.wstats.q_depth);
  385. if (q_depth > hal->stats.wstats.max_q_depth)
  386. hal->stats.wstats.max_q_depth = q_depth;
  387. if (hif_prevent_link_low_power_states(hal->hif_handle)) {
  388. hal->stats.wstats.prevent_l1_fails++;
  389. return;
  390. }
  391. while (q_elem->valid) {
  392. q_elem->dequeue_time = qdf_get_log_timestamp();
  393. delta_us = qdf_log_timestamp_to_usecs(q_elem->dequeue_time -
  394. q_elem->enqueue_time);
  395. hal_reg_write_fill_sched_delay_hist(hal, delta_us);
  396. hal->stats.wstats.dequeues++;
  397. qdf_atomic_dec(&hal->stats.wstats.q_depth);
  398. hal_process_reg_write_q_elem(hal, q_elem);
  399. hal_verbose_debug("read_idx %u srng 0x%x, addr 0x%pK dequeue_val %u sched delay %llu us",
  400. hal->read_idx,
  401. q_elem->srng->ring_id,
  402. q_elem->addr,
  403. q_elem->dequeue_val,
  404. delta_us);
  405. q_elem->valid = 0;
  406. hal->read_idx = (hal->read_idx + 1) &
  407. (HAL_REG_WRITE_QUEUE_LEN - 1);
  408. q_elem = &hal->reg_write_queue[(hal->read_idx)];
  409. }
  410. hif_allow_link_low_power_states(hal->hif_handle);
  411. }
  412. /**
  413. * hal_flush_reg_write_work() - flush all writes from regiter write queue
  414. * @arg: hal_soc pointer
  415. *
  416. * Return: None
  417. */
  418. static inline void hal_flush_reg_write_work(struct hal_soc *hal)
  419. {
  420. qdf_cancel_work(&hal->reg_write_work);
  421. qdf_flush_work(&hal->reg_write_work);
  422. qdf_flush_workqueue(0, hal->reg_write_wq);
  423. }
  424. /**
  425. * hal_reg_write_enqueue() - enqueue register writes into kworker
  426. * @hal_soc: hal_soc pointer
  427. * @srng: srng pointer
  428. * @addr: iomem address of regiter
  429. * @value: value to be written to iomem address
  430. *
  431. * This function executes from within the SRNG LOCK
  432. *
  433. * Return: None
  434. */
  435. static void hal_reg_write_enqueue(struct hal_soc *hal_soc,
  436. struct hal_srng *srng,
  437. void __iomem *addr,
  438. uint32_t value)
  439. {
  440. struct hal_reg_write_q_elem *q_elem;
  441. uint32_t write_idx;
  442. if (srng->reg_write_in_progress) {
  443. hal_verbose_debug("Already in progress srng ring id 0x%x addr 0x%pK val %u",
  444. srng->ring_id, addr, value);
  445. qdf_atomic_inc(&hal_soc->stats.wstats.coalesces);
  446. srng->wstats.coalesces++;
  447. return;
  448. }
  449. write_idx = qdf_atomic_inc_return(&hal_soc->write_idx);
  450. write_idx = write_idx & (HAL_REG_WRITE_QUEUE_LEN - 1);
  451. q_elem = &hal_soc->reg_write_queue[write_idx];
  452. if (q_elem->valid) {
  453. hal_err("queue full");
  454. QDF_BUG(0);
  455. return;
  456. }
  457. qdf_atomic_inc(&hal_soc->stats.wstats.enqueues);
  458. srng->wstats.enqueues++;
  459. qdf_atomic_inc(&hal_soc->stats.wstats.q_depth);
  460. q_elem->srng = srng;
  461. q_elem->addr = addr;
  462. q_elem->enqueue_val = value;
  463. q_elem->enqueue_time = qdf_get_log_timestamp();
  464. q_elem->valid = true;
  465. srng->reg_write_in_progress = true;
  466. hal_verbose_debug("write_idx %u srng ring id 0x%x addr 0x%pK val %u",
  467. write_idx, srng->ring_id, addr, value);
  468. qdf_queue_work(hal_soc->qdf_dev, hal_soc->reg_write_wq,
  469. &hal_soc->reg_write_work);
  470. }
  471. void hal_delayed_reg_write(struct hal_soc *hal_soc,
  472. struct hal_srng *srng,
  473. void __iomem *addr,
  474. uint32_t value)
  475. {
  476. if (pld_is_device_awake(hal_soc->qdf_dev->dev) ||
  477. hal_is_reg_write_tput_level_high(hal_soc)) {
  478. qdf_atomic_inc(&hal_soc->stats.wstats.direct);
  479. srng->wstats.direct++;
  480. hal_write_address_32_mb(hal_soc, addr, value, false);
  481. } else {
  482. hal_reg_write_enqueue(hal_soc, srng, addr, value);
  483. }
  484. }
  485. /**
  486. * hal_delayed_reg_write_init() - Initialization function for delayed reg writes
  487. * @hal_soc: hal_soc pointer
  488. *
  489. * Initialize main data structures to process register writes in a delayed
  490. * workqueue.
