sde_hw_ctl.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/delay.h>
  6. #include "sde_hwio.h"
  7. #include "sde_hw_ctl.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #include "sde_reg_dma.h"
  11. #define CTL_LAYER(lm) \
  12. (((lm) == LM_5) ? (0x024) : (((lm) - LM_0) * 0x004))
  13. #define CTL_LAYER_EXT(lm) \
  14. (0x40 + (((lm) - LM_0) * 0x004))
  15. #define CTL_LAYER_EXT2(lm) \
  16. (0x70 + (((lm) - LM_0) * 0x004))
  17. #define CTL_LAYER_EXT3(lm) \
  18. (0xA0 + (((lm) - LM_0) * 0x004))
  19. #define CTL_TOP 0x014
  20. #define CTL_FLUSH 0x018
  21. #define CTL_START 0x01C
  22. #define CTL_PREPARE 0x0d0
  23. #define CTL_SW_RESET 0x030
  24. #define CTL_SW_RESET_OVERRIDE 0x060
  25. #define CTL_STATUS 0x064
  26. #define CTL_LAYER_EXTN_OFFSET 0x40
  27. #define CTL_ROT_TOP 0x0C0
  28. #define CTL_ROT_FLUSH 0x0C4
  29. #define CTL_ROT_START 0x0CC
  30. #define CTL_MERGE_3D_ACTIVE 0x0E4
  31. #define CTL_DSC_ACTIVE 0x0E8
  32. #define CTL_WB_ACTIVE 0x0EC
  33. #define CTL_CWB_ACTIVE 0x0F0
  34. #define CTL_INTF_ACTIVE 0x0F4
  35. #define CTL_CDM_ACTIVE 0x0F8
  36. #define CTL_FETCH_PIPE_ACTIVE 0x0FC
  37. #define CTL_MERGE_3D_FLUSH 0x100
  38. #define CTL_DSC_FLUSH 0x104
  39. #define CTL_WB_FLUSH 0x108
  40. #define CTL_CWB_FLUSH 0x10C
  41. #define CTL_INTF_FLUSH 0x110
  42. #define CTL_CDM_FLUSH 0x114
  43. #define CTL_PERIPH_FLUSH 0x128
  44. #define CTL_DSPP_0_FLUSH 0x13c
  45. #define CTL_INTF_MASTER 0x134
  46. #define CTL_UIDLE_ACTIVE 0x138
  47. #define CTL_MIXER_BORDER_OUT BIT(24)
  48. #define CTL_FLUSH_MASK_ROT BIT(27)
  49. #define CTL_FLUSH_MASK_CTL BIT(17)
  50. #define CTL_NUM_EXT 4
  51. #define CTL_SSPP_MAX_RECTS 2
  52. #define SDE_REG_RESET_TIMEOUT_US 2000
  53. #define SDE_REG_WAIT_RESET_TIMEOUT_US 100000
  54. #define UPDATE_MASK(m, idx, en) \
  55. ((m) = (en) ? ((m) | BIT((idx))) : ((m) & ~BIT((idx))))
  56. #define CTL_INVALID_BIT 0xffff
  57. #define VDC_IDX(i) ((i) + 16)
  58. #define UPDATE_ACTIVE(r, idx, en) UPDATE_MASK((r), (idx), (en))
  59. /**
  60. * List of SSPP bits in CTL_FLUSH
  61. */
  62. static const u32 sspp_tbl[SSPP_MAX] = { SDE_NONE, 0, 1, 2, 18, 3, 4, 5,
  63. 19, 11, 12, 24, 25, SDE_NONE, SDE_NONE};
  64. /**
  65. * List of layer mixer bits in CTL_FLUSH
  66. */
  67. static const u32 mixer_tbl[LM_MAX] = {SDE_NONE, 6, 7, 8, 9, 10, 20,
  68. SDE_NONE};
  69. /**
  70. * List of DSPP bits in CTL_FLUSH
  71. */
  72. static const u32 dspp_tbl[DSPP_MAX] = {SDE_NONE, 13, 14, 15, 21};
  73. /**
  74. * List of DSPP PA LUT bits in CTL_FLUSH
  75. */
  76. static const u32 dspp_pav_tbl[DSPP_MAX] = {SDE_NONE, 3, 4, 5, 19};
  77. /**
  78. * List of CDM LUT bits in CTL_FLUSH
  79. */
  80. static const u32 cdm_tbl[CDM_MAX] = {SDE_NONE, 26};
  81. /**
  82. * List of WB bits in CTL_FLUSH
  83. */
  84. static const u32 wb_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 16};
  85. /**
  86. * List of ROT bits in CTL_FLUSH
  87. */
  88. static const u32 rot_tbl[ROT_MAX] = {SDE_NONE, 27};
  89. /**
  90. * List of INTF bits in CTL_FLUSH
  91. */
  92. static const u32 intf_tbl[INTF_MAX] = {SDE_NONE, 31, 30, 29, 28};
  93. /**
  94. * Below definitions are for CTL supporting SDE_CTL_ACTIVE_CFG,
  95. * certain blocks have the individual flush control as well,
  96. * for such blocks flush is done by flushing individual control and
  97. * top level control.
  98. */
  99. /**
  100. * List of SSPP bits in CTL_FETCH_PIPE_ACTIVE
  101. */
  102. static const u32 fetch_tbl[SSPP_MAX] = {CTL_INVALID_BIT, 16, 17, 18, 19,
  103. CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, CTL_INVALID_BIT, 0,
  104. 1, 2, 3, CTL_INVALID_BIT, CTL_INVALID_BIT};
  105. /**
  106. * list of WB bits in CTL_WB_FLUSH
  107. */
  108. static const u32 wb_flush_tbl[WB_MAX] = {SDE_NONE, SDE_NONE, SDE_NONE, 2};
  109. /**
  110. * list of INTF bits in CTL_INTF_FLUSH
  111. */
  112. static const u32 intf_flush_tbl[INTF_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  113. /**
  114. * list of DSC bits in CTL_DSC_FLUSH
  115. */
  116. static const u32 dsc_flush_tbl[DSC_MAX] = {SDE_NONE, 0, 1, 2, 3, 4, 5};
  117. /**
  118. * list of VDC bits in CTL_DSC_FLUSH
  119. */
  120. static const u32 vdc_flush_tbl[DSC_MAX] = {SDE_NONE, 16, 17};
  121. /**
  122. * list of MERGE_3D bits in CTL_MERGE_3D_FLUSH
  123. */
  124. static const u32 merge_3d_tbl[MERGE_3D_MAX] = {SDE_NONE, 0, 1, 2};
  125. /**
  126. * list of CDM bits in CTL_CDM_FLUSH
  127. */
  128. static const u32 cdm_flush_tbl[CDM_MAX] = {SDE_NONE, 0};
  129. /**
  130. * list of CWB bits in CTL_CWB_FLUSH
  131. */
  132. static const u32 cwb_flush_tbl[CWB_MAX] = {SDE_NONE, SDE_NONE, 1, 2, 3,
  133. 4, 5};
  134. /**
  135. * list of DSPP sub-blk flush bits in CTL_DSPP_x_FLUSH
  136. */
  137. static const u32 dspp_sub_blk_flush_tbl[SDE_DSPP_MAX] = {
  138. [SDE_DSPP_IGC] = 2,
  139. [SDE_DSPP_PCC] = 4,
  140. [SDE_DSPP_GC] = 5,
  141. [SDE_DSPP_HSIC] = 0,
