dp_rx.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379
  1. /*
  2. * Copyright (c) 2016-2019 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_rx.h"
  23. #include "hal_api.h"
  24. #include "qdf_nbuf.h"
  25. #ifdef MESH_MODE_SUPPORT
  26. #include "if_meta_hdr.h"
  27. #endif
  28. #include "dp_internal.h"
  29. #include "dp_rx_mon.h"
  30. #include "dp_ipa.h"
  31. #ifdef CONFIG_WIN
  32. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  33. {
  34. return vdev->ap_bridge_enabled;
  35. }
  36. #else
  37. static inline bool dp_rx_check_ap_bridge(struct dp_vdev *vdev)
  38. {
  39. if (vdev->opmode != wlan_op_mode_sta)
  40. return true;
  41. else
  42. return false;
  43. }
  44. #endif
  45. #ifdef ATH_RX_PRI_SAVE
  46. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  47. {
  48. qdf_nbuf_set_priority(nbuf, tid);
  49. if (qdf_unlikely(flag))
  50. qdf_nbuf_set_timestamp(nbuf);
  51. }
  52. #else
  53. static inline void dp_rx_save_tid_ts(qdf_nbuf_t nbuf, uint8_t tid, bool flag)
  54. {
  55. if (qdf_unlikely(flag)) {
  56. qdf_nbuf_set_priority(nbuf, tid);
  57. qdf_nbuf_set_timestamp(nbuf);
  58. }
  59. }
  60. #endif
  61. /*
  62. * dp_rx_dump_info_and_assert() - dump RX Ring info and Rx Desc info
  63. *
  64. * @soc: core txrx main context
  65. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  66. * @ring_desc: opaque pointer to the RX ring descriptor
  67. * @rx_desc: host rs descriptor
  68. *
  69. * Return: void
  70. */
  71. void dp_rx_dump_info_and_assert(struct dp_soc *soc, void *hal_ring,
  72. void *ring_desc, struct dp_rx_desc *rx_desc)
  73. {
  74. void *hal_soc = soc->hal_soc;
  75. dp_rx_desc_dump(rx_desc);
  76. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  77. hal_srng_dump_ring(hal_soc, hal_ring);
  78. qdf_assert_always(0);
  79. }
  80. /*
  81. * dp_rx_buffers_replenish() - replenish rxdma ring with rx nbufs
  82. * called during dp rx initialization
  83. * and at the end of dp_rx_process.
  84. *
  85. * @soc: core txrx main context
  86. * @mac_id: mac_id which is one of 3 mac_ids
  87. * @dp_rxdma_srng: dp rxdma circular ring
  88. * @rx_desc_pool: Pointer to free Rx descriptor pool
  89. * @num_req_buffers: number of buffer to be replenished
  90. * @desc_list: list of descs if called from dp_rx_process
  91. * or NULL during dp rx initialization or out of buffer
  92. * interrupt.
  93. * @tail: tail of descs list
  94. * Return: return success or failure
  95. */
  96. QDF_STATUS dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  97. struct dp_srng *dp_rxdma_srng,
  98. struct rx_desc_pool *rx_desc_pool,
  99. uint32_t num_req_buffers,
  100. union dp_rx_desc_list_elem_t **desc_list,
  101. union dp_rx_desc_list_elem_t **tail)
  102. {
  103. uint32_t num_alloc_desc;
  104. uint16_t num_desc_to_free = 0;
  105. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  106. uint32_t num_entries_avail;
  107. uint32_t count;
  108. int sync_hw_ptr = 1;
  109. qdf_dma_addr_t paddr;
  110. qdf_nbuf_t rx_netbuf;
  111. void *rxdma_ring_entry;
  112. union dp_rx_desc_list_elem_t *next;
  113. QDF_STATUS ret;
  114. void *rxdma_srng;
  115. rxdma_srng = dp_rxdma_srng->hal_srng;
  116. if (!rxdma_srng) {
  117. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  118. "rxdma srng not initialized");
  119. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  120. return QDF_STATUS_E_FAILURE;
  121. }
  122. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  123. "requested %d buffers for replenish", num_req_buffers);
  124. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  125. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  126. rxdma_srng,
  127. sync_hw_ptr);
  128. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  129. "no of available entries in rxdma ring: %d",
  130. num_entries_avail);
  131. if (!(*desc_list) && (num_entries_avail >
  132. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  133. num_req_buffers = num_entries_avail;
  134. } else if (num_entries_avail < num_req_buffers) {
  135. num_desc_to_free = num_req_buffers - num_entries_avail;
  136. num_req_buffers = num_entries_avail;
  137. }
  138. if (qdf_unlikely(!num_req_buffers)) {
  139. num_desc_to_free = num_req_buffers;
  140. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  141. goto free_descs;
  142. }
  143. /*
  144. * if desc_list is NULL, allocate the descs from freelist
  145. */
  146. if (!(*desc_list)) {
  147. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  148. rx_desc_pool,
  149. num_req_buffers,
  150. desc_list,
  151. tail);
  152. if (!num_alloc_desc) {
  153. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  154. "no free rx_descs in freelist");
  155. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  156. num_req_buffers);
  157. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  158. return QDF_STATUS_E_NOMEM;
  159. }
  160. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  161. "%d rx desc allocated", num_alloc_desc);
  162. num_req_buffers = num_alloc_desc;
  163. }
  164. count = 0;
  165. while (count < num_req_buffers) {
  166. rx_netbuf = qdf_nbuf_alloc(dp_soc->osdev,
  167. RX_BUFFER_SIZE,
  168. RX_BUFFER_RESERVATION,
  169. RX_BUFFER_ALIGNMENT,
  170. FALSE);
  171. if (!rx_netbuf) {
  172. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  173. continue;
  174. }
  175. ret = qdf_nbuf_map_single(dp_soc->osdev, rx_netbuf,
  176. QDF_DMA_BIDIRECTIONAL);
  177. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  178. qdf_nbuf_free(rx_netbuf);
  179. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  180. continue;
  181. }
  182. paddr = qdf_nbuf_get_frag_paddr(rx_netbuf, 0);
  183. /*
  184. * check if the physical address of nbuf->data is
  185. * less then 0x50000000 then free the nbuf and try
  186. * allocating new nbuf. We can try for 100 times.
  187. * this is a temp WAR till we fix it properly.
  188. */
  189. ret = check_x86_paddr(dp_soc, &rx_netbuf, &paddr, dp_pdev);
  190. if (ret == QDF_STATUS_E_FAILURE) {
  191. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  192. break;
  193. }
  194. count++;
  195. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  196. rxdma_srng);
  197. qdf_assert_always(rxdma_ring_entry);
  198. next = (*desc_list)->next;
  199. dp_rx_desc_prep(&((*desc_list)->rx_desc), rx_netbuf);
  200. /* rx_desc.in_use should be zero at this time*/
  201. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  202. (*desc_list)->rx_desc.in_use = 1;
  203. dp_verbose_debug("rx_netbuf=%pK, buf=%pK, paddr=0x%llx, cookie=%d",
  204. rx_netbuf, qdf_nbuf_data(rx_netbuf),
  205. (unsigned long long)paddr,
  206. (*desc_list)->rx_desc.cookie);
  207. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  208. (*desc_list)->rx_desc.cookie,
  209. rx_desc_pool->owner);
  210. *desc_list = next;
  211. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, rx_netbuf, true);
  212. }
  213. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  214. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  215. num_req_buffers, num_desc_to_free);
  216. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, num_req_buffers,
  217. (RX_BUFFER_SIZE * num_req_buffers));
  218. free_descs:
  219. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  220. /*
  221. * add any available free desc back to the free list
  222. */
  223. if (*desc_list)
  224. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  225. mac_id, rx_desc_pool);
  226. return QDF_STATUS_SUCCESS;
  227. }
  228. /*
  229. * dp_rx_deliver_raw() - process RAW mode pkts and hand over the
  230. * pkts to RAW mode simulation to
  231. * decapsulate the pkt.
  232. *
  233. * @vdev: vdev on which RAW mode is enabled
  234. * @nbuf_list: list of RAW pkts to process
  235. * @peer: peer object from which the pkt is rx
  236. *
  237. * Return: void
  238. */
  239. void
  240. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  241. struct dp_peer *peer)
  242. {
  243. qdf_nbuf_t deliver_list_head = NULL;
  244. qdf_nbuf_t deliver_list_tail = NULL;
  245. qdf_nbuf_t nbuf;
  246. nbuf = nbuf_list;
  247. while (nbuf) {
  248. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  249. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  250. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  251. DP_STATS_INC_PKT(peer, rx.raw, 1, qdf_nbuf_len(nbuf));
  252. /*
  253. * reset the chfrag_start and chfrag_end bits in nbuf cb
  254. * as this is a non-amsdu pkt and RAW mode simulation expects
  255. * these bit s to be 0 for non-amsdu pkt.
  256. */
  257. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  258. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  259. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  260. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  261. }
  262. nbuf = next;
  263. }
  264. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  265. &deliver_list_tail, (struct cdp_peer*) peer);
  266. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  267. }
  268. #ifdef DP_LFR
  269. /*
  270. * In case of LFR, data of a new peer might be sent up
  271. * even before peer is added.
