dp_tx.c 208 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "htt.h"
  20. #include "dp_htt.h"
  21. #include "hal_hw_headers.h"
  22. #include "dp_tx.h"
  23. #include "dp_tx_desc.h"
  24. #include "dp_peer.h"
  25. #include "dp_types.h"
  26. #include "hal_tx.h"
  27. #include "qdf_mem.h"
  28. #include "qdf_nbuf.h"
  29. #include "qdf_net_types.h"
  30. #include "qdf_module.h"
  31. #include <wlan_cfg.h>
  32. #include "dp_ipa.h"
  33. #if defined(MESH_MODE_SUPPORT) || defined(FEATURE_PERPKT_INFO)
  34. #include "if_meta_hdr.h"
  35. #endif
  36. #include "enet.h"
  37. #include "dp_internal.h"
  38. #ifdef ATH_SUPPORT_IQUE
  39. #include "dp_txrx_me.h"
  40. #endif
  41. #include "dp_hist.h"
  42. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  43. #include <wlan_dp_swlm.h>
  44. #endif
  45. #ifdef WIFI_MONITOR_SUPPORT
  46. #include <dp_mon.h>
  47. #endif
  48. #ifdef FEATURE_WDS
  49. #include "dp_txrx_wds.h"
  50. #endif
  51. #include "cdp_txrx_cmn_reg.h"
  52. #ifdef CONFIG_SAWF
  53. #include <dp_sawf.h>
  54. #endif
  55. /* Flag to skip CCE classify when mesh or tid override enabled */
  56. #define DP_TX_SKIP_CCE_CLASSIFY \
  57. (DP_TXRX_HLOS_TID_OVERRIDE_ENABLED | DP_TX_MESH_ENABLED)
  58. /* TODO Add support in TSO */
  59. #define DP_DESC_NUM_FRAG(x) 0
  60. /* disable TQM_BYPASS */
  61. #define TQM_BYPASS_WAR 0
  62. #define DP_RETRY_COUNT 7
  63. #ifdef WLAN_PEER_JITTER
  64. #define DP_AVG_JITTER_WEIGHT_DENOM 4
  65. #define DP_AVG_DELAY_WEIGHT_DENOM 3
  66. #endif
  67. #ifdef QCA_DP_TX_FW_METADATA_V2
  68. #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
  69. HTT_TX_TCL_METADATA_V2_PDEV_ID_SET(_var, _val)
  70. #define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
  71. HTT_TX_TCL_METADATA_V2_VALID_HTT_SET(_var, _val)
  72. #define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
  73. HTT_TX_TCL_METADATA_TYPE_V2_SET(_var, _val)
  74. #define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
  75. HTT_TX_TCL_METADATA_V2_HOST_INSPECTED_SET(_var, _val)
  76. #define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
  77. HTT_TX_TCL_METADATA_V2_PEER_ID_SET(_var, _val)
  78. #define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
  79. HTT_TX_TCL_METADATA_V2_VDEV_ID_SET(_var, _val)
  80. #define DP_TCL_METADATA_TYPE_PEER_BASED \
  81. HTT_TCL_METADATA_V2_TYPE_PEER_BASED
  82. #define DP_TCL_METADATA_TYPE_VDEV_BASED \
  83. HTT_TCL_METADATA_V2_TYPE_VDEV_BASED
  84. #else
  85. #define DP_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)\
  86. HTT_TX_TCL_METADATA_PDEV_ID_SET(_var, _val)
  87. #define DP_TX_TCL_METADATA_VALID_HTT_SET(_var, _val) \
  88. HTT_TX_TCL_METADATA_VALID_HTT_SET(_var, _val)
  89. #define DP_TX_TCL_METADATA_TYPE_SET(_var, _val) \
  90. HTT_TX_TCL_METADATA_TYPE_SET(_var, _val)
  91. #define DP_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val) \
  92. HTT_TX_TCL_METADATA_HOST_INSPECTED_SET(_var, _val)
  93. #define DP_TX_TCL_METADATA_PEER_ID_SET(_var, _val) \
  94. HTT_TX_TCL_METADATA_PEER_ID_SET(_var, _val)
  95. #define DP_TX_TCL_METADATA_VDEV_ID_SET(_var, _val) \
  96. HTT_TX_TCL_METADATA_VDEV_ID_SET(_var, _val)
  97. #define DP_TCL_METADATA_TYPE_PEER_BASED \
  98. HTT_TCL_METADATA_TYPE_PEER_BASED
  99. #define DP_TCL_METADATA_TYPE_VDEV_BASED \
  100. HTT_TCL_METADATA_TYPE_VDEV_BASED
  101. #endif
  102. #define DP_GET_HW_LINK_ID_FRM_PPDU_ID(PPDU_ID, LINK_ID_OFFSET, LINK_ID_BITS) \
  103. (((PPDU_ID) >> (LINK_ID_OFFSET)) & ((1 << (LINK_ID_BITS)) - 1))
  104. /*mapping between hal encrypt type and cdp_sec_type*/
  105. uint8_t sec_type_map[MAX_CDP_SEC_TYPE] = {HAL_TX_ENCRYPT_TYPE_NO_CIPHER,
  106. HAL_TX_ENCRYPT_TYPE_WEP_128,
  107. HAL_TX_ENCRYPT_TYPE_WEP_104,
  108. HAL_TX_ENCRYPT_TYPE_WEP_40,
  109. HAL_TX_ENCRYPT_TYPE_TKIP_WITH_MIC,
  110. HAL_TX_ENCRYPT_TYPE_TKIP_NO_MIC,
  111. HAL_TX_ENCRYPT_TYPE_AES_CCMP_128,
  112. HAL_TX_ENCRYPT_TYPE_WAPI,
  113. HAL_TX_ENCRYPT_TYPE_AES_CCMP_256,
  114. HAL_TX_ENCRYPT_TYPE_AES_GCMP_128,
  115. HAL_TX_ENCRYPT_TYPE_AES_GCMP_256,
  116. HAL_TX_ENCRYPT_TYPE_WAPI_GCM_SM4};
  117. qdf_export_symbol(sec_type_map);
  118. #ifdef WLAN_FEATURE_DP_TX_DESC_HISTORY
  119. static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
  120. {
  121. enum dp_tx_event_type type;
  122. if (flags & DP_TX_DESC_FLAG_FLUSH)
  123. type = DP_TX_DESC_FLUSH;
  124. else if (flags & DP_TX_DESC_FLAG_TX_COMP_ERR)
  125. type = DP_TX_COMP_UNMAP_ERR;
  126. else if (flags & DP_TX_DESC_FLAG_COMPLETED_TX)
  127. type = DP_TX_COMP_UNMAP;
  128. else
  129. type = DP_TX_DESC_UNMAP;
  130. return type;
  131. }
  132. static inline void
  133. dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
  134. qdf_nbuf_t skb, uint32_t sw_cookie,
  135. enum dp_tx_event_type type)
  136. {
  137. struct dp_tx_tcl_history *tx_tcl_history = &soc->tx_tcl_history;
  138. struct dp_tx_comp_history *tx_comp_history = &soc->tx_comp_history;
  139. struct dp_tx_desc_event *entry;
  140. uint32_t idx;
  141. uint16_t slot;
  142. switch (type) {
  143. case DP_TX_COMP_UNMAP:
  144. case DP_TX_COMP_UNMAP_ERR:
  145. case DP_TX_COMP_MSDU_EXT:
  146. if (qdf_unlikely(!tx_comp_history->allocated))
  147. return;
  148. dp_get_frag_hist_next_atomic_idx(&tx_comp_history->index, &idx,
  149. &slot,
  150. DP_TX_COMP_HIST_SLOT_SHIFT,
  151. DP_TX_COMP_HIST_PER_SLOT_MAX,
  152. DP_TX_COMP_HISTORY_SIZE);
  153. entry = &tx_comp_history->entry[slot][idx];
  154. break;
  155. case DP_TX_DESC_MAP:
  156. case DP_TX_DESC_UNMAP:
  157. case DP_TX_DESC_COOKIE:
  158. case DP_TX_DESC_FLUSH:
  159. if (qdf_unlikely(!tx_tcl_history->allocated))
  160. return;
  161. dp_get_frag_hist_next_atomic_idx(&tx_tcl_history->index, &idx,
  162. &slot,
  163. DP_TX_TCL_HIST_SLOT_SHIFT,
  164. DP_TX_TCL_HIST_PER_SLOT_MAX,
  165. DP_TX_TCL_HISTORY_SIZE);
  166. entry = &tx_tcl_history->entry[slot][idx];
  167. break;
  168. default:
  169. dp_info_rl("Invalid dp_tx_event_type: %d", type);
  170. return;
  171. }
  172. entry->skb = skb;
  173. entry->paddr = paddr;
  174. entry->sw_cookie = sw_cookie;
  175. entry->type = type;
  176. entry->ts = qdf_get_log_timestamp();
  177. }
  178. static inline void
  179. dp_tx_tso_seg_history_add(struct dp_soc *soc,
  180. struct qdf_tso_seg_elem_t *tso_seg,
  181. qdf_nbuf_t skb, uint32_t sw_cookie,
  182. enum dp_tx_event_type type)
  183. {
  184. int i;
  185. for (i = 1; i < tso_seg->seg.num_frags; i++) {
  186. dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[i].paddr,
  187. skb, sw_cookie, type);
  188. }
  189. if (!tso_seg->next)
  190. dp_tx_desc_history_add(soc, tso_seg->seg.tso_frags[0].paddr,
  191. skb, 0xFFFFFFFF, type);
  192. }
  193. static inline void
  194. dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
  195. qdf_nbuf_t skb, uint32_t sw_cookie,
  196. enum dp_tx_event_type type)
  197. {
  198. struct qdf_tso_seg_elem_t *curr_seg = tso_info.tso_seg_list;
  199. uint32_t num_segs = tso_info.num_segs;
  200. while (num_segs) {
  201. dp_tx_tso_seg_history_add(soc, curr_seg, skb, sw_cookie, type);
  202. curr_seg = curr_seg->next;
  203. num_segs--;
  204. }
  205. }
  206. #else
  207. static inline enum dp_tx_event_type dp_tx_get_event_type(uint32_t flags)
  208. {
  209. return DP_TX_DESC_INVAL_EVT;
  210. }
  211. static inline void
  212. dp_tx_desc_history_add(struct dp_soc *soc, dma_addr_t paddr,
  213. qdf_nbuf_t skb, uint32_t sw_cookie,
  214. enum dp_tx_event_type type)
  215. {
  216. }
  217. static inline void
  218. dp_tx_tso_seg_history_add(struct dp_soc *soc,
  219. struct qdf_tso_seg_elem_t *tso_seg,
  220. qdf_nbuf_t skb, uint32_t sw_cookie,
  221. enum dp_tx_event_type type)
  222. {
  223. }
  224. static inline void
  225. dp_tx_tso_history_add(struct dp_soc *soc, struct qdf_tso_info_t tso_info,
  226. qdf_nbuf_t skb, uint32_t sw_cookie,
  227. enum dp_tx_event_type type)
  228. {
  229. }
  230. #endif /* WLAN_FEATURE_DP_TX_DESC_HISTORY */
  231. /**
  232. * dp_is_tput_high() - Check if throughput is high
  233. *
  234. * @soc: core txrx main context
  235. *
  236. * The current function is based of the RTPM tput policy variable where RTPM is
  237. * avoided based on throughput.
  238. */
  239. static inline int dp_is_tput_high(struct dp_soc *soc)
  240. {
  241. return dp_get_rtpm_tput_policy_requirement(soc);
  242. }
  243. #if defined(FEATURE_TSO)
  244. /**
  245. * dp_tx_tso_unmap_segment() - Unmap TSO segment
  246. *
  247. * @soc: core txrx main context
  248. * @seg_desc: tso segment descriptor
  249. * @num_seg_desc: tso number segment descriptor
  250. */
  251. static void dp_tx_tso_unmap_segment(
  252. struct dp_soc *soc,
  253. struct qdf_tso_seg_elem_t *seg_desc,
  254. struct qdf_tso_num_seg_elem_t *num_seg_desc)
  255. {
  256. TSO_DEBUG("%s: Unmap the tso segment", __func__);
  257. if (qdf_unlikely(!seg_desc)) {
  258. DP_TRACE(ERROR, "%s %d TSO desc is NULL!",
  259. __func__, __LINE__);
  260. qdf_assert(0);
  261. } else if (qdf_unlikely(!num_seg_desc)) {
  262. DP_TRACE(ERROR, "%s %d TSO num desc is NULL!",
  263. __func__, __LINE__);
  264. qdf_assert(0);
  265. } else {
  266. bool is_last_seg;
  267. /* no tso segment left to do dma unmap */
  268. if (num_seg_desc->num_seg.tso_cmn_num_seg < 1)
  269. return;
  270. is_last_seg = (num_seg_desc->num_seg.tso_cmn_num_seg == 1) ?
  271. true : false;
  272. qdf_nbuf_unmap_tso_segment(soc->osdev,
  273. seg_desc, is_last_seg);
  274. num_seg_desc->num_seg.tso_cmn_num_seg--;
  275. }
  276. }
  277. /**
  278. * dp_tx_tso_desc_release() - Release the tso segment and tso_cmn_num_seg
  279. * back to the freelist
  280. *
  281. * @soc: soc device handle
  282. * @tx_desc: Tx software descriptor
  283. */
  284. static void dp_tx_tso_desc_release(struct dp_soc *soc,
  285. struct dp_tx_desc_s *tx_desc)
  286. {
  287. TSO_DEBUG("%s: Free the tso descriptor", __func__);
  288. if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_desc)) {
  289. dp_tx_err("SO desc is NULL!");
  290. qdf_assert(0);
  291. } else if (qdf_unlikely(!tx_desc->msdu_ext_desc->tso_num_desc)) {
  292. dp_tx_err("TSO num desc is NULL!");
  293. qdf_assert(0);
  294. } else {
  295. struct qdf_tso_num_seg_elem_t *tso_num_desc =
  296. (struct qdf_tso_num_seg_elem_t *)tx_desc->
  297. msdu_ext_desc->tso_num_desc;
  298. /* Add the tso num segment into the free list */
  299. if (tso_num_desc->num_seg.tso_cmn_num_seg == 0) {
  300. dp_tso_num_seg_free(soc, tx_desc->pool_id,
  301. tx_desc->msdu_ext_desc->
  302. tso_num_desc);
  303. tx_desc->msdu_ext_desc->tso_num_desc = NULL;
  304. DP_STATS_INC(tx_desc->pdev, tso_stats.tso_comp, 1);
  305. }
  306. /* Add the tso segment into the free list*/
  307. dp_tx_tso_desc_free(soc,
  308. tx_desc->pool_id, tx_desc->msdu_ext_desc->
  309. tso_desc);
  310. tx_desc->msdu_ext_desc->tso_desc = NULL;
  311. }
  312. }
  313. #else
  314. static void dp_tx_tso_unmap_segment(
  315. struct dp_soc *soc,
  316. struct qdf_tso_seg_elem_t *seg_desc,
  317. struct qdf_tso_num_seg_elem_t *num_seg_desc)
  318. {
  319. }
  320. static void dp_tx_tso_desc_release(struct dp_soc *soc,
  321. struct dp_tx_desc_s *tx_desc)
  322. {
  323. }
  324. #endif
  325. #ifdef WLAN_SUPPORT_PPEDS
  326. static inline int
  327. dp_tx_release_ds_tx_desc(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  328. uint8_t desc_pool_id)
  329. {
  330. if (tx_desc->flags & DP_TX_DESC_FLAG_PPEDS) {
  331. __dp_tx_outstanding_dec(soc);
  332. dp_tx_desc_free(soc, tx_desc, desc_pool_id);
  333. return 1;
  334. }
  335. return 0;
  336. }
  337. #else
  338. static inline int
  339. dp_tx_release_ds_tx_desc(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  340. uint8_t desc_pool_id)
  341. {
  342. return 0;
  343. }
  344. #endif
  345. void
  346. dp_tx_desc_release(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  347. uint8_t desc_pool_id)
  348. {
  349. struct dp_pdev *pdev = tx_desc->pdev;
  350. uint8_t comp_status = 0;
  351. if (dp_tx_release_ds_tx_desc(soc, tx_desc, desc_pool_id))
  352. return;
  353. qdf_assert(pdev);
  354. soc = pdev->soc;
  355. dp_tx_outstanding_dec(pdev);
  356. if (tx_desc->msdu_ext_desc) {
  357. if (tx_desc->frm_type == dp_tx_frm_tso)
  358. dp_tx_tso_desc_release(soc, tx_desc);
  359. if (tx_desc->flags & DP_TX_DESC_FLAG_ME)
  360. dp_tx_me_free_buf(tx_desc->pdev,
  361. tx_desc->msdu_ext_desc->me_buffer);
  362. dp_tx_ext_desc_free(soc, tx_desc->msdu_ext_desc, desc_pool_id);
  363. tx_desc->msdu_ext_desc = NULL;
  364. }
  365. if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)
  366. qdf_atomic_dec(&soc->num_tx_exception);
  367. if (HAL_TX_COMP_RELEASE_SOURCE_TQM ==
  368. tx_desc->buffer_src)
  369. comp_status = hal_tx_comp_get_release_reason(&tx_desc->comp,
  370. soc->hal_soc);
  371. else
  372. comp_status = HAL_TX_COMP_RELEASE_REASON_FW;
  373. dp_tx_debug("Tx Completion Release desc %d status %d outstanding %d",
  374. tx_desc->id, comp_status,
  375. qdf_atomic_read(&pdev->num_tx_outstanding));
  376. if (tx_desc->flags & DP_TX_DESC_FLAG_SPECIAL)
  377. dp_tx_spcl_desc_free(soc, tx_desc, desc_pool_id);
  378. else
  379. dp_tx_desc_free(soc, tx_desc, desc_pool_id);
  380. return;
  381. }
  382. /**
  383. * dp_tx_prepare_htt_metadata() - Prepare HTT metadata for special frames
  384. * @vdev: DP vdev Handle
  385. * @nbuf: skb
  386. * @msdu_info: msdu_info required to create HTT metadata
  387. *
  388. * Prepares and fills HTT metadata in the frame pre-header for special frames
  389. * that should be transmitted using varying transmit parameters.
  390. * There are 2 VDEV modes that currently needs this special metadata -
  391. * 1) Mesh Mode
  392. * 2) DSRC Mode
  393. *
  394. * Return: HTT metadata size
  395. *
  396. */
  397. static uint8_t dp_tx_prepare_htt_metadata(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  398. struct dp_tx_msdu_info_s *msdu_info)
  399. {
  400. uint32_t *meta_data = msdu_info->meta_data;
  401. struct htt_tx_msdu_desc_ext2_t *desc_ext =
  402. (struct htt_tx_msdu_desc_ext2_t *) meta_data;
  403. uint8_t htt_desc_size;
  404. /* Size rounded of multiple of 8 bytes */
  405. uint8_t htt_desc_size_aligned;
  406. uint8_t *hdr = NULL;
  407. /*
  408. * Metadata - HTT MSDU Extension header
  409. */
  410. htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
  411. htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
  412. if (vdev->mesh_vdev || msdu_info->is_tx_sniffer ||
  413. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->
  414. meta_data[0]) ||
  415. msdu_info->exception_fw) {
  416. if (qdf_unlikely(qdf_nbuf_headroom(nbuf) <
  417. htt_desc_size_aligned)) {
  418. nbuf = qdf_nbuf_realloc_headroom(nbuf,
  419. htt_desc_size_aligned);
  420. if (!nbuf) {
  421. /*
  422. * qdf_nbuf_realloc_headroom won't do skb_clone
  423. * as skb_realloc_headroom does. so, no free is
  424. * needed here.