  491. *
  492. * Return: QDF_STATUS_SUCCESS on success else a QDF error.
  493. */
  494. static QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  495. {
  496. hal->reg_write_wq =
  497. qdf_alloc_high_prior_ordered_workqueue("hal_register_write_wq");
  498. qdf_create_work(0, &hal->reg_write_work, hal_reg_write_work, hal);
  499. hal->reg_write_queue = qdf_mem_malloc(HAL_REG_WRITE_QUEUE_LEN *
  500. sizeof(*hal->reg_write_queue));
  501. if (!hal->reg_write_queue) {
  502. hal_err("unable to allocate memory");
  503. QDF_BUG(0);
  504. return QDF_STATUS_E_NOMEM;
  505. }
  506. /* Initial value of indices */
  507. hal->read_idx = 0;
  508. qdf_atomic_set(&hal->write_idx, -1);
  509. return QDF_STATUS_SUCCESS;
  510. }
  511. /**
  512. * hal_delayed_reg_write_deinit() - De-Initialize delayed reg write processing
  513. * @hal_soc: hal_soc pointer
  514. *
  515. * De-initialize main data structures to process register writes in a delayed
  516. * workqueue.
  517. *
  518. * Return: None
  519. */
  520. static void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  521. {
  522. hal_flush_reg_write_work(hal);
  523. qdf_destroy_workqueue(0, hal->reg_write_wq);
  524. qdf_mem_free(hal->reg_write_queue);
  525. }
  526. static inline
  527. char *hal_fill_reg_write_srng_stats(struct hal_srng *srng,
  528. char *buf, qdf_size_t size)
  529. {
  530. qdf_scnprintf(buf, size, "enq %u deq %u coal %u direct %u",
  531. srng->wstats.enqueues, srng->wstats.dequeues,
  532. srng->wstats.coalesces, srng->wstats.direct);
  533. return buf;
  534. }
  535. /* bytes for local buffer */
  536. #define HAL_REG_WRITE_SRNG_STATS_LEN 100
  537. void hal_dump_reg_write_srng_stats(hal_soc_handle_t hal_soc_hdl)
  538. {
  539. struct hal_srng *srng;
  540. char buf[HAL_REG_WRITE_SRNG_STATS_LEN];
  541. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  542. srng = hal_get_srng(hal, HAL_SRNG_SW2TCL1);
  543. hal_debug("SW2TCL1: %s",
  544. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  545. srng = hal_get_srng(hal, HAL_SRNG_WBM2SW0_RELEASE);
  546. hal_debug("WBM2SW0: %s",
  547. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  548. srng = hal_get_srng(hal, HAL_SRNG_REO2SW1);
  549. hal_debug("REO2SW1: %s",
  550. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  551. srng = hal_get_srng(hal, HAL_SRNG_REO2SW2);
  552. hal_debug("REO2SW2: %s",
  553. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  554. srng = hal_get_srng(hal, HAL_SRNG_REO2SW3);
  555. hal_debug("REO2SW3: %s",
  556. hal_fill_reg_write_srng_stats(srng, buf, sizeof(buf)));
  557. }
  558. void hal_dump_reg_write_stats(hal_soc_handle_t hal_soc_hdl)
  559. {
  560. uint32_t *hist;
  561. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  562. hist = hal->stats.wstats.sched_delay;
  563. hal_debug("enq %u deq %u coal %u direct %u q_depth %u max_q %u sched-delay hist %u %u %u %u",
  564. qdf_atomic_read(&hal->stats.wstats.enqueues),
  565. hal->stats.wstats.dequeues,
  566. qdf_atomic_read(&hal->stats.wstats.coalesces),
  567. qdf_atomic_read(&hal->stats.wstats.direct),
  568. qdf_atomic_read(&hal->stats.wstats.q_depth),
  569. hal->stats.wstats.max_q_depth,
  570. hist[REG_WRITE_SCHED_DELAY_SUB_100us],
  571. hist[REG_WRITE_SCHED_DELAY_SUB_1000us],
  572. hist[REG_WRITE_SCHED_DELAY_SUB_5000us],
  573. hist[REG_WRITE_SCHED_DELAY_GT_5000us]);
  574. }
  575. #else
  576. static inline QDF_STATUS hal_delayed_reg_write_init(struct hal_soc *hal)
  577. {
  578. return QDF_STATUS_SUCCESS;
  579. }
  580. static inline void hal_delayed_reg_write_deinit(struct hal_soc *hal)
  581. {
  582. }
  583. #endif
  584. /**
  585. * hal_attach - Initialize HAL layer
  586. * @hif_handle: Opaque HIF handle
  587. * @qdf_dev: QDF device
  588. *
  589. * Return: Opaque HAL SOC handle
  590. * NULL on failure (if given ring is not available)
  591. *
  592. * This function should be called as part of HIF initialization (for accessing