  142. [SDE_DSPP_MEMCOLOR] = 0,
  143. [SDE_DSPP_SIXZONE] = 0,
  144. [SDE_DSPP_GAMUT] = 3,
  145. [SDE_DSPP_DITHER] = 0,
  146. [SDE_DSPP_HIST] = 0,
  147. [SDE_DSPP_VLUT] = 1,
  148. [SDE_DSPP_AD] = 0,
  149. [SDE_DSPP_LTM] = 7,
  150. [SDE_DSPP_SPR] = 8,
  151. [SDE_DSPP_DEMURA] = 9,
  152. [SDE_DSPP_RC] = 10,
  153. [SDE_DSPP_SB] = 31,
  154. };
  155. /**
  156. * struct ctl_sspp_stage_reg_map: Describes bit layout for a sspp stage cfg
  157. * @ext: Index to indicate LAYER_x_EXT id for given sspp
  158. * @start: Start position of blend stage bits for given sspp
  159. * @bits: Number of bits from @start assigned for given sspp
  160. * @sec_bit_mask: Bitmask to add to LAYER_x_EXT1 for missing bit of sspp
  161. */
  162. struct ctl_sspp_stage_reg_map {
  163. u32 ext;
  164. u32 start;
  165. u32 bits;
  166. u32 sec_bit_mask;
  167. };
  168. /* list of ctl_sspp_stage_reg_map for all the sppp */
  169. static const struct ctl_sspp_stage_reg_map
  170. sspp_reg_cfg_tbl[SSPP_MAX][CTL_SSPP_MAX_RECTS] = {
  171. /* SSPP_NONE */{ {0, 0, 0, 0}, {0, 0, 0, 0} },
  172. /* SSPP_VIG0 */{ {0, 0, 3, BIT(0)}, {3, 0, 4, 0} },
  173. /* SSPP_VIG1 */{ {0, 3, 3, BIT(2)}, {3, 4, 4, 0} },
  174. /* SSPP_VIG2 */{ {0, 6, 3, BIT(4)}, {3, 8, 4, 0} },
  175. /* SSPP_VIG3 */{ {0, 26, 3, BIT(6)}, {3, 12, 4, 0} },
  176. /* SSPP_RGB0 */{ {0, 9, 3, BIT(8)}, {0, 0, 0, 0} },
  177. /* SSPP_RGB1 */{ {0, 12, 3, BIT(10)}, {0, 0, 0, 0} },
  178. /* SSPP_RGB2 */{ {0, 15, 3, BIT(12)}, {0, 0, 0, 0} },
  179. /* SSPP_RGB3 */{ {0, 29, 3, BIT(14)}, {0, 0, 0, 0} },
  180. /* SSPP_DMA0 */{ {0, 18, 3, BIT(16)}, {2, 8, 4, 0} },
  181. /* SSPP_DMA1 */{ {0, 21, 3, BIT(18)}, {2, 12, 4, 0} },
  182. /* SSPP_DMA2 */{ {2, 0, 4, 0}, {2, 16, 4, 0} },
  183. /* SSPP_DMA3 */{ {2, 4, 4, 0}, {2, 20, 4, 0} },
  184. /* SSPP_CURSOR0 */{ {1, 20, 4, 0}, {0, 0, 0, 0} },
  185. /* SSPP_CURSOR1 */{ {0, 26, 4, 0}, {0, 0, 0, 0} }
  186. };
  187. /**
  188. * Individual flush bit in CTL_FLUSH
  189. */
  190. #define WB_IDX 16
  191. #define DSC_IDX 22
  192. #define MERGE_3D_IDX 23
  193. #define CDM_IDX 26
  194. #define CWB_IDX 28
  195. #define DSPP_IDX 29
  196. #define PERIPH_IDX 30
  197. #define INTF_IDX 31
  198. /* struct ctl_hw_flush_cfg: Defines the active ctl hw flush config,
  199. * See enum ctl_hw_flush_type for types
  200. * @blk_max: Maximum hw idx
  201. * @flush_reg: Register with corresponding active ctl hw
  202. * @flush_idx: Corresponding index in ctl flush
  203. * @flush_mask_idx: Index of hw flush mask to use
  204. * @flush_tbl: Pointer to flush table
  205. */
  206. struct ctl_hw_flush_cfg {
  207. u32 blk_max;
  208. u32 flush_reg;
  209. u32 flush_idx;
  210. u32 flush_mask_idx;
  211. const u32 *flush_tbl;
  212. };
  213. static const struct ctl_hw_flush_cfg
  214. ctl_hw_flush_cfg_tbl_v1[SDE_HW_FLUSH_MAX] = {
  215. {WB_MAX, CTL_WB_FLUSH, WB_IDX, SDE_HW_FLUSH_WB,
  216. wb_flush_tbl}, /* SDE_HW_FLUSH_WB */
  217. {DSC_MAX, CTL_DSC_FLUSH, DSC_IDX, SDE_HW_FLUSH_DSC,
  218. dsc_flush_tbl}, /* SDE_HW_FLUSH_DSC */
  219. /* VDC is flushed to dsc, flush_reg = 0 so flush is done only once */
  220. {VDC_MAX, 0, DSC_IDX, SDE_HW_FLUSH_DSC,
  221. vdc_flush_tbl}, /* SDE_HW_FLUSH_VDC */
  222. {MERGE_3D_MAX, CTL_MERGE_3D_FLUSH, MERGE_3D_IDX, SDE_HW_FLUSH_MERGE_3D,
  223. merge_3d_tbl}, /* SDE_HW_FLUSH_MERGE_3D */
  224. {CDM_MAX, CTL_CDM_FLUSH, CDM_IDX, SDE_HW_FLUSH_CDM,
  225. cdm_flush_tbl}, /* SDE_HW_FLUSH_CDM */
  226. {CWB_MAX, CTL_CWB_FLUSH, CWB_IDX, SDE_HW_FLUSH_CWB,
  227. cwb_flush_tbl}, /* SDE_HW_FLUSH_CWB */
  228. {INTF_MAX, CTL_PERIPH_FLUSH, PERIPH_IDX, SDE_HW_FLUSH_PERIPH,
  229. intf_flush_tbl }, /* SDE_HW_FLUSH_PERIPH */
  230. {INTF_MAX, CTL_INTF_FLUSH, INTF_IDX, SDE_HW_FLUSH_INTF,
  231. intf_flush_tbl } /* SDE_HW_FLUSH_INTF */
  232. };
  233. static struct sde_ctl_cfg *_ctl_offset(enum sde_ctl ctl,
  234. struct sde_mdss_cfg *m,
  235. void __iomem *addr,
  236. struct sde_hw_blk_reg_map *b)
  237. {
  238. int i;
  239. for (i = 0; i < m->ctl_count; i++) {
  240. if (ctl == m->ctl[i].id) {
  241. b->base_off = addr;
  242. b->blk_off = m->ctl[i].base;
  243. b->length = m->ctl[i].len;
  244. b->hwversion = m->hwversion;
  245. b->log_mask = SDE_DBG_MASK_CTL;
  246. return &m->ctl[i];
  247. }
  248. }
  249. return ERR_PTR(-ENOMEM);
  250. }
  251. static int _mixer_stages(const struct sde_lm_cfg *mixer, int count,
  252. enum sde_lm lm)
  253. {
  254. int i;
  255. int stages = -EINVAL;
  256. for (i = 0; i < count; i++) {
  257. if (lm == mixer[i].id) {
  258. stages = mixer[i].sblk->maxblendstages;
  259. break;
  260. }
  261. }
  262. return stages;
  263. }
  264. static inline bool _is_dspp_flush_pending(struct sde_hw_ctl *ctx)
  265. {
  266. int i;
  267. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  268. if (ctx->flush.pending_dspp_flush_masks[i])
  269. return true;
  270. }
  271. return false;
  272. }
  273. static inline int sde_hw_ctl_trigger_start(struct sde_hw_ctl *ctx)
