msm_common.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/gpio.h>
  7. #include <linux/of_gpio.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/slab.h>
  10. #include <linux/of_device.h>
  11. #include <linux/arch_topology.h>
  12. #include <sound/control.h>
  13. #include <sound/core.h>
  14. #include <sound/soc.h>
  15. #include <sound/pcm_params.h>
  16. #include <asoc/msm-cdc-pinctrl.h>
  17. #include <dsp/spf-core.h>
  18. #include <dsp/msm_audio_ion.h>
  19. #include <sound/info.h>
  20. #include <dsp/audio_prm.h>
  21. #include <dsp/digital-cdc-rsc-mgr.h>
  22. #include <linux/sched/walt.h>
  23. #include "msm_common.h"
  24. #ifndef topology_cluster_id
  25. #define topology_cluster_id(cpu) topology_physical_package_id(cpu)
  26. #endif
  27. struct snd_card_pdata {
  28. struct kobject snd_card_kobj;
  29. int card_status;
  30. }*snd_card_pdata;
  31. #define to_asoc_mach_common_pdata(kobj) \
  32. container_of((kobj), struct msm_common_pdata, aud_dev_kobj)
  33. #define DEVICE_ENABLE 1
  34. #define DEVICE_DISABLE 0
  35. #define ARRAY_SZ 21
  36. #define BUF_SZ 32
  37. #define DIR_SZ 10
  38. #define MAX_CODEC_DAI 8
  39. #define TDM_SLOT_WIDTH_BITS 32
  40. #define TDM_MAX_SLOTS 8
  41. #define MI2S_NUM_CHANNELS 2
  42. #define SAMPLING_RATE_44P1KHZ 44100
  43. #define SAMPLING_RATE_88P2KHZ 88200
  44. #define SAMPLING_RATE_176P4KHZ 176400
  45. #define SAMPLING_RATE_352P8KHZ 352800
  46. struct mutex vote_against_sleep_lock;
  47. static struct attribute device_state_attr = {
  48. .name = "state",
  49. .mode = 0660,
  50. };
  51. static struct attribute card_state_attr = {
  52. .name = "card_state",
  53. .mode = 0660,
  54. };
  55. #define MAX_PORT 20
  56. #define CODEC_CHMAP "Channel Map"
  57. enum backend_id {
  58. SLIM = 1,
  59. CODEC_DMA,
  60. };
  61. struct chmap_pdata {
  62. int id;
  63. uint32_t num_codec_dai;
  64. struct snd_soc_dai *dai[MAX_CODEC_DAI];
  65. };
  66. static const struct snd_pcm_hardware dummy_dma_hardware = {
  67. /* Random values to keep userspace happy when checking constraints */
  68. .info = SNDRV_PCM_INFO_INTERLEAVED |
  69. SNDRV_PCM_INFO_BLOCK_TRANSFER,
  70. .buffer_bytes_max = 128*1024,
  71. .period_bytes_min = PAGE_SIZE,
  72. .period_bytes_max = PAGE_SIZE*2,
  73. .periods_min = 2,
  74. .periods_max = 128,
  75. };
  76. #define MAX_USR_INPUT 10
  77. #define MAX_CPU_CLUSTER 4 /* Silver, Gold, T, Prime */
  78. static int qos_vote_status;
  79. static bool lpi_pcm_logging_enable;
  80. static bool vote_against_sleep_enable;
  81. static unsigned int vote_against_sleep_cnt;
  82. static struct dev_pm_qos_request latency_pm_qos_req; /* pm_qos request */
  83. static unsigned int qos_client_active_cnt;
  84. static int cluster_first_cpu[MAX_CPU_CLUSTER] = {-1, };
  85. static struct dev_pm_qos_request *msm_audio_req = NULL;
  86. static bool kregister_pm_qos_latency_controls = false;
  87. #define MSM_LL_QOS_VALUE 300 /* time in us to ensure LPM doesn't go in C3/C4 */
  88. static ssize_t aud_dev_sysfs_store(struct kobject *kobj,
  89. struct attribute *attr,
  90. const char *buf, size_t count)
  91. {
  92. ssize_t ret = -EINVAL;
  93. struct msm_common_pdata *pdata = to_asoc_mach_common_pdata(kobj);
  94. uint32_t pcm_id, state = 0;
  95. if (count > MAX_USR_INPUT) {
  96. pr_err("%s: invalid string written", __func__);
  97. goto done;
  98. }
  99. sscanf(buf, "%d %d", &pcm_id, &state);
  100. if ((pcm_id >= pdata->num_aud_devs) || (pcm_id < 0)) {
  101. pr_err("%s: invalid pcm id %d \n", __func__, pcm_id);
  102. goto done;
  103. }
  104. if ((state > DEVICE_ENABLE) || (state < DEVICE_DISABLE)) {
  105. pr_err("%s: invalid state %d \n", __func__, state);
  106. goto done;
  107. }
  108. pr_debug("%s: pcm_id %d state %d \n", __func__, pcm_id, state);
  109. pdata->aud_dev_state[pcm_id] = state;
  110. ret = count;
  111. done:
  112. return ret;
  113. }
  114. static const struct sysfs_ops aud_dev_sysfs_ops = {
  115. .store = aud_dev_sysfs_store,
  116. };
  117. static struct kobj_type aud_dev_ktype = {
  118. .sysfs_ops = &aud_dev_sysfs_ops,
  119. };
  120. static int aud_dev_sysfs_init(struct msm_common_pdata *pdata)
  121. {
  122. int ret = 0;
  123. char dir[10] = "aud_dev";
  124. ret = kobject_init_and_add(&pdata->aud_dev_kobj, &aud_dev_ktype,
  125. kernel_kobj, dir);
  126. if (ret < 0) {
  127. pr_err("%s: Failed to add kobject %s, err = %d\n",
  128. __func__, dir, ret);
  129. goto done;
  130. }
  131. ret = sysfs_create_file(&pdata->aud_dev_kobj, &device_state_attr);
  132. if (ret < 0) {
  133. pr_err("%s: Failed to add wdsp_boot sysfs entry to %s\n",
  134. __func__, dir);
  135. goto fail_create_file;
  136. }
  137. return ret;
  138. fail_create_file:
  139. kobject_put(&pdata->aud_dev_kobj);
  140. done:
  141. return ret;
  142. }
  143. int snd_card_notify_user(snd_card_status_t card_status)
  144. {
  145. snd_card_pdata->card_status = card_status;
  146. sysfs_notify(&snd_card_pdata->snd_card_kobj, NULL, "card_state");
  147. if (card_status == 0) {