  593. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  594. *
  595. */
  596. void *hal_attach(struct hif_opaque_softc *hif_handle, qdf_device_t qdf_dev)
  597. {
  598. struct hal_soc *hal;
  599. int i;
  600. hal = qdf_mem_malloc(sizeof(*hal));
  601. if (!hal) {
  602. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  603. "%s: hal_soc allocation failed", __func__);
  604. goto fail0;
  605. }
  606. hal->hif_handle = hif_handle;
  607. hal->dev_base_addr = hif_get_dev_ba(hif_handle);
  608. hal->qdf_dev = qdf_dev;
  609. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  610. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  611. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  612. if (!hal->shadow_rdptr_mem_paddr) {
  613. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  614. "%s: hal->shadow_rdptr_mem_paddr allocation failed",
  615. __func__);
  616. goto fail1;
  617. }
  618. qdf_mem_zero(hal->shadow_rdptr_mem_vaddr,
  619. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX);
  620. hal->shadow_wrptr_mem_vaddr =
  621. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  622. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  623. &(hal->shadow_wrptr_mem_paddr));
  624. if (!hal->shadow_wrptr_mem_vaddr) {
  625. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  626. "%s: hal->shadow_wrptr_mem_vaddr allocation failed",
  627. __func__);
  628. goto fail2;
  629. }
  630. qdf_mem_zero(hal->shadow_wrptr_mem_vaddr,
  631. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS);
  632. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  633. hal->srng_list[i].initialized = 0;
  634. hal->srng_list[i].ring_id = i;
  635. }
  636. qdf_spinlock_create(&hal->register_access_lock);
  637. hal->register_window = 0;
  638. hal->target_type = hal_get_target_type(hal_soc_to_hal_soc_handle(hal));
  639. hal_target_based_configure(hal);
  640. hal_reg_write_fail_history_init(hal);
  641. /**
  642. * Indicate Initialization of srngs to avoid force wake
  643. * as umac power collapse is not enabled yet
  644. */
  645. hal->init_phase = true;
  646. qdf_minidump_log(hal, sizeof(*hal), "hal_soc");
  647. hal_delayed_reg_write_init(hal);
  648. return (void *)hal;
  649. fail2:
  650. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  651. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  652. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  653. fail1:
  654. qdf_mem_free(hal);
  655. fail0:
  656. return NULL;
  657. }
  658. qdf_export_symbol(hal_attach);
  659. /**
  660. * hal_mem_info - Retrieve hal memory base address
  661. *
  662. * @hal_soc: Opaque HAL SOC handle
  663. * @mem: pointer to structure to be updated with hal mem info
  664. */
  665. void hal_get_meminfo(hal_soc_handle_t hal_soc_hdl, struct hal_mem_info *mem)
  666. {
  667. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  668. mem->dev_base_addr = (void *)hal->dev_base_addr;
  669. mem->shadow_rdptr_mem_vaddr = (void *)hal->shadow_rdptr_mem_vaddr;
  670. mem->shadow_wrptr_mem_vaddr = (void *)hal->shadow_wrptr_mem_vaddr;
  671. mem->shadow_rdptr_mem_paddr = (void *)hal->shadow_rdptr_mem_paddr;
  672. mem->shadow_wrptr_mem_paddr = (void *)hal->shadow_wrptr_mem_paddr;
  673. hif_read_phy_mem_base((void *)hal->hif_handle,
  674. (qdf_dma_addr_t *)&mem->dev_base_paddr);
  675. return;
  676. }
  677. qdf_export_symbol(hal_get_meminfo);
  678. /**
  679. * hal_detach - Detach HAL layer
  680. * @hal_soc: HAL SOC handle
  681. *
  682. * Return: Opaque HAL SOC handle
  683. * NULL on failure (if given ring is not available)
  684. *
  685. * This function should be called as part of HIF initialization (for accessing
  686. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  687. *
  688. */
  689. extern void hal_detach(void *hal_soc)
  690. {
  691. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  692. hal_delayed_reg_write_deinit(hal);