  272. */
  273. static inline struct dp_vdev *
  274. dp_get_vdev_from_peer(struct dp_soc *soc,
  275. uint16_t peer_id,
  276. struct dp_peer *peer,
  277. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  278. {
  279. struct dp_vdev *vdev;
  280. uint8_t vdev_id;
  281. if (unlikely(!peer)) {
  282. if (peer_id != HTT_INVALID_PEER) {
  283. vdev_id = DP_PEER_METADATA_ID_GET(
  284. mpdu_desc_info.peer_meta_data);
  285. QDF_TRACE(QDF_MODULE_ID_DP,
  286. QDF_TRACE_LEVEL_DEBUG,
  287. FL("PeerID %d not found use vdevID %d"),
  288. peer_id, vdev_id);
  289. vdev = dp_get_vdev_from_soc_vdev_id_wifi3(soc,
  290. vdev_id);
  291. } else {
  292. QDF_TRACE(QDF_MODULE_ID_DP,
  293. QDF_TRACE_LEVEL_DEBUG,
  294. FL("Invalid PeerID %d"),
  295. peer_id);
  296. return NULL;
  297. }
  298. } else {
  299. vdev = peer->vdev;
  300. }
  301. return vdev;
  302. }
  303. #else
  304. static inline struct dp_vdev *
  305. dp_get_vdev_from_peer(struct dp_soc *soc,
  306. uint16_t peer_id,
  307. struct dp_peer *peer,
  308. struct hal_rx_mpdu_desc_info mpdu_desc_info)
  309. {
  310. if (unlikely(!peer)) {
  311. QDF_TRACE(QDF_MODULE_ID_DP,
  312. QDF_TRACE_LEVEL_DEBUG,
  313. FL("Peer not found for peerID %d"),
  314. peer_id);
  315. return NULL;
  316. } else {
  317. return peer->vdev;
  318. }
  319. }
  320. #endif
  321. /**
  322. * dp_rx_da_learn() - Add AST entry based on DA lookup
  323. * This is a WAR for HK 1.0 and will
  324. * be removed in HK 2.0
  325. *
  326. * @soc: core txrx main context
  327. * @rx_tlv_hdr : start address of rx tlvs
  328. * @ta_peer : Transmitter peer entry
  329. * @nbuf : nbuf to retrieve destination mac for which AST will be added
  330. *
  331. */
  332. #ifdef FEATURE_WDS
  333. static void
  334. dp_rx_da_learn(struct dp_soc *soc,
  335. uint8_t *rx_tlv_hdr,
  336. struct dp_peer *ta_peer,
  337. qdf_nbuf_t nbuf)
  338. {
  339. /* For HKv2 DA port learing is not needed */
  340. if (qdf_likely(soc->ast_override_support))
  341. return;
  342. if (qdf_unlikely(!ta_peer))
  343. return;
  344. if (qdf_unlikely(ta_peer->vdev->opmode != wlan_op_mode_ap))
  345. return;
  346. if (!soc->da_war_enabled)
  347. return;
  348. if (qdf_unlikely(!hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  349. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  350. dp_peer_add_ast(soc,
  351. ta_peer,
  352. qdf_nbuf_data(nbuf),
  353. CDP_TXRX_AST_TYPE_DA,
  354. IEEE80211_NODE_F_WDS_HM);
  355. }
  356. }
  357. #else
  358. static void
  359. dp_rx_da_learn(struct dp_soc *soc,
  360. uint8_t *rx_tlv_hdr,
  361. struct dp_peer *ta_peer,
  362. qdf_nbuf_t nbuf)
  363. {
  364. }
  365. #endif
  366. /**
  367. * dp_rx_intrabss_fwd() - Implements the Intra-BSS forwarding logic
  368. *
  369. * @soc: core txrx main context
  370. * @ta_peer : source peer entry
  371. * @rx_tlv_hdr : start address of rx tlvs
  372. * @nbuf : nbuf that has to be intrabss forwarded
  373. *
  374. * Return: bool: true if it is forwarded else false
  375. */
  376. static bool
  377. dp_rx_intrabss_fwd(struct dp_soc *soc,
  378. struct dp_peer *ta_peer,
  379. uint8_t *rx_tlv_hdr,
  380. qdf_nbuf_t nbuf)
  381. {
  382. uint16_t da_idx;
  383. uint16_t len;
  384. struct dp_peer *da_peer;
  385. struct dp_ast_entry *ast_entry;
  386. qdf_nbuf_t nbuf_copy;
  387. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  388. struct cdp_tid_rx_stats *tid_stats =
  389. &ta_peer->vdev->pdev->stats.tid_stats.tid_rx_stats[tid];
  390. /* check if the destination peer is available in peer table
  391. * and also check if the source peer and destination peer
  392. * belong to the same vap and destination peer is not bss peer.
  393. */
  394. if ((hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  395. !hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  396. da_idx = hal_rx_msdu_end_da_idx_get(soc->hal_soc, rx_tlv_hdr);
  397. ast_entry = soc->ast_table[da_idx];
  398. if (!ast_entry)
  399. return false;
  400. if (ast_entry->type == CDP_TXRX_AST_TYPE_DA) {
  401. ast_entry->is_active = TRUE;
  402. return false;
  403. }
  404. da_peer = ast_entry->peer;
  405. if (!da_peer)
  406. return false;
  407. /* TA peer cannot be same as peer(DA) on which AST is present
  408. * this indicates a change in topology and that AST entries
  409. * are yet to be updated.
  410. */
  411. if (da_peer == ta_peer)
  412. return false;
  413. if (da_peer->vdev == ta_peer->vdev && !da_peer->bss_peer) {
  414. memset(nbuf->cb, 0x0, sizeof(nbuf->cb));
  415. len = qdf_nbuf_len(nbuf);
  416. /* linearize the nbuf just before we send to
  417. * dp_tx_send()
  418. */
  419. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf))) {
  420. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  421. return false;
  422. nbuf = qdf_nbuf_unshare(nbuf);
  423. if (!nbuf) {
  424. DP_STATS_INC_PKT(ta_peer,
  425. rx.intra_bss.fail,
  426. 1,
  427. len);
  428. /* return true even though the pkt is
  429. * not forwarded. Basically skb_unshare
  430. * failed and we want to continue with
  431. * next nbuf.
  432. */
  433. tid_stats->fail_cnt[INTRABSS_DROP]++;
  434. return true;
  435. }
  436. }
  437. if (!dp_tx_send(ta_peer->vdev, nbuf)) {
  438. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  439. len);
  440. return true;
  441. } else {
  442. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  443. len);
  444. tid_stats->fail_cnt[INTRABSS_DROP]++;
  445. return false;
  446. }
  447. }
  448. }
  449. /* if it is a broadcast pkt (eg: ARP) and it is not its own
  450. * source, then clone the pkt and send the cloned pkt for
  451. * intra BSS forwarding and original pkt up the network stack
  452. * Note: how do we handle multicast pkts. do we forward
  453. * all multicast pkts as is or let a higher layer module
  454. * like igmpsnoop decide whether to forward or not with
  455. * Mcast enhancement.
  456. */
  457. else if (qdf_unlikely((hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  458. !ta_peer->bss_peer))) {
  459. nbuf_copy = qdf_nbuf_copy(nbuf);
  460. if (!nbuf_copy)
  461. return false;
  462. memset(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  463. len = qdf_nbuf_len(nbuf_copy);
  464. if (dp_tx_send(ta_peer->vdev, nbuf_copy)) {
  465. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1, len);
  466. tid_stats->fail_cnt[INTRABSS_DROP]++;
  467. qdf_nbuf_free(nbuf_copy);
  468. } else {
  469. DP_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1, len);
  470. tid_stats->intrabss_cnt++;
  471. }
  472. }
  473. /* return false as we have to still send the original pkt
  474. * up the stack
  475. */
  476. return false;
  477. }
  478. #ifdef MESH_MODE_SUPPORT
  479. /**
  480. * dp_rx_fill_mesh_stats() - Fills the mesh per packet receive stats
  481. *
  482. * @vdev: DP Virtual device handle
  483. * @nbuf: Buffer pointer
  484. * @rx_tlv_hdr: start of rx tlv header
  485. * @peer: pointer to peer
  486. *
  487. * This function allocated memory for mesh receive stats and fill the
  488. * required stats. Stores the memory address in skb cb.
  489. *
  490. * Return: void
  491. */
  492. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  493. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  494. {
  495. struct mesh_recv_hdr_s *rx_info = NULL;
  496. uint32_t pkt_type;
  497. uint32_t nss;
  498. uint32_t rate_mcs;
  499. uint32_t bw;
  500. /* fill recv mesh stats */
  501. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  502. /* upper layers are resposible to free this memory */
  503. if (!rx_info) {
  504. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  505. "Memory allocation failed for mesh rx stats");
  506. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  507. return;
  508. }
  509. rx_info->rs_flags = MESH_RXHDR_VER1;
  510. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  511. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  512. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  513. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  514. if (hal_rx_attn_msdu_get_is_decrypted(rx_tlv_hdr)) {
  515. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  516. rx_info->rs_keyix = hal_rx_msdu_get_keyid(rx_tlv_hdr);
  517. if (vdev->osif_get_key)
  518. vdev->osif_get_key(vdev->osif_vdev,
  519. &rx_info->rs_decryptkey[0],
  520. &peer->mac_addr.raw[0],
  521. rx_info->rs_keyix);
  522. }
  523. rx_info->rs_rssi = hal_rx_msdu_start_get_rssi(rx_tlv_hdr);
  524. rx_info->rs_channel = hal_rx_msdu_start_get_freq(rx_tlv_hdr);
  525. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  526. rate_mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  527. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  528. nss = hal_rx_msdu_start_nss_get(vdev->pdev->soc->hal_soc, rx_tlv_hdr);
  529. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  530. (bw << 24);
  531. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  532. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  533. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x"),
  534. rx_info->rs_flags,
  535. rx_info->rs_rssi,
  536. rx_info->rs_channel,
  537. rx_info->rs_ratephy1,
  538. rx_info->rs_keyix);
  539. }
  540. /**
  541. * dp_rx_filter_mesh_packets() - Filters mesh unwanted packets
  542. *
  543. * @vdev: DP Virtual device handle
  544. * @nbuf: Buffer pointer
  545. * @rx_tlv_hdr: start of rx tlv header
  546. *
  547. * This checks if the received packet is matching any filter out
  548. * catogery and and drop the packet if it matches.