  148. mutex_lock(&vote_against_sleep_lock);
  149. vote_against_sleep_cnt = 0;
  150. pr_debug("%s: SSR/PDR triggered reset vote_against_sleep_cnt = %d\n",
  151. __func__, vote_against_sleep_cnt);
  152. mutex_unlock(&vote_against_sleep_lock);
  153. }
  154. return 0;
  155. }
  156. int snd_card_set_card_status(snd_card_status_t card_status)
  157. {
  158. snd_card_pdata->card_status = card_status;
  159. return 0;
  160. }
  161. static ssize_t snd_card_sysfs_show(struct kobject *kobj,
  162. struct attribute *attr, char *buf)
  163. {
  164. return snprintf(buf, BUF_SZ, "%d", snd_card_pdata->card_status);
  165. }
  166. static ssize_t snd_card_sysfs_store(struct kobject *kobj,
  167. struct attribute *attr, const char *buf, size_t count)
  168. {
  169. sscanf(buf, "%d", &snd_card_pdata->card_status);
  170. sysfs_notify(&snd_card_pdata->snd_card_kobj, NULL, "card_state");
  171. return 0;
  172. }
  173. static const struct sysfs_ops snd_card_sysfs_ops = {
  174. .show = snd_card_sysfs_show,
  175. .store = snd_card_sysfs_store,
  176. };
  177. static struct kobj_type snd_card_ktype = {
  178. .sysfs_ops = &snd_card_sysfs_ops,
  179. };
  180. int snd_card_sysfs_init(void)
  181. {
  182. int ret = 0;
  183. char dir[DIR_SZ] = "snd_card";
  184. snd_card_pdata = kcalloc(1, sizeof(struct snd_card_pdata), GFP_KERNEL);
  185. ret = kobject_init_and_add(&snd_card_pdata->snd_card_kobj, &snd_card_ktype,
  186. kernel_kobj, dir);
  187. if (ret < 0) {
  188. pr_err("%s: Failed to add kobject %s, err = %d\n",
  189. __func__, dir, ret);
  190. goto done;
  191. }
  192. ret = sysfs_create_file(&snd_card_pdata->snd_card_kobj, &card_state_attr);
  193. if (ret < 0) {
  194. pr_err("%s: Failed to add snd_card sysfs entry to %s\n",
  195. __func__, dir);
  196. goto fail_create_file;
  197. }
  198. return ret;
  199. fail_create_file:
  200. kobject_put(&snd_card_pdata->snd_card_kobj);
  201. done:
  202. return ret;
  203. }
  204. static int get_mi2s_tdm_auxpcm_intf_index(const char *stream_name)
  205. {
  206. if (!strnstr(stream_name, "TDM", strlen(stream_name)) &&
  207. !strnstr(stream_name, "MI2S", strlen(stream_name)) &&
  208. !strnstr(stream_name, "AUXPCM", strlen(stream_name)))
  209. return -EINVAL;
  210. if (strnstr(stream_name, "LPAIF_RXTX", strlen(stream_name)))
  211. return QUAT_MI2S_TDM_AUXPCM;
  212. else if (strnstr(stream_name, "LPAIF_WSA", strlen(stream_name)))
  213. return SEN_MI2S_TDM_AUXPCM;
  214. else if (strnstr(stream_name, "LPAIF_VA", strlen(stream_name)))
  215. return QUIN_MI2S_TDM_AUXPCM;
  216. else if (strnstr(stream_name, "LPAIF_AUD", strlen(stream_name))){
  217. if (strnstr(stream_name, "PRIMARY", strlen(stream_name)))
  218. return SEP_MI2S_TDM_AUXPCM;
  219. else if (strnstr(stream_name, "SECONDARY", strlen(stream_name)))
  220. return TER_MI2S_TDM_AUXPCM;
  221. }
  222. else if (strnstr(stream_name, "LPAIF", strlen(stream_name))) {
  223. if (strnstr(stream_name, "PRIMARY", strlen(stream_name)))
  224. return PRI_MI2S_TDM_AUXPCM;
  225. else if (strnstr(stream_name, "SECONDARY", strlen(stream_name)))
  226. return SEC_MI2S_TDM_AUXPCM;
  227. }
  228. pr_debug("%s: stream name %s does not match\n", __func__, stream_name);
  229. return -EINVAL;
  230. }
  231. static bool is_fractional_sample_rate(unsigned int sample_rate)
  232. {
  233. switch (sample_rate) {
  234. case SAMPLING_RATE_44P1KHZ:
  235. case SAMPLING_RATE_88P2KHZ:
  236. case SAMPLING_RATE_176P4KHZ:
  237. case SAMPLING_RATE_352P8KHZ:
  238. return true;
  239. default:
  240. return false;
  241. }
  242. return false;
  243. }
  244. static int get_mi2s_clk_id(int index)
  245. {
  246. int clk_id = -EINVAL;
  247. switch(index) {
  248. case PRI_MI2S_TDM_AUXPCM:
  249. clk_id = CLOCK_ID_PRI_MI2S_IBIT;
  250. break;
  251. case SEC_MI2S_TDM_AUXPCM:
  252. clk_id = CLOCK_ID_SEC_MI2S_IBIT;
  253. break;
  254. case TER_MI2S_TDM_AUXPCM:
  255. clk_id = CLOCK_ID_TER_MI2S_IBIT;
  256. break;
  257. case QUAT_MI2S_TDM_AUXPCM:
  258. clk_id = CLOCK_ID_QUAD_MI2S_IBIT;
  259. break;
  260. case QUIN_MI2S_TDM_AUXPCM:
  261. clk_id = CLOCK_ID_QUI_MI2S_IBIT;
  262. break;
  263. case SEN_MI2S_TDM_AUXPCM:
  264. clk_id = CLOCK_ID_SEN_MI2S_IBIT;
  265. break;
  266. case SEP_MI2S_TDM_AUXPCM:
  267. clk_id = CLOCK_ID_SEP_MI2S_IBIT;
  268. break;
  269. default:
  270. pr_err("%s: Invalid interface index: %d\n", __func__, index);
  271. }
  272. pr_debug("%s: clk id: %d\n", __func__, clk_id);
  273. return clk_id;
  274. }
  275. static int get_tdm_clk_id(int index)
  276. {
  277. int clk_id = -EINVAL;
  278. switch(index) {
  279. case PRI_MI2S_TDM_AUXPCM:
  280. clk_id = CLOCK_ID_PRI_TDM_IBIT;
  281. break;
  282. case SEC_MI2S_TDM_AUXPCM:
  283. clk_id = CLOCK_ID_SEC_TDM_IBIT;
  284. break;
  285. case TER_MI2S_TDM_AUXPCM:
  286. clk_id = CLOCK_ID_TER_TDM_IBIT;
  287. break;
  288. case QUAT_MI2S_TDM_AUXPCM:
  289. clk_id = CLOCK_ID_QUAD_TDM_IBIT;
  290. break;
  291. case QUIN_MI2S_TDM_AUXPCM:
  292. clk_id = CLOCK_ID_QUI_TDM_IBIT;
  293. break;