  693. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  694. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  695. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  696. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  697. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  698. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  699. qdf_minidump_remove(hal);
  700. qdf_mem_free(hal);
  701. return;
  702. }
  703. qdf_export_symbol(hal_detach);
  704. /**
  705. * hal_ce_dst_setup - Initialize CE destination ring registers
  706. * @hal_soc: HAL SOC handle
  707. * @srng: SRNG ring pointer
  708. */
  709. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  710. int ring_num)
  711. {
  712. uint32_t reg_val = 0;
  713. uint32_t reg_addr;
  714. struct hal_hw_srng_config *ring_config =
  715. HAL_SRNG_CONFIG(hal, CE_DST);
  716. /* set DEST_MAX_LENGTH according to ce assignment */
  717. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  718. ring_config->reg_start[R0_INDEX] +
  719. (ring_num * ring_config->reg_size[R0_INDEX]));
  720. reg_val = HAL_REG_READ(hal, reg_addr);
  721. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  722. reg_val |= srng->u.dst_ring.max_buffer_length &
  723. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  724. HAL_REG_WRITE(hal, reg_addr, reg_val);
  725. }
  726. /**
  727. * hal_reo_read_write_ctrl_ix - Read or write REO_DESTINATION_RING_CTRL_IX
  728. * @hal: HAL SOC handle
  729. * @read: boolean value to indicate if read or write
  730. * @ix0: pointer to store IX0 reg value
  731. * @ix1: pointer to store IX1 reg value
  732. * @ix2: pointer to store IX2 reg value
  733. * @ix3: pointer to store IX3 reg value
  734. */
  735. void hal_reo_read_write_ctrl_ix(hal_soc_handle_t hal_soc_hdl, bool read,
  736. uint32_t *ix0, uint32_t *ix1,
  737. uint32_t *ix2, uint32_t *ix3)
  738. {
  739. uint32_t reg_offset;
  740. struct hal_soc *hal = (struct hal_soc *)hal_soc_hdl;
  741. if (read) {
  742. if (ix0) {
  743. reg_offset =
  744. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  745. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  746. *ix0 = HAL_REG_READ(hal, reg_offset);
  747. }
  748. if (ix1) {
  749. reg_offset =
  750. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  751. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  752. *ix1 = HAL_REG_READ(hal, reg_offset);
  753. }
  754. if (ix2) {
  755. reg_offset =
  756. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  757. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  758. *ix2 = HAL_REG_READ(hal, reg_offset);
  759. }
  760. if (ix3) {
  761. reg_offset =
  762. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  763. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  764. *ix3 = HAL_REG_READ(hal, reg_offset);
  765. }
  766. } else {
  767. if (ix0) {
  768. reg_offset =
  769. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_0_ADDR(
  770. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  771. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix0);
  772. }
  773. if (ix1) {
  774. reg_offset =
  775. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_1_ADDR(
  776. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  777. HAL_REG_WRITE(hal, reg_offset, *ix1);
  778. }
  779. if (ix2) {
  780. reg_offset =
  781. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_2_ADDR(
  782. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  783. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix2);
  784. }
  785. if (ix3) {
  786. reg_offset =
  787. HWIO_REO_R0_DESTINATION_RING_CTRL_IX_3_ADDR(
  788. SEQ_WCSS_UMAC_REO_REG_OFFSET);
  789. HAL_REG_WRITE_CONFIRM(hal, reg_offset, *ix3);
  790. }
  791. }
  792. }
  793. /**
  794. * hal_srng_dst_set_hp_paddr() - Set physical address to dest ring head pointer
  795. * @srng: sring pointer
  796. * @paddr: physical address
  797. */
  798. void hal_srng_dst_set_hp_paddr(struct hal_srng *srng,