  274. {
  275. if (!ctx)
  276. return -EINVAL;
  277. SDE_REG_WRITE(&ctx->hw, CTL_START, 0x1);
  278. return 0;
  279. }
  280. static inline int sde_hw_ctl_get_start_state(struct sde_hw_ctl *ctx)
  281. {
  282. if (!ctx)
  283. return -EINVAL;
  284. return SDE_REG_READ(&ctx->hw, CTL_START);
  285. }
  286. static inline int sde_hw_ctl_trigger_pending(struct sde_hw_ctl *ctx)
  287. {
  288. if (!ctx)
  289. return -EINVAL;
  290. SDE_REG_WRITE(&ctx->hw, CTL_PREPARE, 0x1);
  291. return 0;
  292. }
  293. static inline int sde_hw_ctl_clear_pending_flush(struct sde_hw_ctl *ctx)
  294. {
  295. if (!ctx)
  296. return -EINVAL;
  297. memset(&ctx->flush, 0, sizeof(ctx->flush));
  298. return 0;
  299. }
  300. static inline int sde_hw_ctl_update_pending_flush(struct sde_hw_ctl *ctx,
  301. struct sde_ctl_flush_cfg *cfg)
  302. {
  303. if (!ctx || !cfg)
  304. return -EINVAL;
  305. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  306. return 0;
  307. }
  308. static int sde_hw_ctl_get_pending_flush(struct sde_hw_ctl *ctx,
  309. struct sde_ctl_flush_cfg *cfg)
  310. {
  311. if (!ctx || !cfg)
  312. return -EINVAL;
  313. memcpy(cfg, &ctx->flush, sizeof(*cfg));
  314. return 0;
  315. }
  316. static inline int sde_hw_ctl_trigger_flush(struct sde_hw_ctl *ctx)
  317. {
  318. if (!ctx)
  319. return -EINVAL;
  320. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  321. return 0;
  322. }
  323. static inline u32 sde_hw_ctl_get_flush_register(struct sde_hw_ctl *ctx)
  324. {
  325. struct sde_hw_blk_reg_map *c;
  326. u32 rot_op_mode;
  327. if (!ctx)
  328. return 0;
  329. c = &ctx->hw;
  330. rot_op_mode = SDE_REG_READ(c, CTL_ROT_TOP) & 0x3;
  331. /* rotate flush bit is undefined if offline mode, so ignore it */
  332. if (rot_op_mode == SDE_CTL_ROT_OP_MODE_OFFLINE)
  333. return SDE_REG_READ(c, CTL_FLUSH) & ~CTL_FLUSH_MASK_ROT;
  334. return SDE_REG_READ(c, CTL_FLUSH);
  335. }
  336. static inline void sde_hw_ctl_uidle_enable(struct sde_hw_ctl *ctx, bool enable)
  337. {
  338. u32 val;
  339. if (!ctx)
  340. return;
  341. val = SDE_REG_READ(&ctx->hw, CTL_UIDLE_ACTIVE);
  342. val = (val & ~BIT(0)) | (enable ? BIT(0) : 0);
  343. SDE_REG_WRITE(&ctx->hw, CTL_UIDLE_ACTIVE, val);
  344. }
  345. static inline int sde_hw_ctl_update_bitmask_sspp(struct sde_hw_ctl *ctx,
  346. enum sde_sspp sspp,
  347. bool enable)
  348. {
  349. if (!ctx)
  350. return -EINVAL;
  351. if (!(sspp > SSPP_NONE) || !(sspp < SSPP_MAX)) {
  352. SDE_ERROR("Unsupported pipe %d\n", sspp);
  353. return -EINVAL;
  354. }
  355. UPDATE_MASK(ctx->flush.pending_flush_mask, sspp_tbl[sspp], enable);
  356. return 0;
  357. }
  358. static inline int sde_hw_ctl_update_bitmask_mixer(struct sde_hw_ctl *ctx,
  359. enum sde_lm lm,
  360. bool enable)
  361. {
  362. if (!ctx)
  363. return -EINVAL;
  364. if (!(lm > SDE_NONE) || !(lm < LM_MAX)) {
  365. SDE_ERROR("Unsupported mixer %d\n", lm);
  366. return -EINVAL;
  367. }
  368. UPDATE_MASK(ctx->flush.pending_flush_mask, mixer_tbl[lm], enable);
  369. ctx->flush.pending_flush_mask |= CTL_FLUSH_MASK_CTL;
  370. return 0;
  371. }
  372. static inline int sde_hw_ctl_update_bitmask_dspp(struct sde_hw_ctl *ctx,
  373. enum sde_dspp dspp,
  374. bool enable)
  375. {
  376. if (!ctx)
  377. return -EINVAL;
  378. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  379. SDE_ERROR("Unsupported dspp %d\n", dspp);
  380. return -EINVAL;
  381. }
  382. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_tbl[dspp], enable);
  383. return 0;
  384. }
  385. static inline int sde_hw_ctl_update_bitmask_dspp_pavlut(struct sde_hw_ctl *ctx,
  386. enum sde_dspp dspp, bool enable)
  387. {
  388. if (!ctx)
  389. return -EINVAL;
  390. if (!(dspp > SDE_NONE) || !(dspp < DSPP_MAX)) {
  391. SDE_ERROR("Unsupported dspp %d\n", dspp);
  392. return -EINVAL;
  393. }
  394. UPDATE_MASK(ctx->flush.pending_flush_mask, dspp_pav_tbl[dspp], enable);
  395. return 0;
  396. }
  397. static inline int sde_hw_ctl_update_bitmask_cdm(struct sde_hw_ctl *ctx,
  398. enum sde_cdm cdm,
  399. bool enable)
  400. {
  401. if (!ctx)
  402. return -EINVAL;
  403. if (!(cdm > SDE_NONE) || !(cdm < CDM_MAX) || (cdm == CDM_1)) {
  404. SDE_ERROR("Unsupported cdm %d\n", cdm);
  405. return -EINVAL;
  406. }
  407. UPDATE_MASK(ctx->flush.pending_flush_mask, cdm_tbl[cdm], enable);
  408. return 0;
  409. }
  410. static inline int sde_hw_ctl_update_bitmask_wb(struct sde_hw_ctl *ctx,
  411. enum sde_wb wb, bool enable)
  412. {
  413. if (!ctx)
  414. return -EINVAL;
  415. if (!(wb > SDE_NONE) || !(wb < WB_MAX) ||
  416. (wb == WB_0) || (wb == WB_1)) {
  417. SDE_ERROR("Unsupported wb %d\n", wb);
  418. return -EINVAL;
  419. }
  420. UPDATE_MASK(ctx->flush.pending_flush_mask, wb_tbl[wb], enable);
  421. return 0;
  422. }
  423. static inline int sde_hw_ctl_update_bitmask_intf(struct sde_hw_ctl *ctx,
  424. enum sde_intf intf, bool enable)