  549. *
  550. * Return: status(0 indicates drop, 1 indicate to no drop)
  551. */
  552. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  553. uint8_t *rx_tlv_hdr)
  554. {
  555. union dp_align_mac_addr mac_addr;
  556. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  557. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  558. if (hal_rx_mpdu_get_fr_ds(rx_tlv_hdr))
  559. return QDF_STATUS_SUCCESS;
  560. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  561. if (hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  562. return QDF_STATUS_SUCCESS;
  563. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  564. if (!hal_rx_mpdu_get_fr_ds(rx_tlv_hdr)
  565. && !hal_rx_mpdu_get_to_ds(rx_tlv_hdr))
  566. return QDF_STATUS_SUCCESS;
  567. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  568. if (hal_rx_mpdu_get_addr1(rx_tlv_hdr,
  569. &mac_addr.raw[0]))
  570. return QDF_STATUS_E_FAILURE;
  571. if (!qdf_mem_cmp(&mac_addr.raw[0],
  572. &vdev->mac_addr.raw[0],
  573. QDF_MAC_ADDR_SIZE))
  574. return QDF_STATUS_SUCCESS;
  575. }
  576. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  577. if (hal_rx_mpdu_get_addr2(rx_tlv_hdr,
  578. &mac_addr.raw[0]))
  579. return QDF_STATUS_E_FAILURE;
  580. if (!qdf_mem_cmp(&mac_addr.raw[0],
  581. &vdev->mac_addr.raw[0],
  582. QDF_MAC_ADDR_SIZE))
  583. return QDF_STATUS_SUCCESS;
  584. }
  585. }
  586. return QDF_STATUS_E_FAILURE;
  587. }
  588. #else
  589. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  590. uint8_t *rx_tlv_hdr, struct dp_peer *peer)
  591. {
  592. }
  593. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  594. uint8_t *rx_tlv_hdr)
  595. {
  596. return QDF_STATUS_E_FAILURE;
  597. }
  598. #endif
  599. #ifdef CONFIG_WIN
  600. /**
  601. * dp_rx_nac_filter(): Function to perform filtering of non-associated
  602. * clients
  603. * @pdev: DP pdev handle
  604. * @rx_pkt_hdr: Rx packet Header
  605. *
  606. * return: dp_vdev*
  607. */
  608. static
  609. struct dp_vdev *dp_rx_nac_filter(struct dp_pdev *pdev,
  610. uint8_t *rx_pkt_hdr)
  611. {
  612. struct ieee80211_frame *wh;
  613. struct dp_neighbour_peer *peer = NULL;
  614. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  615. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) != IEEE80211_FC1_DIR_TODS)
  616. return NULL;
  617. qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
  618. TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
  619. neighbour_peer_list_elem) {
  620. if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
  621. wh->i_addr2, QDF_MAC_ADDR_SIZE) == 0) {
  622. QDF_TRACE(
  623. QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  624. FL("NAC configuration matched for mac-%2x:%2x:%2x:%2x:%2x:%2x"),
  625. peer->neighbour_peers_macaddr.raw[0],
  626. peer->neighbour_peers_macaddr.raw[1],
  627. peer->neighbour_peers_macaddr.raw[2],
  628. peer->neighbour_peers_macaddr.raw[3],
  629. peer->neighbour_peers_macaddr.raw[4],
  630. peer->neighbour_peers_macaddr.raw[5]);
  631. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  632. return pdev->monitor_vdev;
  633. }
  634. }
  635. qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
  636. return NULL;
  637. }
  638. /**
  639. * dp_rx_process_invalid_peer(): Function to pass invalid peer list to umac
  640. * @soc: DP SOC handle
  641. * @mpdu: mpdu for which peer is invalid
  642. *
  643. * return: integer type
  644. */
  645. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  646. {
  647. struct dp_invalid_peer_msg msg;
  648. struct dp_vdev *vdev = NULL;
  649. struct dp_pdev *pdev = NULL;
  650. struct ieee80211_frame *wh;
  651. uint8_t i;
  652. qdf_nbuf_t curr_nbuf, next_nbuf;
  653. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  654. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  655. if (!HAL_IS_DECAP_FORMAT_RAW(rx_tlv_hdr)) {
  656. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  657. "Drop decapped frames");
  658. goto free;
  659. }
  660. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  661. if (!DP_FRAME_IS_DATA(wh)) {
  662. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  663. "NAWDS valid only for data frames");
  664. goto free;
  665. }
  666. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  667. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  668. "Invalid nbuf length");
  669. goto free;
  670. }
  671. for (i = 0; i < MAX_PDEV_CNT; i++) {
  672. pdev = soc->pdev_list[i];
  673. if (!pdev) {
  674. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  675. "PDEV not found");
  676. continue;
  677. }
  678. if (pdev->filter_neighbour_peers) {
  679. /* Next Hop scenario not yet handle */
  680. vdev = dp_rx_nac_filter(pdev, rx_pkt_hdr);
  681. if (vdev) {
  682. dp_rx_mon_deliver(soc, i,
  683. pdev->invalid_peer_head_msdu,
  684. pdev->invalid_peer_tail_msdu);
  685. pdev->invalid_peer_head_msdu = NULL;
  686. pdev->invalid_peer_tail_msdu = NULL;
  687. return 0;
  688. }
  689. }
  690. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  691. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  692. QDF_MAC_ADDR_SIZE) == 0) {
  693. goto out;
  694. }
  695. }
  696. }
  697. if (!vdev) {
  698. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  699. "VDEV not found");
  700. goto free;
  701. }
  702. out:
  703. msg.wh = wh;
  704. qdf_nbuf_pull_head(mpdu, RX_PKT_TLVS_LEN);
  705. msg.nbuf = mpdu;
  706. msg.vdev_id = vdev->vdev_id;
  707. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer)
  708. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(pdev->ctrl_pdev,
  709. &msg);
  710. free:
  711. /* Drop and free packet */
  712. curr_nbuf = mpdu;
  713. while (curr_nbuf) {
  714. next_nbuf = qdf_nbuf_next(curr_nbuf);
  715. qdf_nbuf_free(curr_nbuf);
  716. curr_nbuf = next_nbuf;
  717. }
  718. return 0;
  719. }
  720. /**
  721. * dp_rx_process_invalid_peer_wrapper(): Function to wrap invalid peer handler
  722. * @soc: DP SOC handle
  723. * @mpdu: mpdu for which peer is invalid
  724. * @mpdu_done: if an mpdu is completed
  725. *
  726. * return: integer type
  727. */
  728. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  729. qdf_nbuf_t mpdu, bool mpdu_done)
  730. {
  731. /* Only trigger the process when mpdu is completed */
  732. if (mpdu_done)
  733. dp_rx_process_invalid_peer(soc, mpdu);
  734. }
  735. #else
  736. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu)
  737. {
  738. qdf_nbuf_t curr_nbuf, next_nbuf;
  739. struct dp_pdev *pdev;
  740. uint8_t i;
  741. struct dp_vdev *vdev = NULL;
  742. struct ieee80211_frame *wh;
  743. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  744. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(rx_tlv_hdr);
  745. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  746. if (!DP_FRAME_IS_DATA(wh)) {
  747. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  748. "only for data frames");
  749. goto free;
  750. }
  751. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  752. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  753. "Invalid nbuf length");
  754. goto free;
  755. }
  756. for (i = 0; i < MAX_PDEV_CNT; i++) {
  757. pdev = soc->pdev_list[i];
  758. if (!pdev) {
  759. QDF_TRACE(QDF_MODULE_ID_DP,
  760. QDF_TRACE_LEVEL_ERROR,
  761. "PDEV not found");
  762. continue;
  763. }
  764. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  765. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  766. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  767. QDF_MAC_ADDR_SIZE) == 0) {
  768. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  769. goto out;
  770. }
  771. }
  772. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  773. }
  774. if (!vdev) {
  775. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  776. "VDEV not found");
  777. goto free;
  778. }
  779. out:
  780. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  781. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  782. free:
  783. /* reset the head and tail pointers */
  784. for (i = 0; i < MAX_PDEV_CNT; i++) {
  785. pdev = soc->pdev_list[i];
  786. if (!pdev) {
  787. QDF_TRACE(QDF_MODULE_ID_DP,
  788. QDF_TRACE_LEVEL_ERROR,
  789. "PDEV not found");
  790. continue;
  791. }
  792. pdev->invalid_peer_head_msdu = NULL;
  793. pdev->invalid_peer_tail_msdu = NULL;
  794. }
  795. /* Drop and free packet */
  796. curr_nbuf = mpdu;
  797. while (curr_nbuf) {
  798. next_nbuf = qdf_nbuf_next(curr_nbuf);
  799. qdf_nbuf_free(curr_nbuf);
  800. curr_nbuf = next_nbuf;
  801. }
  802. return 0;
  803. }
  804. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  805. qdf_nbuf_t mpdu, bool mpdu_done)
  806. {
  807. /* Process the nbuf */
  808. dp_rx_process_invalid_peer(soc, mpdu);
  809. }
  810. #endif
  811. #ifdef RECEIVE_OFFLOAD
  812. /**
  813. * dp_rx_print_offload_info() - Print offload info from RX TLV
  814. * @rx_tlv: RX TLV for which offload information is to be printed
  815. *
  816. * Return: None
  817. */
  818. static void dp_rx_print_offload_info(uint8_t *rx_tlv)
  819. {
  820. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  821. dp_verbose_debug("lro_eligible 0x%x", HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv));
  822. dp_verbose_debug("pure_ack 0x%x", HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv));
  823. dp_verbose_debug("chksum 0x%x", HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv));
  824. dp_verbose_debug("TCP seq num 0x%x", HAL_RX_TLV_GET_TCP_SEQ(rx_tlv));
  825. dp_verbose_debug("TCP ack num 0x%x", HAL_RX_TLV_GET_TCP_ACK(rx_tlv));
  826. dp_verbose_debug("TCP window 0x%x", HAL_RX_TLV_GET_TCP_WIN(rx_tlv));
  827. dp_verbose_debug("TCP protocol 0x%x", HAL_RX_TLV_GET_TCP_PROTO(rx_tlv));
  828. dp_verbose_debug("TCP offset 0x%x", HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv));
  829. dp_verbose_debug("toeplitz 0x%x", HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv));
  830. dp_verbose_debug("---------------------------------------------------------");
  831. }
  832. /**
  833. * dp_rx_fill_gro_info() - Fill GRO info from RX TLV into skb->cb
  834. * @soc: DP SOC handle
  835. * @rx_tlv: RX TLV received for the msdu
  836. * @msdu: msdu for which GRO info needs to be filled
  837. *
  838. * Return: None
  839. */
  840. static
  841. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  842. qdf_nbuf_t msdu)
  843. {
  844. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  845. return;
  846. /* Filling up RX offload info only for TCP packets */
  847. if (!HAL_RX_TLV_GET_TCP_PROTO(rx_tlv))
  848. return;
  849. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) =
  850. HAL_RX_TLV_GET_LRO_ELIGIBLE(rx_tlv);
  851. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) =
  852. HAL_RX_TLV_GET_TCP_PURE_ACK(rx_tlv);
  853. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  854. HAL_RX_TLV_GET_TCP_CHKSUM(rx_tlv);
  855. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) =
  856. HAL_RX_TLV_GET_TCP_SEQ(rx_tlv);
  857. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) =
  858. HAL_RX_TLV_GET_TCP_ACK(rx_tlv);
  859. QDF_NBUF_CB_RX_TCP_WIN(msdu) =
  860. HAL_RX_TLV_GET_TCP_WIN(rx_tlv);
  861. QDF_NBUF_CB_RX_TCP_PROTO(msdu) =
  862. HAL_RX_TLV_GET_TCP_PROTO(rx_tlv);
  863. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) =
  864. HAL_RX_TLV_GET_IPV6(rx_tlv);
  865. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) =
  866. HAL_RX_TLV_GET_TCP_OFFSET(rx_tlv);
  867. QDF_NBUF_CB_RX_FLOW_ID(msdu) =
  868. HAL_RX_TLV_GET_FLOW_ID_TOEPLITZ(rx_tlv);
  869. dp_rx_print_offload_info(rx_tlv);
  870. }
  871. #else
  872. static void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  873. qdf_nbuf_t msdu)
  874. {
  875. }
  876. #endif /* RECEIVE_OFFLOAD */
  877. /**
  878. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  879. *
  880. * @nbuf: pointer to msdu.
  881. * @mpdu_len: mpdu length
  882. *
  883. * Return: returns true if nbuf is last msdu of mpdu else retuns false.
  884. */
  885. static inline bool dp_rx_adjust_nbuf_len(qdf_nbuf_t nbuf, uint16_t *mpdu_len)
  886. {
  887. bool last_nbuf;
  888. if (*mpdu_len > (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN)) {
  889. qdf_nbuf_set_pktlen(nbuf, RX_BUFFER_SIZE);
  890. last_nbuf = false;
  891. } else {
  892. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + RX_PKT_TLVS_LEN));
  893. last_nbuf = true;
  894. }
  895. *mpdu_len -= (RX_BUFFER_SIZE - RX_PKT_TLVS_LEN);
  896. return last_nbuf;
  897. }
  898. /**
  899. * dp_rx_sg_create() - create a frag_list for MSDUs which are spread across
  900. * multiple nbufs.