  799. uint64_t paddr)
  800. {
  801. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB,
  802. paddr & 0xffffffff);
  803. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB,
  804. paddr >> 32);
  805. }
  806. /**
  807. * hal_srng_dst_init_hp() - Initilaize destination ring head pointer
  808. * @srng: sring pointer
  809. * @vaddr: virtual address
  810. */
  811. void hal_srng_dst_init_hp(struct hal_srng *srng,
  812. uint32_t *vaddr)
  813. {
  814. if (!srng)
  815. return;
  816. srng->u.dst_ring.hp_addr = vaddr;
  817. SRNG_DST_REG_WRITE_CONFIRM(srng, HP, srng->u.dst_ring.cached_hp);
  818. if (vaddr) {
  819. *srng->u.dst_ring.hp_addr = srng->u.dst_ring.cached_hp;
  820. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  821. "hp_addr=%pK, cached_hp=%d, hp=%d",
  822. (void *)srng->u.dst_ring.hp_addr,
  823. srng->u.dst_ring.cached_hp,
  824. *srng->u.dst_ring.hp_addr);
  825. }
  826. }
  827. /**
  828. * hal_srng_hw_init - Private function to initialize SRNG HW
  829. * @hal_soc: HAL SOC handle
  830. * @srng: SRNG ring pointer
  831. */
  832. static inline void hal_srng_hw_init(struct hal_soc *hal,
  833. struct hal_srng *srng)
  834. {
  835. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  836. hal_srng_src_hw_init(hal, srng);
  837. else
  838. hal_srng_dst_hw_init(hal, srng);
  839. }
  840. #ifdef CONFIG_SHADOW_V2
  841. #define ignore_shadow false
  842. #define CHECK_SHADOW_REGISTERS true
  843. #else
  844. #define ignore_shadow true
  845. #define CHECK_SHADOW_REGISTERS false
  846. #endif
  847. /**
  848. * hal_srng_setup - Initialize HW SRNG ring.
  849. * @hal_soc: Opaque HAL SOC handle
  850. * @ring_type: one of the types from hal_ring_type
  851. * @ring_num: Ring number if there are multiple rings of same type (staring
  852. * from 0)
  853. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  854. * @ring_params: SRNG ring params in hal_srng_params structure.
  855. * Callers are expected to allocate contiguous ring memory of size
  856. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  857. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  858. * hal_srng_params structure. Ring base address should be 8 byte aligned
  859. * and size of each ring entry should be queried using the API
  860. * hal_srng_get_entrysize
  861. *
  862. * Return: Opaque pointer to ring on success
  863. * NULL on failure (if given ring is not available)
  864. */
  865. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  866. int mac_id, struct hal_srng_params *ring_params)
  867. {
  868. int ring_id;
  869. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  870. struct hal_srng *srng;
  871. struct hal_hw_srng_config *ring_config =
  872. HAL_SRNG_CONFIG(hal, ring_type);
  873. void *dev_base_addr;
  874. int i;
  875. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  876. if (ring_id < 0)
  877. return NULL;
  878. hal_verbose_debug("mac_id %d ring_id %d", mac_id, ring_id);
  879. srng = hal_get_srng(hal_soc, ring_id);
  880. if (srng->initialized) {
  881. hal_verbose_debug("Ring (ring_type, ring_num) already initialized");
  882. return NULL;
  883. }
  884. dev_base_addr = hal->dev_base_addr;
  885. srng->ring_id = ring_id;
  886. srng->ring_dir = ring_config->ring_dir;
  887. srng->ring_base_paddr = ring_params->ring_base_paddr;
  888. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  889. srng->entry_size = ring_config->entry_size;
  890. srng->num_entries = ring_params->num_entries;
  891. srng->ring_size = srng->num_entries * srng->entry_size;
  892. srng->ring_size_mask = srng->ring_size - 1;
  893. srng->msi_addr = ring_params->msi_addr;
  894. srng->msi_data = ring_params->msi_data;
  895. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  896. srng->intr_batch_cntr_thres_entries =
  897. ring_params->intr_batch_cntr_thres_entries;
  898. srng->hal_soc = hal_soc;