  425. */
  426. DP_STATS_INC(vdev,
  427. tx_i.dropped.headroom_insufficient,
  428. 1);
  429. qdf_print(" %s[%d] skb_realloc_headroom failed",
  430. __func__, __LINE__);
  431. return 0;
  432. }
  433. }
  434. /* Fill and add HTT metaheader */
  435. hdr = qdf_nbuf_push_head(nbuf, htt_desc_size_aligned);
  436. if (!hdr) {
  437. dp_tx_err("Error in filling HTT metadata");
  438. return 0;
  439. }
  440. qdf_mem_copy(hdr, desc_ext, htt_desc_size);
  441. } else if (vdev->opmode == wlan_op_mode_ocb) {
  442. /* Todo - Add support for DSRC */
  443. }
  444. return htt_desc_size_aligned;
  445. }
  446. /**
  447. * dp_tx_prepare_tso_ext_desc() - Prepare MSDU extension descriptor for TSO
  448. * @tso_seg: TSO segment to process
  449. * @ext_desc: Pointer to MSDU extension descriptor
  450. *
  451. * Return: void
  452. */
  453. #if defined(FEATURE_TSO)
  454. static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
  455. void *ext_desc)
  456. {
  457. uint8_t num_frag;
  458. uint32_t tso_flags;
  459. /*
  460. * Set tso_en, tcp_flags(NS, CWR, ECE, URG, ACK, PSH, RST, SYN, FIN),
  461. * tcp_flag_mask
  462. *
  463. * Checksum enable flags are set in TCL descriptor and not in Extension
  464. * Descriptor (H/W ignores checksum_en flags in MSDU ext descriptor)
  465. */
  466. tso_flags = *(uint32_t *) &tso_seg->tso_flags;
  467. hal_tx_ext_desc_set_tso_flags(ext_desc, tso_flags);
  468. hal_tx_ext_desc_set_msdu_length(ext_desc, tso_seg->tso_flags.l2_len,
  469. tso_seg->tso_flags.ip_len);
  470. hal_tx_ext_desc_set_tcp_seq(ext_desc, tso_seg->tso_flags.tcp_seq_num);
  471. hal_tx_ext_desc_set_ip_id(ext_desc, tso_seg->tso_flags.ip_id);
  472. for (num_frag = 0; num_frag < tso_seg->num_frags; num_frag++) {
  473. uint32_t lo = 0;
  474. uint32_t hi = 0;
  475. qdf_assert_always((tso_seg->tso_frags[num_frag].paddr) &&
  476. (tso_seg->tso_frags[num_frag].length));
  477. qdf_dmaaddr_to_32s(
  478. tso_seg->tso_frags[num_frag].paddr, &lo, &hi);
  479. hal_tx_ext_desc_set_buffer(ext_desc, num_frag, lo, hi,
  480. tso_seg->tso_frags[num_frag].length);
  481. }
  482. return;
  483. }
  484. #else
  485. static void dp_tx_prepare_tso_ext_desc(struct qdf_tso_seg_t *tso_seg,
  486. void *ext_desc)
  487. {
  488. return;
  489. }
  490. #endif
  491. #if defined(FEATURE_TSO)
  492. /**
  493. * dp_tx_free_tso_seg_list() - Loop through the tso segments
  494. * allocated and free them
  495. * @soc: soc handle
  496. * @free_seg: list of tso segments
  497. * @msdu_info: msdu descriptor
  498. *
  499. * Return: void
  500. */
  501. static void dp_tx_free_tso_seg_list(
  502. struct dp_soc *soc,
  503. struct qdf_tso_seg_elem_t *free_seg,
  504. struct dp_tx_msdu_info_s *msdu_info)
  505. {
  506. struct qdf_tso_seg_elem_t *next_seg;
  507. while (free_seg) {
  508. next_seg = free_seg->next;
  509. dp_tx_tso_desc_free(soc,
  510. msdu_info->tx_queue.desc_pool_id,
  511. free_seg);
  512. free_seg = next_seg;
  513. }
  514. }
  515. /**
  516. * dp_tx_free_tso_num_seg_list() - Loop through the tso num segments
  517. * allocated and free them
  518. * @soc: soc handle
  519. * @free_num_seg: list of tso number segments
  520. * @msdu_info: msdu descriptor
  521. *
  522. * Return: void
  523. */
  524. static void dp_tx_free_tso_num_seg_list(
  525. struct dp_soc *soc,
  526. struct qdf_tso_num_seg_elem_t *free_num_seg,
  527. struct dp_tx_msdu_info_s *msdu_info)
  528. {
  529. struct qdf_tso_num_seg_elem_t *next_num_seg;
  530. while (free_num_seg) {
  531. next_num_seg = free_num_seg->next;
  532. dp_tso_num_seg_free(soc,
  533. msdu_info->tx_queue.desc_pool_id,
  534. free_num_seg);
  535. free_num_seg = next_num_seg;
  536. }
  537. }
  538. /**
  539. * dp_tx_unmap_tso_seg_list() - Loop through the tso segments
  540. * do dma unmap for each segment
  541. * @soc: soc handle
  542. * @free_seg: list of tso segments
  543. * @num_seg_desc: tso number segment descriptor
  544. *
  545. * Return: void
  546. */
  547. static void dp_tx_unmap_tso_seg_list(
  548. struct dp_soc *soc,
  549. struct qdf_tso_seg_elem_t *free_seg,
  550. struct qdf_tso_num_seg_elem_t *num_seg_desc)
  551. {
  552. struct qdf_tso_seg_elem_t *next_seg;
  553. if (qdf_unlikely(!num_seg_desc)) {
  554. DP_TRACE(ERROR, "TSO number seg desc is NULL!");
  555. return;
  556. }
  557. while (free_seg) {
  558. next_seg = free_seg->next;
  559. dp_tx_tso_unmap_segment(soc, free_seg, num_seg_desc);
  560. free_seg = next_seg;
  561. }
  562. }
  563. #ifdef FEATURE_TSO_STATS
  564. /**
  565. * dp_tso_get_stats_idx() - Retrieve the tso packet id
  566. * @pdev: pdev handle
  567. *
  568. * Return: id
  569. */
  570. static uint32_t dp_tso_get_stats_idx(struct dp_pdev *pdev)
  571. {
  572. uint32_t stats_idx;
  573. stats_idx = (((uint32_t)qdf_atomic_inc_return(&pdev->tso_idx))
  574. % CDP_MAX_TSO_PACKETS);
  575. return stats_idx;
  576. }
  577. #else
  578. static int dp_tso_get_stats_idx(struct dp_pdev *pdev)
  579. {
  580. return 0;
  581. }
  582. #endif /* FEATURE_TSO_STATS */
  583. /**
  584. * dp_tx_free_remaining_tso_desc() - do dma unmap for tso segments if any,
  585. * free the tso segments descriptor and
  586. * tso num segments descriptor
  587. * @soc: soc handle
  588. * @msdu_info: msdu descriptor
  589. * @tso_seg_unmap: flag to show if dma unmap is necessary
  590. *
  591. * Return: void
  592. */
  593. static void dp_tx_free_remaining_tso_desc(struct dp_soc *soc,
  594. struct dp_tx_msdu_info_s *msdu_info,
  595. bool tso_seg_unmap)
  596. {
  597. struct qdf_tso_info_t *tso_info = &msdu_info->u.tso_info;
  598. struct qdf_tso_seg_elem_t *free_seg = tso_info->tso_seg_list;
  599. struct qdf_tso_num_seg_elem_t *tso_num_desc =
  600. tso_info->tso_num_seg_list;
  601. /* do dma unmap for each segment */
  602. if (tso_seg_unmap)
  603. dp_tx_unmap_tso_seg_list(soc, free_seg, tso_num_desc);
  604. /* free all tso number segment descriptor though looks only have 1 */
  605. dp_tx_free_tso_num_seg_list(soc, tso_num_desc, msdu_info);
  606. /* free all tso segment descriptor */
  607. dp_tx_free_tso_seg_list(soc, free_seg, msdu_info);
  608. }
  609. /**
  610. * dp_tx_prepare_tso() - Given a jumbo msdu, prepare the TSO info
  611. * @vdev: virtual device handle
  612. * @msdu: network buffer
  613. * @msdu_info: meta data associated with the msdu
  614. *
  615. * Return: QDF_STATUS_SUCCESS success
  616. */
  617. static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
  618. qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
  619. {
  620. struct qdf_tso_seg_elem_t *tso_seg;
  621. int num_seg = qdf_nbuf_get_tso_num_seg(msdu);
  622. struct dp_soc *soc = vdev->pdev->soc;
  623. struct dp_pdev *pdev = vdev->pdev;
  624. struct qdf_tso_info_t *tso_info;
  625. struct qdf_tso_num_seg_elem_t *tso_num_seg;
  626. tso_info = &msdu_info->u.tso_info;
  627. tso_info->curr_seg = NULL;
  628. tso_info->tso_seg_list = NULL;
  629. tso_info->num_segs = num_seg;
  630. msdu_info->frm_type = dp_tx_frm_tso;
  631. tso_info->tso_num_seg_list = NULL;
  632. TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
  633. while (num_seg) {
  634. tso_seg = dp_tx_tso_desc_alloc(
  635. soc, msdu_info->tx_queue.desc_pool_id);
  636. if (tso_seg) {
  637. tso_seg->next = tso_info->tso_seg_list;
  638. tso_info->tso_seg_list = tso_seg;
  639. num_seg--;
  640. } else {
  641. dp_err_rl("Failed to alloc tso seg desc");
  642. DP_STATS_INC_PKT(vdev->pdev,
  643. tso_stats.tso_no_mem_dropped, 1,
  644. qdf_nbuf_len(msdu));
  645. dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
  646. return QDF_STATUS_E_NOMEM;
  647. }
  648. }
  649. TSO_DEBUG(" %s: num_seg: %d", __func__, num_seg);
  650. tso_num_seg = dp_tso_num_seg_alloc(soc,
  651. msdu_info->tx_queue.desc_pool_id);
  652. if (tso_num_seg) {
  653. tso_num_seg->next = tso_info->tso_num_seg_list;
  654. tso_info->tso_num_seg_list = tso_num_seg;
  655. } else {
  656. DP_TRACE(ERROR, "%s: Failed to alloc - Number of segs desc",
  657. __func__);
  658. dp_tx_free_remaining_tso_desc(soc, msdu_info, false);
  659. return QDF_STATUS_E_NOMEM;
  660. }
  661. msdu_info->num_seg =
  662. qdf_nbuf_get_tso_info(soc->osdev, msdu, tso_info);
  663. TSO_DEBUG(" %s: msdu_info->num_seg: %d", __func__,
  664. msdu_info->num_seg);
  665. if (!(msdu_info->num_seg)) {
  666. /*
  667. * Free allocated TSO seg desc and number seg desc,
  668. * do unmap for segments if dma map has done.
  669. */
  670. DP_TRACE(ERROR, "%s: Failed to get tso info", __func__);
  671. dp_tx_free_remaining_tso_desc(soc, msdu_info, true);
  672. return QDF_STATUS_E_INVAL;
  673. }
  674. dp_tx_tso_history_add(soc, msdu_info->u.tso_info,
  675. msdu, 0, DP_TX_DESC_MAP);
  676. tso_info->curr_seg = tso_info->tso_seg_list;
  677. tso_info->msdu_stats_idx = dp_tso_get_stats_idx(pdev);
  678. dp_tso_packet_update(pdev, tso_info->msdu_stats_idx,
  679. msdu, msdu_info->num_seg);
  680. dp_tso_segment_stats_update(pdev, tso_info->tso_seg_list,
  681. tso_info->msdu_stats_idx);
  682. dp_stats_tso_segment_histogram_update(pdev, msdu_info->num_seg);
  683. return QDF_STATUS_SUCCESS;
  684. }
  685. #else
  686. static QDF_STATUS dp_tx_prepare_tso(struct dp_vdev *vdev,
  687. qdf_nbuf_t msdu, struct dp_tx_msdu_info_s *msdu_info)
  688. {
  689. return QDF_STATUS_E_NOMEM;
  690. }
  691. #endif
  692. QDF_COMPILE_TIME_ASSERT(dp_tx_htt_metadata_len_check,
  693. (DP_TX_MSDU_INFO_META_DATA_DWORDS * 4 >=
  694. sizeof(struct htt_tx_msdu_desc_ext2_t)));
  695. /**
  696. * dp_tx_prepare_ext_desc() - Allocate and prepare MSDU extension descriptor
  697. * @vdev: DP Vdev handle
  698. * @msdu_info: MSDU info to be setup in MSDU extension descriptor
  699. * @desc_pool_id: Descriptor Pool ID
  700. *
  701. * Return:
  702. */
  703. static
  704. struct dp_tx_ext_desc_elem_s *dp_tx_prepare_ext_desc(struct dp_vdev *vdev,
  705. struct dp_tx_msdu_info_s *msdu_info, uint8_t desc_pool_id)
  706. {
  707. uint8_t i;
  708. uint8_t cached_ext_desc[HAL_TX_EXT_DESC_WITH_META_DATA];
  709. struct dp_tx_seg_info_s *seg_info;
  710. struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
  711. struct dp_soc *soc = vdev->pdev->soc;
  712. /* Allocate an extension descriptor */
  713. msdu_ext_desc = dp_tx_ext_desc_alloc(soc, desc_pool_id);
  714. qdf_mem_zero(&cached_ext_desc[0], HAL_TX_EXT_DESC_WITH_META_DATA);
  715. if (!msdu_ext_desc) {
  716. DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
  717. return NULL;
  718. }
  719. if (msdu_info->exception_fw &&
  720. qdf_unlikely(vdev->mesh_vdev)) {
  721. qdf_mem_copy(&cached_ext_desc[HAL_TX_EXTENSION_DESC_LEN_BYTES],
  722. &msdu_info->meta_data[0],
  723. sizeof(struct htt_tx_msdu_desc_ext2_t));
  724. qdf_atomic_inc(&soc->num_tx_exception);
  725. msdu_ext_desc->flags |= DP_TX_EXT_DESC_FLAG_METADATA_VALID;
  726. }
  727. switch (msdu_info->frm_type) {
  728. case dp_tx_frm_sg:
  729. case dp_tx_frm_me:
  730. case dp_tx_frm_raw:
  731. seg_info = msdu_info->u.sg_info.curr_seg;
  732. /* Update the buffer pointers in MSDU Extension Descriptor */
  733. for (i = 0; i < seg_info->frag_cnt; i++) {
  734. hal_tx_ext_desc_set_buffer(&cached_ext_desc[0], i,
  735. seg_info->frags[i].paddr_lo,
  736. seg_info->frags[i].paddr_hi,
  737. seg_info->frags[i].len);
  738. }
  739. break;
  740. case dp_tx_frm_tso:
  741. dp_tx_prepare_tso_ext_desc(&msdu_info->u.tso_info.curr_seg->seg,
  742. &cached_ext_desc[0]);
  743. break;
  744. default:
  745. break;
  746. }
  747. QDF_TRACE_HEX_DUMP(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  748. cached_ext_desc, HAL_TX_EXT_DESC_WITH_META_DATA);
  749. hal_tx_ext_desc_sync(&cached_ext_desc[0],
  750. msdu_ext_desc->vaddr);
  751. return msdu_ext_desc;
  752. }
  753. /**
  754. * dp_tx_trace_pkt() - Trace TX packet at DP layer
  755. * @soc: datapath SOC
  756. * @skb: skb to be traced
  757. * @msdu_id: msdu_id of the packet
  758. * @vdev_id: vdev_id of the packet
  759. * @op_mode: Vdev Operation mode
  760. *
  761. * Return: None
  762. */
  763. #ifdef DP_DISABLE_TX_PKT_TRACE
  764. static void dp_tx_trace_pkt(struct dp_soc *soc,
  765. qdf_nbuf_t skb, uint16_t msdu_id,
  766. uint8_t vdev_id, enum QDF_OPMODE op_mode)
  767. {
  768. }
  769. #else
  770. static void dp_tx_trace_pkt(struct dp_soc *soc,
  771. qdf_nbuf_t skb, uint16_t msdu_id,
  772. uint8_t vdev_id, enum QDF_OPMODE op_mode)
  773. {
  774. if (dp_is_tput_high(soc))
  775. return;
  776. QDF_NBUF_CB_TX_PACKET_TRACK(skb) = QDF_NBUF_TX_PKT_DATA_TRACK;
  777. QDF_NBUF_CB_TX_DP_TRACE(skb) = 1;
  778. DPTRACE(qdf_dp_trace_ptr(skb,
  779. QDF_DP_TRACE_LI_DP_TX_PACKET_PTR_RECORD,
  780. QDF_TRACE_DEFAULT_PDEV_ID,
  781. qdf_nbuf_data_addr(skb),
  782. sizeof(qdf_nbuf_data(skb)),
  783. msdu_id, vdev_id, 0,
  784. op_mode));
  785. qdf_dp_trace_log_pkt(vdev_id, skb, QDF_TX, QDF_TRACE_DEFAULT_PDEV_ID,
  786. op_mode);
  787. DPTRACE(qdf_dp_trace_data_pkt(skb, QDF_TRACE_DEFAULT_PDEV_ID,
  788. QDF_DP_TRACE_LI_DP_TX_PACKET_RECORD,
  789. msdu_id, QDF_TX));
  790. }
  791. #endif
  792. #ifdef WLAN_DP_FEATURE_MARK_ICMP_REQ_TO_FW
  793. /**
  794. * dp_tx_is_nbuf_marked_exception() - Check if the packet has been marked as
  795. * exception by the upper layer (OS_IF)
  796. * @soc: DP soc handle
  797. * @nbuf: packet to be transmitted
  798. *
  799. * Return: 1 if the packet is marked as exception,
  800. * 0, if the packet is not marked as exception.
  801. */
  802. static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
  803. qdf_nbuf_t nbuf)
  804. {
  805. return QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf);
  806. }
  807. #else
  808. static inline int dp_tx_is_nbuf_marked_exception(struct dp_soc *soc,
  809. qdf_nbuf_t nbuf)
  810. {
  811. return 0;
  812. }
  813. #endif
  814. #ifdef DP_TRAFFIC_END_INDICATION
  815. /**
  816. * dp_tx_get_traffic_end_indication_pkt() - Allocate and prepare packet to send
  817. * as indication to fw to inform that
  818. * data stream has ended
  819. * @vdev: DP vdev handle
  820. * @nbuf: original buffer from network stack
  821. *
  822. * Return: NULL on failure,
  823. * nbuf on success
  824. */
  825. static inline qdf_nbuf_t
  826. dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
  827. qdf_nbuf_t nbuf)
  828. {
  829. /* Packet length should be enough to copy upto L3 header */
  830. uint8_t end_nbuf_len = 64;
  831. uint8_t htt_desc_size_aligned;
  832. uint8_t htt_desc_size;
  833. qdf_nbuf_t end_nbuf;
  834. if (qdf_unlikely(QDF_NBUF_CB_GET_PACKET_TYPE(nbuf) ==
  835. QDF_NBUF_CB_PACKET_TYPE_END_INDICATION)) {
  836. htt_desc_size = sizeof(struct htt_tx_msdu_desc_ext2_t);
  837. htt_desc_size_aligned = (htt_desc_size + 7) & ~0x7;
  838. end_nbuf = qdf_nbuf_queue_remove(&vdev->end_ind_pkt_q);
  839. if (!end_nbuf) {
  840. end_nbuf = qdf_nbuf_alloc(NULL,
  841. (htt_desc_size_aligned +
  842. end_nbuf_len),
  843. htt_desc_size_aligned,
  844. 8, false);
  845. if (!end_nbuf) {
  846. dp_err("Packet allocation failed");
  847. goto out;
  848. }
  849. } else {
  850. qdf_nbuf_reset(end_nbuf, htt_desc_size_aligned, 8);
  851. }
  852. qdf_mem_copy(qdf_nbuf_data(end_nbuf), qdf_nbuf_data(nbuf),
  853. end_nbuf_len);
  854. qdf_nbuf_set_pktlen(end_nbuf, end_nbuf_len);
  855. return end_nbuf;
  856. }
  857. out:
  858. return NULL;
  859. }
  860. /**
  861. * dp_tx_send_traffic_end_indication_pkt() - Send indication packet to FW
  862. * via exception path.