  901. * @nbuf: pointer to the first msdu of an amsdu.
  902. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  903. *
  904. *
  905. * This function implements the creation of RX frag_list for cases
  906. * where an MSDU is spread across multiple nbufs.
  907. *
  908. * Return: returns the head nbuf which contains complete frag_list.
  909. */
  910. qdf_nbuf_t dp_rx_sg_create(qdf_nbuf_t nbuf, uint8_t *rx_tlv_hdr)
  911. {
  912. qdf_nbuf_t parent, next, frag_list;
  913. uint16_t frag_list_len = 0;
  914. uint16_t mpdu_len;
  915. bool last_nbuf;
  916. mpdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  917. /*
  918. * this is a case where the complete msdu fits in one single nbuf.
  919. * in this case HW sets both start and end bit and we only need to
  920. * reset these bits for RAW mode simulator to decap the pkt
  921. */
  922. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  923. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  924. qdf_nbuf_set_pktlen(nbuf, mpdu_len + RX_PKT_TLVS_LEN);
  925. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  926. return nbuf;
  927. }
  928. /*
  929. * This is a case where we have multiple msdus (A-MSDU) spread across
  930. * multiple nbufs. here we create a fraglist out of these nbufs.
  931. *
  932. * the moment we encounter a nbuf with continuation bit set we
  933. * know for sure we have an MSDU which is spread across multiple
  934. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  935. */
  936. parent = nbuf;
  937. frag_list = nbuf->next;
  938. nbuf = nbuf->next;
  939. /*
  940. * set the start bit in the first nbuf we encounter with continuation
  941. * bit set. This has the proper mpdu length set as it is the first
  942. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  943. * nbufs will form the frag_list of the parent nbuf.
  944. */
  945. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  946. last_nbuf = dp_rx_adjust_nbuf_len(parent, &mpdu_len);
  947. /*
  948. * this is where we set the length of the fragments which are
  949. * associated to the parent nbuf. We iterate through the frag_list
  950. * till we hit the last_nbuf of the list.
  951. */
  952. do {
  953. last_nbuf = dp_rx_adjust_nbuf_len(nbuf, &mpdu_len);
  954. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  955. frag_list_len += qdf_nbuf_len(nbuf);
  956. if (last_nbuf) {
  957. next = nbuf->next;
  958. nbuf->next = NULL;
  959. break;
  960. }
  961. nbuf = nbuf->next;
  962. } while (!last_nbuf);
  963. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  964. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  965. parent->next = next;
  966. qdf_nbuf_pull_head(parent, RX_PKT_TLVS_LEN);
  967. return parent;
  968. }
  969. /**
  970. * dp_rx_compute_delay() - Compute and fill in all timestamps
  971. * to pass in correct fields
  972. *
  973. * @vdev: pdev handle
  974. * @tx_desc: tx descriptor
  975. * @tid: tid value
  976. * Return: none
  977. */
  978. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  979. {
  980. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  981. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  982. uint8_t tid = qdf_nbuf_get_priority(nbuf);
  983. uint32_t interframe_delay =
  984. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  985. dp_update_delay_stats(vdev->pdev, to_stack, tid,
  986. CDP_DELAY_STATS_REAP_STACK);
  987. /*
  988. * Update interframe delay stats calculated at deliver_data_ol point.
  989. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  990. * interframe delay will not be calculate correctly for 1st frame.
  991. * On the other side, this will help in avoiding extra per packet check
  992. * of vdev->prev_rx_deliver_tstamp.
  993. */
  994. dp_update_delay_stats(vdev->pdev, interframe_delay, tid,
  995. CDP_DELAY_STATS_RX_INTERFRAME);
  996. vdev->prev_rx_deliver_tstamp = current_ts;
  997. }
  998. /**
  999. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1000. * @pdev: dp pdev reference
  1001. * @buf_list: buffer list to be dropepd
  1002. *
  1003. * Return: int (number of bufs dropped)
  1004. */
  1005. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1006. qdf_nbuf_t buf_list)
  1007. {
  1008. struct cdp_tid_rx_stats *stats = NULL;
  1009. uint8_t tid = 0;
  1010. int num_dropped = 0;
  1011. qdf_nbuf_t buf, next_buf;
  1012. buf = buf_list;
  1013. while (buf) {
  1014. next_buf = qdf_nbuf_queue_next(buf);
  1015. tid = qdf_nbuf_get_priority(buf);
  1016. stats = &pdev->stats.tid_stats.tid_rx_stats[tid];
  1017. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1018. stats->delivered_to_stack--;
  1019. qdf_nbuf_free(buf);
  1020. buf = next_buf;
  1021. num_dropped++;
  1022. }
  1023. return num_dropped;
  1024. }
  1025. #ifdef PEER_CACHE_RX_PKTS
  1026. /**
  1027. * dp_rx_flush_rx_cached() - flush cached rx frames
  1028. * @peer: peer
  1029. * @drop: flag to drop frames or forward to net stack
  1030. *
  1031. * Return: None
  1032. */
  1033. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1034. {
  1035. struct dp_peer_cached_bufq *bufqi;
  1036. struct dp_rx_cached_buf *cache_buf = NULL;
  1037. ol_txrx_rx_fp data_rx = NULL;
  1038. int num_buff_elem;
  1039. QDF_STATUS status;
  1040. if (qdf_atomic_inc_return(&peer->flush_in_progress) > 1) {
  1041. qdf_atomic_dec(&peer->flush_in_progress);
  1042. return;
  1043. }
  1044. qdf_spin_lock_bh(&peer->peer_info_lock);
  1045. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1046. data_rx = peer->vdev->osif_rx;
  1047. else
  1048. drop = true;
  1049. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1050. bufqi = &peer->bufq_info;
  1051. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1052. if (qdf_list_empty(&bufqi->cached_bufq)) {
  1053. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1054. return;
  1055. }
  1056. qdf_list_remove_front(&bufqi->cached_bufq,
  1057. (qdf_list_node_t **)&cache_buf);
  1058. while (cache_buf) {
  1059. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1060. cache_buf->buf);
  1061. bufqi->entries -= num_buff_elem;
  1062. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1063. if (drop) {
  1064. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1065. cache_buf->buf);
  1066. } else {
  1067. /* Flush the cached frames to OSIF DEV */
  1068. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1069. if (status != QDF_STATUS_SUCCESS)
  1070. bufqi->dropped = dp_rx_drop_nbuf_list(
  1071. peer->vdev->pdev,
  1072. cache_buf->buf);
  1073. }
  1074. qdf_mem_free(cache_buf);
  1075. cache_buf = NULL;
  1076. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1077. qdf_list_remove_front(&bufqi->cached_bufq,
  1078. (qdf_list_node_t **)&cache_buf);
  1079. }
  1080. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1081. qdf_atomic_dec(&peer->flush_in_progress);
  1082. }
  1083. /**
  1084. * dp_rx_enqueue_rx() - cache rx frames
  1085. * @peer: peer
  1086. * @rx_buf_list: cache buffer list
  1087. *
  1088. * Return: None
  1089. */
  1090. static QDF_STATUS
  1091. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1092. {
  1093. struct dp_rx_cached_buf *cache_buf;
  1094. struct dp_peer_cached_bufq *bufqi = &peer->bufq_info;
  1095. int num_buff_elem;
  1096. QDF_TRACE_DEBUG_RL(QDF_MODULE_ID_TXRX, "bufq->curr %d bufq->drops %d",
  1097. bufqi->entries, bufqi->dropped);
  1098. if (!peer->valid) {
  1099. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1100. rx_buf_list);
  1101. return QDF_STATUS_E_INVAL;
  1102. }
  1103. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1104. if (bufqi->entries >= bufqi->thresh) {
  1105. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1106. rx_buf_list);
  1107. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1108. return QDF_STATUS_E_RESOURCES;
  1109. }
  1110. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1111. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1112. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1113. if (!cache_buf) {
  1114. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1115. "Failed to allocate buf to cache rx frames");
  1116. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1117. rx_buf_list);
  1118. return QDF_STATUS_E_NOMEM;
  1119. }
  1120. cache_buf->buf = rx_buf_list;
  1121. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1122. qdf_list_insert_back(&bufqi->cached_bufq,
  1123. &cache_buf->node);
  1124. bufqi->entries += num_buff_elem;
  1125. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1126. return QDF_STATUS_SUCCESS;
  1127. }
  1128. static inline
  1129. bool dp_rx_is_peer_cache_bufq_supported(void)
  1130. {
  1131. return true;
  1132. }
  1133. #else
  1134. static inline
  1135. bool dp_rx_is_peer_cache_bufq_supported(void)
  1136. {
  1137. return false;
  1138. }
  1139. static inline QDF_STATUS
  1140. dp_rx_enqueue_rx(struct dp_peer *peer, qdf_nbuf_t rx_buf_list)
  1141. {
  1142. return QDF_STATUS_SUCCESS;
  1143. }
  1144. #endif
  1145. static inline void dp_rx_deliver_to_stack(struct dp_vdev *vdev,
  1146. struct dp_peer *peer,
  1147. qdf_nbuf_t nbuf_head,
  1148. qdf_nbuf_t nbuf_tail)
  1149. {
  1150. /*
  1151. * highly unlikely to have a vdev without a registered rx
  1152. * callback function. if so let us free the nbuf_list.
  1153. */
  1154. if (qdf_unlikely(!vdev->osif_rx)) {
  1155. if (dp_rx_is_peer_cache_bufq_supported())
  1156. dp_rx_enqueue_rx(peer, nbuf_head);
  1157. else
  1158. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1159. return;
  1160. }
  1161. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  1162. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  1163. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  1164. &nbuf_tail, (struct cdp_peer *) peer);
  1165. }
  1166. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1167. }
  1168. /**
  1169. * dp_rx_cksum_offload() - set the nbuf checksum as defined by hardware.
  1170. * @nbuf: pointer to the first msdu of an amsdu.
  1171. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1172. *
  1173. * The ipsumed field of the skb is set based on whether HW validated the
  1174. * IP/TCP/UDP checksum.
  1175. *
  1176. * Return: void
  1177. */
  1178. static inline void dp_rx_cksum_offload(struct dp_pdev *pdev,
  1179. qdf_nbuf_t nbuf,
  1180. uint8_t *rx_tlv_hdr)
  1181. {
  1182. qdf_nbuf_rx_cksum_t cksum = {0};
  1183. bool ip_csum_err = hal_rx_attn_ip_cksum_fail_get(rx_tlv_hdr);
  1184. bool tcp_udp_csum_er = hal_rx_attn_tcp_udp_cksum_fail_get(rx_tlv_hdr);
  1185. if (qdf_likely(!ip_csum_err && !tcp_udp_csum_er)) {
  1186. cksum.l4_result = QDF_NBUF_RX_CKSUM_TCP_UDP_UNNECESSARY;
  1187. qdf_nbuf_set_rx_cksum(nbuf, &cksum);
  1188. } else {
  1189. DP_STATS_INCC(pdev, err.ip_csum_err, 1, ip_csum_err);
  1190. DP_STATS_INCC(pdev, err.tcp_udp_csum_err, 1, tcp_udp_csum_er);
  1191. }
  1192. }
  1193. /**
  1194. * dp_rx_msdu_stats_update() - update per msdu stats.