  294. case SEN_MI2S_TDM_AUXPCM:
  295. clk_id = CLOCK_ID_SEN_TDM_IBIT;
  296. break;
  297. case SEP_MI2S_TDM_AUXPCM:
  298. clk_id = CLOCK_ID_SEP_TDM_IBIT;
  299. break;
  300. default:
  301. pr_err("%s: Invalid interface index: %d\n", __func__, index);
  302. }
  303. pr_debug("%s: clk id: %d\n", __func__, clk_id);
  304. return clk_id;
  305. }
  306. int mi2s_tdm_hw_vote_req(struct msm_common_pdata *pdata, int enable)
  307. {
  308. int ret = 0;
  309. if (!pdata || (pdata->lpass_audio_hw_vote == NULL)) {
  310. pr_err("%s: pdata or lpass audio hw vote node NULL", __func__);
  311. return -EINVAL;
  312. }
  313. pr_debug("%s: lpass audio hw vote for fractional sample rate enable: %d\n",
  314. __func__, enable);
  315. if (enable) {
  316. if (atomic_read(&pdata->lpass_audio_hw_vote_ref_cnt) == 0) {
  317. ret = digital_cdc_rsc_mgr_hw_vote_enable(pdata->lpass_audio_hw_vote, NULL);
  318. if (ret < 0) {
  319. pr_err("%s lpass audio hw vote enable failed %d\n",
  320. __func__, ret);
  321. return ret;
  322. }
  323. }
  324. atomic_inc(&pdata->lpass_audio_hw_vote_ref_cnt);
  325. } else {
  326. atomic_dec(&pdata->lpass_audio_hw_vote_ref_cnt);
  327. if (atomic_read(&pdata->lpass_audio_hw_vote_ref_cnt) == 0)
  328. digital_cdc_rsc_mgr_hw_vote_disable(pdata->lpass_audio_hw_vote, NULL);
  329. else if (atomic_read(&pdata->lpass_audio_hw_vote_ref_cnt) < 0)
  330. atomic_set(&pdata->lpass_audio_hw_vote_ref_cnt, 0);
  331. }
  332. return ret;
  333. }
  334. int msm_common_snd_hw_params(struct snd_pcm_substream *substream,
  335. struct snd_pcm_hw_params *params)
  336. {
  337. int ret = 0;
  338. int slot_width = TDM_SLOT_WIDTH_BITS;
  339. int slots;
  340. int sample_width;
  341. unsigned int rate;
  342. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  343. const char *stream_name = rtd->dai_link->stream_name;
  344. struct snd_soc_card *card = rtd->card;
  345. struct msm_common_pdata *pdata = msm_common_get_pdata(card);
  346. int index = get_mi2s_tdm_auxpcm_intf_index(stream_name);
  347. struct clk_cfg intf_clk_cfg;
  348. dev_dbg(rtd->card->dev,
  349. "%s: substream = %s stream = %d\n",
  350. __func__, substream->name, substream->stream);
  351. if (!pdata) {
  352. dev_err(rtd->card->dev, "%s: pdata is NULL\n", __func__);
  353. return -EINVAL;
  354. }
  355. if (index >= 0) {
  356. mutex_lock(&pdata->lock[index]);
  357. if (atomic_read(&pdata->lpass_intf_clk_ref_cnt[index]) == 0) {
  358. if ((strnstr(stream_name, "TDM", strlen(stream_name)))) {
  359. slots = pdata->tdm_max_slots;
  360. rate = params_rate(params);
  361. ret = get_tdm_clk_id(index);
  362. if ( ret < 0)
  363. goto done;
  364. intf_clk_cfg.clk_id = ret;
  365. intf_clk_cfg.clk_freq_in_hz = rate * slot_width * slots;
  366. intf_clk_cfg.clk_attri = pdata->tdm_clk_attribute[index];
  367. intf_clk_cfg.clk_root = 0;
  368. if (pdata->is_audio_hw_vote_required[index] &&
  369. (is_fractional_sample_rate(rate) ||
  370. (index == QUIN_MI2S_TDM_AUXPCM))) {
  371. ret = mi2s_tdm_hw_vote_req(pdata, 1);
  372. if (ret < 0) {
  373. pr_err("%s lpass audio hw vote enable failed %d\n",
  374. __func__, ret);
  375. goto done;
  376. }
  377. }
  378. pr_debug("%s: clk_id :%d clk freq %d\n", __func__,
  379. intf_clk_cfg.clk_id, intf_clk_cfg.clk_freq_in_hz);
  380. ret = audio_prm_set_lpass_clk_cfg(&intf_clk_cfg, 1);
  381. if (ret < 0) {
  382. pr_err("%s: prm lpass tdm clk cfg set failed ret %d\n",
  383. __func__, ret);
  384. goto done;
  385. }
  386. } else if ((strnstr(stream_name, "MI2S", strlen(stream_name)))) {
  387. ret = get_mi2s_clk_id(index);
  388. if (ret < 0)
  389. goto done;
  390. intf_clk_cfg.clk_id = ret;
  391. rate = params_rate(params);
  392. switch (params_format(params)) {
  393. case SNDRV_PCM_FORMAT_S24_LE:
  394. case SNDRV_PCM_FORMAT_S24_3LE:
  395. case SNDRV_PCM_FORMAT_S32_LE:
  396. sample_width = 32;
  397. break;
  398. case SNDRV_PCM_FORMAT_S16_LE:
  399. default:
  400. sample_width = 16;
  401. pr_debug("%s: bitwidth set to default : %d\n",
  402. __func__, sample_width);
  403. }
  404. intf_clk_cfg.clk_freq_in_hz = rate *
  405. MI2S_NUM_CHANNELS * sample_width;
  406. intf_clk_cfg.clk_attri = pdata->mi2s_clk_attribute[index];
  407. intf_clk_cfg.clk_root = CLOCK_ROOT_DEFAULT;
  408. if (pdata->is_audio_hw_vote_required[index] &&
  409. (is_fractional_sample_rate(rate) ||
  410. (index == QUIN_MI2S_TDM_AUXPCM))) {
  411. ret = mi2s_tdm_hw_vote_req(pdata, 1);
  412. if (ret < 0) {
  413. pr_err("%s lpass audio hw vote enable failed %d\n",
  414. __func__, ret);
  415. goto done;
  416. }
  417. }
  418. pr_debug("%s: mi2s clk_id :%d clk freq %d\n", __func__,
  419. intf_clk_cfg.clk_id, intf_clk_cfg.clk_freq_in_hz);
  420. ret = audio_prm_set_lpass_clk_cfg(&intf_clk_cfg, 1);
  421. if (ret < 0) {
  422. pr_err("%s: prm lpass mi2s clk cfg set failed ret %d\n",
  423. __func__, ret);
  424. goto done;
  425. }
  426. } else {
  427. pr_err("%s: unsupported stream name: %s\n",
  428. __func__, stream_name);
  429. goto done;
  430. }