  899. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  900. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  901. + (ring_num * ring_config->reg_size[i]);
  902. }
  903. /* Zero out the entire ring memory */
  904. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  905. srng->num_entries) << 2);
  906. srng->flags = ring_params->flags;
  907. #ifdef BIG_ENDIAN_HOST
  908. /* TODO: See if we should we get these flags from caller */
  909. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  910. srng->flags |= HAL_SRNG_MSI_SWAP;
  911. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  912. #endif
  913. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  914. srng->u.src_ring.hp = 0;
  915. srng->u.src_ring.reap_hp = srng->ring_size -
  916. srng->entry_size;
  917. srng->u.src_ring.tp_addr =
  918. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  919. srng->u.src_ring.low_threshold =
  920. ring_params->low_threshold * srng->entry_size;
  921. if (ring_config->lmac_ring) {
  922. /* For LMAC rings, head pointer updates will be done
  923. * through FW by writing to a shared memory location
  924. */
  925. srng->u.src_ring.hp_addr =
  926. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  927. HAL_SRNG_LMAC1_ID_START]);
  928. srng->flags |= HAL_SRNG_LMAC_RING;
  929. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  930. srng->u.src_ring.hp_addr =
  931. hal_get_window_address(hal,
  932. SRNG_SRC_ADDR(srng, HP));
  933. if (CHECK_SHADOW_REGISTERS) {
  934. QDF_TRACE(QDF_MODULE_ID_TXRX,
  935. QDF_TRACE_LEVEL_ERROR,
  936. "%s: Ring (%d, %d) missing shadow config",
  937. __func__, ring_type, ring_num);
  938. }
  939. } else {
  940. hal_validate_shadow_register(hal,
  941. SRNG_SRC_ADDR(srng, HP),
  942. srng->u.src_ring.hp_addr);
  943. }
  944. } else {
  945. /* During initialization loop count in all the descriptors
  946. * will be set to zero, and HW will set it to 1 on completing
  947. * descriptor update in first loop, and increments it by 1 on
  948. * subsequent loops (loop count wraps around after reaching
  949. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  950. * loop count in descriptors updated by HW (to be processed
  951. * by SW).
  952. */
  953. srng->u.dst_ring.loop_cnt = 1;
  954. srng->u.dst_ring.tp = 0;
  955. srng->u.dst_ring.hp_addr =
  956. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  957. if (ring_config->lmac_ring) {
  958. /* For LMAC rings, tail pointer updates will be done
  959. * through FW by writing to a shared memory location
  960. */
  961. srng->u.dst_ring.tp_addr =
  962. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  963. HAL_SRNG_LMAC1_ID_START]);
  964. srng->flags |= HAL_SRNG_LMAC_RING;
  965. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  966. srng->u.dst_ring.tp_addr =
  967. hal_get_window_address(hal,
  968. SRNG_DST_ADDR(srng, TP));
  969. if (CHECK_SHADOW_REGISTERS) {
  970. QDF_TRACE(QDF_MODULE_ID_TXRX,
  971. QDF_TRACE_LEVEL_ERROR,
  972. "%s: Ring (%d, %d) missing shadow config",
  973. __func__, ring_type, ring_num);
  974. }
  975. } else {
  976. hal_validate_shadow_register(hal,
  977. SRNG_DST_ADDR(srng, TP),
  978. srng->u.dst_ring.tp_addr);
  979. }
  980. }
  981. if (!(ring_config->lmac_ring)) {
  982. hal_srng_hw_init(hal, srng);
  983. if (ring_type == CE_DST) {
  984. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  985. hal_ce_dst_setup(hal, srng, ring_num);
  986. }
  987. }
  988. SRNG_LOCK_INIT(&srng->lock);
  989. srng->srng_event = 0;
  990. srng->initialized = true;
  991. return (void *)srng;
  992. }
  993. qdf_export_symbol(hal_srng_setup);
  994. /**
  995. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  996. * @hal_soc: Opaque HAL SOC handle
  997. * @hal_srng: Opaque HAL SRNG pointer
  998. */
  999. void hal_srng_cleanup(void *hal_soc, hal_ring_handle_t hal_ring_hdl)
  1000. {
  1001. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1002. SRNG_LOCK_DESTROY(&srng->lock);