  863. * @vdev: DP vdev handle
  864. * @end_nbuf: skb to send as indication
  865. * @msdu_info: msdu_info of original nbuf
  866. * @peer_id: peer id
  867. *
  868. * Return: None
  869. */
  870. static inline void
  871. dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
  872. qdf_nbuf_t end_nbuf,
  873. struct dp_tx_msdu_info_s *msdu_info,
  874. uint16_t peer_id)
  875. {
  876. struct dp_tx_msdu_info_s e_msdu_info = {0};
  877. qdf_nbuf_t nbuf;
  878. struct htt_tx_msdu_desc_ext2_t *desc_ext =
  879. (struct htt_tx_msdu_desc_ext2_t *)(e_msdu_info.meta_data);
  880. e_msdu_info.tx_queue = msdu_info->tx_queue;
  881. e_msdu_info.tid = msdu_info->tid;
  882. e_msdu_info.exception_fw = 1;
  883. desc_ext->host_tx_desc_pool = 1;
  884. desc_ext->traffic_end_indication = 1;
  885. nbuf = dp_tx_send_msdu_single(vdev, end_nbuf, &e_msdu_info,
  886. peer_id, NULL);
  887. if (nbuf) {
  888. dp_err("Traffic end indication packet tx failed");
  889. qdf_nbuf_free(nbuf);
  890. }
  891. }
  892. /**
  893. * dp_tx_traffic_end_indication_set_desc_flag() - Set tx descriptor flag to
  894. * mark it traffic end indication
  895. * packet.
  896. * @tx_desc: Tx descriptor pointer
  897. * @msdu_info: msdu_info structure pointer
  898. *
  899. * Return: None
  900. */
  901. static inline void
  902. dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
  903. struct dp_tx_msdu_info_s *msdu_info)
  904. {
  905. struct htt_tx_msdu_desc_ext2_t *desc_ext =
  906. (struct htt_tx_msdu_desc_ext2_t *)(msdu_info->meta_data);
  907. if (qdf_unlikely(desc_ext->traffic_end_indication))
  908. tx_desc->flags |= DP_TX_DESC_FLAG_TRAFFIC_END_IND;
  909. }
  910. /**
  911. * dp_tx_traffic_end_indication_enq_ind_pkt() - Enqueue the packet instead of
  912. * freeing which are associated
  913. * with traffic end indication
  914. * flagged descriptor.
  915. * @soc: dp soc handle
  916. * @desc: Tx descriptor pointer
  917. * @nbuf: buffer pointer
  918. *
  919. * Return: True if packet gets enqueued else false
  920. */
  921. static bool
  922. dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
  923. struct dp_tx_desc_s *desc,
  924. qdf_nbuf_t nbuf)
  925. {
  926. struct dp_vdev *vdev = NULL;
  927. if (qdf_unlikely((desc->flags &
  928. DP_TX_DESC_FLAG_TRAFFIC_END_IND) != 0)) {
  929. vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
  930. DP_MOD_ID_TX_COMP);
  931. if (vdev) {
  932. qdf_nbuf_queue_add(&vdev->end_ind_pkt_q, nbuf);
  933. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_COMP);
  934. return true;
  935. }
  936. }
  937. return false;
  938. }
  939. /**
  940. * dp_tx_traffic_end_indication_is_enabled() - get the feature
  941. * enable/disable status
  942. * @vdev: dp vdev handle
  943. *
  944. * Return: True if feature is enable else false
  945. */
  946. static inline bool
  947. dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
  948. {
  949. return qdf_unlikely(vdev->traffic_end_ind_en);
  950. }
  951. static inline qdf_nbuf_t
  952. dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  953. struct dp_tx_msdu_info_s *msdu_info,
  954. uint16_t peer_id, qdf_nbuf_t end_nbuf)
  955. {
  956. if (dp_tx_traffic_end_indication_is_enabled(vdev))
  957. end_nbuf = dp_tx_get_traffic_end_indication_pkt(vdev, nbuf);
  958. nbuf = dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
  959. if (qdf_unlikely(end_nbuf))
  960. dp_tx_send_traffic_end_indication_pkt(vdev, end_nbuf,
  961. msdu_info, peer_id);
  962. return nbuf;
  963. }
  964. #else
  965. static inline qdf_nbuf_t
  966. dp_tx_get_traffic_end_indication_pkt(struct dp_vdev *vdev,
  967. qdf_nbuf_t nbuf)
  968. {
  969. return NULL;
  970. }
  971. static inline void
  972. dp_tx_send_traffic_end_indication_pkt(struct dp_vdev *vdev,
  973. qdf_nbuf_t end_nbuf,
  974. struct dp_tx_msdu_info_s *msdu_info,
  975. uint16_t peer_id)
  976. {}
  977. static inline void
  978. dp_tx_traffic_end_indication_set_desc_flag(struct dp_tx_desc_s *tx_desc,
  979. struct dp_tx_msdu_info_s *msdu_info)
  980. {}
  981. static inline bool
  982. dp_tx_traffic_end_indication_enq_ind_pkt(struct dp_soc *soc,
  983. struct dp_tx_desc_s *desc,
  984. qdf_nbuf_t nbuf)
  985. {
  986. return false;
  987. }
  988. static inline bool
  989. dp_tx_traffic_end_indication_is_enabled(struct dp_vdev *vdev)
  990. {
  991. return false;
  992. }
  993. static inline qdf_nbuf_t
  994. dp_tx_send_msdu_single_wrapper(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  995. struct dp_tx_msdu_info_s *msdu_info,
  996. uint16_t peer_id, qdf_nbuf_t end_nbuf)
  997. {
  998. return dp_tx_send_msdu_single(vdev, nbuf, msdu_info, peer_id, NULL);
  999. }
  1000. #endif
  1001. #if defined(QCA_SUPPORT_WDS_EXTENDED)
  1002. static bool
  1003. dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
  1004. struct cdp_tx_exception_metadata *tx_exc_metadata)
  1005. {
  1006. if (soc->features.wds_ext_ast_override_enable &&
  1007. tx_exc_metadata && tx_exc_metadata->is_wds_extended)
  1008. return true;
  1009. return false;
  1010. }
  1011. #else
  1012. static bool
  1013. dp_tx_is_wds_ast_override_en(struct dp_soc *soc,
  1014. struct cdp_tx_exception_metadata *tx_exc_metadata)
  1015. {
  1016. return false;
  1017. }
  1018. #endif
  1019. /**
  1020. * dp_tx_prepare_desc_single() - Allocate and prepare Tx descriptor
  1021. * @vdev: DP vdev handle
  1022. * @nbuf: skb
  1023. * @desc_pool_id: Descriptor pool ID
  1024. * @msdu_info: Metadata to the fw
  1025. * @tx_exc_metadata: Handle that holds exception path metadata
  1026. *
  1027. * Allocate and prepare Tx descriptor with msdu information.
  1028. *
  1029. * Return: Pointer to Tx Descriptor on success,
  1030. * NULL on failure
  1031. */
  1032. static
  1033. struct dp_tx_desc_s *dp_tx_prepare_desc_single(struct dp_vdev *vdev,
  1034. qdf_nbuf_t nbuf, uint8_t desc_pool_id,
  1035. struct dp_tx_msdu_info_s *msdu_info,
  1036. struct cdp_tx_exception_metadata *tx_exc_metadata)
  1037. {
  1038. uint8_t align_pad;
  1039. uint8_t is_exception = 0;
  1040. uint8_t htt_hdr_size;
  1041. struct dp_tx_desc_s *tx_desc;
  1042. struct dp_pdev *pdev = vdev->pdev;
  1043. struct dp_soc *soc = pdev->soc;
  1044. if (dp_tx_limit_check(vdev, nbuf))
  1045. return NULL;
  1046. /* Allocate software Tx descriptor */
  1047. if (nbuf->protocol == QDF_NBUF_TRAC_EAPOL_ETH_TYPE)
  1048. tx_desc = dp_tx_spcl_desc_alloc(soc, desc_pool_id);
  1049. else
  1050. tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
  1051. if (qdf_unlikely(!tx_desc)) {
  1052. DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
  1053. DP_STATS_INC(vdev, tx_i.dropped.desc_na_exc_alloc_fail.num, 1);
  1054. return NULL;
  1055. }
  1056. dp_tx_outstanding_inc(pdev);
  1057. /* Initialize the SW tx descriptor */
  1058. tx_desc->nbuf = nbuf;
  1059. tx_desc->frm_type = dp_tx_frm_std;
  1060. tx_desc->tx_encap_type = ((tx_exc_metadata &&
  1061. (tx_exc_metadata->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE)) ?
  1062. tx_exc_metadata->tx_encap_type : vdev->tx_encap_type);
  1063. tx_desc->vdev_id = vdev->vdev_id;
  1064. tx_desc->pdev = pdev;
  1065. tx_desc->msdu_ext_desc = NULL;
  1066. tx_desc->pkt_offset = 0;
  1067. tx_desc->length = qdf_nbuf_headlen(nbuf);
  1068. dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id,
  1069. vdev->qdf_opmode);
  1070. if (qdf_unlikely(vdev->multipass_en)) {
  1071. if (!dp_tx_multipass_process(soc, vdev, nbuf, msdu_info))
  1072. goto failure;
  1073. }
  1074. /* Packets marked by upper layer (OS-IF) to be sent to FW */
  1075. if (dp_tx_is_nbuf_marked_exception(soc, nbuf))
  1076. is_exception = 1;
  1077. /* for BE chipsets if wds extension was enbled will not mark FW
  1078. * in desc will mark ast index based search for ast index.
  1079. */
  1080. if (dp_tx_is_wds_ast_override_en(soc, tx_exc_metadata))
  1081. return tx_desc;
  1082. /*
  1083. * For special modes (vdev_type == ocb or mesh), data frames should be
  1084. * transmitted using varying transmit parameters (tx spec) which include
  1085. * transmit rate, power, priority, channel, channel bandwidth , nss etc.
  1086. * These are filled in HTT MSDU descriptor and sent in frame pre-header.
  1087. * These frames are sent as exception packets to firmware.
  1088. *
  1089. * HW requirement is that metadata should always point to a
  1090. * 8-byte aligned address. So we add alignment pad to start of buffer.
  1091. * HTT Metadata should be ensured to be multiple of 8-bytes,
  1092. * to get 8-byte aligned start address along with align_pad added
  1093. *
  1094. * |-----------------------------|
  1095. * | |
  1096. * |-----------------------------| <-----Buffer Pointer Address given
  1097. * | | ^ in HW descriptor (aligned)
  1098. * | HTT Metadata | |
  1099. * | | |
  1100. * | | | Packet Offset given in descriptor
  1101. * | | |
  1102. * |-----------------------------| |
  1103. * | Alignment Pad | v
  1104. * |-----------------------------| <----- Actual buffer start address
  1105. * | SKB Data | (Unaligned)
  1106. * | |
  1107. * | |
  1108. * | |
  1109. * | |
  1110. * | |
  1111. * |-----------------------------|
  1112. */
  1113. if (qdf_unlikely((msdu_info->exception_fw)) ||
  1114. (vdev->opmode == wlan_op_mode_ocb) ||
  1115. (tx_exc_metadata &&
  1116. tx_exc_metadata->is_tx_sniffer)) {
  1117. align_pad = ((unsigned long) qdf_nbuf_data(nbuf)) & 0x7;
  1118. if (qdf_unlikely(qdf_nbuf_headroom(nbuf) < align_pad)) {
  1119. DP_STATS_INC(vdev,
  1120. tx_i.dropped.headroom_insufficient, 1);
  1121. goto failure;
  1122. }
  1123. if (qdf_nbuf_push_head(nbuf, align_pad) == NULL) {
  1124. dp_tx_err("qdf_nbuf_push_head failed");
  1125. goto failure;
  1126. }
  1127. htt_hdr_size = dp_tx_prepare_htt_metadata(vdev, nbuf,
  1128. msdu_info);
  1129. if (htt_hdr_size == 0)
  1130. goto failure;
  1131. tx_desc->length = qdf_nbuf_headlen(nbuf);
  1132. tx_desc->pkt_offset = align_pad + htt_hdr_size;
  1133. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  1134. dp_tx_traffic_end_indication_set_desc_flag(tx_desc,
  1135. msdu_info);
  1136. is_exception = 1;
  1137. tx_desc->length -= tx_desc->pkt_offset;
  1138. }
  1139. #if !TQM_BYPASS_WAR
  1140. if (is_exception || tx_exc_metadata)
  1141. #endif
  1142. {
  1143. /* Temporary WAR due to TQM VP issues */
  1144. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  1145. qdf_atomic_inc(&soc->num_tx_exception);
  1146. }
  1147. return tx_desc;
  1148. failure:
  1149. dp_tx_desc_release(soc, tx_desc, desc_pool_id);
  1150. return NULL;
  1151. }
  1152. /**
  1153. * dp_tx_prepare_desc() - Allocate and prepare Tx descriptor for multisegment
  1154. * frame
  1155. * @vdev: DP vdev handle
  1156. * @nbuf: skb
  1157. * @msdu_info: Info to be setup in MSDU descriptor and MSDU extension descriptor
  1158. * @desc_pool_id : Descriptor Pool ID
  1159. *
  1160. * Allocate and prepare Tx descriptor with msdu and fragment descritor
  1161. * information. For frames with fragments, allocate and prepare
  1162. * an MSDU extension descriptor
  1163. *
  1164. * Return: Pointer to Tx Descriptor on success,
  1165. * NULL on failure
  1166. */
  1167. static struct dp_tx_desc_s *dp_tx_prepare_desc(struct dp_vdev *vdev,
  1168. qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info,
  1169. uint8_t desc_pool_id)
  1170. {
  1171. struct dp_tx_desc_s *tx_desc;
  1172. struct dp_tx_ext_desc_elem_s *msdu_ext_desc;
  1173. struct dp_pdev *pdev = vdev->pdev;
  1174. struct dp_soc *soc = pdev->soc;
  1175. if (dp_tx_limit_check(vdev, nbuf))
  1176. return NULL;
  1177. /* Allocate software Tx descriptor */
  1178. if (nbuf->protocol == QDF_NBUF_TRAC_EAPOL_ETH_TYPE)
  1179. tx_desc = dp_tx_spcl_desc_alloc(soc, desc_pool_id);
  1180. else
  1181. tx_desc = dp_tx_desc_alloc(soc, desc_pool_id);
  1182. if (!tx_desc) {
  1183. DP_STATS_INC(vdev, tx_i.dropped.desc_na.num, 1);
  1184. return NULL;
  1185. }
  1186. dp_tx_tso_seg_history_add(soc, msdu_info->u.tso_info.curr_seg,
  1187. nbuf, tx_desc->id, DP_TX_DESC_COOKIE);
  1188. dp_tx_outstanding_inc(pdev);
  1189. /* Initialize the SW tx descriptor */
  1190. tx_desc->nbuf = nbuf;
  1191. tx_desc->frm_type = msdu_info->frm_type;
  1192. tx_desc->tx_encap_type = vdev->tx_encap_type;
  1193. tx_desc->vdev_id = vdev->vdev_id;
  1194. tx_desc->pdev = pdev;
  1195. tx_desc->pkt_offset = 0;
  1196. dp_tx_trace_pkt(soc, nbuf, tx_desc->id, vdev->vdev_id,
  1197. vdev->qdf_opmode);
  1198. /* Handle scattered frames - TSO/SG/ME */
  1199. /* Allocate and prepare an extension descriptor for scattered frames */
  1200. msdu_ext_desc = dp_tx_prepare_ext_desc(vdev, msdu_info, desc_pool_id);
  1201. if (!msdu_ext_desc) {
  1202. dp_tx_info("Tx Extension Descriptor Alloc Fail");
  1203. goto failure;
  1204. }
  1205. #if !TQM_BYPASS_WAR
  1206. if (qdf_unlikely(msdu_info->exception_fw) ||
  1207. dp_tx_is_nbuf_marked_exception(soc, nbuf))
  1208. #endif
  1209. {
  1210. /* Temporary WAR due to TQM VP issues */
  1211. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  1212. qdf_atomic_inc(&soc->num_tx_exception);
  1213. }
  1214. tx_desc->msdu_ext_desc = msdu_ext_desc;
  1215. tx_desc->flags |= DP_TX_DESC_FLAG_FRAG;
  1216. msdu_ext_desc->tso_desc = msdu_info->u.tso_info.curr_seg;
  1217. msdu_ext_desc->tso_num_desc = msdu_info->u.tso_info.tso_num_seg_list;
  1218. tx_desc->dma_addr = msdu_ext_desc->paddr;
  1219. if (msdu_ext_desc->flags & DP_TX_EXT_DESC_FLAG_METADATA_VALID)
  1220. tx_desc->length = HAL_TX_EXT_DESC_WITH_META_DATA;
  1221. else
  1222. tx_desc->length = HAL_TX_EXTENSION_DESC_LEN_BYTES;
  1223. return tx_desc;
  1224. failure:
  1225. dp_tx_desc_release(soc, tx_desc, desc_pool_id);
  1226. return NULL;
  1227. }
  1228. /**
  1229. * dp_tx_prepare_raw() - Prepare RAW packet TX
  1230. * @vdev: DP vdev handle
  1231. * @nbuf: buffer pointer
  1232. * @seg_info: Pointer to Segment info Descriptor to be prepared
  1233. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension
  1234. * descriptor
  1235. *
  1236. * Return:
  1237. */
  1238. static qdf_nbuf_t dp_tx_prepare_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1239. struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
  1240. {
  1241. qdf_nbuf_t curr_nbuf = NULL;
  1242. uint16_t total_len = 0;
  1243. qdf_dma_addr_t paddr;
  1244. int32_t i;
  1245. int32_t mapped_buf_num = 0;
  1246. struct dp_tx_sg_info_s *sg_info = &msdu_info->u.sg_info;
  1247. qdf_dot3_qosframe_t *qos_wh = (qdf_dot3_qosframe_t *) nbuf->data;
  1248. DP_STATS_INC_PKT(vdev, tx_i.raw.raw_pkt, 1, qdf_nbuf_len(nbuf));
  1249. /* Continue only if frames are of DATA type */
  1250. if (!DP_FRAME_IS_DATA(qos_wh)) {
  1251. DP_STATS_INC(vdev, tx_i.raw.invalid_raw_pkt_datatype, 1);
  1252. dp_tx_debug("Pkt. recd is of not data type");
  1253. goto error;
  1254. }
  1255. /* SWAR for HW: Enable WEP bit in the AMSDU frames for RAW mode */
  1256. if (vdev->raw_mode_war &&
  1257. (qos_wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) &&
  1258. (qos_wh->i_qos[0] & IEEE80211_QOS_AMSDU))
  1259. qos_wh->i_fc[1] |= IEEE80211_FC1_WEP;
  1260. for (curr_nbuf = nbuf, i = 0; curr_nbuf;
  1261. curr_nbuf = qdf_nbuf_next(curr_nbuf), i++) {
  1262. /*
  1263. * Number of nbuf's must not exceed the size of the frags
  1264. * array in seg_info.