  431. }
  432. atomic_inc(&pdata->lpass_intf_clk_ref_cnt[index]);
  433. done:
  434. mutex_unlock(&pdata->lock[index]);
  435. }
  436. return ret;
  437. }
  438. int msm_common_snd_startup(struct snd_pcm_substream *substream)
  439. {
  440. int ret = 0;
  441. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  442. struct snd_soc_card *card = rtd->card;
  443. struct msm_common_pdata *pdata = msm_common_get_pdata(card);
  444. const char *stream_name = rtd->dai_link->stream_name;
  445. int index = get_mi2s_tdm_auxpcm_intf_index(stream_name);
  446. dev_dbg(rtd->card->dev,
  447. "%s: substream = %s stream = %d\n",
  448. __func__, substream->name, substream->stream);
  449. if (!pdata) {
  450. dev_err(rtd->card->dev, "%s: pdata is NULL\n", __func__);
  451. return -EINVAL;
  452. }
  453. if (!rtd->dai_link->no_pcm)
  454. snd_soc_set_runtime_hwparams(substream, &dummy_dma_hardware);
  455. if (index >= 0) {
  456. mutex_lock(&pdata->lock[index]);
  457. if (pdata->mi2s_gpio_p[index]) {
  458. if (atomic_read(&(pdata->mi2s_gpio_ref_cnt[index])) == 0) {
  459. ret = msm_cdc_pinctrl_select_active_state(
  460. pdata->mi2s_gpio_p[index]);
  461. if (ret) {
  462. pr_err("%s:pinctrl set actve fail with %d\n",
  463. __func__, ret);
  464. goto done;
  465. }
  466. }
  467. atomic_inc(&(pdata->mi2s_gpio_ref_cnt[index]));
  468. }
  469. done:
  470. mutex_unlock(&pdata->lock[index]);
  471. }
  472. return ret;
  473. }
  474. void msm_common_snd_shutdown(struct snd_pcm_substream *substream)
  475. {
  476. int ret;
  477. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  478. struct snd_soc_card *card = rtd->card;
  479. struct msm_common_pdata *pdata = msm_common_get_pdata(card);
  480. struct snd_pcm_runtime *runtime = substream->runtime;
  481. const char *stream_name = rtd->dai_link->stream_name;
  482. int index = get_mi2s_tdm_auxpcm_intf_index(stream_name);
  483. struct clk_cfg intf_clk_cfg;
  484. unsigned int rate = runtime->rate;
  485. memset(&intf_clk_cfg, 0, sizeof(struct clk_cfg));
  486. pr_debug("%s(): substream = %s stream = %d\n", __func__,
  487. substream->name, substream->stream);
  488. if (!pdata) {
  489. dev_err(card->dev, "%s: pdata is NULL\n", __func__);
  490. return;
  491. }
  492. if (index >= 0) {
  493. mutex_lock(&pdata->lock[index]);
  494. atomic_dec(&pdata->lpass_intf_clk_ref_cnt[index]);
  495. if (atomic_read(&pdata->lpass_intf_clk_ref_cnt[index]) == 0) {
  496. if ((strnstr(stream_name, "TDM", strlen(stream_name)))) {
  497. ret = get_tdm_clk_id(index);
  498. if (ret > 0) {
  499. intf_clk_cfg.clk_id = ret;
  500. ret = audio_prm_set_lpass_clk_cfg(&intf_clk_cfg, 0);
  501. if (ret < 0)
  502. pr_err("%s: prm tdm clk cfg set failed ret %d\n",
  503. __func__, ret);
  504. }
  505. } else if((strnstr(stream_name, "MI2S", strlen(stream_name)))) {
  506. ret = get_mi2s_clk_id(index);
  507. if (ret > 0) {
  508. intf_clk_cfg.clk_id = ret;
  509. ret = audio_prm_set_lpass_clk_cfg(&intf_clk_cfg, 0);
  510. if (ret < 0)
  511. pr_err("%s: prm mi2s clk cfg disable failed ret %d\n",
  512. __func__, ret);
  513. }
  514. } else {
  515. pr_err("%s: unsupported stream name: %s\n",
  516. __func__, stream_name);
  517. }
  518. if (pdata->is_audio_hw_vote_required[index] &&
  519. (is_fractional_sample_rate(rate) ||
  520. (index == QUIN_MI2S_TDM_AUXPCM))) {
  521. ret = mi2s_tdm_hw_vote_req(pdata, 0);
  522. }
  523. } else if (atomic_read(&pdata->lpass_intf_clk_ref_cnt[index]) < 0) {
  524. atomic_set(&pdata->lpass_intf_clk_ref_cnt[index], 0);
  525. }
  526. if (pdata->mi2s_gpio_p[index]) {
  527. atomic_dec(&pdata->mi2s_gpio_ref_cnt[index]);
  528. if (atomic_read(&pdata->mi2s_gpio_ref_cnt[index]) == 0) {
  529. ret = msm_cdc_pinctrl_select_sleep_state(
  530. pdata->mi2s_gpio_p[index]);
  531. if (ret)
  532. dev_err(card->dev,
  533. "%s: pinctrl set actv fail %d\n",
  534. __func__, ret);
  535. } else if (atomic_read(&pdata->mi2s_gpio_ref_cnt[index]) < 0) {
  536. atomic_set(&pdata->mi2s_gpio_ref_cnt[index], 0);
  537. }
  538. }
  539. mutex_unlock(&pdata->lock[index]);
  540. }
  541. }
  542. static void msm_audio_add_qos_request(void)
  543. {
  544. int num_req = 0;
  545. int cpu = 0;
  546. int ret = 0;
  547. int cid, prev_cid = -1;
  548. int cluster_num = 0;
  549. cpumask_t *cluster_cpu_mask = NULL;
  550. msm_audio_req = kcalloc(num_possible_cpus(),
  551. sizeof(struct dev_pm_qos_request), GFP_KERNEL);
  552. if (!msm_audio_req)
  553. return;
  554. for_each_cpu(cpu, cpu_possible_mask) {
  555. cid = topology_cluster_id(cpu);
  556. if (cid != prev_cid) {
  557. cluster_first_cpu[cluster_num++] = cpu;
  558. prev_cid = cid;
  559. }
  560. }
  561. /* Pick the first cluster as it represents the Silver cluster. */
  562. cluster_cpu_mask = topology_core_cpumask(cluster_first_cpu[0]);
  563. for_each_cpu(cpu, cluster_cpu_mask) {
  564. ret = dev_pm_qos_add_request(get_cpu_device(cpu),
  565. &msm_audio_req[cpu],
  566. DEV_PM_QOS_RESUME_LATENCY,
  567. PM_QOS_CPU_LATENCY_DEFAULT_VALUE);
  568. if (ret < 0)