  425. {
  426. if (!ctx)
  427. return -EINVAL;
  428. if (!(intf > SDE_NONE) || !(intf < INTF_MAX) || (intf > INTF_4)) {
  429. SDE_ERROR("Unsupported intf %d\n", intf);
  430. return -EINVAL;
  431. }
  432. UPDATE_MASK(ctx->flush.pending_flush_mask, intf_tbl[intf], enable);
  433. return 0;
  434. }
  435. static inline int sde_hw_ctl_update_bitmask(struct sde_hw_ctl *ctx,
  436. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  437. {
  438. int ret = 0;
  439. if (!ctx)
  440. return -EINVAL;
  441. switch (type) {
  442. case SDE_HW_FLUSH_CDM:
  443. ret = sde_hw_ctl_update_bitmask_cdm(ctx, blk_idx, enable);
  444. break;
  445. case SDE_HW_FLUSH_WB:
  446. ret = sde_hw_ctl_update_bitmask_wb(ctx, blk_idx, enable);
  447. break;
  448. case SDE_HW_FLUSH_INTF:
  449. ret = sde_hw_ctl_update_bitmask_intf(ctx, blk_idx, enable);
  450. break;
  451. default:
  452. break;
  453. }
  454. return ret;
  455. }
  456. static inline int sde_hw_ctl_update_bitmask_v1(struct sde_hw_ctl *ctx,
  457. enum ctl_hw_flush_type type, u32 blk_idx, bool enable)
  458. {
  459. const struct ctl_hw_flush_cfg *cfg;
  460. if (!ctx || !(type < SDE_HW_FLUSH_MAX))
  461. return -EINVAL;
  462. cfg = &ctl_hw_flush_cfg_tbl_v1[type];
  463. if ((blk_idx <= SDE_NONE) || (blk_idx >= cfg->blk_max)) {
  464. SDE_ERROR("Unsupported hw idx, type:%d, blk_idx:%d, blk_max:%d",
  465. type, blk_idx, cfg->blk_max);
  466. return -EINVAL;
  467. }
  468. UPDATE_MASK(ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx],
  469. cfg->flush_tbl[blk_idx], enable);
  470. if (ctx->flush.pending_hw_flush_mask[cfg->flush_mask_idx])
  471. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 1);
  472. else
  473. UPDATE_MASK(ctx->flush.pending_flush_mask, cfg->flush_idx, 0);
  474. return 0;
  475. }
  476. static inline int sde_hw_ctl_update_pending_flush_v1(
  477. struct sde_hw_ctl *ctx,
  478. struct sde_ctl_flush_cfg *cfg)
  479. {
  480. int i = 0;
  481. if (!ctx || !cfg)
  482. return -EINVAL;
  483. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  484. ctx->flush.pending_hw_flush_mask[i] |=
  485. cfg->pending_hw_flush_mask[i];
  486. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++)
  487. ctx->flush.pending_dspp_flush_masks[i] |=
  488. cfg->pending_dspp_flush_masks[i];
  489. ctx->flush.pending_flush_mask |= cfg->pending_flush_mask;
  490. return 0;
  491. }
  492. static inline int sde_hw_ctl_update_bitmask_dspp_subblk(struct sde_hw_ctl *ctx,
  493. enum sde_dspp dspp, u32 sub_blk, bool enable)
  494. {
  495. if (!ctx || dspp < DSPP_0 || dspp >= DSPP_MAX ||
  496. sub_blk < SDE_DSPP_IGC || sub_blk >= SDE_DSPP_MAX) {
  497. SDE_ERROR("invalid args - ctx %s, dspp %d sub_block %d\n",
  498. ctx ? "valid" : "invalid", dspp, sub_blk);
  499. return -EINVAL;
  500. }
  501. UPDATE_MASK(ctx->flush.pending_dspp_flush_masks[dspp - DSPP_0],
  502. dspp_sub_blk_flush_tbl[sub_blk], enable);
  503. if (_is_dspp_flush_pending(ctx))
  504. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 1);
  505. else
  506. UPDATE_MASK(ctx->flush.pending_flush_mask, DSPP_IDX, 0);
  507. return 0;
  508. }
  509. static inline void _sde_hw_ctl_write_dspp_flushes(struct sde_hw_ctl *ctx) {
  510. int i;
  511. bool has_dspp_flushes = ctx->caps->features &
  512. BIT(SDE_CTL_UNIFIED_DSPP_FLUSH);
  513. if (!has_dspp_flushes)
  514. return;
  515. for (i = 0; i < CTL_MAX_DSPP_COUNT; i++) {
  516. u32 pending = ctx->flush.pending_dspp_flush_masks[i];
  517. if (pending)
  518. SDE_REG_WRITE(&ctx->hw, CTL_DSPP_0_FLUSH + (i * 4),
  519. pending);
  520. }
  521. }
  522. static inline int sde_hw_ctl_trigger_flush_v1(struct sde_hw_ctl *ctx)
  523. {
  524. int i = 0;
  525. const struct ctl_hw_flush_cfg *cfg = &ctl_hw_flush_cfg_tbl_v1[0];
  526. if (!ctx)
  527. return -EINVAL;
  528. if (ctx->flush.pending_flush_mask & BIT(DSPP_IDX))
  529. _sde_hw_ctl_write_dspp_flushes(ctx);
  530. for (i = 0; i < SDE_HW_FLUSH_MAX; i++)
  531. if (cfg[i].flush_reg &&
  532. ctx->flush.pending_flush_mask &
  533. BIT(cfg[i].flush_idx))
  534. SDE_REG_WRITE(&ctx->hw,
  535. cfg[i].flush_reg,
  536. ctx->flush.pending_hw_flush_mask[i]);
  537. SDE_REG_WRITE(&ctx->hw, CTL_FLUSH, ctx->flush.pending_flush_mask);
  538. return 0;
  539. }
  540. static inline u32 sde_hw_ctl_get_intf_v1(struct sde_hw_ctl *ctx)
  541. {
  542. struct sde_hw_blk_reg_map *c;
  543. u32 intf_active;
  544. if (!ctx) {
  545. pr_err("Invalid input argument\n");
  546. return 0;
  547. }
  548. c = &ctx->hw;
  549. intf_active = SDE_REG_READ(c, CTL_INTF_ACTIVE);
  550. return intf_active;
  551. }
  552. static inline u32 sde_hw_ctl_get_intf(struct sde_hw_ctl *ctx)
  553. {
  554. struct sde_hw_blk_reg_map *c;
  555. u32 ctl_top;
  556. u32 intf_active = 0;
  557. if (!ctx) {
  558. pr_err("Invalid input argument\n");
  559. return 0;
  560. }
  561. c = &ctx->hw;
  562. ctl_top = SDE_REG_READ(c, CTL_TOP);
  563. intf_active = (ctl_top > 0) ?