  1265. */
  1266. if (i >= DP_TX_MAX_NUM_FRAGS) {
  1267. dp_err_rl("nbuf cnt exceeds the max number of segs");
  1268. DP_STATS_INC(vdev, tx_i.raw.num_frags_overflow_err, 1);
  1269. goto error;
  1270. }
  1271. if (QDF_STATUS_SUCCESS !=
  1272. qdf_nbuf_map_nbytes_single(vdev->osdev,
  1273. curr_nbuf,
  1274. QDF_DMA_TO_DEVICE,
  1275. curr_nbuf->len)) {
  1276. dp_tx_err("%s dma map error ", __func__);
  1277. DP_STATS_INC(vdev, tx_i.raw.dma_map_error, 1);
  1278. goto error;
  1279. }
  1280. /* Update the count of mapped nbuf's */
  1281. mapped_buf_num++;
  1282. paddr = qdf_nbuf_get_frag_paddr(curr_nbuf, 0);
  1283. seg_info->frags[i].paddr_lo = paddr;
  1284. seg_info->frags[i].paddr_hi = ((uint64_t)paddr >> 32);
  1285. seg_info->frags[i].len = qdf_nbuf_len(curr_nbuf);
  1286. seg_info->frags[i].vaddr = (void *) curr_nbuf;
  1287. total_len += qdf_nbuf_len(curr_nbuf);
  1288. }
  1289. seg_info->frag_cnt = i;
  1290. seg_info->total_len = total_len;
  1291. seg_info->next = NULL;
  1292. sg_info->curr_seg = seg_info;
  1293. msdu_info->frm_type = dp_tx_frm_raw;
  1294. msdu_info->num_seg = 1;
  1295. return nbuf;
  1296. error:
  1297. i = 0;
  1298. while (nbuf) {
  1299. curr_nbuf = nbuf;
  1300. if (i < mapped_buf_num) {
  1301. qdf_nbuf_unmap_nbytes_single(vdev->osdev, curr_nbuf,
  1302. QDF_DMA_TO_DEVICE,
  1303. curr_nbuf->len);
  1304. i++;
  1305. }
  1306. nbuf = qdf_nbuf_next(nbuf);
  1307. qdf_nbuf_free(curr_nbuf);
  1308. }
  1309. return NULL;
  1310. }
  1311. /**
  1312. * dp_tx_raw_prepare_unset() - unmap the chain of nbufs belonging to RAW frame.
  1313. * @soc: DP soc handle
  1314. * @nbuf: Buffer pointer
  1315. *
  1316. * unmap the chain of nbufs that belong to this RAW frame.
  1317. *
  1318. * Return: None
  1319. */
  1320. static void dp_tx_raw_prepare_unset(struct dp_soc *soc,
  1321. qdf_nbuf_t nbuf)
  1322. {
  1323. qdf_nbuf_t cur_nbuf = nbuf;
  1324. do {
  1325. qdf_nbuf_unmap_nbytes_single(soc->osdev, cur_nbuf,
  1326. QDF_DMA_TO_DEVICE,
  1327. cur_nbuf->len);
  1328. cur_nbuf = qdf_nbuf_next(cur_nbuf);
  1329. } while (cur_nbuf);
  1330. }
  1331. #ifdef VDEV_PEER_PROTOCOL_COUNT
  1332. void dp_vdev_peer_stats_update_protocol_cnt_tx(struct dp_vdev *vdev_hdl,
  1333. qdf_nbuf_t nbuf)
  1334. {
  1335. qdf_nbuf_t nbuf_local;
  1336. struct dp_vdev *vdev_local = vdev_hdl;
  1337. do {
  1338. if (qdf_likely(!((vdev_local)->peer_protocol_count_track)))
  1339. break;
  1340. nbuf_local = nbuf;
  1341. if (qdf_unlikely(((vdev_local)->tx_encap_type) ==
  1342. htt_cmn_pkt_type_raw))
  1343. break;
  1344. else if (qdf_unlikely(qdf_nbuf_is_nonlinear((nbuf_local))))
  1345. break;
  1346. else if (qdf_nbuf_is_tso((nbuf_local)))
  1347. break;
  1348. dp_vdev_peer_stats_update_protocol_cnt((vdev_local),
  1349. (nbuf_local),
  1350. NULL, 1, 0);
  1351. } while (0);
  1352. }
  1353. #endif
  1354. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  1355. void dp_tx_update_stats(struct dp_soc *soc,
  1356. struct dp_tx_desc_s *tx_desc,
  1357. uint8_t ring_id)
  1358. {
  1359. uint32_t stats_len = dp_tx_get_pkt_len(tx_desc);
  1360. DP_STATS_INC_PKT(soc, tx.egress[ring_id], 1, stats_len);
  1361. }
  1362. int
  1363. dp_tx_attempt_coalescing(struct dp_soc *soc, struct dp_vdev *vdev,
  1364. struct dp_tx_desc_s *tx_desc,
  1365. uint8_t tid,
  1366. struct dp_tx_msdu_info_s *msdu_info,
  1367. uint8_t ring_id)
  1368. {
  1369. struct dp_swlm *swlm = &soc->swlm;
  1370. union swlm_data swlm_query_data;
  1371. struct dp_swlm_tcl_data tcl_data;
  1372. QDF_STATUS status;
  1373. int ret;
  1374. if (!swlm->is_enabled)
  1375. return msdu_info->skip_hp_update;
  1376. tcl_data.nbuf = tx_desc->nbuf;
  1377. tcl_data.tid = tid;
  1378. tcl_data.ring_id = ring_id;
  1379. tcl_data.pkt_len = dp_tx_get_pkt_len(tx_desc);
  1380. tcl_data.num_ll_connections = vdev->num_latency_critical_conn;
  1381. swlm_query_data.tcl_data = &tcl_data;
  1382. status = dp_swlm_tcl_pre_check(soc, &tcl_data);
  1383. if (QDF_IS_STATUS_ERROR(status)) {
  1384. dp_swlm_tcl_reset_session_data(soc, ring_id);
  1385. DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
  1386. return 0;
  1387. }
  1388. ret = dp_swlm_query_policy(soc, TCL_DATA, swlm_query_data);
  1389. if (ret) {
  1390. DP_STATS_INC(swlm, tcl[ring_id].coalesce_success, 1);
  1391. } else {
  1392. DP_STATS_INC(swlm, tcl[ring_id].coalesce_fail, 1);
  1393. }
  1394. return ret;
  1395. }
  1396. void
  1397. dp_tx_ring_access_end(struct dp_soc *soc, hal_ring_handle_t hal_ring_hdl,
  1398. int coalesce)
  1399. {
  1400. if (coalesce)
  1401. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1402. else
  1403. dp_tx_hal_ring_access_end(soc, hal_ring_hdl);
  1404. }
  1405. static inline void
  1406. dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
  1407. {
  1408. if (((i + 1) < msdu_info->num_seg))
  1409. msdu_info->skip_hp_update = 1;
  1410. else
  1411. msdu_info->skip_hp_update = 0;
  1412. }
  1413. static inline void
  1414. dp_flush_tcp_hp(struct dp_soc *soc, uint8_t ring_id)
  1415. {
  1416. hal_ring_handle_t hal_ring_hdl =
  1417. dp_tx_get_hal_ring_hdl(soc, ring_id);
  1418. if (dp_tx_hal_ring_access_start(soc, hal_ring_hdl)) {
  1419. dp_err("Fillmore: SRNG access start failed");
  1420. return;
  1421. }
  1422. dp_tx_ring_access_end_wrapper(soc, hal_ring_hdl, 0);
  1423. }
  1424. static inline void
  1425. dp_tx_check_and_flush_hp(struct dp_soc *soc,
  1426. QDF_STATUS status,
  1427. struct dp_tx_msdu_info_s *msdu_info)
  1428. {
  1429. if (QDF_IS_STATUS_ERROR(status) && !msdu_info->skip_hp_update) {
  1430. dp_flush_tcp_hp(soc,
  1431. (msdu_info->tx_queue.ring_id & DP_TX_QUEUE_MASK));
  1432. }
  1433. }
  1434. #else
  1435. static inline void
  1436. dp_tx_is_hp_update_required(uint32_t i, struct dp_tx_msdu_info_s *msdu_info)
  1437. {
  1438. }
  1439. static inline void
  1440. dp_tx_check_and_flush_hp(struct dp_soc *soc,
  1441. QDF_STATUS status,
  1442. struct dp_tx_msdu_info_s *msdu_info)
  1443. {
  1444. }
  1445. #endif
  1446. #ifdef FEATURE_RUNTIME_PM
  1447. void
  1448. dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
  1449. hal_ring_handle_t hal_ring_hdl,
  1450. int coalesce)
  1451. {
  1452. int ret;
  1453. /*
  1454. * Avoid runtime get and put APIs under high throughput scenarios.
  1455. */
  1456. if (dp_get_rtpm_tput_policy_requirement(soc)) {
  1457. dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
  1458. return;
  1459. }
  1460. ret = hif_rtpm_get(HIF_RTPM_GET_ASYNC, HIF_RTPM_ID_DP);
  1461. if (QDF_IS_STATUS_SUCCESS(ret)) {
  1462. if (hif_system_pm_state_check(soc->hif_handle)) {
  1463. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1464. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1465. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1466. } else {
  1467. dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
  1468. }
  1469. hif_rtpm_put(HIF_RTPM_PUT_ASYNC, HIF_RTPM_ID_DP);
  1470. } else {
  1471. dp_runtime_get(soc);
  1472. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1473. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1474. qdf_atomic_inc(&soc->tx_pending_rtpm);
  1475. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1476. dp_runtime_put(soc);
  1477. }
  1478. }
  1479. #else
  1480. #ifdef DP_POWER_SAVE
  1481. void
  1482. dp_tx_ring_access_end_wrapper(struct dp_soc *soc,
  1483. hal_ring_handle_t hal_ring_hdl,
  1484. int coalesce)
  1485. {
  1486. if (hif_system_pm_state_check(soc->hif_handle)) {
  1487. dp_tx_hal_ring_access_end_reap(soc, hal_ring_hdl);
  1488. hal_srng_set_event(hal_ring_hdl, HAL_SRNG_FLUSH_EVENT);
  1489. hal_srng_inc_flush_cnt(hal_ring_hdl);
  1490. } else {
  1491. dp_tx_ring_access_end(soc, hal_ring_hdl, coalesce);
  1492. }
  1493. }
  1494. #endif
  1495. #endif
  1496. /**
  1497. * dp_tx_get_tid() - Obtain TID to be used for this frame
  1498. * @vdev: DP vdev handle
  1499. * @nbuf: skb
  1500. * @msdu_info: msdu descriptor
  1501. *
  1502. * Extract the DSCP or PCP information from frame and map into TID value.
  1503. *
  1504. * Return: void
  1505. */
  1506. static void dp_tx_get_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1507. struct dp_tx_msdu_info_s *msdu_info)
  1508. {
  1509. uint8_t tos = 0, dscp_tid_override = 0;
  1510. uint8_t *hdr_ptr, *L3datap;
  1511. uint8_t is_mcast = 0;
  1512. qdf_ether_header_t *eh = NULL;
  1513. qdf_ethervlan_header_t *evh = NULL;
  1514. uint16_t ether_type;
  1515. qdf_llc_t *llcHdr;
  1516. struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
  1517. DP_TX_TID_OVERRIDE(msdu_info, nbuf);
  1518. if (qdf_likely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
  1519. eh = (qdf_ether_header_t *)nbuf->data;
  1520. hdr_ptr = (uint8_t *)(eh->ether_dhost);
  1521. L3datap = hdr_ptr + sizeof(qdf_ether_header_t);
  1522. } else {
  1523. qdf_dot3_qosframe_t *qos_wh =
  1524. (qdf_dot3_qosframe_t *) nbuf->data;
  1525. msdu_info->tid = qos_wh->i_fc[0] & DP_FC0_SUBTYPE_QOS ?
  1526. qos_wh->i_qos[0] & DP_QOS_TID : 0;
  1527. return;
  1528. }
  1529. is_mcast = DP_FRAME_IS_MULTICAST(hdr_ptr);
  1530. ether_type = eh->ether_type;
  1531. llcHdr = (qdf_llc_t *)(nbuf->data + sizeof(qdf_ether_header_t));
  1532. /*
  1533. * Check if packet is dot3 or eth2 type.
  1534. */
  1535. if (DP_FRAME_IS_LLC(ether_type) && DP_FRAME_IS_SNAP(llcHdr)) {
  1536. ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE +
  1537. sizeof(*llcHdr));
  1538. if (ether_type == htons(ETHERTYPE_VLAN)) {
  1539. L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t) +
  1540. sizeof(*llcHdr);
  1541. ether_type = (uint16_t)*(nbuf->data + 2*QDF_MAC_ADDR_SIZE
  1542. + sizeof(*llcHdr) +
  1543. sizeof(qdf_net_vlanhdr_t));
  1544. } else {
  1545. L3datap = hdr_ptr + sizeof(qdf_ether_header_t) +
  1546. sizeof(*llcHdr);
  1547. }
  1548. } else {
  1549. if (ether_type == htons(ETHERTYPE_VLAN)) {
  1550. evh = (qdf_ethervlan_header_t *) eh;
  1551. ether_type = evh->ether_type;
  1552. L3datap = hdr_ptr + sizeof(qdf_ethervlan_header_t);
  1553. }
  1554. }
  1555. /*
  1556. * Find priority from IP TOS DSCP field
  1557. */
  1558. if (qdf_nbuf_is_ipv4_pkt(nbuf)) {
  1559. qdf_net_iphdr_t *ip = (qdf_net_iphdr_t *) L3datap;
  1560. if (qdf_nbuf_is_ipv4_dhcp_pkt(nbuf)) {
  1561. /* Only for unicast frames */
  1562. if (!is_mcast) {
  1563. /* send it on VO queue */
  1564. msdu_info->tid = DP_VO_TID;
  1565. }
  1566. } else {
  1567. /*
  1568. * IP frame: exclude ECN bits 0-1 and map DSCP bits 2-7
  1569. * from TOS byte.
  1570. */
  1571. tos = ip->ip_tos;
  1572. dscp_tid_override = 1;
  1573. }
  1574. } else if (qdf_nbuf_is_ipv6_pkt(nbuf)) {
  1575. /* TODO
  1576. * use flowlabel
  1577. *igmpmld cases to be handled in phase 2
  1578. */
  1579. unsigned long ver_pri_flowlabel;
  1580. unsigned long pri;
  1581. ver_pri_flowlabel = *(unsigned long *) L3datap;
  1582. pri = (ntohl(ver_pri_flowlabel) & IPV6_FLOWINFO_PRIORITY) >>
  1583. DP_IPV6_PRIORITY_SHIFT;
  1584. tos = pri;
  1585. dscp_tid_override = 1;
  1586. } else if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf))
  1587. msdu_info->tid = DP_VO_TID;
  1588. else if (qdf_nbuf_is_ipv4_arp_pkt(nbuf)) {
  1589. /* Only for unicast frames */
  1590. if (!is_mcast) {
  1591. /* send ucast arp on VO queue */
  1592. msdu_info->tid = DP_VO_TID;
  1593. }
  1594. }
  1595. /*
  1596. * Assign all MCAST packets to BE
  1597. */
  1598. if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
  1599. if (is_mcast) {
  1600. tos = 0;
  1601. dscp_tid_override = 1;
  1602. }
  1603. }
  1604. if (dscp_tid_override == 1) {
  1605. tos = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
  1606. msdu_info->tid = pdev->dscp_tid_map[vdev->dscp_tid_map_id][tos];
  1607. }
  1608. if (msdu_info->tid >= CDP_MAX_DATA_TIDS)
  1609. msdu_info->tid = CDP_MAX_DATA_TIDS - 1;
  1610. return;
  1611. }
  1612. /**
  1613. * dp_tx_classify_tid() - Obtain TID to be used for this frame
  1614. * @vdev: DP vdev handle
  1615. * @nbuf: skb
  1616. * @msdu_info: msdu descriptor
  1617. *
  1618. * Software based TID classification is required when more than 2 DSCP-TID
  1619. * mapping tables are needed.
  1620. * Hardware supports 2 DSCP-TID mapping tables for HKv1 and 48 for HKv2.
  1621. *
  1622. * Return: void
  1623. */
  1624. static inline void dp_tx_classify_tid(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1625. struct dp_tx_msdu_info_s *msdu_info)
  1626. {
  1627. DP_TX_TID_OVERRIDE(msdu_info, nbuf);
  1628. /*
  1629. * skip_sw_tid_classification flag will set in below cases-
  1630. * 1. vdev->dscp_tid_map_id < pdev->soc->num_hw_dscp_tid_map
  1631. * 2. hlos_tid_override enabled for vdev
  1632. * 3. mesh mode enabled for vdev
  1633. */
  1634. if (qdf_likely(vdev->skip_sw_tid_classification)) {
  1635. /* Update tid in msdu_info from skb priority */
  1636. if (qdf_unlikely(vdev->skip_sw_tid_classification
  1637. & DP_TXRX_HLOS_TID_OVERRIDE_ENABLED)) {
  1638. uint32_t tid = qdf_nbuf_get_priority(nbuf);
  1639. if (tid == DP_TX_INVALID_QOS_TAG)
  1640. return;
  1641. msdu_info->tid = tid;
  1642. return;
  1643. }
  1644. return;
  1645. }
  1646. dp_tx_get_tid(vdev, nbuf, msdu_info);
  1647. }
  1648. #ifdef FEATURE_WLAN_TDLS
  1649. /**
  1650. * dp_tx_update_tdls_flags() - Update descriptor flags for TDLS frame
  1651. * @soc: datapath SOC
  1652. * @vdev: datapath vdev
  1653. * @tx_desc: TX descriptor
  1654. *
  1655. * Return: None
  1656. */
  1657. static void dp_tx_update_tdls_flags(struct dp_soc *soc,
  1658. struct dp_vdev *vdev,
  1659. struct dp_tx_desc_s *tx_desc)
  1660. {
  1661. if (vdev) {
  1662. if (vdev->is_tdls_frame) {
  1663. tx_desc->flags |= DP_TX_DESC_FLAG_TDLS_FRAME;
  1664. vdev->is_tdls_frame = false;
  1665. }
  1666. }
  1667. }
  1668. static uint8_t dp_htt_tx_comp_get_status(struct dp_soc *soc, char *htt_desc)
  1669. {
  1670. uint8_t tx_status = HTT_TX_FW2WBM_TX_STATUS_MAX;
  1671. switch (soc->arch_id) {
  1672. case CDP_ARCH_TYPE_LI:
  1673. tx_status = HTT_TX_WBM_COMPLETION_V2_TX_STATUS_GET(htt_desc[0]);
  1674. break;
  1675. case CDP_ARCH_TYPE_BE:
  1676. tx_status = HTT_TX_WBM_COMPLETION_V3_TX_STATUS_GET(htt_desc[0]);
  1677. break;
  1678. case CDP_ARCH_TYPE_RH:
  1679. {
  1680. uint32_t *msg_word = (uint32_t *)htt_desc;
  1681. tx_status = HTT_TX_MSDU_INFO_RELEASE_REASON_GET(
  1682. *(msg_word + 3));
  1683. }
  1684. break;
  1685. default:
  1686. dp_err("Incorrect CDP_ARCH %d", soc->arch_id);
  1687. QDF_BUG(0);
  1688. }
  1689. return tx_status;
  1690. }
  1691. /**
  1692. * dp_non_std_htt_tx_comp_free_buff() - Free the non std tx packet buffer
  1693. * @soc: dp_soc handle
  1694. * @tx_desc: TX descriptor
  1695. *
  1696. * Return: None
  1697. */
  1698. static void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
  1699. struct dp_tx_desc_s *tx_desc)
  1700. {
  1701. uint8_t tx_status = 0;
  1702. uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
  1703. qdf_nbuf_t nbuf = tx_desc->nbuf;
  1704. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id,
  1705. DP_MOD_ID_TDLS);
  1706. if (qdf_unlikely(!vdev)) {
  1707. dp_err_rl("vdev is null!");
  1708. goto error;
  1709. }
  1710. hal_tx_comp_get_htt_desc(&tx_desc->comp, htt_tx_status);
  1711. tx_status = dp_htt_tx_comp_get_status(soc, htt_tx_status);
  1712. dp_debug("vdev_id: %d tx_status: %d", tx_desc->vdev_id, tx_status);
  1713. if (vdev->tx_non_std_data_callback.func) {
  1714. qdf_nbuf_set_next(nbuf, NULL);
  1715. vdev->tx_non_std_data_callback.func(
  1716. vdev->tx_non_std_data_callback.ctxt,
  1717. nbuf, tx_status);
  1718. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
  1719. return;
  1720. } else {
  1721. dp_err_rl("callback func is null");
  1722. }
  1723. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
  1724. error:
  1725. qdf_nbuf_unmap_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE);
  1726. qdf_nbuf_free(nbuf);
  1727. }
  1728. /**
  1729. * dp_tx_msdu_single_map() - do nbuf map
  1730. * @vdev: DP vdev handle
  1731. * @tx_desc: DP TX descriptor pointer
  1732. * @nbuf: skb pointer
  1733. *
  1734. * For TDLS frame, use qdf_nbuf_map_single() to align with the unmap
  1735. * operation done in other component.