  569. pr_err("%s error (%d) adding resume latency to cpu %d.\n",
  570. __func__, ret, cpu);
  571. pr_debug("%s set cpu affinity to logical core %d.\n", __func__, cpu);
  572. /* Limit the request to 2 silver cpu cores. */
  573. if (++num_req == 2)
  574. break;
  575. }
  576. }
  577. static void msm_audio_remove_qos_request(void)
  578. {
  579. int cpu = 0;
  580. int ret = 0;
  581. cpumask_t *cluster_cpu_mask = NULL;
  582. cluster_cpu_mask = topology_core_cpumask(cluster_first_cpu[0]);
  583. if (msm_audio_req) {
  584. for_each_cpu(cpu, cluster_cpu_mask) {
  585. ret = dev_pm_qos_remove_request(
  586. &msm_audio_req[cpu]);
  587. if (ret < 0)
  588. pr_err("%s error (%d) removing request from cpu %d.\n",
  589. __func__, ret, cpu);
  590. pr_debug("%s remove cpu affinity of core %d.\n", __func__, cpu);
  591. }
  592. kfree(msm_audio_req);
  593. }
  594. }
  595. int msm_common_snd_init(struct platform_device *pdev, struct snd_soc_card *card)
  596. {
  597. struct msm_common_pdata *common_pdata = NULL;
  598. int count, ret = 0;
  599. uint32_t val_array[MI2S_TDM_AUXPCM_MAX] = {0};
  600. struct clk *lpass_audio_hw_vote = NULL;
  601. common_pdata = kcalloc(1, sizeof(struct msm_common_pdata), GFP_KERNEL);
  602. if (!common_pdata)
  603. return -ENOMEM;
  604. for (count = 0; count < MI2S_TDM_AUXPCM_MAX; count++) {
  605. mutex_init(&common_pdata->lock[count]);
  606. atomic_set(&common_pdata->mi2s_gpio_ref_cnt[count], 0);
  607. }
  608. ret = of_property_read_u32(pdev->dev.of_node, "qcom,tdm-max-slots",
  609. &common_pdata->tdm_max_slots);
  610. if (ret) {
  611. dev_info(&pdev->dev, "%s: No DT match for tdm max slots\n",
  612. __func__);
  613. }
  614. if ((common_pdata->tdm_max_slots <= 0) || (common_pdata->tdm_max_slots >
  615. TDM_MAX_SLOTS)) {
  616. common_pdata->tdm_max_slots = TDM_MAX_SLOTS;
  617. dev_info(&pdev->dev, "%s: Using default tdm max slot: %d\n",
  618. __func__, common_pdata->tdm_max_slots);
  619. }
  620. /* Register LPASS audio hw vote */
  621. lpass_audio_hw_vote = devm_clk_get(&pdev->dev, "lpass_audio_hw_vote");
  622. if (IS_ERR(lpass_audio_hw_vote)) {
  623. ret = PTR_ERR(lpass_audio_hw_vote);
  624. dev_dbg(&pdev->dev, "%s: clk get %s failed %d\n",
  625. __func__, "lpass_audio_hw_vote", ret);
  626. lpass_audio_hw_vote = NULL;
  627. ret = 0;
  628. }
  629. common_pdata->lpass_audio_hw_vote = lpass_audio_hw_vote;
  630. ret = of_property_read_u32_array(pdev->dev.of_node,
  631. "qcom,mi2s-tdm-is-hw-vote-needed",
  632. val_array, MI2S_TDM_AUXPCM_MAX);
  633. if (ret) {
  634. dev_dbg(&pdev->dev, "%s:no qcom,mi2s-tdm-is-hw-vote-needed in DT node\n",
  635. __func__);
  636. } else {
  637. for (count = 0; count < MI2S_TDM_AUXPCM_MAX; count++) {
  638. common_pdata->is_audio_hw_vote_required[count] =
  639. val_array[count];
  640. }
  641. }
  642. ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,tdm-clk-attribute",
  643. val_array, MI2S_TDM_AUXPCM_MAX);
  644. if (ret) {
  645. dev_info(&pdev->dev,
  646. "%s: No DT match for tdm clk attribute, set to default\n", __func__);
  647. for (count = 0; count < MI2S_TDM_AUXPCM_MAX; count++) {
  648. common_pdata->tdm_clk_attribute[count] =
  649. CLOCK_ATTRIBUTE_COUPLE_NO;
  650. }
  651. } else {
  652. for (count = 0; count < MI2S_TDM_AUXPCM_MAX; count++) {
  653. common_pdata->tdm_clk_attribute[count] =
  654. val_array[count];
  655. }
  656. }
  657. ret = of_property_read_u32_array(pdev->dev.of_node, "qcom,mi2s-clk-attribute",
  658. val_array, MI2S_TDM_AUXPCM_MAX);
  659. if (ret) {
  660. dev_info(&pdev->dev,
  661. "%s: No DT match for mi2s clk attribute, set to default\n", __func__);
  662. for (count = 0; count < MI2S_TDM_AUXPCM_MAX; count++) {
  663. common_pdata->mi2s_clk_attribute[count] =
  664. CLOCK_ATTRIBUTE_COUPLE_NO;
  665. }
  666. } else {
  667. for (count = 0; count < MI2S_TDM_AUXPCM_MAX; count++) {
  668. common_pdata->mi2s_clk_attribute[count] =
  669. val_array[count];
  670. }
  671. }
  672. common_pdata->mi2s_gpio_p[PRI_MI2S_TDM_AUXPCM] = of_parse_phandle(pdev->dev.of_node,
  673. "qcom,pri-mi2s-gpios", 0);
  674. common_pdata->mi2s_gpio_p[SEC_MI2S_TDM_AUXPCM] = of_parse_phandle(pdev->dev.of_node,
  675. "qcom,sec-mi2s-gpios", 0);
  676. common_pdata->mi2s_gpio_p[TER_MI2S_TDM_AUXPCM] = of_parse_phandle(pdev->dev.of_node,
  677. "qcom,tert-mi2s-gpios", 0);
  678. common_pdata->mi2s_gpio_p[QUAT_MI2S_TDM_AUXPCM] = of_parse_phandle(pdev->dev.of_node,
  679. "qcom,quat-mi2s-gpios", 0);
  680. common_pdata->mi2s_gpio_p[QUIN_MI2S_TDM_AUXPCM] = of_parse_phandle(pdev->dev.of_node,
  681. "qcom,quin-mi2s-gpios", 0);
  682. common_pdata->mi2s_gpio_p[SEN_MI2S_TDM_AUXPCM] = of_parse_phandle(pdev->dev.of_node,
  683. "qcom,sen-mi2s-gpios", 0);
  684. common_pdata->mi2s_gpio_p[SEP_MI2S_TDM_AUXPCM] = of_parse_phandle(pdev->dev.of_node,
  685. "qcom,sep-mi2s-gpios", 0);
  686. common_pdata->aud_dev_state = devm_kcalloc(&pdev->dev, card->num_links,
  687. sizeof(uint8_t), GFP_KERNEL);
  688. dev_info(&pdev->dev, "num_links %d \n", card->num_links);