  1195. * @soc: core txrx main context
  1196. * @nbuf: pointer to the first msdu of an amsdu.
  1197. * @rx_tlv_hdr: pointer to the start of RX TLV headers.
  1198. * @peer: pointer to the peer object.
  1199. * @ring_id: reo dest ring number on which pkt is reaped.
  1200. *
  1201. * update all the per msdu stats for that nbuf.
  1202. * Return: void
  1203. */
  1204. static void dp_rx_msdu_stats_update(struct dp_soc *soc,
  1205. qdf_nbuf_t nbuf,
  1206. uint8_t *rx_tlv_hdr,
  1207. struct dp_peer *peer,
  1208. uint8_t ring_id)
  1209. {
  1210. bool is_ampdu, is_not_amsdu;
  1211. uint16_t peer_id;
  1212. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  1213. struct dp_vdev *vdev = peer->vdev;
  1214. qdf_ether_header_t *eh;
  1215. uint16_t msdu_len = qdf_nbuf_len(nbuf);
  1216. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1217. hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr));
  1218. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  1219. qdf_nbuf_is_rx_chfrag_end(nbuf);
  1220. DP_STATS_INC_PKT(peer, rx.rcvd_reo[ring_id], 1, msdu_len);
  1221. DP_STATS_INCC(peer, rx.non_amsdu_cnt, 1, is_not_amsdu);
  1222. DP_STATS_INCC(peer, rx.amsdu_cnt, 1, !is_not_amsdu);
  1223. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr) &&
  1224. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  1225. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  1226. DP_STATS_INC_PKT(peer, rx.multicast, 1, msdu_len);
  1227. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  1228. DP_STATS_INC_PKT(peer, rx.bcast, 1, msdu_len);
  1229. }
  1230. }
  1231. /*
  1232. * currently we can return from here as we have similar stats
  1233. * updated at per ppdu level instead of msdu level
  1234. */
  1235. if (!soc->process_rx_status)
  1236. return;
  1237. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(rx_tlv_hdr);
  1238. DP_STATS_INCC(peer, rx.ampdu_cnt, 1, is_ampdu);
  1239. DP_STATS_INCC(peer, rx.non_ampdu_cnt, 1, !(is_ampdu));
  1240. sgi = hal_rx_msdu_start_sgi_get(rx_tlv_hdr);
  1241. mcs = hal_rx_msdu_start_rate_mcs_get(rx_tlv_hdr);
  1242. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_tlv_hdr);
  1243. bw = hal_rx_msdu_start_bw_get(rx_tlv_hdr);
  1244. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  1245. rx_tlv_hdr);
  1246. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1247. pkt_type = hal_rx_msdu_start_get_pkt_type(rx_tlv_hdr);
  1248. DP_STATS_INC(peer, rx.bw[bw], 1);
  1249. DP_STATS_INC(peer, rx.nss[nss], 1);
  1250. DP_STATS_INC(peer, rx.sgi_count[sgi], 1);
  1251. DP_STATS_INCC(peer, rx.err.mic_err, 1,
  1252. hal_rx_mpdu_end_mic_err_get(rx_tlv_hdr));
  1253. DP_STATS_INCC(peer, rx.err.decrypt_err, 1,
  1254. hal_rx_mpdu_end_decrypt_err_get(rx_tlv_hdr));
  1255. DP_STATS_INC(peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1);
  1256. DP_STATS_INC(peer, rx.reception_type[reception_type], 1);
  1257. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1258. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1259. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1260. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_A)));
  1261. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1262. ((mcs >= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1263. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1264. ((mcs <= MAX_MCS_11B) && (pkt_type == DOT11_B)));
  1265. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1266. ((mcs >= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1267. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1268. ((mcs <= MAX_MCS_11A) && (pkt_type == DOT11_N)));
  1269. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1270. ((mcs >= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1271. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1272. ((mcs <= MAX_MCS_11AC) && (pkt_type == DOT11_AC)));
  1273. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[MAX_MCS - 1], 1,
  1274. ((mcs >= MAX_MCS) && (pkt_type == DOT11_AX)));
  1275. DP_STATS_INCC(peer, rx.pkt_type[pkt_type].mcs_count[mcs], 1,
  1276. ((mcs < MAX_MCS) && (pkt_type == DOT11_AX)));
  1277. if ((soc->process_rx_status) &&
  1278. hal_rx_attn_first_mpdu_get(rx_tlv_hdr)) {
  1279. #if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
  1280. if (!vdev->pdev)
  1281. return;
  1282. dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
  1283. &peer->stats, peer_id,
  1284. UPDATE_PEER_STATS,
  1285. vdev->pdev->pdev_id);
  1286. #endif
  1287. }
  1288. }
  1289. static inline bool is_sa_da_idx_valid(struct dp_soc *soc,
  1290. void *rx_tlv_hdr)
  1291. {
  1292. if ((hal_rx_msdu_end_sa_is_valid_get(rx_tlv_hdr) &&
  1293. (hal_rx_msdu_end_sa_idx_get(rx_tlv_hdr) >
  1294. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))) ||
  1295. (hal_rx_msdu_end_da_is_valid_get(rx_tlv_hdr) &&
  1296. (hal_rx_msdu_end_da_idx_get(soc->hal_soc,
  1297. rx_tlv_hdr) >
  1298. wlan_cfg_get_max_ast_idx(soc->wlan_cfg_ctx))))
  1299. return false;
  1300. return true;
  1301. }
  1302. #ifdef WDS_VENDOR_EXTENSION
  1303. int dp_wds_rx_policy_check(
  1304. uint8_t *rx_tlv_hdr,
  1305. struct dp_vdev *vdev,
  1306. struct dp_peer *peer,
  1307. int rx_mcast
  1308. )
  1309. {
  1310. struct dp_peer *bss_peer;
  1311. int fr_ds, to_ds, rx_3addr, rx_4addr;
  1312. int rx_policy_ucast, rx_policy_mcast;
  1313. if (vdev->opmode == wlan_op_mode_ap) {
  1314. TAILQ_FOREACH(bss_peer, &vdev->peer_list, peer_list_elem) {
  1315. if (bss_peer->bss_peer) {
  1316. /* if wds policy check is not enabled on this vdev, accept all frames */
  1317. if (!bss_peer->wds_ecm.wds_rx_filter) {
  1318. return 1;
  1319. }
  1320. break;
  1321. }
  1322. }
  1323. rx_policy_ucast = bss_peer->wds_ecm.wds_rx_ucast_4addr;
  1324. rx_policy_mcast = bss_peer->wds_ecm.wds_rx_mcast_4addr;
  1325. } else { /* sta mode */
  1326. if (!peer->wds_ecm.wds_rx_filter) {
  1327. return 1;
  1328. }
  1329. rx_policy_ucast = peer->wds_ecm.wds_rx_ucast_4addr;
  1330. rx_policy_mcast = peer->wds_ecm.wds_rx_mcast_4addr;
  1331. }
  1332. /* ------------------------------------------------
  1333. * self
  1334. * peer- rx rx-
  1335. * wds ucast mcast dir policy accept note
  1336. * ------------------------------------------------
  1337. * 1 1 0 11 x1 1 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint met; so, accept
  1338. * 1 1 0 01 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1339. * 1 1 0 10 x1 0 AP configured to accept ds-to-ds Rx ucast from wds peers, constraint not met; so, drop
  1340. * 1 1 0 00 x1 0 bad frame, won't see it
  1341. * 1 0 1 11 1x 1 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint met; so, accept
  1342. * 1 0 1 01 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1343. * 1 0 1 10 1x 0 AP configured to accept ds-to-ds Rx mcast from wds peers, constraint not met; so, drop
  1344. * 1 0 1 00 1x 0 bad frame, won't see it
  1345. * 1 1 0 11 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1346. * 1 1 0 01 x0 0 AP configured to accept from-ds Rx ucast from wds peers, constraint not met; so, drop
  1347. * 1 1 0 10 x0 1 AP configured to accept from-ds Rx ucast from wds peers, constraint met; so, accept
  1348. * 1 1 0 00 x0 0 bad frame, won't see it
  1349. * 1 0 1 11 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1350. * 1 0 1 01 0x 0 AP configured to accept from-ds Rx mcast from wds peers, constraint not met; so, drop
  1351. * 1 0 1 10 0x 1 AP configured to accept from-ds Rx mcast from wds peers, constraint met; so, accept
  1352. * 1 0 1 00 0x 0 bad frame, won't see it
  1353. *
  1354. * 0 x x 11 xx 0 we only accept td-ds Rx frames from non-wds peers in mode.
  1355. * 0 x x 01 xx 1
  1356. * 0 x x 10 xx 0
  1357. * 0 x x 00 xx 0 bad frame, won't see it
  1358. * ------------------------------------------------
  1359. */
  1360. fr_ds = hal_rx_mpdu_get_fr_ds(rx_tlv_hdr);
  1361. to_ds = hal_rx_mpdu_get_to_ds(rx_tlv_hdr);
  1362. rx_3addr = fr_ds ^ to_ds;
  1363. rx_4addr = fr_ds & to_ds;
  1364. if (vdev->opmode == wlan_op_mode_ap) {
  1365. if ((!peer->wds_enabled && rx_3addr && to_ds) ||
  1366. (peer->wds_enabled && !rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1367. (peer->wds_enabled && rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1368. return 1;
  1369. }
  1370. } else { /* sta mode */
  1371. if ((!rx_mcast && (rx_4addr == rx_policy_ucast)) ||
  1372. (rx_mcast && (rx_4addr == rx_policy_mcast))) {
  1373. return 1;
  1374. }
  1375. }
  1376. return 0;
  1377. }
  1378. #else
  1379. int dp_wds_rx_policy_check(
  1380. uint8_t *rx_tlv_hdr,
  1381. struct dp_vdev *vdev,
  1382. struct dp_peer *peer,
  1383. int rx_mcast
  1384. )
  1385. {
  1386. return 1;
  1387. }
  1388. #endif
  1389. #ifdef RX_DESC_DEBUG_CHECK
  1390. /**
  1391. * dp_rx_desc_nbuf_sanity_check - Add sanity check to catch REO rx_desc paddr
  1392. * corruption
  1393. *
  1394. * @ring_desc: REO ring descriptor
  1395. * @rx_desc: Rx descriptor
  1396. *
  1397. * Return: NONE
  1398. */
  1399. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1400. struct dp_rx_desc *rx_desc)
  1401. {
  1402. struct hal_buf_info hbi;
  1403. hal_rx_reo_buf_paddr_get(ring_desc, &hbi);
  1404. /* Sanity check for possible buffer paddr corruption */
  1405. qdf_assert_always((&hbi)->paddr ==
  1406. qdf_nbuf_get_frag_paddr(rx_desc->nbuf, 0));
  1407. }
  1408. #else
  1409. static inline void dp_rx_desc_nbuf_sanity_check(void *ring_desc,
  1410. struct dp_rx_desc *rx_desc)
  1411. {
  1412. }
  1413. #endif
  1414. /**
  1415. * dp_rx_process() - Brain of the Rx processing functionality
  1416. * Called from the bottom half (tasklet/NET_RX_SOFTIRQ)
  1417. * @soc: core txrx main context
  1418. * @hal_ring: opaque pointer to the HAL Rx Ring, which will be serviced
  1419. * @reo_ring_num: ring number (0, 1, 2 or 3) of the reo ring.