  1736. *
  1737. * Return: QDF_STATUS
  1738. */
  1739. static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
  1740. struct dp_tx_desc_s *tx_desc,
  1741. qdf_nbuf_t nbuf)
  1742. {
  1743. if (qdf_likely(!(tx_desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME)))
  1744. return qdf_nbuf_map_nbytes_single(vdev->osdev,
  1745. nbuf,
  1746. QDF_DMA_TO_DEVICE,
  1747. nbuf->len);
  1748. else
  1749. return qdf_nbuf_map_single(vdev->osdev, nbuf,
  1750. QDF_DMA_TO_DEVICE);
  1751. }
  1752. #else
  1753. static inline void dp_tx_update_tdls_flags(struct dp_soc *soc,
  1754. struct dp_vdev *vdev,
  1755. struct dp_tx_desc_s *tx_desc)
  1756. {
  1757. }
  1758. static inline void dp_non_std_htt_tx_comp_free_buff(struct dp_soc *soc,
  1759. struct dp_tx_desc_s *tx_desc)
  1760. {
  1761. }
  1762. static inline QDF_STATUS dp_tx_msdu_single_map(struct dp_vdev *vdev,
  1763. struct dp_tx_desc_s *tx_desc,
  1764. qdf_nbuf_t nbuf)
  1765. {
  1766. return qdf_nbuf_map_nbytes_single(vdev->osdev,
  1767. nbuf,
  1768. QDF_DMA_TO_DEVICE,
  1769. nbuf->len);
  1770. }
  1771. #endif
  1772. static inline
  1773. qdf_dma_addr_t dp_tx_nbuf_map_regular(struct dp_vdev *vdev,
  1774. struct dp_tx_desc_s *tx_desc,
  1775. qdf_nbuf_t nbuf)
  1776. {
  1777. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  1778. ret = dp_tx_msdu_single_map(vdev, tx_desc, nbuf);
  1779. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret)))
  1780. return 0;
  1781. return qdf_nbuf_mapped_paddr_get(nbuf);
  1782. }
  1783. static inline
  1784. void dp_tx_nbuf_unmap_regular(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1785. {
  1786. qdf_nbuf_unmap_nbytes_single_paddr(soc->osdev,
  1787. desc->nbuf,
  1788. desc->dma_addr,
  1789. QDF_DMA_TO_DEVICE,
  1790. desc->length);
  1791. }
  1792. #ifdef QCA_DP_TX_RMNET_OPTIMIZATION
  1793. static inline bool
  1794. is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
  1795. {
  1796. struct net_device *ingress_dev;
  1797. skb_frag_t *frag;
  1798. uint16_t buf_len = 0;
  1799. uint16_t linear_data_len = 0;
  1800. uint8_t *payload_addr = NULL;
  1801. ingress_dev = dev_get_by_index(dev_net(nbuf->dev), nbuf->skb_iif);
  1802. if (!ingress_dev)
  1803. return false;
  1804. if ((ingress_dev->priv_flags & IFF_PHONY_HEADROOM)) {
  1805. qdf_net_if_release_dev((struct qdf_net_if *)ingress_dev);
  1806. frag = &(skb_shinfo(nbuf)->frags[0]);
  1807. buf_len = skb_frag_size(frag);
  1808. payload_addr = (uint8_t *)skb_frag_address(frag);
  1809. linear_data_len = skb_headlen(nbuf);
  1810. buf_len += linear_data_len;
  1811. payload_addr = payload_addr - linear_data_len;
  1812. memcpy(payload_addr, nbuf->data, linear_data_len);
  1813. msdu_info->frm_type = dp_tx_frm_rmnet;
  1814. msdu_info->buf_len = buf_len;
  1815. msdu_info->payload_addr = payload_addr;
  1816. return true;
  1817. }
  1818. qdf_net_if_release_dev((struct qdf_net_if *)ingress_dev);
  1819. return false;
  1820. }
  1821. static inline
  1822. qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
  1823. struct dp_tx_desc_s *tx_desc)
  1824. {
  1825. qdf_dma_addr_t paddr;
  1826. paddr = (qdf_dma_addr_t)qdf_mem_virt_to_phys(msdu_info->payload_addr);
  1827. tx_desc->length = msdu_info->buf_len;
  1828. qdf_nbuf_dma_clean_range((void *)msdu_info->payload_addr,
  1829. (void *)(msdu_info->payload_addr +
  1830. msdu_info->buf_len));
  1831. tx_desc->flags |= DP_TX_DESC_FLAG_RMNET;
  1832. return paddr;
  1833. }
  1834. #else
  1835. static inline bool
  1836. is_nbuf_frm_rmnet(qdf_nbuf_t nbuf, struct dp_tx_msdu_info_s *msdu_info)
  1837. {
  1838. return false;
  1839. }
  1840. static inline
  1841. qdf_dma_addr_t dp_tx_rmnet_nbuf_map(struct dp_tx_msdu_info_s *msdu_info,
  1842. struct dp_tx_desc_s *tx_desc)
  1843. {
  1844. return 0;
  1845. }
  1846. #endif
  1847. #if defined(QCA_DP_TX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  1848. static inline
  1849. qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
  1850. struct dp_tx_desc_s *tx_desc,
  1851. qdf_nbuf_t nbuf)
  1852. {
  1853. if (qdf_likely(tx_desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
  1854. qdf_nbuf_dma_clean_range((void *)nbuf->data,
  1855. (void *)(nbuf->data + nbuf->len));
  1856. return (qdf_dma_addr_t)qdf_mem_virt_to_phys(nbuf->data);
  1857. } else {
  1858. return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
  1859. }
  1860. }
  1861. static inline
  1862. void dp_tx_nbuf_unmap(struct dp_soc *soc,
  1863. struct dp_tx_desc_s *desc)
  1864. {
  1865. if (qdf_unlikely(!(desc->flags &
  1866. (DP_TX_DESC_FLAG_SIMPLE | DP_TX_DESC_FLAG_RMNET))))
  1867. return dp_tx_nbuf_unmap_regular(soc, desc);
  1868. }
  1869. #else
  1870. static inline
  1871. qdf_dma_addr_t dp_tx_nbuf_map(struct dp_vdev *vdev,
  1872. struct dp_tx_desc_s *tx_desc,
  1873. qdf_nbuf_t nbuf)
  1874. {
  1875. return dp_tx_nbuf_map_regular(vdev, tx_desc, nbuf);
  1876. }
  1877. static inline
  1878. void dp_tx_nbuf_unmap(struct dp_soc *soc,
  1879. struct dp_tx_desc_s *desc)
  1880. {
  1881. return dp_tx_nbuf_unmap_regular(soc, desc);
  1882. }
  1883. #endif
  1884. #if defined(WLAN_TX_PKT_CAPTURE_ENH) || defined(FEATURE_PERPKT_INFO)
  1885. static inline
  1886. void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1887. {
  1888. if (qdf_likely(!(desc->flags & DP_TX_DESC_FLAG_UNMAP_DONE))) {
  1889. dp_tx_nbuf_unmap(soc, desc);
  1890. desc->flags |= DP_TX_DESC_FLAG_UNMAP_DONE;
  1891. }
  1892. }
  1893. static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1894. {
  1895. if (qdf_likely(!(desc->flags & DP_TX_DESC_FLAG_UNMAP_DONE)))
  1896. dp_tx_nbuf_unmap(soc, desc);
  1897. }
  1898. #else
  1899. static inline
  1900. void dp_tx_enh_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1901. {
  1902. }
  1903. static inline void dp_tx_unmap(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  1904. {
  1905. dp_tx_nbuf_unmap(soc, desc);
  1906. }
  1907. #endif
  1908. #ifdef MESH_MODE_SUPPORT
  1909. /**
  1910. * dp_tx_update_mesh_flags() - Update descriptor flags for mesh VAP
  1911. * @soc: datapath SOC
  1912. * @vdev: datapath vdev
  1913. * @tx_desc: TX descriptor
  1914. *
  1915. * Return: None
  1916. */
  1917. static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
  1918. struct dp_vdev *vdev,
  1919. struct dp_tx_desc_s *tx_desc)
  1920. {
  1921. if (qdf_unlikely(vdev->mesh_vdev))
  1922. tx_desc->flags |= DP_TX_DESC_FLAG_MESH_MODE;
  1923. }
  1924. /**
  1925. * dp_mesh_tx_comp_free_buff() - Free the mesh tx packet buffer
  1926. * @soc: dp_soc handle
  1927. * @tx_desc: TX descriptor
  1928. * @delayed_free: delay the nbuf free
  1929. *
  1930. * Return: nbuf to be freed late
  1931. */
  1932. static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
  1933. struct dp_tx_desc_s *tx_desc,
  1934. bool delayed_free)
  1935. {
  1936. qdf_nbuf_t nbuf = tx_desc->nbuf;
  1937. struct dp_vdev *vdev = NULL;
  1938. vdev = dp_vdev_get_ref_by_id(soc, tx_desc->vdev_id, DP_MOD_ID_MESH);
  1939. if (tx_desc->flags & DP_TX_DESC_FLAG_TO_FW) {
  1940. if (vdev)
  1941. DP_STATS_INC(vdev, tx_i.mesh.completion_fw, 1);
  1942. if (delayed_free)
  1943. return nbuf;
  1944. qdf_nbuf_free(nbuf);
  1945. } else {
  1946. if (vdev && vdev->osif_tx_free_ext) {
  1947. vdev->osif_tx_free_ext((nbuf));
  1948. } else {
  1949. if (delayed_free)
  1950. return nbuf;
  1951. qdf_nbuf_free(nbuf);
  1952. }
  1953. }
  1954. if (vdev)
  1955. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
  1956. return NULL;
  1957. }
  1958. #else
  1959. static inline void dp_tx_update_mesh_flags(struct dp_soc *soc,
  1960. struct dp_vdev *vdev,
  1961. struct dp_tx_desc_s *tx_desc)
  1962. {
  1963. }
  1964. static inline qdf_nbuf_t dp_mesh_tx_comp_free_buff(struct dp_soc *soc,
  1965. struct dp_tx_desc_s *tx_desc,
  1966. bool delayed_free)
  1967. {
  1968. return NULL;
  1969. }
  1970. #endif
  1971. int dp_tx_frame_is_drop(struct dp_vdev *vdev, uint8_t *srcmac, uint8_t *dstmac)
  1972. {
  1973. struct dp_pdev *pdev = NULL;
  1974. struct dp_ast_entry *src_ast_entry = NULL;
  1975. struct dp_ast_entry *dst_ast_entry = NULL;
  1976. struct dp_soc *soc = NULL;
  1977. qdf_assert(vdev);
  1978. pdev = vdev->pdev;
  1979. qdf_assert(pdev);
  1980. soc = pdev->soc;
  1981. dst_ast_entry = dp_peer_ast_hash_find_by_pdevid
  1982. (soc, dstmac, vdev->pdev->pdev_id);
  1983. src_ast_entry = dp_peer_ast_hash_find_by_pdevid
  1984. (soc, srcmac, vdev->pdev->pdev_id);
  1985. if (dst_ast_entry && src_ast_entry) {
  1986. if (dst_ast_entry->peer_id ==
  1987. src_ast_entry->peer_id)
  1988. return 1;
  1989. }
  1990. return 0;
  1991. }
  1992. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  1993. defined(WLAN_MCAST_MLO)
  1994. /* MLO peer id for reinject*/
  1995. #define DP_MLO_MCAST_REINJECT_PEER_ID 0XFFFD
  1996. /* MLO vdev id inc offset */
  1997. #define DP_MLO_VDEV_ID_OFFSET 0x80
  1998. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1999. static inline bool
  2000. dp_tx_wds_ext_check(struct cdp_tx_exception_metadata *tx_exc_metadata)
  2001. {
  2002. if (tx_exc_metadata && tx_exc_metadata->is_wds_extended)
  2003. return true;
  2004. return false;
  2005. }
  2006. #else
  2007. static inline bool
  2008. dp_tx_wds_ext_check(struct cdp_tx_exception_metadata *tx_exc_metadata)
  2009. {
  2010. return false;
  2011. }
  2012. #endif
  2013. static inline void
  2014. dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  2015. struct cdp_tx_exception_metadata *tx_exc_metadata)
  2016. {
  2017. /* wds ext enabled will not set the TO_FW bit */
  2018. if (dp_tx_wds_ext_check(tx_exc_metadata))
  2019. return;
  2020. if (!(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW)) {
  2021. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  2022. qdf_atomic_inc(&soc->num_tx_exception);
  2023. }
  2024. }
  2025. static inline void
  2026. dp_tx_update_mcast_param(uint16_t peer_id,
  2027. uint16_t *htt_tcl_metadata,
  2028. struct dp_vdev *vdev,
  2029. struct dp_tx_msdu_info_s *msdu_info)
  2030. {
  2031. if (peer_id == DP_MLO_MCAST_REINJECT_PEER_ID) {
  2032. *htt_tcl_metadata = 0;
  2033. DP_TX_TCL_METADATA_TYPE_SET(
  2034. *htt_tcl_metadata,
  2035. HTT_TCL_METADATA_V2_TYPE_GLOBAL_SEQ_BASED);
  2036. HTT_TX_TCL_METADATA_GLBL_SEQ_NO_SET(*htt_tcl_metadata,
  2037. msdu_info->gsn);
  2038. msdu_info->vdev_id = vdev->vdev_id + DP_MLO_VDEV_ID_OFFSET;
  2039. HTT_TX_TCL_METADATA_GLBL_SEQ_HOST_INSPECTED_SET(
  2040. *htt_tcl_metadata, 1);
  2041. } else {
  2042. msdu_info->vdev_id = vdev->vdev_id;
  2043. }
  2044. }
  2045. #else
  2046. static inline void
  2047. dp_tx_bypass_reinjection(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  2048. struct cdp_tx_exception_metadata *tx_exc_metadata)
  2049. {
  2050. }
  2051. static inline void
  2052. dp_tx_update_mcast_param(uint16_t peer_id,
  2053. uint16_t *htt_tcl_metadata,
  2054. struct dp_vdev *vdev,
  2055. struct dp_tx_msdu_info_s *msdu_info)
  2056. {
  2057. }
  2058. #endif
  2059. #ifdef DP_TX_SW_DROP_STATS_INC
  2060. static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
  2061. qdf_nbuf_t nbuf,
  2062. enum cdp_tx_sw_drop drop_code)
  2063. {
  2064. /* EAPOL Drop stats */
  2065. if (qdf_nbuf_is_ipv4_eapol_pkt(nbuf)) {
  2066. switch (drop_code) {
  2067. case TX_DESC_ERR:
  2068. DP_STATS_INC(pdev, eap_drop_stats.tx_desc_err, 1);
  2069. break;
  2070. case TX_HAL_RING_ACCESS_ERR:
  2071. DP_STATS_INC(pdev,
  2072. eap_drop_stats.tx_hal_ring_access_err, 1);
  2073. break;
  2074. case TX_DMA_MAP_ERR:
  2075. DP_STATS_INC(pdev, eap_drop_stats.tx_dma_map_err, 1);
  2076. break;
  2077. case TX_HW_ENQUEUE:
  2078. DP_STATS_INC(pdev, eap_drop_stats.tx_hw_enqueue, 1);
  2079. break;
  2080. case TX_SW_ENQUEUE:
  2081. DP_STATS_INC(pdev, eap_drop_stats.tx_sw_enqueue, 1);
  2082. break;
  2083. default:
  2084. dp_info_rl("Invalid eapol_drop code: %d", drop_code);
  2085. break;
  2086. }
  2087. }
  2088. }
  2089. #else
  2090. static void tx_sw_drop_stats_inc(struct dp_pdev *pdev,
  2091. qdf_nbuf_t nbuf,
  2092. enum cdp_tx_sw_drop drop_code)
  2093. {
  2094. }
  2095. #endif
  2096. #ifdef WLAN_FEATURE_TX_LATENCY_STATS
  2097. /**
  2098. * dp_tx_latency_stats_enabled() - check enablement of transmit latency
  2099. * statistics
  2100. * @vdev: DP vdev handle
  2101. *
  2102. * Return: true if transmit latency statistics is enabled, false otherwise.
  2103. */
  2104. static inline bool dp_tx_latency_stats_enabled(struct dp_vdev *vdev)
  2105. {
  2106. return qdf_atomic_read(&vdev->tx_latency_cfg.enabled);
  2107. }
  2108. /**
  2109. * dp_tx_latency_stats_report_enabled() - check enablement of async report
  2110. * for transmit latency statistics
  2111. * @vdev: DP vdev handle
  2112. *
  2113. * Return: true if transmit latency statistics is enabled, false otherwise.