  689. common_pdata->num_aud_devs = card->num_links;
  690. mutex_init(&common_pdata->aud_dev_lock);
  691. aud_dev_sysfs_init(common_pdata);
  692. msm_common_set_pdata(card, common_pdata);
  693. /* Add QoS request for audio tasks */
  694. msm_audio_add_qos_request();
  695. mutex_init(&vote_against_sleep_lock);
  696. return 0;
  697. };
  698. void msm_common_snd_deinit(struct msm_common_pdata *common_pdata)
  699. {
  700. int count;
  701. if (!common_pdata)
  702. return;
  703. mutex_destroy(&vote_against_sleep_lock);
  704. msm_audio_remove_qos_request();
  705. mutex_destroy(&common_pdata->aud_dev_lock);
  706. for (count = 0; count < MI2S_TDM_AUXPCM_MAX; count++) {
  707. mutex_destroy(&common_pdata->lock[count]);
  708. }
  709. }
  710. int msm_channel_map_info(struct snd_kcontrol *kcontrol,
  711. struct snd_ctl_elem_info *uinfo)
  712. {
  713. uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
  714. uinfo->count = sizeof(uint32_t) * MAX_PORT;
  715. return 0;
  716. }
  717. int msm_channel_map_get(struct snd_kcontrol *kcontrol,
  718. struct snd_ctl_elem_value *ucontrol)
  719. {
  720. struct chmap_pdata *kctl_pdata =
  721. (struct chmap_pdata *)kcontrol->private_data;
  722. struct snd_soc_dai *codec_dai = NULL;
  723. int backend_id = 0;
  724. uint32_t rx_ch[MAX_PORT] = {0}, tx_ch[MAX_PORT] = {0};
  725. uint32_t rx_ch_cnt = 0, tx_ch_cnt = 0;
  726. uint32_t *chmap_data = NULL;
  727. int ret = 0, len = 0, i = 0;
  728. if (kctl_pdata == NULL) {
  729. pr_debug("%s: chmap_pdata is not initialized\n", __func__);
  730. return -EINVAL;
  731. }
  732. codec_dai = kctl_pdata->dai[0];
  733. backend_id = kctl_pdata->id;
  734. switch (backend_id) {
  735. case SLIM: {
  736. uint32_t *chmap;
  737. uint32_t ch_cnt;
  738. ret = snd_soc_dai_get_channel_map(codec_dai,
  739. &tx_ch_cnt, tx_ch, &rx_ch_cnt, rx_ch);
  740. if (ret || (tx_ch_cnt == 0 && rx_ch_cnt == 0)) {
  741. pr_debug("%s: got incorrect channel map for backend_id:%d\n",
  742. __func__, backend_id);
  743. return ret;
  744. }
  745. if (rx_ch_cnt) {
  746. chmap = rx_ch;
  747. ch_cnt = rx_ch_cnt;
  748. } else {
  749. chmap = tx_ch;
  750. ch_cnt = tx_ch_cnt;
  751. }
  752. if (ch_cnt > 2) {
  753. pr_err("%s: Incorrect channel count: %d\n", __func__, ch_cnt);
  754. return -EINVAL;
  755. }
  756. len = sizeof(uint32_t) * (ch_cnt + 1);
  757. chmap_data = kzalloc(len, GFP_KERNEL);
  758. if (!chmap_data)
  759. return -ENOMEM;
  760. chmap_data[0] = ch_cnt;
  761. for (i = 0; i < ch_cnt; i++)
  762. chmap_data[i+1] = chmap[i];
  763. memcpy(ucontrol->value.bytes.data, chmap_data, len);
  764. break;
  765. }
  766. case CODEC_DMA: {
  767. uint32_t cur_rx_ch = 0, cur_tx_ch = 0;
  768. uint32_t cur_rx_ch_cnt = 0, cur_tx_ch_cnt = 0;
  769. for (i = 0; i < kctl_pdata->num_codec_dai; ++i) {
  770. codec_dai = kctl_pdata->dai[i];
  771. if(!codec_dai) {
  772. continue;
  773. }
  774. cur_rx_ch_cnt = 0;
  775. cur_tx_ch_cnt = 0;
  776. cur_tx_ch = 0;
  777. cur_rx_ch = 0;
  778. ret = snd_soc_dai_get_channel_map(codec_dai,
  779. &cur_tx_ch_cnt, &cur_tx_ch,
  780. &cur_rx_ch_cnt, &cur_rx_ch);
  781. /* DAIs that not supports get_channel_map should pass */
  782. if (ret && (ret != -ENOTSUPP)) {
  783. pr_err("%s: get channel map failed for backend_id:%d,"
  784. " ret:%d\n",
  785. __func__, backend_id, ret);
  786. return ret;
  787. }
  788. rx_ch_cnt += cur_rx_ch_cnt;
  789. tx_ch_cnt += cur_tx_ch_cnt;
  790. rx_ch[0] |= cur_rx_ch;
  791. tx_ch[0] |= cur_tx_ch;
  792. }
  793. /* reset return value from the loop above */
  794. ret = 0;
  795. if (rx_ch_cnt == 0 && tx_ch_cnt == 0) {
  796. pr_debug("%s: incorrect ch map for backend_id:%d, RX Channel Cnt:%d, TX Channel Cnt:%d\n",
  797. __func__, backend_id, rx_ch_cnt, tx_ch_cnt);
  798. return ret;
  799. }
  800. chmap_data = kzalloc(sizeof(uint32_t) * 2, GFP_KERNEL);
  801. if (!chmap_data)
  802. return -ENOMEM;
  803. if (rx_ch_cnt) {
  804. chmap_data[0] = rx_ch_cnt;
  805. chmap_data[1] = rx_ch[0];
  806. } else {
  807. chmap_data[0] = tx_ch_cnt;
  808. chmap_data[1] = tx_ch[0];
  809. }
  810. memcpy(ucontrol->value.bytes.data, chmap_data,
  811. sizeof(uint32_t) * 2);
  812. break;
  813. }
  814. default:
  815. pr_err("%s, Invalid backend %d\n", __func__, backend_id);
  816. ret = -EINVAL;
  817. break;
  818. }
  819. kfree(chmap_data);
  820. return ret;
  821. }
  822. void msm_common_get_backend_name(const char *stream_name, char **backend_name)
  823. {
  824. char arg[ARRAY_SZ] = {0};
  825. char value[61] = {0};
  826. sscanf(stream_name, "%20[^-]-%60s", arg, value);
  827. *backend_name = kzalloc(ARRAY_SZ, GFP_KERNEL);
  828. if (!(*backend_name))
  829. return;
  830. strlcpy(*backend_name, arg, ARRAY_SZ);
  831. }
  832. static void msm_audio_update_qos_request(u32 latency)
  833. {
  834. int cpu = 0;
  835. int ret = -1;
  836. int num_req = 0;
  837. cpumask_t *cluster_cpu_mask = NULL;
  838. cluster_cpu_mask = topology_core_cpumask(cluster_first_cpu[0]);
  839. if (msm_audio_req) {