  1003. srng->initialized = 0;
  1004. }
  1005. qdf_export_symbol(hal_srng_cleanup);
  1006. /**
  1007. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1008. * @hal_soc: Opaque HAL SOC handle
  1009. * @ring_type: one of the types from hal_ring_type
  1010. *
  1011. */
  1012. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1013. {
  1014. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1015. struct hal_hw_srng_config *ring_config =
  1016. HAL_SRNG_CONFIG(hal, ring_type);
  1017. return ring_config->entry_size << 2;
  1018. }
  1019. qdf_export_symbol(hal_srng_get_entrysize);
  1020. /**
  1021. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1022. * @hal_soc: Opaque HAL SOC handle
  1023. * @ring_type: one of the types from hal_ring_type
  1024. *
  1025. * Return: Maximum number of entries for the given ring_type
  1026. */
  1027. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1028. {
  1029. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1030. struct hal_hw_srng_config *ring_config =
  1031. HAL_SRNG_CONFIG(hal, ring_type);
  1032. return ring_config->max_size / ring_config->entry_size;
  1033. }
  1034. qdf_export_symbol(hal_srng_max_entries);
  1035. enum hal_srng_dir hal_srng_get_dir(void *hal_soc, int ring_type)
  1036. {
  1037. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  1038. struct hal_hw_srng_config *ring_config =
  1039. HAL_SRNG_CONFIG(hal, ring_type);
  1040. return ring_config->ring_dir;
  1041. }
  1042. /**
  1043. * hal_srng_dump - Dump ring status
  1044. * @srng: hal srng pointer
  1045. */
  1046. void hal_srng_dump(struct hal_srng *srng)
  1047. {
  1048. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  1049. hal_debug("=== SRC RING %d ===", srng->ring_id);
  1050. hal_debug("hp %u, reap_hp %u, tp %u, cached tp %u",
  1051. srng->u.src_ring.hp,
  1052. srng->u.src_ring.reap_hp,
  1053. *srng->u.src_ring.tp_addr,
  1054. srng->u.src_ring.cached_tp);
  1055. } else {
  1056. hal_debug("=== DST RING %d ===", srng->ring_id);
  1057. hal_debug("tp %u, hp %u, cached tp %u, loop_cnt %u",
  1058. srng->u.dst_ring.tp,
  1059. *srng->u.dst_ring.hp_addr,
  1060. srng->u.dst_ring.cached_hp,
  1061. srng->u.dst_ring.loop_cnt);
  1062. }
  1063. }
  1064. /**
  1065. * hal_get_srng_params - Retrieve SRNG parameters for a given ring from HAL
  1066. *
  1067. * @hal_soc: Opaque HAL SOC handle
  1068. * @hal_ring: Ring pointer (Source or Destination ring)
  1069. * @ring_params: SRNG parameters will be returned through this structure
  1070. */
  1071. extern void hal_get_srng_params(hal_soc_handle_t hal_soc_hdl,
  1072. hal_ring_handle_t hal_ring_hdl,
  1073. struct hal_srng_params *ring_params)
  1074. {
  1075. struct hal_srng *srng = (struct hal_srng *)hal_ring_hdl;
  1076. int i =0;
  1077. ring_params->ring_id = srng->ring_id;
  1078. ring_params->ring_dir = srng->ring_dir;
  1079. ring_params->entry_size = srng->entry_size;
  1080. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1081. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1082. ring_params->num_entries = srng->num_entries;
  1083. ring_params->msi_addr = srng->msi_addr;
  1084. ring_params->msi_data = srng->msi_data;
  1085. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1086. ring_params->intr_batch_cntr_thres_entries =
  1087. srng->intr_batch_cntr_thres_entries;
  1088. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1089. ring_params->flags = srng->flags;
  1090. ring_params->ring_id = srng->ring_id;
  1091. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++)
  1092. ring_params->hwreg_base[i] = srng->hwreg_base[i];
  1093. }
  1094. qdf_export_symbol(hal_get_srng_params);
  1095. #ifdef FORCE_WAKE
  1096. void hal_set_init_phase(hal_soc_handle_t soc, bool init_phase)
  1097. {
  1098. struct hal_soc *hal_soc = (struct hal_soc *)soc;
  1099. hal_soc->init_phase = init_phase;
  1100. }
  1101. #endif /* FORCE_WAKE */