  564. BIT(ctl_top - 1) : 0;
  565. return intf_active;
  566. }
  567. static u32 sde_hw_ctl_poll_reset_status(struct sde_hw_ctl *ctx, u32 timeout_us)
  568. {
  569. struct sde_hw_blk_reg_map *c;
  570. ktime_t timeout;
  571. u32 status;
  572. if (!ctx)
  573. return 0;
  574. c = &ctx->hw;
  575. timeout = ktime_add_us(ktime_get(), timeout_us);
  576. /*
  577. * it takes around 30us to have mdp finish resetting its ctl path
  578. * poll every 50us so that reset should be completed at 1st poll
  579. */
  580. do {
  581. status = SDE_REG_READ(c, CTL_SW_RESET);
  582. status &= 0x1;
  583. if (status)
  584. usleep_range(20, 50);
  585. } while (status && ktime_compare_safe(ktime_get(), timeout) < 0);
  586. return status;
  587. }
  588. static u32 sde_hw_ctl_get_reset_status(struct sde_hw_ctl *ctx)
  589. {
  590. if (!ctx)
  591. return 0;
  592. return (u32)SDE_REG_READ(&ctx->hw, CTL_SW_RESET);
  593. }
  594. static u32 sde_hw_ctl_get_scheduler_status(struct sde_hw_ctl *ctx)
  595. {
  596. if (!ctx)
  597. return INVALID_CTL_STATUS;
  598. return (u32)SDE_REG_READ(&ctx->hw, CTL_STATUS);
  599. }
  600. static int sde_hw_ctl_reset_control(struct sde_hw_ctl *ctx)
  601. {
  602. struct sde_hw_blk_reg_map *c;
  603. if (!ctx)
  604. return 0;
  605. c = &ctx->hw;
  606. pr_debug("issuing hw ctl reset for ctl:%d\n", ctx->idx);
  607. SDE_REG_WRITE(c, CTL_SW_RESET, 0x1);
  608. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_RESET_TIMEOUT_US))
  609. return -EINVAL;
  610. return 0;
  611. }
  612. static void sde_hw_ctl_hard_reset(struct sde_hw_ctl *ctx, bool enable)
  613. {
  614. struct sde_hw_blk_reg_map *c;
  615. if (!ctx)
  616. return;
  617. c = &ctx->hw;
  618. pr_debug("hw ctl hard reset for ctl:%d, %d\n",
  619. ctx->idx - CTL_0, enable);
  620. SDE_REG_WRITE(c, CTL_SW_RESET_OVERRIDE, enable);
  621. }
  622. static int sde_hw_ctl_wait_reset_status(struct sde_hw_ctl *ctx)
  623. {
  624. struct sde_hw_blk_reg_map *c;
  625. u32 status;
  626. if (!ctx)
  627. return 0;
  628. c = &ctx->hw;
  629. status = SDE_REG_READ(c, CTL_SW_RESET);
  630. status &= 0x01;
  631. if (!status)
  632. return 0;
  633. pr_debug("hw ctl reset is set for ctl:%d\n", ctx->idx);
  634. if (sde_hw_ctl_poll_reset_status(ctx, SDE_REG_WAIT_RESET_TIMEOUT_US)) {
  635. pr_err("hw recovery is not complete for ctl:%d\n", ctx->idx);
  636. return -EINVAL;
  637. }
  638. return 0;
  639. }
  640. static void sde_hw_ctl_clear_all_blendstages(struct sde_hw_ctl *ctx)
  641. {
  642. struct sde_hw_blk_reg_map *c;
  643. int i;
  644. if (!ctx)
  645. return;
  646. c = &ctx->hw;
  647. for (i = 0; i < ctx->mixer_count; i++) {
  648. int mixer_id = ctx->mixer_hw_caps[i].id;
  649. SDE_REG_WRITE(c, CTL_LAYER(mixer_id), 0);
  650. SDE_REG_WRITE(c, CTL_LAYER_EXT(mixer_id), 0);
  651. SDE_REG_WRITE(c, CTL_LAYER_EXT2(mixer_id), 0);
  652. SDE_REG_WRITE(c, CTL_LAYER_EXT3(mixer_id), 0);
  653. }
  654. SDE_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, 0);
  655. }
  656. static void sde_hw_ctl_setup_blendstage(struct sde_hw_ctl *ctx,
  657. enum sde_lm lm, struct sde_hw_stage_cfg *stage_cfg)
  658. {
  659. struct sde_hw_blk_reg_map *c;
  660. u32 mixercfg = 0, mixercfg_ext = 0, mix, ext;
  661. u32 mixercfg_ext2 = 0, mixercfg_ext3 = 0;
  662. u32 active_fetch_pipes = 0;
  663. int i, j;
  664. u8 stages;
  665. int pipes_per_stage;
  666. if (!ctx)
  667. return;
  668. c = &ctx->hw;
  669. stages = _mixer_stages(ctx->mixer_hw_caps, ctx->mixer_count, lm);
  670. if ((int)stages < 0)
  671. return;
  672. if (test_bit(SDE_MIXER_SOURCESPLIT,
  673. &ctx->mixer_hw_caps->features))
  674. pipes_per_stage = PIPES_PER_STAGE;
  675. else
  676. pipes_per_stage = 1;
  677. if (!stage_cfg)
  678. goto exit;
  679. for (i = 0; i <= stages; i++) {
  680. /* overflow to ext register if 'i + 1 > 7' */
  681. mix = (i + 1) & 0x7;
  682. ext = i >= 7;
  683. for (j = 0 ; j < pipes_per_stage; j++) {
  684. enum sde_sspp pipe = stage_cfg->stage[i][j];
  685. enum sde_sspp_multirect_index rect_index =
  686. stage_cfg->multirect_index[i][j];
  687. switch (pipe) {
  688. case SSPP_VIG0:
  689. if (rect_index == SDE_SSPP_RECT_1) {
  690. mixercfg_ext3 |= ((i + 1) & 0xF) << 0;
  691. } else {
  692. mixercfg |= mix << 0;
  693. mixercfg_ext |= ext << 0;
  694. }
  695. break;
  696. case SSPP_VIG1:
  697. if (rect_index == SDE_SSPP_RECT_1) {
  698. mixercfg_ext3 |= ((i + 1) & 0xF) << 4;
  699. } else {
  700. mixercfg |= mix << 3;
  701. mixercfg_ext |= ext << 2;
  702. }
  703. break;
  704. case SSPP_VIG2:
  705. if (rect_index == SDE_SSPP_RECT_1) {
  706. mixercfg_ext3 |= ((i + 1) & 0xF) << 8;
  707. } else {
  708. mixercfg |= mix << 6;
  709. mixercfg_ext |= ext << 4;
  710. }
  711. break;
  712. case SSPP_VIG3:
  713. if (rect_index == SDE_SSPP_RECT_1) {
  714. mixercfg_ext3 |= ((i + 1) & 0xF) << 12;
  715. } else {
  716. mixercfg |= mix << 26;
  717. mixercfg_ext |= ext << 6;
  718. }
  719. break;
  720. case SSPP_RGB0:
  721. mixercfg |= mix << 9;
  722. mixercfg_ext |= ext << 8;
  723. break;
  724. case SSPP_RGB1:
  725. mixercfg |= mix << 12;
  726. mixercfg_ext |= ext << 10;
  727. break;
  728. case SSPP_RGB2:
  729. mixercfg |= mix << 15;
  730. mixercfg_ext |= ext << 12;