  840. for_each_cpu(cpu, cluster_cpu_mask) {
  841. ret = dev_pm_qos_update_request(
  842. &msm_audio_req[cpu], latency);
  843. if (1 == ret ) {
  844. pr_debug("%s: updated latency of core %d to %u.\n",
  845. __func__, cpu, latency);
  846. } else if (0 == ret) {
  847. pr_debug("%s: latency of core %d not changed. latency %u.\n",
  848. __func__, cpu, latency);
  849. } else {
  850. pr_err("%s: failed to update latency of core %d, error %d \n",
  851. __func__, cpu, ret);
  852. }
  853. /* Limit the request to 2 Silver CPU cores. */
  854. if (++num_req == 2)
  855. break;
  856. }
  857. }
  858. }
  859. static int msm_get_and_print_cpu_map_taken(cpumask_t* expected_cpu_map) {
  860. int ret = 0;
  861. int cpu = 0;
  862. cpumask_t current_cpu_map = walt_get_cpus_taken();
  863. if (memcmp(&current_cpu_map, &CPU_MASK_NONE, sizeof(cpumask_t)) == 0) {
  864. pr_debug("%s: current cpu map is none.\n", __func__);
  865. } else {
  866. for_each_cpu(cpu, &current_cpu_map) {
  867. pr_debug("%s: current cpu core taken %d.\n", __func__, cpu);
  868. }
  869. }
  870. if (memcmp(&current_cpu_map, expected_cpu_map, sizeof(cpumask_t)) == 0)
  871. ret = 1;
  872. return ret;
  873. }
  874. static int msm_qos_ctl_put(struct snd_kcontrol *kcontrol,
  875. struct snd_ctl_elem_value *ucontrol)
  876. {
  877. cpumask_t expected_cpu_map = CPU_MASK_NONE;
  878. cpumask_t *cluster_cpu_mask = NULL;
  879. qos_vote_status = ucontrol->value.enumerated.item[0];
  880. cluster_cpu_mask = topology_core_cpumask(cluster_first_cpu[0]);
  881. pr_debug("%s: qos_vote_status = %d, qos_client_active_cnt = %d.\n",
  882. __func__, qos_vote_status, qos_client_active_cnt);
  883. if (qos_vote_status) {
  884. if (dev_pm_qos_request_active(&latency_pm_qos_req))
  885. dev_pm_qos_remove_request(&latency_pm_qos_req);
  886. qos_client_active_cnt++;
  887. if (qos_client_active_cnt == 1) {
  888. msm_audio_update_qos_request(MSM_LL_QOS_VALUE);
  889. expected_cpu_map = *cluster_cpu_mask;
  890. if (msm_get_and_print_cpu_map_taken(&expected_cpu_map)) {
  891. pr_debug("%s: already expected, don't need to set it.\n",
  892. __func__);
  893. return 0;
  894. }
  895. walt_set_cpus_taken(cluster_cpu_mask);
  896. pr_debug("%s: set cpus taken to walt for audio RT tasks.\n",
  897. __func__);
  898. if (msm_get_and_print_cpu_map_taken(&expected_cpu_map)) {
  899. pr_debug("%s: set cpus taken as expected successfully.\n",
  900. __func__);
  901. }
  902. }
  903. } else {
  904. if (qos_client_active_cnt > 0)
  905. qos_client_active_cnt--;
  906. if (qos_client_active_cnt == 0) {
  907. msm_audio_update_qos_request(PM_QOS_CPU_LATENCY_DEFAULT_VALUE);
  908. if (msm_get_and_print_cpu_map_taken(&expected_cpu_map)) {
  909. pr_debug("%s: already expected, don't need to unset it.\n",
  910. __func__);
  911. return 0;
  912. }
  913. walt_unset_cpus_taken(cluster_cpu_mask);
  914. pr_debug("%s: unset cpus taken to walt for audio RT tasks.\n",
  915. __func__);
  916. if (msm_get_and_print_cpu_map_taken(&expected_cpu_map)) {
  917. pr_debug("%s: unset cpus taken as expected successfully.\n",
  918. __func__);
  919. }
  920. }
  921. }
  922. return 0;
  923. }
  924. static int msm_qos_ctl_get(struct snd_kcontrol *kcontrol,
  925. struct snd_ctl_elem_value *ucontrol)
  926. {
  927. ucontrol->value.enumerated.item[0] = qos_vote_status;
  928. return 0;
  929. }
  930. static int msm_lpi_logging_enable_put(struct snd_kcontrol *kcontrol,
  931. struct snd_ctl_elem_value *ucontrol)
  932. {
  933. lpi_pcm_logging_enable = ucontrol->value.integer.value[0];
  934. pr_debug("%s: lpi pcm logging enable: %d", __func__,
  935. lpi_pcm_logging_enable);
  936. audio_prm_set_lpi_logging_status((int)lpi_pcm_logging_enable);
  937. return 0;
  938. }
  939. static int msm_lpi_logging_enable_get(struct snd_kcontrol *kcontrol,
  940. struct snd_ctl_elem_value *ucontrol)
  941. {
  942. ucontrol->value.integer.value[0] = lpi_pcm_logging_enable;
  943. return 0;
  944. }
  945. static int msm_vote_against_sleep_ctl_put(struct snd_kcontrol *kcontrol,
  946. struct snd_ctl_elem_value *ucontrol)
  947. {
  948. int ret = 0;
  949. mutex_lock(&vote_against_sleep_lock);
  950. vote_against_sleep_enable = ucontrol->value.integer.value[0];
  951. pr_debug("%s: vote against sleep enable: %d sleep cnt: %d", __func__,
  952. vote_against_sleep_enable, vote_against_sleep_cnt);
  953. if (vote_against_sleep_enable) {
  954. vote_against_sleep_cnt++;
  955. if (vote_against_sleep_cnt == 1) {
  956. ret = audio_prm_set_vote_against_sleep(1);
  957. if (ret < 0) {
  958. if (vote_against_sleep_cnt > 0)
  959. --vote_against_sleep_cnt;
  960. pr_err("%s: failed to vote against sleep ret: %d\n", __func__, ret);
  961. }
  962. }
  963. } else {
  964. if (vote_against_sleep_cnt == 1)
  965. ret = audio_prm_set_vote_against_sleep(0);
  966. if (vote_against_sleep_cnt > 0)
  967. vote_against_sleep_cnt--;
  968. }
  969. pr_debug("%s: vote against sleep vote ret: %d\n", __func__, ret);
  970. mutex_unlock(&vote_against_sleep_lock);