  1420. * @quota: No. of units (packets) that can be serviced in one shot.
  1421. *
  1422. * This function implements the core of Rx functionality. This is
  1423. * expected to handle only non-error frames.
  1424. *
  1425. * Return: uint32_t: No. of elements processed
  1426. */
  1427. uint32_t dp_rx_process(struct dp_intr *int_ctx, void *hal_ring,
  1428. uint8_t reo_ring_num, uint32_t quota)
  1429. {
  1430. void *hal_soc;
  1431. void *ring_desc;
  1432. struct dp_rx_desc *rx_desc = NULL;
  1433. qdf_nbuf_t nbuf, next;
  1434. union dp_rx_desc_list_elem_t *head[MAX_PDEV_CNT] = { NULL };
  1435. union dp_rx_desc_list_elem_t *tail[MAX_PDEV_CNT] = { NULL };
  1436. uint32_t rx_bufs_used = 0, rx_buf_cookie;
  1437. uint32_t l2_hdr_offset = 0;
  1438. uint16_t msdu_len = 0;
  1439. uint16_t peer_id;
  1440. struct dp_peer *peer = NULL;
  1441. struct dp_vdev *vdev = NULL;
  1442. uint32_t pkt_len = 0;
  1443. struct hal_rx_mpdu_desc_info mpdu_desc_info = { 0 };
  1444. struct hal_rx_msdu_desc_info msdu_desc_info = { 0 };
  1445. enum hal_reo_error_status error;
  1446. uint32_t peer_mdata;
  1447. uint8_t *rx_tlv_hdr;
  1448. uint32_t rx_bufs_reaped[MAX_PDEV_CNT] = { 0 };
  1449. uint8_t mac_id = 0;
  1450. struct dp_pdev *pdev;
  1451. struct dp_pdev *rx_pdev;
  1452. struct dp_srng *dp_rxdma_srng;
  1453. struct rx_desc_pool *rx_desc_pool;
  1454. struct dp_soc *soc = int_ctx->soc;
  1455. uint8_t ring_id = 0;
  1456. uint8_t core_id = 0;
  1457. qdf_nbuf_t nbuf_head = NULL;
  1458. qdf_nbuf_t nbuf_tail = NULL;
  1459. qdf_nbuf_t deliver_list_head = NULL;
  1460. qdf_nbuf_t deliver_list_tail = NULL;
  1461. int32_t tid = 0;
  1462. uint32_t dst_num_valid = 0;
  1463. struct cdp_tid_rx_stats *tid_stats;
  1464. DP_HIST_INIT();
  1465. /* Debug -- Remove later */
  1466. qdf_assert(soc && hal_ring);
  1467. hal_soc = soc->hal_soc;
  1468. /* Debug -- Remove later */
  1469. qdf_assert(hal_soc);
  1470. hif_pm_runtime_mark_last_busy(soc->osdev->dev);
  1471. if (qdf_unlikely(hal_srng_access_start(hal_soc, hal_ring))) {
  1472. /*
  1473. * Need API to convert from hal_ring pointer to
  1474. * Ring Type / Ring Id combo
  1475. */
  1476. DP_STATS_INC(soc, rx.err.hal_ring_access_fail, 1);
  1477. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1478. FL("HAL RING Access Failed -- %pK"), hal_ring);
  1479. hal_srng_access_end(hal_soc, hal_ring);
  1480. goto done;
  1481. }
  1482. /*
  1483. * start reaping the buffers from reo ring and queue
  1484. * them in per vdev queue.
  1485. * Process the received pkts in a different per vdev loop.
  1486. */
  1487. while (qdf_likely(quota)) {
  1488. ring_desc = hal_srng_dst_get_next(hal_soc, hal_ring);
  1489. /*
  1490. * in case HW has updated hp after we cached the hp
  1491. * ring_desc can be NULL even there are entries
  1492. * available in the ring. Update the cached_hp
  1493. * and reap the buffers available to read complete
  1494. * mpdu in one reap
  1495. *
  1496. * This is needed for RAW mode we have to read all
  1497. * msdus corresponding to amsdu in one reap to create
  1498. * SG list properly but due to mismatch in cached_hp
  1499. * and actual hp sometimes we are unable to read
  1500. * complete mpdu in one reap.
  1501. */
  1502. if (qdf_unlikely(!ring_desc)) {
  1503. dst_num_valid = hal_srng_dst_num_valid(hal_soc,
  1504. hal_ring,
  1505. true);
  1506. if (dst_num_valid) {
  1507. DP_STATS_INC(soc, rx.hp_oos, 1);
  1508. hal_srng_access_end_unlocked(hal_soc,
  1509. hal_ring);
  1510. continue;
  1511. } else {
  1512. break;
  1513. }
  1514. }
  1515. error = HAL_RX_ERROR_STATUS_GET(ring_desc);
  1516. ring_id = hal_srng_ring_id_get(hal_ring);
  1517. if (qdf_unlikely(error == HAL_REO_ERROR_DETECTED)) {
  1518. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1519. FL("HAL RING 0x%pK:error %d"), hal_ring, error);
  1520. DP_STATS_INC(soc, rx.err.hal_reo_error[ring_id], 1);
  1521. /* Don't know how to deal with this -- assert */
  1522. qdf_assert(0);
  1523. }
  1524. rx_buf_cookie = HAL_RX_REO_BUF_COOKIE_GET(ring_desc);
  1525. rx_desc = dp_rx_cookie_2_va_rxdma_buf(soc, rx_buf_cookie);
  1526. qdf_assert(rx_desc);
  1527. dp_rx_desc_nbuf_sanity_check(ring_desc, rx_desc);
  1528. /*
  1529. * this is a unlikely scenario where the host is reaping
  1530. * a descriptor which it already reaped just a while ago
  1531. * but is yet to replenish it back to HW.
  1532. * In this case host will dump the last 128 descriptors
  1533. * including the software descriptor rx_desc and assert.
  1534. */
  1535. if (qdf_unlikely(!rx_desc->in_use)) {
  1536. DP_STATS_INC(soc, rx.err.hal_reo_dest_dup, 1);
  1537. dp_err("Reaping rx_desc not in use!");
  1538. dp_rx_dump_info_and_assert(soc, hal_ring,
  1539. ring_desc, rx_desc);
  1540. }
  1541. if (qdf_unlikely(!dp_rx_desc_check_magic(rx_desc))) {
  1542. dp_err("Invalid rx_desc cookie=%d", rx_buf_cookie);
  1543. DP_STATS_INC(soc, rx.err.rx_desc_invalid_magic, 1);
  1544. dp_rx_dump_info_and_assert(soc, hal_ring,
  1545. ring_desc, rx_desc);
  1546. }
  1547. rx_bufs_reaped[rx_desc->pool_id]++;
  1548. /* TODO */
  1549. /*
  1550. * Need a separate API for unmapping based on
  1551. * phyiscal address
  1552. */
  1553. qdf_nbuf_unmap_single(soc->osdev, rx_desc->nbuf,
  1554. QDF_DMA_BIDIRECTIONAL);
  1555. rx_desc->unmapped = 1;
  1556. core_id = smp_processor_id();
  1557. DP_STATS_INC(soc, rx.ring_packets[core_id][ring_id], 1);
  1558. /* Get MPDU DESC info */
  1559. hal_rx_mpdu_desc_info_get(ring_desc, &mpdu_desc_info);
  1560. hal_rx_mpdu_peer_meta_data_set(qdf_nbuf_data(rx_desc->nbuf),
  1561. mpdu_desc_info.peer_meta_data);
  1562. /* Get MSDU DESC info */
  1563. hal_rx_msdu_desc_info_get(ring_desc, &msdu_desc_info);
  1564. /*
  1565. * save msdu flags first, last and continuation msdu in
  1566. * nbuf->cb
  1567. */
  1568. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_FIRST_MSDU_IN_MPDU)
  1569. qdf_nbuf_set_rx_chfrag_start(rx_desc->nbuf, 1);
  1570. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_MSDU_CONTINUATION)
  1571. qdf_nbuf_set_rx_chfrag_cont(rx_desc->nbuf, 1);
  1572. if (msdu_desc_info.msdu_flags & HAL_MSDU_F_LAST_MSDU_IN_MPDU)
  1573. qdf_nbuf_set_rx_chfrag_end(rx_desc->nbuf, 1);
  1574. QDF_NBUF_CB_RX_CTX_ID(rx_desc->nbuf) = reo_ring_num;
  1575. DP_RX_LIST_APPEND(nbuf_head, nbuf_tail, rx_desc->nbuf);
  1576. /*
  1577. * if continuation bit is set then we have MSDU spread
  1578. * across multiple buffers, let us not decrement quota
  1579. * till we reap all buffers of that MSDU.
  1580. */
  1581. if (qdf_likely(!qdf_nbuf_is_rx_chfrag_cont(rx_desc->nbuf)))
  1582. quota -= 1;
  1583. dp_rx_add_to_free_desc_list(&head[rx_desc->pool_id],
  1584. &tail[rx_desc->pool_id],
  1585. rx_desc);
  1586. }
  1587. done:
  1588. hal_srng_access_end(hal_soc, hal_ring);
  1589. if (nbuf_tail)
  1590. QDF_NBUF_CB_RX_FLUSH_IND(nbuf_tail) = 1;
  1591. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  1592. /*
  1593. * continue with next mac_id if no pkts were reaped
  1594. * from that pool
  1595. */
  1596. if (!rx_bufs_reaped[mac_id])
  1597. continue;
  1598. pdev = soc->pdev_list[mac_id];
  1599. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  1600. rx_desc_pool = &soc->rx_desc_buf[mac_id];
  1601. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  1602. rx_desc_pool, rx_bufs_reaped[mac_id],
  1603. &head[mac_id], &tail[mac_id]);
  1604. }
  1605. /* Peer can be NULL is case of LFR */
  1606. if (qdf_likely(peer))
  1607. vdev = NULL;
  1608. /*
  1609. * BIG loop where each nbuf is dequeued from global queue,
  1610. * processed and queued back on a per vdev basis. These nbufs
  1611. * are sent to stack as and when we run out of nbufs
  1612. * or a new nbuf dequeued from global queue has a different
  1613. * vdev when compared to previous nbuf.