  2114. */
  2115. static inline bool dp_tx_latency_stats_report_enabled(struct dp_vdev *vdev)
  2116. {
  2117. return qdf_atomic_read(&vdev->tx_latency_cfg.report);
  2118. }
  2119. /**
  2120. * dp_tx_get_driver_ingress_ts() - get driver ingress timestamp from nbuf
  2121. * @vdev: DP vdev handle
  2122. * @msdu_info: pointer to MSDU Descriptor
  2123. * @nbuf: original buffer from network stack
  2124. *
  2125. * Return: None
  2126. */
  2127. static inline void
  2128. dp_tx_get_driver_ingress_ts(struct dp_vdev *vdev,
  2129. struct dp_tx_msdu_info_s *msdu_info,
  2130. qdf_nbuf_t nbuf)
  2131. {
  2132. if (!dp_tx_latency_stats_enabled(vdev))
  2133. return;
  2134. msdu_info->driver_ingress_ts = qdf_nbuf_get_tx_ts(nbuf, true);
  2135. }
  2136. /**
  2137. * dp_tx_update_ts_on_enqueued() - set driver ingress/egress timestamp in
  2138. * tx descriptor
  2139. * @vdev: DP vdev handle
  2140. * @msdu_info: pointer to MSDU Descriptor
  2141. * @tx_desc: pointer to tx descriptor
  2142. *
  2143. * Return: None
  2144. */
  2145. static inline void
  2146. dp_tx_update_ts_on_enqueued(struct dp_vdev *vdev,
  2147. struct dp_tx_msdu_info_s *msdu_info,
  2148. struct dp_tx_desc_s *tx_desc)
  2149. {
  2150. if (!dp_tx_latency_stats_enabled(vdev))
  2151. return;
  2152. tx_desc->driver_ingress_ts = msdu_info->driver_ingress_ts;
  2153. tx_desc->driver_egress_ts = qdf_ktime_real_get();
  2154. }
  2155. /**
  2156. * dp_tx_latency_stats_update_bucket() - update transmit latency statistics
  2157. * for specified type
  2158. * @vdev: DP vdev handle
  2159. * @tx_latency: pointer to transmit latency stats
  2160. * @idx: index of the statistics
  2161. * @type: transmit latency type
  2162. * @value: latency to be recorded
  2163. *
  2164. * Return: None
  2165. */
  2166. static inline void
  2167. dp_tx_latency_stats_update_bucket(struct dp_vdev *vdev,
  2168. struct dp_tx_latency *tx_latency,
  2169. int idx, enum cdp_tx_latency_type type,
  2170. uint32_t value)
  2171. {
  2172. int32_t granularity;
  2173. int lvl;
  2174. granularity =
  2175. qdf_atomic_read(&vdev->tx_latency_cfg.granularity[type]);
  2176. if (qdf_unlikely(!granularity))
  2177. return;
  2178. lvl = value / granularity;
  2179. if (lvl >= CDP_TX_LATENCY_DISTR_LV_MAX)
  2180. lvl = CDP_TX_LATENCY_DISTR_LV_MAX - 1;
  2181. qdf_atomic_inc(&tx_latency->stats[idx][type].msdus_accum);
  2182. qdf_atomic_add(value, &tx_latency->stats[idx][type].latency_accum);
  2183. qdf_atomic_inc(&tx_latency->stats[idx][type].distribution[lvl]);
  2184. }
  2185. /**
  2186. * dp_tx_latency_stats_update() - update transmit latency statistics on
  2187. * msdu transmit completed
  2188. * @soc: dp soc handle
  2189. * @txrx_peer: txrx peer handle
  2190. * @tx_desc: pointer to tx descriptor
  2191. * @ts: tx completion status
  2192. * @link_id: link id
  2193. *
  2194. * Return: None
  2195. */
  2196. static inline void
  2197. dp_tx_latency_stats_update(struct dp_soc *soc,
  2198. struct dp_txrx_peer *txrx_peer,
  2199. struct dp_tx_desc_s *tx_desc,
  2200. struct hal_tx_completion_status *ts,
  2201. uint8_t link_id)
  2202. {
  2203. uint32_t driver_latency, ring_buf_latency, hw_latency;
  2204. QDF_STATUS status = QDF_STATUS_E_INVAL;
  2205. int64_t current_ts, ingress, egress;
  2206. struct dp_vdev *vdev = txrx_peer->vdev;
  2207. struct dp_tx_latency *tx_latency;
  2208. uint8_t idx;
  2209. if (!dp_tx_latency_stats_enabled(vdev))
  2210. return;
  2211. if (!tx_desc->driver_ingress_ts || !tx_desc->driver_egress_ts)
  2212. return;
  2213. status = dp_tx_compute_hw_delay_us(ts, vdev->delta_tsf, &hw_latency);
  2214. if (QDF_IS_STATUS_ERROR(status))
  2215. return;
  2216. ingress = qdf_ktime_to_us(tx_desc->driver_ingress_ts);
  2217. egress = qdf_ktime_to_us(tx_desc->driver_egress_ts);
  2218. driver_latency = (uint32_t)(egress - ingress);
  2219. current_ts = qdf_ktime_to_us(qdf_ktime_real_get());
  2220. ring_buf_latency = (uint32_t)(current_ts - egress);
  2221. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2222. idx = tx_latency->cur_idx;
  2223. dp_tx_latency_stats_update_bucket(txrx_peer->vdev, tx_latency, idx,
  2224. CDP_TX_LATENCY_TYPE_DRIVER,
  2225. driver_latency);
  2226. dp_tx_latency_stats_update_bucket(txrx_peer->vdev, tx_latency, idx,
  2227. CDP_TX_LATENCY_TYPE_RING_BUF,
  2228. ring_buf_latency);
  2229. dp_tx_latency_stats_update_bucket(txrx_peer->vdev, tx_latency, idx,
  2230. CDP_TX_LATENCY_TYPE_HW, hw_latency);
  2231. }
  2232. /**
  2233. * dp_tx_latency_stats_clear_bucket() - clear specified transmit latency
  2234. * statistics for specified type
  2235. * @tx_latency: pointer to transmit latency stats
  2236. * @idx: index of the statistics
  2237. * @type: transmit latency type
  2238. *
  2239. * Return: None
  2240. */
  2241. static inline void
  2242. dp_tx_latency_stats_clear_bucket(struct dp_tx_latency *tx_latency,
  2243. int idx, enum cdp_tx_latency_type type)
  2244. {
  2245. int lvl;
  2246. struct dp_tx_latency_stats *stats;
  2247. stats = &tx_latency->stats[idx][type];
  2248. qdf_atomic_init(&stats->msdus_accum);
  2249. qdf_atomic_init(&stats->latency_accum);
  2250. for (lvl = 0; lvl < CDP_TX_LATENCY_DISTR_LV_MAX; lvl++)
  2251. qdf_atomic_init(&stats->distribution[lvl]);
  2252. }
  2253. /**
  2254. * dp_tx_latency_stats_clear_buckets() - clear specified transmit latency
  2255. * statistics
  2256. * @tx_latency: pointer to transmit latency stats
  2257. * @idx: index of the statistics
  2258. *
  2259. * Return: None
  2260. */
  2261. static void
  2262. dp_tx_latency_stats_clear_buckets(struct dp_tx_latency *tx_latency,
  2263. int idx)
  2264. {
  2265. int type;
  2266. for (type = 0; type < CDP_TX_LATENCY_TYPE_MAX; type++)
  2267. dp_tx_latency_stats_clear_bucket(tx_latency, idx, type);
  2268. }
  2269. /**
  2270. * dp_tx_latency_stats_update_cca() - update transmit latency statistics for
  2271. * CCA
  2272. * @soc: dp soc handle
  2273. * @peer_id: peer id
  2274. * @granularity: granularity of distribution
  2275. * @distribution: distribution of transmit latency statistics
  2276. * @avg: average of CCA latency(in microseconds) within a cycle
  2277. *
  2278. * Return: None
  2279. */
  2280. void
  2281. dp_tx_latency_stats_update_cca(struct dp_soc *soc, uint16_t peer_id,
  2282. uint32_t granularity, uint32_t *distribution,
  2283. uint32_t avg)
  2284. {
  2285. int lvl, idx;
  2286. uint8_t link_id;
  2287. struct dp_tx_latency *tx_latency;
  2288. struct dp_tx_latency_stats *stats;
  2289. int32_t cur_granularity;
  2290. struct dp_vdev *vdev;
  2291. struct dp_tx_latency_config *cfg;
  2292. struct dp_txrx_peer *txrx_peer;
  2293. struct dp_peer *peer;
  2294. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_HTT);
  2295. if (!peer) {
  2296. dp_err_rl("Peer not found peer id %d", peer_id);
  2297. return;
  2298. }
  2299. if (IS_MLO_DP_MLD_PEER(peer))
  2300. goto out;
  2301. vdev = peer->vdev;
  2302. if (!dp_tx_latency_stats_enabled(vdev))
  2303. goto out;
  2304. cfg = &vdev->tx_latency_cfg;
  2305. cur_granularity =
  2306. qdf_atomic_read(&cfg->granularity[CDP_TX_LATENCY_TYPE_CCA]);
  2307. /* in unit of ms */
  2308. cur_granularity /= 1000;
  2309. if (cur_granularity != granularity) {
  2310. dp_info_rl("invalid granularity, cur %d report %d",
  2311. cur_granularity, granularity);
  2312. goto out;
  2313. }
  2314. txrx_peer = dp_get_txrx_peer(peer);
  2315. if (qdf_unlikely(!txrx_peer)) {
  2316. dp_err_rl("txrx_peer NULL for MAC: " QDF_MAC_ADDR_FMT,
  2317. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  2318. goto out;
  2319. }
  2320. link_id = dp_get_peer_link_id(peer);
  2321. if (link_id >= txrx_peer->stats_arr_size)
  2322. goto out;
  2323. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2324. idx = tx_latency->cur_idx;
  2325. stats = &tx_latency->stats[idx][CDP_TX_LATENCY_TYPE_CCA];
  2326. qdf_atomic_set(&stats->latency_accum, avg);
  2327. qdf_atomic_set(&stats->msdus_accum, (avg ? 1 : 0));
  2328. for (lvl = 0; lvl < CDP_TX_LATENCY_DISTR_LV_MAX; lvl++)
  2329. qdf_atomic_set(&stats->distribution[lvl],
  2330. distribution[lvl]);
  2331. /* prepare for the next cycle */
  2332. tx_latency->cur_idx = 1 - idx;
  2333. dp_tx_latency_stats_clear_buckets(tx_latency, tx_latency->cur_idx);
  2334. out:
  2335. dp_peer_unref_delete(peer, DP_MOD_ID_HTT);
  2336. }
  2337. /**
  2338. * dp_tx_latency_stats_get_per_peer() - get transmit latency statistics for a
  2339. * peer
  2340. * @soc: dp soc handle
  2341. * @peer: dp peer Handle
  2342. * @latency: buffer to hold transmit latency statistics
  2343. *
  2344. * Return: QDF_STATUS
  2345. */
  2346. static QDF_STATUS
  2347. dp_tx_latency_stats_get_per_peer(struct dp_soc *soc, struct dp_peer *peer,
  2348. struct cdp_tx_latency *latency)
  2349. {
  2350. int lvl, type, link_id;
  2351. int32_t latency_accum, msdus_accum;
  2352. struct dp_vdev *vdev;
  2353. struct dp_txrx_peer *txrx_peer;
  2354. struct dp_tx_latency *tx_latency;
  2355. struct dp_tx_latency_config *cfg;
  2356. struct dp_tx_latency_stats *stats;
  2357. uint8_t last_idx;
  2358. if (unlikely(!latency))
  2359. return QDF_STATUS_E_INVAL;
  2360. /* Authenticated link/legacy peer only */
  2361. if (IS_MLO_DP_MLD_PEER(peer) || peer->state != OL_TXRX_PEER_STATE_AUTH)
  2362. return QDF_STATUS_E_INVAL;
  2363. vdev = peer->vdev;
  2364. if (peer->bss_peer && vdev->opmode == wlan_op_mode_ap)
  2365. return QDF_STATUS_E_INVAL;
  2366. txrx_peer = dp_get_txrx_peer(peer);
  2367. if (!txrx_peer)
  2368. return QDF_STATUS_E_INVAL;
  2369. link_id = dp_get_peer_link_id(peer);
  2370. if (link_id >= txrx_peer->stats_arr_size)
  2371. return QDF_STATUS_E_INVAL;
  2372. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2373. qdf_mem_zero(latency, sizeof(*latency));
  2374. qdf_mem_copy(latency->mac_remote.bytes,
  2375. peer->mac_addr.raw, QDF_MAC_ADDR_SIZE);
  2376. last_idx = 1 - tx_latency->cur_idx;
  2377. cfg = &vdev->tx_latency_cfg;
  2378. for (type = 0; type < CDP_TX_LATENCY_TYPE_MAX; type++) {
  2379. latency->stats[type].granularity =
  2380. qdf_atomic_read(&cfg->granularity[type]);
  2381. stats = &tx_latency->stats[last_idx][type];
  2382. msdus_accum = qdf_atomic_read(&stats->msdus_accum);
  2383. if (!msdus_accum)
  2384. continue;
  2385. latency_accum = qdf_atomic_read(&stats->latency_accum);
  2386. latency->stats[type].average = latency_accum / msdus_accum;
  2387. for (lvl = 0; lvl < CDP_TX_LATENCY_DISTR_LV_MAX; lvl++) {
  2388. latency->stats[type].distribution[lvl] =
  2389. qdf_atomic_read(&stats->distribution[lvl]);
  2390. }
  2391. }
  2392. return QDF_STATUS_SUCCESS;
  2393. }
  2394. /**
  2395. * dp_tx_latency_stats_get_peer_iter() - iterator to get transmit latency
  2396. * statistics for specified peer
  2397. * @soc: dp soc handle
  2398. * @peer: dp peer Handle
  2399. * @arg: list to hold transmit latency statistics for peers
  2400. *
  2401. * Return: None
  2402. */
  2403. static void
  2404. dp_tx_latency_stats_get_peer_iter(struct dp_soc *soc,
  2405. struct dp_peer *peer,
  2406. void *arg)
  2407. {
  2408. struct dp_vdev *vdev;
  2409. struct dp_txrx_peer *txrx_peer;
  2410. struct cdp_tx_latency *latency;
  2411. QDF_STATUS status;
  2412. qdf_list_t *stats_list = (qdf_list_t *)arg;
  2413. /* Authenticated link/legacy peer only */
  2414. if (IS_MLO_DP_MLD_PEER(peer) || peer->state != OL_TXRX_PEER_STATE_AUTH)
  2415. return;
  2416. txrx_peer = dp_get_txrx_peer(peer);
  2417. if (!txrx_peer)
  2418. return;
  2419. vdev = peer->vdev;
  2420. latency = qdf_mem_malloc(sizeof(*latency));
  2421. if (!latency)
  2422. return;
  2423. status = dp_tx_latency_stats_get_per_peer(soc, peer, latency);
  2424. if (QDF_IS_STATUS_ERROR(status))
  2425. goto out;
  2426. status = qdf_list_insert_back(stats_list, &latency->node);
  2427. if (QDF_IS_STATUS_ERROR(status))
  2428. goto out;
  2429. return;
  2430. out:
  2431. qdf_mem_free(latency);
  2432. }
  2433. /**
  2434. * dp_tx_latency_stats_rpt_per_vdev() - report transmit latency statistics for
  2435. * specified vdev
  2436. * @soc: dp soc handle
  2437. * @vdev: dp vdev Handle
  2438. *
  2439. * Return: None
  2440. */
  2441. static void
  2442. dp_tx_latency_stats_rpt_per_vdev(struct dp_soc *soc, struct dp_vdev *vdev)
  2443. {
  2444. qdf_list_t stats_list;
  2445. struct cdp_tx_latency *entry, *next;
  2446. if (!soc->tx_latency_cb || !dp_tx_latency_stats_report_enabled(vdev))
  2447. return;
  2448. qdf_list_create(&stats_list, 0);
  2449. dp_vdev_iterate_peer(vdev, dp_tx_latency_stats_get_peer_iter,
  2450. &stats_list, DP_MOD_ID_CDP);
  2451. if (qdf_list_empty(&stats_list))
  2452. goto out;
  2453. soc->tx_latency_cb(vdev->vdev_id, &stats_list);
  2454. qdf_list_for_each_del(&stats_list, entry, next, node) {
  2455. qdf_list_remove_node(&stats_list, &entry->node);
  2456. qdf_mem_free(entry);
  2457. }
  2458. out:
  2459. qdf_list_destroy(&stats_list);
  2460. }
  2461. /**
  2462. * dp_tx_latency_stats_report() - report transmit latency statistics for each
  2463. * vdev of specified pdev
  2464. * @soc: dp soc handle
  2465. * @pdev: dp pdev Handle
  2466. *
  2467. * Return: None
  2468. */
  2469. void dp_tx_latency_stats_report(struct dp_soc *soc, struct dp_pdev *pdev)
  2470. {
  2471. struct dp_vdev *vdev;
  2472. if (!soc->tx_latency_cb)
  2473. return;
  2474. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  2475. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  2476. dp_tx_latency_stats_rpt_per_vdev(soc, vdev);
  2477. }
  2478. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  2479. }
  2480. /**
  2481. * dp_tx_latency_stats_clear_per_peer() - iterator to clear transmit latency
  2482. * statistics for specified peer
  2483. * @soc: dp soc handle
  2484. * @peer: dp pdev Handle
  2485. * @arg: argument from iterator
  2486. *
  2487. * Return: None
  2488. */
  2489. static void
  2490. dp_tx_latency_stats_clear_per_peer(struct dp_soc *soc, struct dp_peer *peer,
  2491. void *arg)
  2492. {
  2493. int link_id;
  2494. struct dp_tx_latency *tx_latency;
  2495. struct dp_txrx_peer *txrx_peer = dp_get_txrx_peer(peer);
  2496. if (!txrx_peer) {
  2497. dp_err("no txrx peer, skip");
  2498. return;
  2499. }
  2500. for (link_id = 0; link_id < txrx_peer->stats_arr_size; link_id++) {
  2501. tx_latency = &txrx_peer->stats[link_id].tx_latency;
  2502. dp_tx_latency_stats_clear_buckets(tx_latency, 0);
  2503. dp_tx_latency_stats_clear_buckets(tx_latency, 1);
  2504. }
  2505. }
  2506. /**
  2507. * dp_tx_latency_stats_clear_per_vdev() - clear transmit latency statistics
  2508. * for specified vdev
  2509. * @vdev: dp vdev handle
  2510. *
  2511. * Return: None
  2512. */
  2513. static inline void dp_tx_latency_stats_clear_per_vdev(struct dp_vdev *vdev)
  2514. {
  2515. dp_vdev_iterate_peer(vdev, dp_tx_latency_stats_clear_per_peer,
  2516. NULL, DP_MOD_ID_CDP);
  2517. }
  2518. /**
  2519. * dp_tx_latency_stats_fetch() - fetch transmit latency statistics for
  2520. * specified link mac address
  2521. * @soc_hdl: Handle to struct dp_soc
  2522. * @vdev_id: vdev id
  2523. * @mac: link mac address of remote peer
  2524. * @latency: buffer to hold per-link transmit latency statistics
  2525. *
  2526. * Return: QDF_STATUS
  2527. */
  2528. QDF_STATUS
  2529. dp_tx_latency_stats_fetch(struct cdp_soc_t *soc_hdl,
  2530. uint8_t vdev_id, uint8_t *mac,
  2531. struct cdp_tx_latency *latency)
  2532. {
  2533. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2534. struct cdp_peer_info peer_info = {0};
  2535. struct dp_peer *peer;
  2536. QDF_STATUS status;
  2537. /* MAC addr of link peer may be the same as MLD peer,
  2538. * so specify the type as CDP_LINK_PEER_TYPE here to
  2539. * get link peer explicitly.