  731. break;
  732. case SSPP_RGB3:
  733. mixercfg |= mix << 29;
  734. mixercfg_ext |= ext << 14;
  735. break;
  736. case SSPP_DMA0:
  737. if (rect_index == SDE_SSPP_RECT_1) {
  738. mixercfg_ext2 |= ((i + 1) & 0xF) << 8;
  739. } else {
  740. mixercfg |= mix << 18;
  741. mixercfg_ext |= ext << 16;
  742. }
  743. break;
  744. case SSPP_DMA1:
  745. if (rect_index == SDE_SSPP_RECT_1) {
  746. mixercfg_ext2 |= ((i + 1) & 0xF) << 12;
  747. } else {
  748. mixercfg |= mix << 21;
  749. mixercfg_ext |= ext << 18;
  750. }
  751. break;
  752. case SSPP_DMA2:
  753. if (rect_index == SDE_SSPP_RECT_1) {
  754. mixercfg_ext2 |= ((i + 1) & 0xF) << 16;
  755. } else {
  756. mix |= (i + 1) & 0xF;
  757. mixercfg_ext2 |= mix << 0;
  758. }
  759. break;
  760. case SSPP_DMA3:
  761. if (rect_index == SDE_SSPP_RECT_1) {
  762. mixercfg_ext2 |= ((i + 1) & 0xF) << 20;
  763. } else {
  764. mix |= (i + 1) & 0xF;
  765. mixercfg_ext2 |= mix << 4;
  766. }
  767. break;
  768. case SSPP_CURSOR0:
  769. mixercfg_ext |= ((i + 1) & 0xF) << 20;
  770. break;
  771. case SSPP_CURSOR1:
  772. mixercfg_ext |= ((i + 1) & 0xF) << 26;
  773. break;
  774. default:
  775. break;
  776. }
  777. if (fetch_tbl[pipe] != CTL_INVALID_BIT)
  778. active_fetch_pipes |= BIT(fetch_tbl[pipe]);
  779. }
  780. }
  781. exit:
  782. if ((!mixercfg && !mixercfg_ext && !mixercfg_ext2 && !mixercfg_ext3) ||
  783. (stage_cfg && !stage_cfg->stage[0][0]))
  784. mixercfg |= CTL_MIXER_BORDER_OUT;
  785. SDE_REG_WRITE(c, CTL_LAYER(lm), mixercfg);
  786. SDE_REG_WRITE(c, CTL_LAYER_EXT(lm), mixercfg_ext);
  787. SDE_REG_WRITE(c, CTL_LAYER_EXT2(lm), mixercfg_ext2);
  788. SDE_REG_WRITE(c, CTL_LAYER_EXT3(lm), mixercfg_ext3);
  789. SDE_REG_WRITE(c, CTL_FETCH_PIPE_ACTIVE, active_fetch_pipes);
  790. }
  791. static u32 sde_hw_ctl_get_staged_sspp(struct sde_hw_ctl *ctx, enum sde_lm lm,
  792. struct sde_sspp_index_info *info, u32 info_max_cnt)
  793. {
  794. int i, j;
  795. u32 count = 0;
  796. u32 mask = 0;
  797. bool staged;
  798. u32 mixercfg[CTL_NUM_EXT];
  799. struct sde_hw_blk_reg_map *c;
  800. const struct ctl_sspp_stage_reg_map *sspp_cfg;
  801. if (!ctx || (lm >= LM_MAX) || !info)
  802. return count;
  803. c = &ctx->hw;
  804. mixercfg[0] = SDE_REG_READ(c, CTL_LAYER(lm));
  805. mixercfg[1] = SDE_REG_READ(c, CTL_LAYER_EXT(lm));
  806. mixercfg[2] = SDE_REG_READ(c, CTL_LAYER_EXT2(lm));
  807. mixercfg[3] = SDE_REG_READ(c, CTL_LAYER_EXT3(lm));
  808. for (i = SSPP_VIG0; i < SSPP_MAX; i++) {
  809. for (j = 0; j < CTL_SSPP_MAX_RECTS; j++) {
  810. if (count >= info_max_cnt)
  811. goto end;
  812. sspp_cfg = &sspp_reg_cfg_tbl[i][j];
  813. if (!sspp_cfg->bits || sspp_cfg->ext >= CTL_NUM_EXT)
  814. continue;
  815. mask = ((0x1 << sspp_cfg->bits) - 1) << sspp_cfg->start;
  816. staged = mixercfg[sspp_cfg->ext] & mask;
  817. if (!staged)
  818. staged = mixercfg[1] & sspp_cfg->sec_bit_mask;
  819. if (staged) {
  820. info[count].sspp = i;
  821. info[count].is_virtual = j;
  822. count++;
  823. }
  824. }
  825. }
  826. end:
  827. return count;
  828. }
  829. static int sde_hw_ctl_intf_cfg_v1(struct sde_hw_ctl *ctx,
  830. struct sde_hw_intf_cfg_v1 *cfg)
  831. {
  832. struct sde_hw_blk_reg_map *c;
  833. u32 intf_active = 0;
  834. u32 wb_active = 0;
  835. u32 merge_3d_active = 0;
  836. u32 cwb_active = 0;
  837. u32 mode_sel = 0xf0000000;
  838. u32 cdm_active = 0;
  839. u32 intf_master = 0;
  840. u32 i;
  841. if (!ctx)
  842. return -EINVAL;
  843. c = &ctx->hw;
  844. for (i = 0; i < cfg->intf_count; i++) {
  845. if (cfg->intf[i])
  846. intf_active |= BIT(cfg->intf[i] - INTF_0);
  847. }
  848. if (cfg->intf_count > 1)
  849. intf_master = BIT(cfg->intf_master - INTF_0);
  850. for (i = 0; i < cfg->wb_count; i++) {
  851. if (cfg->wb[i])
  852. wb_active |= BIT(cfg->wb[i] - WB_0);
  853. }
  854. for (i = 0; i < cfg->merge_3d_count; i++) {
  855. if (cfg->merge_3d[i])
  856. merge_3d_active |= BIT(cfg->merge_3d[i] - MERGE_3D_0);
  857. }
  858. for (i = 0; i < cfg->cwb_count; i++) {
  859. if (cfg->cwb[i])
  860. cwb_active |= BIT(cfg->cwb[i] - CWB_0);
  861. }
  862. for (i = 0; i < cfg->cdm_count; i++) {
  863. if (cfg->cdm[i])
  864. cdm_active |= BIT(cfg->cdm[i] - CDM_0);
  865. }
  866. if (cfg->intf_mode_sel == SDE_CTL_MODE_SEL_CMD)
  867. mode_sel |= BIT(17);
  868. SDE_REG_WRITE(c, CTL_TOP, mode_sel);
  869. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  870. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  871. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  872. SDE_REG_WRITE(c, CTL_CDM_ACTIVE, cdm_active);
  873. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  874. SDE_REG_WRITE(c, CTL_INTF_MASTER, intf_master);
  875. return 0;
  876. }
  877. static int sde_hw_ctl_reset_post_disable(struct sde_hw_ctl *ctx,
  878. struct sde_hw_intf_cfg_v1 *cfg, u32 merge_3d_idx)
  879. {
  880. struct sde_hw_blk_reg_map *c;
  881. u32 intf_active = 0, wb_active = 0, merge_3d_active = 0;
  882. u32 intf_flush = 0, wb_flush = 0;
  883. u32 i;
  884. if (!ctx || !cfg) {
  885. SDE_ERROR("invalid hw_ctl or hw_intf blk\n");
  886. return -EINVAL;
  887. }
  888. c = &ctx->hw;
  889. for (i = 0; i < cfg->intf_count; i++) {
  890. if (cfg->intf[i]) {