  1614. */
  1615. nbuf = nbuf_head;
  1616. while (nbuf) {
  1617. next = nbuf->next;
  1618. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1619. /* Get TID from first msdu per MPDU, save to skb->priority */
  1620. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1621. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc,
  1622. rx_tlv_hdr);
  1623. /*
  1624. * Check if DMA completed -- msdu_done is the last bit
  1625. * to be written
  1626. */
  1627. rx_pdev = soc->pdev_list[rx_desc->pool_id];
  1628. dp_rx_save_tid_ts(nbuf, tid, rx_pdev->delay_stats_flag);
  1629. tid_stats = &rx_pdev->stats.tid_stats.tid_rx_stats[tid];
  1630. if (qdf_unlikely(!hal_rx_attn_msdu_done_get(rx_tlv_hdr))) {
  1631. dp_err("MSDU DONE failure");
  1632. DP_STATS_INC(soc, rx.err.msdu_done_fail, 1);
  1633. hal_rx_dump_pkt_tlvs(hal_soc, rx_tlv_hdr,
  1634. QDF_TRACE_LEVEL_INFO);
  1635. tid_stats->fail_cnt[MSDU_DONE_FAILURE]++;
  1636. qdf_nbuf_free(nbuf);
  1637. qdf_assert(0);
  1638. nbuf = next;
  1639. continue;
  1640. }
  1641. tid_stats->msdu_cnt++;
  1642. if (qdf_unlikely(hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1643. tid_stats->mcast_msdu_cnt++;
  1644. if (qdf_nbuf_is_bcast_pkt(nbuf))
  1645. tid_stats->bcast_msdu_cnt++;
  1646. }
  1647. peer_mdata = hal_rx_mpdu_peer_meta_data_get(rx_tlv_hdr);
  1648. peer_id = DP_PEER_METADATA_PEER_ID_GET(peer_mdata);
  1649. peer = dp_peer_find_by_id(soc, peer_id);
  1650. if (peer) {
  1651. QDF_NBUF_CB_DP_TRACE_PRINT(nbuf) = false;
  1652. qdf_dp_trace_set_track(nbuf, QDF_RX);
  1653. QDF_NBUF_CB_RX_DP_TRACE(nbuf) = 1;
  1654. QDF_NBUF_CB_RX_PACKET_TRACK(nbuf) =
  1655. QDF_NBUF_RX_PKT_DATA_TRACK;
  1656. }
  1657. rx_bufs_used++;
  1658. if (deliver_list_head && peer && (vdev != peer->vdev)) {
  1659. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1660. deliver_list_tail);
  1661. deliver_list_head = NULL;
  1662. deliver_list_tail = NULL;
  1663. }
  1664. if (qdf_likely(peer)) {
  1665. vdev = peer->vdev;
  1666. } else {
  1667. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  1668. qdf_nbuf_len(nbuf));
  1669. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1670. qdf_nbuf_free(nbuf);
  1671. nbuf = next;
  1672. continue;
  1673. }
  1674. if (qdf_unlikely(!vdev)) {
  1675. tid_stats->fail_cnt[INVALID_PEER_VDEV]++;
  1676. qdf_nbuf_free(nbuf);
  1677. nbuf = next;
  1678. DP_STATS_INC(soc, rx.err.invalid_vdev, 1);
  1679. dp_peer_unref_del_find_by_id(peer);
  1680. continue;
  1681. }
  1682. DP_HIST_PACKET_COUNT_INC(vdev->pdev->pdev_id);
  1683. /*
  1684. * First IF condition:
  1685. * 802.11 Fragmented pkts are reinjected to REO
  1686. * HW block as SG pkts and for these pkts we only
  1687. * need to pull the RX TLVS header length.
  1688. * Second IF condition:
  1689. * The below condition happens when an MSDU is spread
  1690. * across multiple buffers. This can happen in two cases
  1691. * 1. The nbuf size is smaller then the received msdu.
  1692. * ex: we have set the nbuf size to 2048 during
  1693. * nbuf_alloc. but we received an msdu which is
  1694. * 2304 bytes in size then this msdu is spread
  1695. * across 2 nbufs.
  1696. *
  1697. * 2. AMSDUs when RAW mode is enabled.
  1698. * ex: 1st MSDU is in 1st nbuf and 2nd MSDU is spread
  1699. * across 1st nbuf and 2nd nbuf and last MSDU is
  1700. * spread across 2nd nbuf and 3rd nbuf.
  1701. *
  1702. * for these scenarios let us create a skb frag_list and
  1703. * append these buffers till the last MSDU of the AMSDU
  1704. * Third condition:
  1705. * This is the most likely case, we receive 802.3 pkts
  1706. * decapsulated by HW, here we need to set the pkt length.
  1707. */
  1708. if (qdf_unlikely(qdf_nbuf_get_ext_list(nbuf)))
  1709. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN);
  1710. else if (qdf_unlikely(vdev->rx_decap_type ==
  1711. htt_cmn_pkt_type_raw)) {
  1712. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1713. nbuf = dp_rx_sg_create(nbuf, rx_tlv_hdr);
  1714. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  1715. DP_STATS_INC_PKT(peer, rx.raw, 1,
  1716. msdu_len);
  1717. next = nbuf->next;
  1718. } else {
  1719. l2_hdr_offset =
  1720. hal_rx_msdu_end_l3_hdr_padding_get(rx_tlv_hdr);
  1721. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_tlv_hdr);
  1722. pkt_len = msdu_len + l2_hdr_offset + RX_PKT_TLVS_LEN;
  1723. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  1724. qdf_nbuf_pull_head(nbuf,
  1725. RX_PKT_TLVS_LEN +
  1726. l2_hdr_offset);
  1727. }
  1728. if (!dp_wds_rx_policy_check(rx_tlv_hdr, vdev, peer,
  1729. hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr))) {
  1730. QDF_TRACE(QDF_MODULE_ID_DP,
  1731. QDF_TRACE_LEVEL_ERROR,
  1732. FL("Policy Check Drop pkt"));
  1733. tid_stats->fail_cnt[POLICY_CHECK_DROP]++;
  1734. /* Drop & free packet */
  1735. qdf_nbuf_free(nbuf);
  1736. /* Statistics */
  1737. nbuf = next;
  1738. dp_peer_unref_del_find_by_id(peer);
  1739. continue;
  1740. }
  1741. if (qdf_unlikely(peer && peer->bss_peer)) {
  1742. QDF_TRACE(QDF_MODULE_ID_DP,
  1743. QDF_TRACE_LEVEL_ERROR,
  1744. FL("received pkt with same src MAC"));
  1745. tid_stats->fail_cnt[MEC_DROP]++;
  1746. DP_STATS_INC_PKT(peer, rx.mec_drop, 1, msdu_len);
  1747. /* Drop & free packet */
  1748. qdf_nbuf_free(nbuf);
  1749. /* Statistics */
  1750. nbuf = next;
  1751. dp_peer_unref_del_find_by_id(peer);
  1752. continue;
  1753. }
  1754. if (qdf_unlikely(peer && (peer->nawds_enabled == true) &&
  1755. (hal_rx_msdu_end_da_is_mcbc_get(rx_tlv_hdr)) &&
  1756. (hal_rx_get_mpdu_mac_ad4_valid(rx_tlv_hdr) == false))) {
  1757. tid_stats->fail_cnt[NAWDS_MCAST_DROP]++;
  1758. DP_STATS_INC(peer, rx.nawds_mcast_drop, 1);
  1759. qdf_nbuf_free(nbuf);
  1760. nbuf = next;
  1761. dp_peer_unref_del_find_by_id(peer);
  1762. continue;
  1763. }
  1764. dp_rx_cksum_offload(vdev->pdev, nbuf, rx_tlv_hdr);
  1765. dp_set_rx_queue(nbuf, ring_id);
  1766. /* Update the protocol tag in SKB based on CCE metadata */
  1767. dp_rx_update_protocol_tag(soc, vdev, nbuf, rx_tlv_hdr, true);
  1768. /*
  1769. * HW structures call this L3 header padding --
  1770. * even though this is actually the offset from
  1771. * the buffer beginning where the L2 header
  1772. * begins.
  1773. */
  1774. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1775. FL("rxhash: flow id toeplitz: 0x%x"),
  1776. hal_rx_msdu_start_toeplitz_get(rx_tlv_hdr));
  1777. dp_rx_msdu_stats_update(soc, nbuf, rx_tlv_hdr, peer, ring_id);
  1778. if (qdf_unlikely(vdev->mesh_vdev)) {
  1779. if (dp_rx_filter_mesh_packets(vdev, nbuf, rx_tlv_hdr)
  1780. == QDF_STATUS_SUCCESS) {
  1781. QDF_TRACE(QDF_MODULE_ID_DP,
  1782. QDF_TRACE_LEVEL_INFO_MED,
  1783. FL("mesh pkt filtered"));
  1784. tid_stats->fail_cnt[MESH_FILTER_DROP]++;
  1785. DP_STATS_INC(vdev->pdev, dropped.mesh_filter,
  1786. 1);
  1787. qdf_nbuf_free(nbuf);
  1788. nbuf = next;
  1789. dp_peer_unref_del_find_by_id(peer);
  1790. continue;
  1791. }
  1792. dp_rx_fill_mesh_stats(vdev, nbuf, rx_tlv_hdr, peer);
  1793. }
  1794. #ifdef QCA_WIFI_NAPIER_EMULATION_DBG /* Debug code, remove later */
  1795. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1796. "p_id %d msdu_len %d hdr_off %d",
  1797. peer_id, msdu_len, l2_hdr_offset);
  1798. print_hex_dump(KERN_ERR,
  1799. "\t Pkt Data:", DUMP_PREFIX_NONE, 32, 4,
  1800. qdf_nbuf_data(nbuf), 128, false);
  1801. #endif /* NAPIER_EMULATION */
  1802. if (qdf_likely(vdev->rx_decap_type ==
  1803. htt_cmn_pkt_type_ethernet) &&
  1804. qdf_likely(!vdev->mesh_vdev)) {
  1805. /* WDS Destination Address Learning */
  1806. dp_rx_da_learn(soc, rx_tlv_hdr, peer, nbuf);
  1807. /* Due to HW issue, sometimes we see that the sa_idx
  1808. * and da_idx are invalid with sa_valid and da_valid
  1809. * bits set
  1810. *
  1811. * in this case we also see that value of
  1812. * sa_sw_peer_id is set as 0
  1813. *
  1814. * Drop the packet if sa_idx and da_idx OOB or
  1815. * sa_sw_peerid is 0
  1816. */
  1817. if (!is_sa_da_idx_valid(soc, rx_tlv_hdr)) {
  1818. qdf_nbuf_free(nbuf);
  1819. nbuf = next;
  1820. DP_STATS_INC(soc, rx.err.invalid_sa_da_idx, 1);
  1821. continue;
  1822. }
  1823. /* WDS Source Port Learning */
  1824. if (vdev->wds_enabled)
  1825. dp_rx_wds_srcport_learn(soc, rx_tlv_hdr,
  1826. peer, nbuf);
  1827. /* Intrabss-fwd */
  1828. if (dp_rx_check_ap_bridge(vdev))
  1829. if (dp_rx_intrabss_fwd(soc,
  1830. peer,
  1831. rx_tlv_hdr,
  1832. nbuf)) {
  1833. nbuf = next;
  1834. dp_peer_unref_del_find_by_id(peer);
  1835. tid_stats->intrabss_cnt++;
  1836. continue; /* Get next desc */
  1837. }
  1838. }
  1839. dp_rx_fill_gro_info(soc, rx_tlv_hdr, nbuf);
  1840. qdf_nbuf_cb_update_peer_local_id(nbuf, peer->local_id);
  1841. DP_RX_LIST_APPEND(deliver_list_head,
  1842. deliver_list_tail,
  1843. nbuf);
  1844. DP_STATS_INC_PKT(peer, rx.to_stack, 1,
  1845. qdf_nbuf_len(nbuf));
  1846. tid_stats->delivered_to_stack++;
  1847. nbuf = next;
  1848. dp_peer_unref_del_find_by_id(peer);
  1849. }
  1850. /* Update histogram statistics by looping through pdev's */
  1851. DP_RX_HIST_STATS_PER_PDEV();
  1852. if (deliver_list_head)
  1853. dp_rx_deliver_to_stack(vdev, peer, deliver_list_head,
  1854. deliver_list_tail);
  1855. return rx_bufs_used; /* Assume no scale factor for now */
  1856. }
  1857. /**
  1858. * dp_rx_detach() - detach dp rx
  1859. * @pdev: core txrx pdev context
  1860. *
  1861. * This function will detach DP RX into main device context
  1862. * will free DP Rx resources.