  971. return ret;
  972. }
  973. static int msm_vote_against_sleep_ctl_get(struct snd_kcontrol *kcontrol,
  974. struct snd_ctl_elem_value *ucontrol)
  975. {
  976. ucontrol->value.integer.value[0] = vote_against_sleep_enable;
  977. pr_debug("%s: vote against sleep enable: %d", __func__,
  978. vote_against_sleep_enable);
  979. return 0;
  980. }
  981. static const char *const qos_text[] = {"Disable", "Enable"};
  982. static const char *const against_sleep_text[] = {"Disable", "Enable"};
  983. static SOC_ENUM_SINGLE_EXT_DECL(qos_vote, qos_text);
  984. static SOC_ENUM_SINGLE_EXT_DECL(sleep_against, against_sleep_text);
  985. static const struct snd_kcontrol_new card_mixer_controls[] = {
  986. SOC_ENUM_EXT("PM_QOS Vote", qos_vote,
  987. msm_qos_ctl_get, msm_qos_ctl_put),
  988. SOC_SINGLE_EXT("LPI PCM Logging Enable", 0, 0, 1, 0,
  989. msm_lpi_logging_enable_get, msm_lpi_logging_enable_put),
  990. SOC_ENUM_EXT("VOTE Against Sleep", sleep_against,
  991. msm_vote_against_sleep_ctl_get, msm_vote_against_sleep_ctl_put),
  992. };
  993. static int msm_register_pm_qos_latency_controls(struct snd_soc_pcm_runtime *rtd)
  994. {
  995. struct snd_soc_component *lpass_cdc_component = NULL;
  996. int ret = 0;
  997. lpass_cdc_component = snd_soc_rtdcom_lookup(rtd, "lpass-cdc");
  998. if (!lpass_cdc_component) {
  999. pr_err("%s: could not find component for lpass-cdc\n",
  1000. __func__);
  1001. return -EINVAL;
  1002. }
  1003. ret = snd_soc_add_component_controls(lpass_cdc_component,
  1004. card_mixer_controls, ARRAY_SIZE(card_mixer_controls));
  1005. if (ret < 0) {
  1006. pr_err("%s: add common snd controls failed: %d\n",
  1007. __func__, ret);
  1008. return -EINVAL;
  1009. }
  1010. return 0;
  1011. }
  1012. int msm_common_dai_link_init(struct snd_soc_pcm_runtime *rtd)
  1013. {
  1014. struct snd_soc_dai *codec_dai = asoc_rtd_to_codec(rtd, 0);
  1015. struct snd_soc_component *component = NULL;
  1016. struct snd_soc_dai_link *dai_link = rtd->dai_link;
  1017. struct device *dev = rtd->card->dev;
  1018. int ret = 0;
  1019. int index = 0;
  1020. const char *mixer_ctl_name = CODEC_CHMAP;
  1021. char *mixer_str = NULL;
  1022. char *backend_name = NULL;
  1023. uint32_t ctl_len = 0;
  1024. struct chmap_pdata *pdata;
  1025. struct snd_kcontrol *kctl;
  1026. struct snd_kcontrol_new msm_common_channel_map[1] = {
  1027. {
  1028. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1029. .name = "?",
  1030. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  1031. .info = msm_channel_map_info,
  1032. .get = msm_channel_map_get,
  1033. .private_value = 0,
  1034. }
  1035. };
  1036. if (!codec_dai) {
  1037. pr_err("%s: failed to get codec dai", __func__);
  1038. return -EINVAL;
  1039. }
  1040. component = codec_dai->component;
  1041. msm_common_get_backend_name(dai_link->stream_name, &backend_name);
  1042. if (!backend_name) {
  1043. pr_err("%s: failed to get backend name", __func__);
  1044. return -EINVAL;
  1045. }
  1046. pdata = devm_kzalloc(dev, sizeof(struct chmap_pdata), GFP_KERNEL);
  1047. if (!pdata) {
  1048. ret = -ENOMEM;
  1049. goto free_backend;
  1050. }
  1051. if ((!strncmp(backend_name, "SLIM", strlen("SLIM"))) ||
  1052. (!strncmp(backend_name, "CODEC_DMA", strlen("CODEC_DMA")))) {
  1053. ctl_len = strlen(dai_link->stream_name) + 1 +
  1054. strlen(mixer_ctl_name) + 1;
  1055. mixer_str = kzalloc(ctl_len, GFP_KERNEL);
  1056. if (!mixer_str) {
  1057. ret = -ENOMEM;
  1058. goto free_backend;
  1059. }
  1060. snprintf(mixer_str, ctl_len, "%s %s", dai_link->stream_name,
  1061. mixer_ctl_name);
  1062. msm_common_channel_map[0].name = mixer_str;
  1063. msm_common_channel_map[0].private_value = 0;
  1064. pr_debug("Registering new mixer ctl %s\n", mixer_str);
  1065. ret = snd_soc_add_component_controls(component,
  1066. msm_common_channel_map,
  1067. ARRAY_SIZE(msm_common_channel_map));
  1068. kctl = snd_soc_card_get_kcontrol(rtd->card, mixer_str);
  1069. if (!kctl) {
  1070. pr_err("failed to get kctl %s\n", mixer_str);
  1071. ret = -EINVAL;
  1072. goto free_mixer_str;
  1073. }
  1074. pdata->dai[0] = codec_dai;
  1075. pdata->num_codec_dai = 1;
  1076. if (!strncmp(backend_name, "SLIM", strlen("SLIM"))) {
  1077. pdata->id = SLIM;
  1078. } else {
  1079. pdata->id = CODEC_DMA;
  1080. if (rtd->dai_link->num_codecs <= MAX_CODEC_DAI) {
  1081. pdata->num_codec_dai = rtd->dai_link->num_codecs;
  1082. for_each_rtd_codec_dais(rtd, index, codec_dai) {
  1083. pdata->dai[index] = codec_dai;
  1084. }
  1085. }
  1086. }
  1087. kctl->private_data = pdata;
  1088. }
  1089. if (!kregister_pm_qos_latency_controls) {
  1090. if (!msm_register_pm_qos_latency_controls(rtd))
  1091. kregister_pm_qos_latency_controls = true;
  1092. }
  1093. free_mixer_str:
  1094. if (mixer_str) {
  1095. kfree(mixer_str);
  1096. mixer_str = NULL;
  1097. }
  1098. free_backend:
  1099. if (backend_name) {
  1100. kfree(backend_name);
  1101. backend_name = NULL;
  1102. }
  1103. return ret;
  1104. }