  2540. */
  2541. DP_PEER_INFO_PARAMS_INIT(&peer_info, vdev_id, mac, false,
  2542. CDP_LINK_PEER_TYPE);
  2543. peer = dp_peer_hash_find_wrapper(soc, &peer_info, DP_MOD_ID_CDP);
  2544. if (!peer) {
  2545. dp_err_rl("peer(vdev id %d mac " QDF_MAC_ADDR_FMT ") not found",
  2546. vdev_id, QDF_MAC_ADDR_REF(mac));
  2547. return QDF_STATUS_E_INVAL;
  2548. }
  2549. status = dp_tx_latency_stats_get_per_peer(soc, peer, latency);
  2550. dp_peer_unref_delete(peer, DP_MOD_ID_CDP);
  2551. return status;
  2552. }
  2553. /**
  2554. * dp_tx_latency_stats_config() - config transmit latency statistics for
  2555. * specified vdev
  2556. * @soc_hdl: Handle to struct dp_soc
  2557. * @vdev_id: vdev id
  2558. * @cfg: configuration for transmit latency statistics
  2559. *
  2560. * Return: QDF_STATUS
  2561. */
  2562. QDF_STATUS
  2563. dp_tx_latency_stats_config(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  2564. struct cdp_tx_latency_config *cfg)
  2565. {
  2566. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  2567. struct dp_vdev *vdev;
  2568. QDF_STATUS status = QDF_STATUS_E_INVAL;
  2569. uint32_t cca_granularity;
  2570. int type;
  2571. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
  2572. if (!vdev) {
  2573. dp_err_rl("vdev %d does not exist", vdev_id);
  2574. return QDF_STATUS_E_FAILURE;
  2575. }
  2576. /* disable to ignore upcoming updates */
  2577. qdf_atomic_set(&vdev->tx_latency_cfg.enabled, 0);
  2578. dp_tx_latency_stats_clear_per_vdev(vdev);
  2579. if (!cfg->enable)
  2580. goto send_htt;
  2581. qdf_atomic_set(&vdev->tx_latency_cfg.report, (cfg->report ? 1 : 0));
  2582. for (type = 0; type < CDP_TX_LATENCY_TYPE_MAX; type++)
  2583. qdf_atomic_set(&vdev->tx_latency_cfg.granularity[type],
  2584. cfg->granularity[type]);
  2585. send_htt:
  2586. /* in units of ms */
  2587. cca_granularity = cfg->granularity[CDP_TX_LATENCY_TYPE_CCA] / 1000;
  2588. status = dp_h2t_tx_latency_stats_cfg_msg_send(soc, vdev_id,
  2589. cfg->enable, cfg->period,
  2590. cca_granularity);
  2591. if (QDF_IS_STATUS_ERROR(status)) {
  2592. dp_err_rl("failed to send htt msg: %d", status);
  2593. goto out;
  2594. }
  2595. qdf_atomic_set(&vdev->tx_latency_cfg.enabled, (cfg->enable ? 1 : 0));
  2596. out:
  2597. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  2598. return status;
  2599. }
  2600. /**
  2601. * dp_tx_latency_stats_register_cb() - register transmit latency statistics
  2602. * callback
  2603. * @handle: Handle to struct dp_soc
  2604. * @cb: callback function for transmit latency statistics
  2605. *
  2606. * Return: QDF_STATUS
  2607. */
  2608. QDF_STATUS
  2609. dp_tx_latency_stats_register_cb(struct cdp_soc_t *handle, cdp_tx_latency_cb cb)
  2610. {
  2611. struct dp_soc *soc = (struct dp_soc *)handle;
  2612. if (!soc || !cb) {
  2613. dp_err("soc or cb is NULL");
  2614. return QDF_STATUS_E_INVAL;
  2615. }
  2616. soc->tx_latency_cb = cb;
  2617. return QDF_STATUS_SUCCESS;
  2618. }
  2619. #else
  2620. static inline void
  2621. dp_tx_get_driver_ingress_ts(struct dp_vdev *vdev,
  2622. struct dp_tx_msdu_info_s *msdu_info,
  2623. qdf_nbuf_t nbuf)
  2624. {
  2625. }
  2626. static inline void
  2627. dp_tx_update_ts_on_enqueued(struct dp_vdev *vdev,
  2628. struct dp_tx_msdu_info_s *msdu_info,
  2629. struct dp_tx_desc_s *tx_desc)
  2630. {
  2631. }
  2632. static inline void
  2633. dp_tx_latency_stats_update(struct dp_soc *soc,
  2634. struct dp_txrx_peer *txrx_peer,
  2635. struct dp_tx_desc_s *tx_desc,
  2636. struct hal_tx_completion_status *ts,
  2637. uint8_t link_id)
  2638. {
  2639. }
  2640. #endif
  2641. qdf_nbuf_t
  2642. dp_tx_send_msdu_single(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  2643. struct dp_tx_msdu_info_s *msdu_info, uint16_t peer_id,
  2644. struct cdp_tx_exception_metadata *tx_exc_metadata)
  2645. {
  2646. struct dp_pdev *pdev = vdev->pdev;
  2647. struct dp_soc *soc = pdev->soc;
  2648. struct dp_tx_desc_s *tx_desc;
  2649. QDF_STATUS status;
  2650. struct dp_tx_queue *tx_q = &(msdu_info->tx_queue);
  2651. uint16_t htt_tcl_metadata = 0;
  2652. enum cdp_tx_sw_drop drop_code = TX_MAX_DROP;
  2653. uint8_t tid = msdu_info->tid;
  2654. struct cdp_tid_tx_stats *tid_stats = NULL;
  2655. qdf_dma_addr_t paddr;
  2656. /* Setup Tx descriptor for an MSDU, and MSDU extension descriptor */
  2657. tx_desc = dp_tx_prepare_desc_single(vdev, nbuf, tx_q->desc_pool_id,
  2658. msdu_info, tx_exc_metadata);
  2659. if (!tx_desc) {
  2660. dp_err_rl("Tx_desc prepare Fail vdev_id %d vdev %pK queue %d",
  2661. vdev->vdev_id, vdev, tx_q->desc_pool_id);
  2662. drop_code = TX_DESC_ERR;
  2663. goto fail_return;
  2664. }
  2665. dp_tx_update_tdls_flags(soc, vdev, tx_desc);
  2666. if (qdf_unlikely(peer_id == DP_INVALID_PEER)) {
  2667. htt_tcl_metadata = vdev->htt_tcl_metadata;
  2668. DP_TX_TCL_METADATA_HOST_INSPECTED_SET(htt_tcl_metadata, 1);
  2669. } else if (qdf_unlikely(peer_id != HTT_INVALID_PEER)) {
  2670. DP_TX_TCL_METADATA_TYPE_SET(htt_tcl_metadata,
  2671. DP_TCL_METADATA_TYPE_PEER_BASED);
  2672. DP_TX_TCL_METADATA_PEER_ID_SET(htt_tcl_metadata,
  2673. peer_id);
  2674. dp_tx_bypass_reinjection(soc, tx_desc, tx_exc_metadata);
  2675. } else
  2676. htt_tcl_metadata = vdev->htt_tcl_metadata;
  2677. if (msdu_info->exception_fw)
  2678. DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
  2679. dp_tx_desc_update_fast_comp_flag(soc, tx_desc,
  2680. !pdev->enhanced_stats_en);
  2681. dp_tx_update_mesh_flags(soc, vdev, tx_desc);
  2682. if (qdf_unlikely(msdu_info->frm_type == dp_tx_frm_rmnet))
  2683. paddr = dp_tx_rmnet_nbuf_map(msdu_info, tx_desc);
  2684. else
  2685. paddr = dp_tx_nbuf_map(vdev, tx_desc, nbuf);
  2686. if (!paddr) {
  2687. /* Handle failure */
  2688. dp_err("qdf_nbuf_map failed");
  2689. DP_STATS_INC(vdev, tx_i.dropped.dma_error, 1);
  2690. drop_code = TX_DMA_MAP_ERR;
  2691. goto release_desc;
  2692. }
  2693. tx_desc->dma_addr = paddr;
  2694. dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
  2695. tx_desc->id, DP_TX_DESC_MAP);
  2696. dp_tx_update_mcast_param(peer_id, &htt_tcl_metadata, vdev, msdu_info);
  2697. /* Enqueue the Tx MSDU descriptor to HW for transmit */
  2698. status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
  2699. htt_tcl_metadata,
  2700. tx_exc_metadata, msdu_info);
  2701. if (status != QDF_STATUS_SUCCESS) {
  2702. dp_tx_err_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
  2703. tx_desc, tx_q->ring_id);
  2704. dp_tx_desc_history_add(soc, tx_desc->dma_addr, nbuf,
  2705. tx_desc->id, DP_TX_DESC_UNMAP);
  2706. dp_tx_nbuf_unmap(soc, tx_desc);
  2707. drop_code = TX_HW_ENQUEUE;
  2708. goto release_desc;
  2709. }
  2710. dp_tx_update_ts_on_enqueued(vdev, msdu_info, tx_desc);
  2711. tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
  2712. return NULL;
  2713. release_desc:
  2714. dp_tx_desc_release(soc, tx_desc, tx_q->desc_pool_id);
  2715. fail_return:
  2716. dp_tx_get_tid(vdev, nbuf, msdu_info);
  2717. tx_sw_drop_stats_inc(pdev, nbuf, drop_code);
  2718. tid_stats = &pdev->stats.tid_stats.
  2719. tid_tx_stats[tx_q->ring_id][tid];
  2720. tid_stats->swdrop_cnt[drop_code]++;
  2721. return nbuf;
  2722. }
  2723. /**
  2724. * dp_tdls_tx_comp_free_buff() - Free non std buffer when TDLS flag is set
  2725. * @soc: Soc handle
  2726. * @desc: software Tx descriptor to be processed
  2727. *
  2728. * Return: 0 if Success
  2729. */
  2730. #ifdef FEATURE_WLAN_TDLS
  2731. static inline int
  2732. dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  2733. {
  2734. /* If it is TDLS mgmt, don't unmap or free the frame */
  2735. if (desc->flags & DP_TX_DESC_FLAG_TDLS_FRAME) {
  2736. dp_non_std_htt_tx_comp_free_buff(soc, desc);
  2737. return 0;
  2738. }
  2739. return 1;
  2740. }
  2741. #else
  2742. static inline int
  2743. dp_tdls_tx_comp_free_buff(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  2744. {
  2745. return 1;
  2746. }
  2747. #endif
  2748. qdf_nbuf_t dp_tx_comp_free_buf(struct dp_soc *soc, struct dp_tx_desc_s *desc,
  2749. bool delayed_free)
  2750. {
  2751. qdf_nbuf_t nbuf = desc->nbuf;
  2752. enum dp_tx_event_type type = dp_tx_get_event_type(desc->flags);
  2753. /* nbuf already freed in vdev detach path */
  2754. if (!nbuf)
  2755. return NULL;
  2756. if (!dp_tdls_tx_comp_free_buff(soc, desc))
  2757. return NULL;
  2758. /* 0 : MSDU buffer, 1 : MLE */
  2759. if (desc->msdu_ext_desc) {
  2760. /* TSO free */
  2761. if (hal_tx_ext_desc_get_tso_enable(
  2762. desc->msdu_ext_desc->vaddr)) {
  2763. dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
  2764. desc->id, DP_TX_COMP_MSDU_EXT);
  2765. dp_tx_tso_seg_history_add(soc,
  2766. desc->msdu_ext_desc->tso_desc,
  2767. desc->nbuf, desc->id, type);
  2768. /* unmap eash TSO seg before free the nbuf */
  2769. dp_tx_tso_unmap_segment(soc,
  2770. desc->msdu_ext_desc->tso_desc,
  2771. desc->msdu_ext_desc->
  2772. tso_num_desc);
  2773. goto nbuf_free;
  2774. }
  2775. if (qdf_unlikely(desc->frm_type == dp_tx_frm_sg)) {
  2776. void *msdu_ext_desc = desc->msdu_ext_desc->vaddr;
  2777. qdf_dma_addr_t iova;
  2778. uint32_t frag_len;
  2779. uint32_t i;
  2780. qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf,
  2781. QDF_DMA_TO_DEVICE,
  2782. qdf_nbuf_headlen(nbuf));
  2783. for (i = 1; i < DP_TX_MAX_NUM_FRAGS; i++) {
  2784. hal_tx_ext_desc_get_frag_info(msdu_ext_desc, i,
  2785. &iova,
  2786. &frag_len);
  2787. if (!iova || !frag_len)
  2788. break;
  2789. qdf_mem_unmap_page(soc->osdev, iova, frag_len,
  2790. QDF_DMA_TO_DEVICE);
  2791. }
  2792. goto nbuf_free;
  2793. }
  2794. }
  2795. /* If it's ME frame, dont unmap the cloned nbuf's */
  2796. if ((desc->flags & DP_TX_DESC_FLAG_ME) && qdf_nbuf_is_cloned(nbuf))
  2797. goto nbuf_free;
  2798. dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf, desc->id, type);
  2799. dp_tx_unmap(soc, desc);
  2800. if (desc->flags & DP_TX_DESC_FLAG_MESH_MODE)
  2801. return dp_mesh_tx_comp_free_buff(soc, desc, delayed_free);
  2802. if (dp_tx_traffic_end_indication_enq_ind_pkt(soc, desc, nbuf))
  2803. return NULL;
  2804. nbuf_free:
  2805. if (delayed_free)
  2806. return nbuf;
  2807. qdf_nbuf_free(nbuf);
  2808. return NULL;
  2809. }
  2810. /**
  2811. * dp_tx_sg_unmap_buf() - Unmap scatter gather fragments
  2812. * @soc: DP soc handle
  2813. * @nbuf: skb
  2814. * @msdu_info: MSDU info
  2815. *
  2816. * Return: None
  2817. */
  2818. static inline void
  2819. dp_tx_sg_unmap_buf(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2820. struct dp_tx_msdu_info_s *msdu_info)
  2821. {
  2822. uint32_t cur_idx;
  2823. struct dp_tx_seg_info_s *seg = msdu_info->u.sg_info.curr_seg;
  2824. qdf_nbuf_unmap_nbytes_single(soc->osdev, nbuf, QDF_DMA_TO_DEVICE,
  2825. qdf_nbuf_headlen(nbuf));
  2826. for (cur_idx = 1; cur_idx < seg->frag_cnt; cur_idx++)
  2827. qdf_mem_unmap_page(soc->osdev, (qdf_dma_addr_t)
  2828. (seg->frags[cur_idx].paddr_lo | ((uint64_t)
  2829. seg->frags[cur_idx].paddr_hi) << 32),
  2830. seg->frags[cur_idx].len,
  2831. QDF_DMA_TO_DEVICE);
  2832. }
  2833. #if QDF_LOCK_STATS
  2834. noinline
  2835. #else
  2836. #endif
  2837. qdf_nbuf_t dp_tx_send_msdu_multiple(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  2838. struct dp_tx_msdu_info_s *msdu_info)
  2839. {
  2840. uint32_t i;
  2841. struct dp_pdev *pdev = vdev->pdev;
  2842. struct dp_soc *soc = pdev->soc;
  2843. struct dp_tx_desc_s *tx_desc;
  2844. bool is_cce_classified = false;
  2845. QDF_STATUS status;
  2846. uint16_t htt_tcl_metadata = 0;
  2847. struct dp_tx_queue *tx_q = &msdu_info->tx_queue;
  2848. struct cdp_tid_tx_stats *tid_stats = NULL;
  2849. uint8_t prep_desc_fail = 0, hw_enq_fail = 0;
  2850. if (msdu_info->frm_type == dp_tx_frm_me)
  2851. nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
  2852. i = 0;
  2853. /* Print statement to track i and num_seg */
  2854. /*
  2855. * For each segment (maps to 1 MSDU) , prepare software and hardware
  2856. * descriptors using information in msdu_info
  2857. */
  2858. while (i < msdu_info->num_seg) {
  2859. /*
  2860. * Setup Tx descriptor for an MSDU, and MSDU extension
  2861. * descriptor
  2862. */
  2863. tx_desc = dp_tx_prepare_desc(vdev, nbuf, msdu_info,
  2864. tx_q->desc_pool_id);
  2865. if (!tx_desc) {
  2866. if (msdu_info->frm_type == dp_tx_frm_me) {
  2867. prep_desc_fail++;
  2868. dp_tx_me_free_buf(pdev,
  2869. (void *)(msdu_info->u.sg_info
  2870. .curr_seg->frags[0].vaddr));
  2871. if (prep_desc_fail == msdu_info->num_seg) {
  2872. /*
  2873. * Unmap is needed only if descriptor
  2874. * preparation failed for all segments.
  2875. */
  2876. qdf_nbuf_unmap(soc->osdev,
  2877. msdu_info->u.sg_info.
  2878. curr_seg->nbuf,
  2879. QDF_DMA_TO_DEVICE);
  2880. }
  2881. /*
  2882. * Free the nbuf for the current segment
  2883. * and make it point to the next in the list.
  2884. * For me, there are as many segments as there
  2885. * are no of clients.
  2886. */
  2887. qdf_nbuf_free(msdu_info->u.sg_info
  2888. .curr_seg->nbuf);
  2889. if (msdu_info->u.sg_info.curr_seg->next) {
  2890. msdu_info->u.sg_info.curr_seg =
  2891. msdu_info->u.sg_info
  2892. .curr_seg->next;
  2893. nbuf = msdu_info->u.sg_info
  2894. .curr_seg->nbuf;
  2895. }
  2896. i++;
  2897. continue;
  2898. }
  2899. if (msdu_info->frm_type == dp_tx_frm_tso) {
  2900. dp_tx_tso_seg_history_add(
  2901. soc,
  2902. msdu_info->u.tso_info.curr_seg,
  2903. nbuf, 0, DP_TX_DESC_UNMAP);
  2904. dp_tx_tso_unmap_segment(soc,
  2905. msdu_info->u.tso_info.
  2906. curr_seg,
  2907. msdu_info->u.tso_info.
  2908. tso_num_seg_list);
  2909. if (msdu_info->u.tso_info.curr_seg->next) {
  2910. msdu_info->u.tso_info.curr_seg =
  2911. msdu_info->u.tso_info.curr_seg->next;
  2912. i++;
  2913. continue;
  2914. }
  2915. }
  2916. if (msdu_info->frm_type == dp_tx_frm_sg)
  2917. dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
  2918. goto done;
  2919. }
  2920. if (msdu_info->frm_type == dp_tx_frm_me) {
  2921. tx_desc->msdu_ext_desc->me_buffer =
  2922. (struct dp_tx_me_buf_t *)msdu_info->
  2923. u.sg_info.curr_seg->frags[0].vaddr;
  2924. tx_desc->flags |= DP_TX_DESC_FLAG_ME;
  2925. }
  2926. if (is_cce_classified)
  2927. tx_desc->flags |= DP_TX_DESC_FLAG_TO_FW;
  2928. htt_tcl_metadata = vdev->htt_tcl_metadata;
  2929. if (msdu_info->exception_fw) {
  2930. DP_TX_TCL_METADATA_VALID_HTT_SET(htt_tcl_metadata, 1);
  2931. }
  2932. dp_tx_is_hp_update_required(i, msdu_info);
  2933. /*
  2934. * For frames with multiple segments (TSO, ME), jump to next
  2935. * segment.
  2936. */
  2937. if (msdu_info->frm_type == dp_tx_frm_tso) {
  2938. if (msdu_info->u.tso_info.curr_seg->next) {
  2939. msdu_info->u.tso_info.curr_seg =
  2940. msdu_info->u.tso_info.curr_seg->next;
  2941. /*
  2942. * If this is a jumbo nbuf, then increment the
  2943. * number of nbuf users for each additional
  2944. * segment of the msdu. This will ensure that
  2945. * the skb is freed only after receiving tx
  2946. * completion for all segments of an nbuf
  2947. */
  2948. qdf_nbuf_inc_users(nbuf);
  2949. /* Check with MCL if this is needed */
  2950. /* nbuf = msdu_info->u.tso_info.curr_seg->nbuf;
  2951. */
  2952. }
  2953. }
  2954. dp_tx_update_mcast_param(DP_INVALID_PEER,
  2955. &htt_tcl_metadata,
  2956. vdev,
  2957. msdu_info);
  2958. /*
  2959. * Enqueue the Tx MSDU descriptor to HW for transmit
  2960. */
  2961. status = soc->arch_ops.tx_hw_enqueue(soc, vdev, tx_desc,
  2962. htt_tcl_metadata,
  2963. NULL, msdu_info);
  2964. dp_tx_check_and_flush_hp(soc, status, msdu_info);
  2965. if (status != QDF_STATUS_SUCCESS) {
  2966. dp_info_rl("Tx_hw_enqueue Fail tx_desc %pK queue %d",
  2967. tx_desc, tx_q->ring_id);
  2968. dp_tx_get_tid(vdev, nbuf, msdu_info);
  2969. tid_stats = &pdev->stats.tid_stats.