  1863. *
  1864. * Return: void
  1865. */
  1866. void
  1867. dp_rx_pdev_detach(struct dp_pdev *pdev)
  1868. {
  1869. uint8_t pdev_id = pdev->pdev_id;
  1870. struct dp_soc *soc = pdev->soc;
  1871. struct rx_desc_pool *rx_desc_pool;
  1872. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  1873. if (rx_desc_pool->pool_size != 0) {
  1874. if (!dp_is_soc_reinit(soc))
  1875. dp_rx_desc_pool_free(soc, pdev_id, rx_desc_pool);
  1876. else
  1877. dp_rx_desc_nbuf_pool_free(soc, rx_desc_pool);
  1878. }
  1879. return;
  1880. }
  1881. static QDF_STATUS
  1882. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  1883. struct dp_srng *dp_rxdma_srng,
  1884. struct rx_desc_pool *rx_desc_pool,
  1885. uint32_t num_req_buffers,
  1886. union dp_rx_desc_list_elem_t **desc_list,
  1887. union dp_rx_desc_list_elem_t **tail)
  1888. {
  1889. struct dp_pdev *dp_pdev = dp_get_pdev_for_mac_id(dp_soc, mac_id);
  1890. void *rxdma_srng = dp_rxdma_srng->hal_srng;
  1891. union dp_rx_desc_list_elem_t *next;
  1892. void *rxdma_ring_entry;
  1893. qdf_dma_addr_t paddr;
  1894. void **rx_nbuf_arr;
  1895. uint32_t nr_descs;
  1896. uint32_t nr_nbuf;
  1897. qdf_nbuf_t nbuf;
  1898. QDF_STATUS ret;
  1899. int i;
  1900. if (qdf_unlikely(!rxdma_srng)) {
  1901. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1902. return QDF_STATUS_E_FAILURE;
  1903. }
  1904. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1905. "requested %u RX buffers for driver attach", num_req_buffers);
  1906. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  1907. num_req_buffers, desc_list, tail);
  1908. if (!nr_descs) {
  1909. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1910. "no free rx_descs in freelist");
  1911. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  1912. return QDF_STATUS_E_NOMEM;
  1913. }
  1914. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1915. "got %u RX descs for driver attach", nr_descs);
  1916. rx_nbuf_arr = qdf_mem_malloc(nr_descs * sizeof(*rx_nbuf_arr));
  1917. if (!rx_nbuf_arr) {
  1918. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1919. "failed to allocate nbuf array");
  1920. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  1921. return QDF_STATUS_E_NOMEM;
  1922. }
  1923. for (nr_nbuf = 0; nr_nbuf < nr_descs; nr_nbuf++) {
  1924. nbuf = qdf_nbuf_alloc(dp_soc->osdev, RX_BUFFER_SIZE,
  1925. RX_BUFFER_RESERVATION,
  1926. RX_BUFFER_ALIGNMENT,
  1927. FALSE);
  1928. if (!nbuf) {
  1929. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1930. "nbuf alloc failed");
  1931. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  1932. break;
  1933. }
  1934. ret = qdf_nbuf_map_single(dp_soc->osdev, nbuf,
  1935. QDF_DMA_BIDIRECTIONAL);
  1936. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  1937. qdf_nbuf_free(nbuf);
  1938. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1939. "nbuf map failed");
  1940. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  1941. break;
  1942. }
  1943. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  1944. ret = check_x86_paddr(dp_soc, &nbuf, &paddr, dp_pdev);
  1945. if (ret == QDF_STATUS_E_FAILURE) {
  1946. qdf_nbuf_unmap_single(dp_soc->osdev, nbuf,
  1947. QDF_DMA_BIDIRECTIONAL);
  1948. qdf_nbuf_free(nbuf);
  1949. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1950. "nbuf check x86 failed");
  1951. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  1952. break;
  1953. }
  1954. rx_nbuf_arr[nr_nbuf] = (void *)nbuf;
  1955. }
  1956. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1957. "allocated %u nbuf for driver attach", nr_nbuf);
  1958. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  1959. for (i = 0; i < nr_nbuf; i++) {
  1960. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  1961. rxdma_srng);
  1962. qdf_assert_always(rxdma_ring_entry);
  1963. next = (*desc_list)->next;
  1964. nbuf = rx_nbuf_arr[i];
  1965. paddr = qdf_nbuf_get_frag_paddr(nbuf, 0);
  1966. dp_rx_desc_prep(&((*desc_list)->rx_desc), nbuf);
  1967. (*desc_list)->rx_desc.in_use = 1;
  1968. hal_rxdma_buff_addr_info_set(rxdma_ring_entry, paddr,
  1969. (*desc_list)->rx_desc.cookie,
  1970. rx_desc_pool->owner);
  1971. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, nbuf, true);
  1972. *desc_list = next;
  1973. }
  1974. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  1975. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1976. "filled %u RX buffers for driver attach", nr_nbuf);
  1977. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, RX_BUFFER_SIZE *
  1978. nr_nbuf);
  1979. qdf_mem_free(rx_nbuf_arr);
  1980. return QDF_STATUS_SUCCESS;
  1981. }
  1982. /**
  1983. * dp_rx_attach() - attach DP RX
  1984. * @pdev: core txrx pdev context
  1985. *
  1986. * This function will attach a DP RX instance into the main
  1987. * device (SOC) context. Will allocate dp rx resource and
  1988. * initialize resources.
  1989. *
  1990. * Return: QDF_STATUS_SUCCESS: success
  1991. * QDF_STATUS_E_RESOURCES: Error return
  1992. */
  1993. QDF_STATUS
  1994. dp_rx_pdev_attach(struct dp_pdev *pdev)
  1995. {
  1996. uint8_t pdev_id = pdev->pdev_id;
  1997. struct dp_soc *soc = pdev->soc;
  1998. uint32_t rxdma_entries;
  1999. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2000. union dp_rx_desc_list_elem_t *tail = NULL;
  2001. struct dp_srng *dp_rxdma_srng;
  2002. struct rx_desc_pool *rx_desc_pool;
  2003. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2004. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  2005. "nss-wifi<4> skip Rx refil %d", pdev_id);
  2006. return QDF_STATUS_SUCCESS;
  2007. }
  2008. pdev = soc->pdev_list[pdev_id];
  2009. dp_rxdma_srng = &pdev->rx_refill_buf_ring;
  2010. rxdma_entries = dp_rxdma_srng->num_entries;
  2011. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2012. rx_desc_pool = &soc->rx_desc_buf[pdev_id];
  2013. dp_rx_desc_pool_alloc(soc, pdev_id,
  2014. DP_RX_DESC_ALLOC_MULTIPLIER * rxdma_entries,
  2015. rx_desc_pool);
  2016. rx_desc_pool->owner = DP_WBM2SW_RBM;
  2017. /* For Rx buffers, WBM release ring is SW RING 3,for all pdev's */
  2018. return dp_pdev_rx_buffers_attach(soc, pdev_id, dp_rxdma_srng,
  2019. rx_desc_pool, rxdma_entries - 1,
  2020. &desc_list, &tail);
  2021. }
  2022. /*
  2023. * dp_rx_nbuf_prepare() - prepare RX nbuf
  2024. * @soc: core txrx main context
  2025. * @pdev: core txrx pdev context
  2026. *
  2027. * This function alloc & map nbuf for RX dma usage, retry it if failed
  2028. * until retry times reaches max threshold or succeeded.
  2029. *
  2030. * Return: qdf_nbuf_t pointer if succeeded, NULL if failed.
  2031. */
  2032. qdf_nbuf_t
  2033. dp_rx_nbuf_prepare(struct dp_soc *soc, struct dp_pdev *pdev)
  2034. {
  2035. uint8_t *buf;
  2036. int32_t nbuf_retry_count;
  2037. QDF_STATUS ret;
  2038. qdf_nbuf_t nbuf = NULL;
  2039. for (nbuf_retry_count = 0; nbuf_retry_count <
  2040. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD;
  2041. nbuf_retry_count++) {
  2042. /* Allocate a new skb */
  2043. nbuf = qdf_nbuf_alloc(soc->osdev,
  2044. RX_BUFFER_SIZE,
  2045. RX_BUFFER_RESERVATION,
  2046. RX_BUFFER_ALIGNMENT,
  2047. FALSE);
  2048. if (!nbuf) {
  2049. DP_STATS_INC(pdev,
  2050. replenish.nbuf_alloc_fail, 1);
  2051. continue;
  2052. }
  2053. buf = qdf_nbuf_data(nbuf);
  2054. memset(buf, 0, RX_BUFFER_SIZE);
  2055. ret = qdf_nbuf_map_single(soc->osdev, nbuf,
  2056. QDF_DMA_BIDIRECTIONAL);
  2057. /* nbuf map failed */
  2058. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2059. qdf_nbuf_free(nbuf);
  2060. DP_STATS_INC(pdev, replenish.map_err, 1);
  2061. continue;
  2062. }
  2063. /* qdf_nbuf alloc and map succeeded */
  2064. break;
  2065. }
  2066. /* qdf_nbuf still alloc or map failed */
  2067. if (qdf_unlikely(nbuf_retry_count >=
  2068. QDF_NBUF_ALLOC_MAP_RETRY_THRESHOLD))
  2069. return NULL;
  2070. return nbuf;
  2071. }