  891. intf_active &= ~BIT(cfg->intf[i] - INTF_0);
  892. intf_flush |= BIT(cfg->intf[i] - INTF_0);
  893. }
  894. }
  895. for (i = 0; i < cfg->wb_count; i++) {
  896. if (cfg->wb[i]) {
  897. wb_active &= ~BIT(cfg->wb[i] - WB_0);
  898. wb_flush |= BIT(cfg->wb[i] - WB_0);
  899. }
  900. }
  901. if (merge_3d_idx) {
  902. /* disable and flush merge3d_blk */
  903. merge_3d_active &= ~BIT(merge_3d_idx - MERGE_3D_0);
  904. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_MERGE_3D] =
  905. BIT(merge_3d_idx - MERGE_3D_0);
  906. UPDATE_MASK(ctx->flush.pending_flush_mask, MERGE_3D_IDX, 1);
  907. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  908. }
  909. sde_hw_ctl_clear_all_blendstages(ctx);
  910. if (cfg->intf_count) {
  911. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_INTF] =
  912. intf_flush;
  913. UPDATE_MASK(ctx->flush.pending_flush_mask, INTF_IDX, 1);
  914. SDE_REG_WRITE(c, CTL_INTF_ACTIVE, intf_active);
  915. }
  916. if (cfg->wb_count) {
  917. ctx->flush.pending_hw_flush_mask[SDE_HW_FLUSH_WB] = wb_flush;
  918. UPDATE_MASK(ctx->flush.pending_flush_mask, WB_IDX, 1);
  919. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  920. }
  921. return 0;
  922. }
  923. static int sde_hw_ctl_update_intf_cfg(struct sde_hw_ctl *ctx,
  924. struct sde_hw_intf_cfg_v1 *cfg, bool enable)
  925. {
  926. int i;
  927. u32 cwb_active = 0;
  928. u32 merge_3d_active = 0;
  929. u32 wb_active = 0;
  930. u32 dsc_active = 0;
  931. u32 vdc_active = 0;
  932. struct sde_hw_blk_reg_map *c;
  933. if (!ctx)
  934. return -EINVAL;
  935. c = &ctx->hw;
  936. if (cfg->cwb_count) {
  937. cwb_active = SDE_REG_READ(c, CTL_CWB_ACTIVE);
  938. for (i = 0; i < cfg->cwb_count; i++) {
  939. if (cfg->cwb[i])
  940. UPDATE_ACTIVE(cwb_active,
  941. (cfg->cwb[i] - CWB_0),
  942. enable);
  943. }
  944. wb_active = enable ? BIT(2) : 0;
  945. SDE_REG_WRITE(c, CTL_CWB_ACTIVE, cwb_active);
  946. SDE_REG_WRITE(c, CTL_WB_ACTIVE, wb_active);
  947. }
  948. if (cfg->merge_3d_count) {
  949. merge_3d_active = SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE);
  950. for (i = 0; i < cfg->merge_3d_count; i++) {
  951. if (cfg->merge_3d[i])
  952. UPDATE_ACTIVE(merge_3d_active,
  953. (cfg->merge_3d[i] - MERGE_3D_0),
  954. enable);
  955. }
  956. SDE_REG_WRITE(c, CTL_MERGE_3D_ACTIVE, merge_3d_active);
  957. }
  958. if (cfg->dsc_count) {
  959. dsc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  960. for (i = 0; i < cfg->dsc_count; i++) {
  961. if (cfg->dsc[i])
  962. UPDATE_ACTIVE(dsc_active,
  963. (cfg->dsc[i] - DSC_0), enable);
  964. }
  965. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, dsc_active);
  966. }
  967. if (cfg->vdc_count) {
  968. vdc_active = SDE_REG_READ(c, CTL_DSC_ACTIVE);
  969. for (i = 0; i < cfg->vdc_count; i++) {
  970. if (cfg->vdc[i])
  971. UPDATE_ACTIVE(vdc_active,
  972. VDC_IDX(cfg->vdc[i] - VDC_0), enable);
  973. }
  974. SDE_REG_WRITE(c, CTL_DSC_ACTIVE, vdc_active);
  975. }
  976. return 0;
  977. }
  978. static int sde_hw_ctl_intf_cfg(struct sde_hw_ctl *ctx,
  979. struct sde_hw_intf_cfg *cfg)
  980. {
  981. struct sde_hw_blk_reg_map *c;
  982. u32 intf_cfg = 0;
  983. if (!ctx)
  984. return -EINVAL;
  985. c = &ctx->hw;
  986. intf_cfg |= (cfg->intf & 0xF) << 4;
  987. if (cfg->wb)
  988. intf_cfg |= (cfg->wb & 0x3) + 2;
  989. if (cfg->mode_3d) {
  990. intf_cfg |= BIT(19);
  991. intf_cfg |= (cfg->mode_3d - 0x1) << 20;
  992. }
  993. switch (cfg->intf_mode_sel) {
  994. case SDE_CTL_MODE_SEL_VID:
  995. intf_cfg &= ~BIT(17);
  996. intf_cfg &= ~(0x3 << 15);
  997. break;
  998. case SDE_CTL_MODE_SEL_CMD:
  999. intf_cfg |= BIT(17);
  1000. intf_cfg |= ((cfg->stream_sel & 0x3) << 15);
  1001. break;
  1002. default:
  1003. pr_err("unknown interface type %d\n", cfg->intf_mode_sel);
  1004. return -EINVAL;
  1005. }
  1006. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  1007. return 0;
  1008. }
  1009. static void sde_hw_ctl_update_wb_cfg(struct sde_hw_ctl *ctx,
  1010. struct sde_hw_intf_cfg *cfg, bool enable)
  1011. {
  1012. struct sde_hw_blk_reg_map *c = &ctx->hw;
  1013. u32 intf_cfg = 0;
  1014. if (!cfg->wb)
  1015. return;
  1016. intf_cfg = SDE_REG_READ(c, CTL_TOP);
  1017. if (enable)
  1018. intf_cfg |= (cfg->wb & 0x3) + 2;
  1019. else
  1020. intf_cfg &= ~((cfg->wb & 0x3) + 2);
  1021. SDE_REG_WRITE(c, CTL_TOP, intf_cfg);
  1022. }
  1023. static inline u32 sde_hw_ctl_read_ctl_top(struct sde_hw_ctl *ctx)
  1024. {
  1025. struct sde_hw_blk_reg_map *c;
  1026. u32 ctl_top;
  1027. if (!ctx) {
  1028. pr_err("Invalid input argument\n");
  1029. return 0;
  1030. }
  1031. c = &ctx->hw;
  1032. ctl_top = SDE_REG_READ(c, CTL_TOP);
  1033. return ctl_top;
  1034. }
  1035. static inline u32 sde_hw_ctl_read_ctl_layers(struct sde_hw_ctl *ctx, int index)
  1036. {
  1037. struct sde_hw_blk_reg_map *c;
  1038. u32 ctl_top;
  1039. if (!ctx) {
  1040. pr_err("Invalid input argument\n");
  1041. return 0;
  1042. }
  1043. c = &ctx->hw;
  1044. ctl_top = SDE_REG_READ(c, CTL_LAYER(index));
  1045. pr_debug("Ctl_layer value = 0x%x\n", ctl_top);
  1046. return ctl_top;
  1047. }
  1048. static inline bool sde_hw_ctl_read_active_status(struct sde_hw_ctl *ctx,
  1049. enum sde_hw_blk_type blk, int index)
  1050. {
  1051. struct sde_hw_blk_reg_map *c;
  1052. if (!ctx) {
  1053. pr_err("Invalid input argument\n");
  1054. return 0;
  1055. }
  1056. c = &ctx->hw;
  1057. switch (blk) {
  1058. case SDE_HW_BLK_MERGE_3D:
  1059. return (SDE_REG_READ(c, CTL_MERGE_3D_ACTIVE) &
  1060. BIT(index - MERGE_3D_0)) ? true : false;
  1061. case SDE_HW_BLK_DSC:
  1062. return (SDE_REG_READ(c, CTL_DSC_ACTIVE) &
  1063. BIT(index - DSC_0)) ? true : false;
  1064. case SDE_HW_BLK_WB:
  1065. return (SDE_REG_READ(c, CTL_WB_ACTIVE) &
  1066. BIT(index - WB_0)) ? true : false;
  1067. case SDE_HW_BLK_CDM:
  1068. return (SDE_REG_READ(c, CTL_CDM_ACTIVE) &
  1069. BIT(index - CDM_0)) ? true : false;
  1070. case SDE_HW_BLK_INTF:
  1071. return (SDE_REG_READ(c, CTL_INTF_ACTIVE) &
  1072. BIT(index - INTF_0)) ? true : false;
  1073. default:
  1074. pr_err("unsupported blk %d\n", blk);
  1075. return false;
  1076. };
  1077. return false;
  1078. }
  1079. static int sde_hw_reg_dma_flush(struct sde_hw_ctl *ctx, bool blocking)
  1080. {
  1081. struct sde_hw_reg_dma_ops *ops = sde_reg_dma_get_ops();
  1082. if (!ctx)
  1083. return -EINVAL;
  1084. if (ops && ops->last_command)
  1085. return ops->last_command(ctx, DMA_CTL_QUEUE0,
  1086. (blocking ? REG_DMA_WAIT4_COMP : REG_DMA_NOWAIT));
  1087. return 0;
  1088. }
  1089. static void _setup_ctl_ops(struct sde_hw_ctl_ops *ops,
  1090. unsigned long cap)
  1091. {
  1092. if (cap & BIT(SDE_CTL_ACTIVE_CFG)) {
  1093. ops->update_pending_flush =
  1094. sde_hw_ctl_update_pending_flush_v1;
  1095. ops->trigger_flush = sde_hw_ctl_trigger_flush_v1;
  1096. ops->setup_intf_cfg_v1 = sde_hw_ctl_intf_cfg_v1;
  1097. ops->update_intf_cfg = sde_hw_ctl_update_intf_cfg;
  1098. ops->update_bitmask = sde_hw_ctl_update_bitmask_v1;
  1099. ops->get_ctl_intf = sde_hw_ctl_get_intf_v1;
  1100. ops->reset_post_disable = sde_hw_ctl_reset_post_disable;
  1101. ops->get_scheduler_status = sde_hw_ctl_get_scheduler_status;
  1102. ops->read_active_status = sde_hw_ctl_read_active_status;
  1103. } else {
  1104. ops->update_pending_flush = sde_hw_ctl_update_pending_flush;
  1105. ops->trigger_flush = sde_hw_ctl_trigger_flush;
  1106. ops->setup_intf_cfg = sde_hw_ctl_intf_cfg;
  1107. ops->update_bitmask = sde_hw_ctl_update_bitmask;
  1108. ops->get_ctl_intf = sde_hw_ctl_get_intf;
  1109. }
  1110. ops->clear_pending_flush = sde_hw_ctl_clear_pending_flush;
  1111. ops->get_pending_flush = sde_hw_ctl_get_pending_flush;
  1112. ops->get_flush_register = sde_hw_ctl_get_flush_register;
  1113. ops->trigger_start = sde_hw_ctl_trigger_start;
  1114. ops->trigger_pending = sde_hw_ctl_trigger_pending;
  1115. ops->read_ctl_top = sde_hw_ctl_read_ctl_top;
  1116. ops->read_ctl_layers = sde_hw_ctl_read_ctl_layers;
  1117. ops->update_wb_cfg = sde_hw_ctl_update_wb_cfg;
  1118. ops->reset = sde_hw_ctl_reset_control;
  1119. ops->get_reset = sde_hw_ctl_get_reset_status;
  1120. ops->hard_reset = sde_hw_ctl_hard_reset;
  1121. ops->wait_reset_status = sde_hw_ctl_wait_reset_status;
  1122. ops->clear_all_blendstages = sde_hw_ctl_clear_all_blendstages;
  1123. ops->setup_blendstage = sde_hw_ctl_setup_blendstage;
  1124. ops->get_staged_sspp = sde_hw_ctl_get_staged_sspp;
  1125. ops->update_bitmask_sspp = sde_hw_ctl_update_bitmask_sspp;
  1126. ops->update_bitmask_mixer = sde_hw_ctl_update_bitmask_mixer;
  1127. ops->reg_dma_flush = sde_hw_reg_dma_flush;
  1128. ops->get_start_state = sde_hw_ctl_get_start_state;
  1129. if (cap & BIT(SDE_CTL_UNIFIED_DSPP_FLUSH)) {
  1130. ops->update_bitmask_dspp_subblk =
  1131. sde_hw_ctl_update_bitmask_dspp_subblk;
  1132. } else {
  1133. ops->update_bitmask_dspp = sde_hw_ctl_update_bitmask_dspp;
  1134. ops->update_bitmask_dspp_pavlut =
  1135. sde_hw_ctl_update_bitmask_dspp_pavlut;
  1136. }
  1137. if (cap & BIT(SDE_CTL_UIDLE))
  1138. ops->uidle_enable = sde_hw_ctl_uidle_enable;
  1139. };
  1140. static struct sde_hw_blk_ops sde_hw_ops = {
  1141. .start = NULL,
  1142. .stop = NULL,
  1143. };
  1144. struct sde_hw_ctl *sde_hw_ctl_init(enum sde_ctl idx,
  1145. void __iomem *addr,
  1146. struct sde_mdss_cfg *m)
  1147. {
  1148. struct sde_hw_ctl *c;
  1149. struct sde_ctl_cfg *cfg;
  1150. int rc;
  1151. c = kzalloc(sizeof(*c), GFP_KERNEL);
  1152. if (!c)
  1153. return ERR_PTR(-ENOMEM);
  1154. cfg = _ctl_offset(idx, m, addr, &c->hw);
  1155. if (IS_ERR_OR_NULL(cfg)) {
  1156. kfree(c);
  1157. pr_err("failed to create sde_hw_ctl %d\n", idx);
  1158. return ERR_PTR(-EINVAL);
  1159. }
  1160. c->caps = cfg;
  1161. _setup_ctl_ops(&c->ops, c->caps->features);
  1162. c->idx = idx;
  1163. c->mixer_count = m->mixer_count;
  1164. c->mixer_hw_caps = m->mixer;
  1165. rc = sde_hw_blk_init(&c->base, SDE_HW_BLK_CTL, idx, &sde_hw_ops);
  1166. if (rc) {
  1167. SDE_ERROR("failed to init hw blk %d\n", rc);
  1168. goto blk_init_error;
  1169. }
  1170. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, c->hw.blk_off,
  1171. c->hw.blk_off + c->hw.length, c->hw.xin_id);
  1172. return c;
  1173. blk_init_error:
  1174. kzfree(c);
  1175. return ERR_PTR(rc);
  1176. }
  1177. void sde_hw_ctl_destroy(struct sde_hw_ctl *ctx)
  1178. {
  1179. if (ctx)
  1180. sde_hw_blk_destroy(&ctx->base);
  1181. kfree(ctx);
  1182. }