  2970. tid_tx_stats[tx_q->ring_id][msdu_info->tid];
  2971. tid_stats->swdrop_cnt[TX_HW_ENQUEUE]++;
  2972. if (msdu_info->frm_type == dp_tx_frm_me) {
  2973. hw_enq_fail++;
  2974. if (hw_enq_fail == msdu_info->num_seg) {
  2975. /*
  2976. * Unmap is needed only if enqueue
  2977. * failed for all segments.
  2978. */
  2979. qdf_nbuf_unmap(soc->osdev,
  2980. msdu_info->u.sg_info.
  2981. curr_seg->nbuf,
  2982. QDF_DMA_TO_DEVICE);
  2983. }
  2984. /*
  2985. * Free the nbuf for the current segment
  2986. * and make it point to the next in the list.
  2987. * For me, there are as many segments as there
  2988. * are no of clients.
  2989. */
  2990. qdf_nbuf_free(msdu_info->u.sg_info
  2991. .curr_seg->nbuf);
  2992. dp_tx_desc_release(soc, tx_desc,
  2993. tx_q->desc_pool_id);
  2994. if (msdu_info->u.sg_info.curr_seg->next) {
  2995. msdu_info->u.sg_info.curr_seg =
  2996. msdu_info->u.sg_info
  2997. .curr_seg->next;
  2998. nbuf = msdu_info->u.sg_info
  2999. .curr_seg->nbuf;
  3000. } else
  3001. break;
  3002. i++;
  3003. continue;
  3004. }
  3005. /*
  3006. * For TSO frames, the nbuf users increment done for
  3007. * the current segment has to be reverted, since the
  3008. * hw enqueue for this segment failed
  3009. */
  3010. if (msdu_info->frm_type == dp_tx_frm_tso &&
  3011. msdu_info->u.tso_info.curr_seg) {
  3012. /*
  3013. * unmap and free current,
  3014. * retransmit remaining segments
  3015. */
  3016. dp_tx_comp_free_buf(soc, tx_desc, false);
  3017. i++;
  3018. dp_tx_desc_release(soc, tx_desc,
  3019. tx_q->desc_pool_id);
  3020. continue;
  3021. }
  3022. if (msdu_info->frm_type == dp_tx_frm_sg)
  3023. dp_tx_sg_unmap_buf(soc, nbuf, msdu_info);
  3024. dp_tx_desc_release(soc, tx_desc, tx_q->desc_pool_id);
  3025. goto done;
  3026. }
  3027. dp_tx_update_ts_on_enqueued(vdev, msdu_info, tx_desc);
  3028. /*
  3029. * TODO
  3030. * if tso_info structure can be modified to have curr_seg
  3031. * as first element, following 2 blocks of code (for TSO and SG)
  3032. * can be combined into 1
  3033. */
  3034. /*
  3035. * For Multicast-Unicast converted packets,
  3036. * each converted frame (for a client) is represented as
  3037. * 1 segment
  3038. */
  3039. if ((msdu_info->frm_type == dp_tx_frm_sg) ||
  3040. (msdu_info->frm_type == dp_tx_frm_me)) {
  3041. if (msdu_info->u.sg_info.curr_seg->next) {
  3042. msdu_info->u.sg_info.curr_seg =
  3043. msdu_info->u.sg_info.curr_seg->next;
  3044. nbuf = msdu_info->u.sg_info.curr_seg->nbuf;
  3045. } else
  3046. break;
  3047. }
  3048. i++;
  3049. }
  3050. nbuf = NULL;
  3051. done:
  3052. return nbuf;
  3053. }
  3054. /**
  3055. * dp_tx_prepare_sg()- Extract SG info from NBUF and prepare msdu_info
  3056. * for SG frames
  3057. * @vdev: DP vdev handle
  3058. * @nbuf: skb
  3059. * @seg_info: Pointer to Segment info Descriptor to be prepared
  3060. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
  3061. *
  3062. * Return: NULL on success,
  3063. * nbuf when it fails to send
  3064. */
  3065. static qdf_nbuf_t dp_tx_prepare_sg(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  3066. struct dp_tx_seg_info_s *seg_info, struct dp_tx_msdu_info_s *msdu_info)
  3067. {
  3068. uint32_t cur_frag, nr_frags, i;
  3069. qdf_dma_addr_t paddr;
  3070. struct dp_tx_sg_info_s *sg_info;
  3071. sg_info = &msdu_info->u.sg_info;
  3072. nr_frags = qdf_nbuf_get_nr_frags(nbuf);
  3073. if (QDF_STATUS_SUCCESS !=
  3074. qdf_nbuf_map_nbytes_single(vdev->osdev, nbuf,
  3075. QDF_DMA_TO_DEVICE,
  3076. qdf_nbuf_headlen(nbuf))) {
  3077. dp_tx_err("dma map error");
  3078. DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
  3079. qdf_nbuf_free(nbuf);
  3080. return NULL;
  3081. }
  3082. paddr = qdf_nbuf_mapped_paddr_get(nbuf);
  3083. seg_info->frags[0].paddr_lo = paddr;
  3084. seg_info->frags[0].paddr_hi = ((uint64_t) paddr) >> 32;
  3085. seg_info->frags[0].len = qdf_nbuf_headlen(nbuf);
  3086. seg_info->frags[0].vaddr = (void *) nbuf;
  3087. for (cur_frag = 0; cur_frag < nr_frags; cur_frag++) {
  3088. if (QDF_STATUS_SUCCESS != qdf_nbuf_frag_map(vdev->osdev,
  3089. nbuf, 0,
  3090. QDF_DMA_TO_DEVICE,
  3091. cur_frag)) {
  3092. dp_tx_err("frag dma map error");
  3093. DP_STATS_INC(vdev, tx_i.sg.dma_map_error, 1);
  3094. goto map_err;
  3095. }
  3096. paddr = qdf_nbuf_get_tx_frag_paddr(nbuf);
  3097. seg_info->frags[cur_frag + 1].paddr_lo = paddr;
  3098. seg_info->frags[cur_frag + 1].paddr_hi =
  3099. ((uint64_t) paddr) >> 32;
  3100. seg_info->frags[cur_frag + 1].len =
  3101. qdf_nbuf_get_frag_size(nbuf, cur_frag);
  3102. }
  3103. seg_info->frag_cnt = (cur_frag + 1);
  3104. seg_info->total_len = qdf_nbuf_len(nbuf);
  3105. seg_info->next = NULL;
  3106. sg_info->curr_seg = seg_info;
  3107. msdu_info->frm_type = dp_tx_frm_sg;
  3108. msdu_info->num_seg = 1;
  3109. return nbuf;
  3110. map_err:
  3111. /* restore paddr into nbuf before calling unmap */
  3112. qdf_nbuf_mapped_paddr_set(nbuf,
  3113. (qdf_dma_addr_t)(seg_info->frags[0].paddr_lo |
  3114. ((uint64_t)
  3115. seg_info->frags[0].paddr_hi) << 32));
  3116. qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
  3117. QDF_DMA_TO_DEVICE,
  3118. seg_info->frags[0].len);
  3119. for (i = 1; i <= cur_frag; i++) {
  3120. qdf_mem_unmap_page(vdev->osdev, (qdf_dma_addr_t)
  3121. (seg_info->frags[i].paddr_lo | ((uint64_t)
  3122. seg_info->frags[i].paddr_hi) << 32),
  3123. seg_info->frags[i].len,
  3124. QDF_DMA_TO_DEVICE);
  3125. }
  3126. qdf_nbuf_free(nbuf);
  3127. return NULL;
  3128. }
  3129. /**
  3130. * dp_tx_add_tx_sniffer_meta_data()- Add tx_sniffer meta hdr info
  3131. * @vdev: DP vdev handle
  3132. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
  3133. * @ppdu_cookie: PPDU cookie that should be replayed in the ppdu completions
  3134. *
  3135. * Return: NULL on failure,
  3136. * nbuf when extracted successfully
  3137. */
  3138. static
  3139. void dp_tx_add_tx_sniffer_meta_data(struct dp_vdev *vdev,
  3140. struct dp_tx_msdu_info_s *msdu_info,
  3141. uint16_t ppdu_cookie)
  3142. {
  3143. struct htt_tx_msdu_desc_ext2_t *meta_data =
  3144. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  3145. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  3146. HTT_TX_MSDU_EXT2_DESC_FLAG_SEND_AS_STANDALONE_SET
  3147. (msdu_info->meta_data[5], 1);
  3148. HTT_TX_MSDU_EXT2_DESC_FLAG_HOST_OPAQUE_VALID_SET
  3149. (msdu_info->meta_data[5], 1);
  3150. HTT_TX_MSDU_EXT2_DESC_HOST_OPAQUE_COOKIE_SET
  3151. (msdu_info->meta_data[6], ppdu_cookie);
  3152. msdu_info->exception_fw = 1;
  3153. msdu_info->is_tx_sniffer = 1;
  3154. }
  3155. #ifdef MESH_MODE_SUPPORT
  3156. /**
  3157. * dp_tx_extract_mesh_meta_data()- Extract mesh meta hdr info from nbuf
  3158. * and prepare msdu_info for mesh frames.
  3159. * @vdev: DP vdev handle
  3160. * @nbuf: skb
  3161. * @msdu_info: MSDU info to be setup in MSDU descriptor and MSDU extension desc.
  3162. *
  3163. * Return: NULL on failure,
  3164. * nbuf when extracted successfully
  3165. */
  3166. static
  3167. qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  3168. struct dp_tx_msdu_info_s *msdu_info)
  3169. {
  3170. struct meta_hdr_s *mhdr;
  3171. struct htt_tx_msdu_desc_ext2_t *meta_data =
  3172. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  3173. mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
  3174. if (CB_FTYPE_MESH_TX_INFO != qdf_nbuf_get_tx_ftype(nbuf)) {
  3175. msdu_info->exception_fw = 0;
  3176. goto remove_meta_hdr;
  3177. }
  3178. msdu_info->exception_fw = 1;
  3179. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  3180. meta_data->host_tx_desc_pool = 1;
  3181. meta_data->update_peer_cache = 1;
  3182. meta_data->learning_frame = 1;
  3183. if (!(mhdr->flags & METAHDR_FLAG_AUTO_RATE)) {
  3184. meta_data->power = mhdr->power;
  3185. meta_data->mcs_mask = 1 << mhdr->rate_info[0].mcs;
  3186. meta_data->nss_mask = 1 << mhdr->rate_info[0].nss;
  3187. meta_data->pream_type = mhdr->rate_info[0].preamble_type;
  3188. meta_data->retry_limit = mhdr->rate_info[0].max_tries;
  3189. meta_data->dyn_bw = 1;
  3190. meta_data->valid_pwr = 1;
  3191. meta_data->valid_mcs_mask = 1;
  3192. meta_data->valid_nss_mask = 1;
  3193. meta_data->valid_preamble_type = 1;
  3194. meta_data->valid_retries = 1;
  3195. meta_data->valid_bw_info = 1;
  3196. }
  3197. if (mhdr->flags & METAHDR_FLAG_NOENCRYPT) {
  3198. meta_data->encrypt_type = 0;
  3199. meta_data->valid_encrypt_type = 1;
  3200. meta_data->learning_frame = 0;
  3201. }
  3202. meta_data->valid_key_flags = 1;
  3203. meta_data->key_flags = (mhdr->keyix & 0x3);
  3204. remove_meta_hdr:
  3205. if (qdf_nbuf_pull_head(nbuf, sizeof(struct meta_hdr_s)) == NULL) {
  3206. dp_tx_err("qdf_nbuf_pull_head failed");
  3207. qdf_nbuf_free(nbuf);
  3208. return NULL;
  3209. }
  3210. msdu_info->tid = qdf_nbuf_get_priority(nbuf);
  3211. dp_tx_info("Meta hdr %0x %0x %0x %0x %0x %0x"
  3212. " tid %d to_fw %d",
  3213. msdu_info->meta_data[0],
  3214. msdu_info->meta_data[1],
  3215. msdu_info->meta_data[2],
  3216. msdu_info->meta_data[3],
  3217. msdu_info->meta_data[4],
  3218. msdu_info->meta_data[5],
  3219. msdu_info->tid, msdu_info->exception_fw);
  3220. return nbuf;
  3221. }
  3222. #else
  3223. static
  3224. qdf_nbuf_t dp_tx_extract_mesh_meta_data(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  3225. struct dp_tx_msdu_info_s *msdu_info)
  3226. {
  3227. return nbuf;
  3228. }
  3229. #endif
  3230. /**
  3231. * dp_check_exc_metadata() - Checks if parameters are valid
  3232. * @tx_exc: holds all exception path parameters
  3233. *
  3234. * Return: true when all the parameters are valid else false
  3235. *
  3236. */
  3237. static bool dp_check_exc_metadata(struct cdp_tx_exception_metadata *tx_exc)
  3238. {
  3239. bool invalid_tid = (tx_exc->tid >= DP_MAX_TIDS && tx_exc->tid !=
  3240. HTT_INVALID_TID);
  3241. bool invalid_encap_type =
  3242. (tx_exc->tx_encap_type > htt_cmn_pkt_num_types &&
  3243. tx_exc->tx_encap_type != CDP_INVALID_TX_ENCAP_TYPE);
  3244. bool invalid_sec_type = (tx_exc->sec_type > cdp_num_sec_types &&
  3245. tx_exc->sec_type != CDP_INVALID_SEC_TYPE);
  3246. bool invalid_cookie = (tx_exc->is_tx_sniffer == 1 &&
  3247. tx_exc->ppdu_cookie == 0);
  3248. if (tx_exc->is_intrabss_fwd)
  3249. return true;
  3250. if (invalid_tid || invalid_encap_type || invalid_sec_type ||
  3251. invalid_cookie) {
  3252. return false;
  3253. }
  3254. return true;
  3255. }
  3256. #ifdef ATH_SUPPORT_IQUE
  3257. bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3258. {
  3259. qdf_ether_header_t *eh;
  3260. /* Mcast to Ucast Conversion*/
  3261. if (qdf_likely(!vdev->mcast_enhancement_en))
  3262. return true;
  3263. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  3264. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) &&
  3265. !DP_FRAME_IS_BROADCAST((eh)->ether_dhost)) {
  3266. dp_verbose_debug("Mcast frm for ME %pK", vdev);
  3267. qdf_nbuf_set_next(nbuf, NULL);
  3268. DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt, 1,
  3269. qdf_nbuf_len(nbuf));
  3270. if (dp_tx_prepare_send_me(vdev, nbuf) ==
  3271. QDF_STATUS_SUCCESS) {
  3272. return false;
  3273. }
  3274. if (qdf_unlikely(vdev->igmp_mcast_enhanc_en > 0)) {
  3275. if (dp_tx_prepare_send_igmp_me(vdev, nbuf) ==
  3276. QDF_STATUS_SUCCESS) {
  3277. return false;
  3278. }
  3279. }
  3280. }
  3281. return true;
  3282. }
  3283. #else
  3284. bool dp_tx_mcast_enhance(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3285. {
  3286. return true;
  3287. }
  3288. #endif
  3289. #ifdef QCA_SUPPORT_WDS_EXTENDED
  3290. /**
  3291. * dp_tx_mcast_drop() - Drop mcast frame if drop_tx_mcast is set in WDS_EXT
  3292. * @vdev: vdev handle
  3293. * @nbuf: skb
  3294. *
  3295. * Return: true if frame is dropped, false otherwise
  3296. */
  3297. static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3298. {
  3299. /* Drop tx mcast and WDS Extended feature check */
  3300. if (qdf_unlikely((vdev->drop_tx_mcast) && (vdev->wds_ext_enabled))) {
  3301. qdf_ether_header_t *eh = (qdf_ether_header_t *)
  3302. qdf_nbuf_data(nbuf);
  3303. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
  3304. DP_STATS_INC(vdev, tx_i.dropped.tx_mcast_drop, 1);
  3305. return true;
  3306. }
  3307. }
  3308. return false;
  3309. }
  3310. #else
  3311. static inline bool dp_tx_mcast_drop(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3312. {
  3313. return false;
  3314. }
  3315. #endif
  3316. /**
  3317. * dp_tx_per_pkt_vdev_id_check() - vdev id check for frame
  3318. * @nbuf: qdf_nbuf_t
  3319. * @vdev: struct dp_vdev *
  3320. *
  3321. * Allow packet for processing only if it is for peer client which is
  3322. * connected with same vap. Drop packet if client is connected to
  3323. * different vap.
  3324. *
  3325. * Return: QDF_STATUS
  3326. */
  3327. static inline QDF_STATUS
  3328. dp_tx_per_pkt_vdev_id_check(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
  3329. {
  3330. struct dp_ast_entry *dst_ast_entry = NULL;
  3331. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  3332. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost) ||
  3333. DP_FRAME_IS_BROADCAST((eh)->ether_dhost))
  3334. return QDF_STATUS_SUCCESS;
  3335. qdf_spin_lock_bh(&vdev->pdev->soc->ast_lock);
  3336. dst_ast_entry = dp_peer_ast_hash_find_by_vdevid(vdev->pdev->soc,
  3337. eh->ether_dhost,
  3338. vdev->vdev_id);
  3339. /* If there is no ast entry, return failure */
  3340. if (qdf_unlikely(!dst_ast_entry)) {
  3341. qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
  3342. return QDF_STATUS_E_FAILURE;
  3343. }
  3344. qdf_spin_unlock_bh(&vdev->pdev->soc->ast_lock);
  3345. return QDF_STATUS_SUCCESS;
  3346. }
  3347. /**
  3348. * dp_tx_nawds_handler() - NAWDS handler
  3349. *
  3350. * @soc: DP soc handle
  3351. * @vdev: DP vdev handle
  3352. * @msdu_info: msdu_info required to create HTT metadata
  3353. * @nbuf: skb
  3354. * @sa_peer_id:
  3355. *
  3356. * This API transfers the multicast frames with the peer id
  3357. * on NAWDS enabled peer.
  3358. *
  3359. * Return: none
  3360. */
  3361. void dp_tx_nawds_handler(struct dp_soc *soc, struct dp_vdev *vdev,
  3362. struct dp_tx_msdu_info_s *msdu_info,
  3363. qdf_nbuf_t nbuf, uint16_t sa_peer_id)
  3364. {
  3365. struct dp_peer *peer = NULL;
  3366. qdf_nbuf_t nbuf_clone = NULL;
  3367. uint16_t peer_id = DP_INVALID_PEER;
  3368. struct dp_txrx_peer *txrx_peer;
  3369. uint8_t link_id = 0;
  3370. /* This check avoids pkt forwarding which is entered
  3371. * in the ast table but still doesn't have valid peerid.
  3372. */
  3373. if (sa_peer_id == HTT_INVALID_PEER)
  3374. return;
  3375. qdf_spin_lock_bh(&vdev->peer_list_lock);
  3376. TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
  3377. txrx_peer = dp_get_txrx_peer(peer);
  3378. if (!txrx_peer)
  3379. continue;
  3380. if (!txrx_peer->bss_peer && txrx_peer->nawds_enabled) {
  3381. peer_id = peer->peer_id;
  3382. if (!dp_peer_is_primary_link_peer(peer))
  3383. continue;
  3384. /* In the case of wds ext peer mcast traffic will be
  3385. * sent as part of VLAN interface
  3386. */
  3387. if (dp_peer_is_wds_ext_peer(txrx_peer))
  3388. continue;
  3389. /* Multicast packets needs to be
  3390. * dropped in case of intra bss forwarding
  3391. */
  3392. if (sa_peer_id == txrx_peer->peer_id) {
  3393. dp_tx_debug("multicast packet");
  3394. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  3395. tx.nawds_mcast_drop,
  3396. 1, link_id);
  3397. continue;
  3398. }
  3399. nbuf_clone = qdf_nbuf_clone(nbuf);
  3400. if (!nbuf_clone) {
  3401. QDF_TRACE(QDF_MODULE_ID_DP,
  3402. QDF_TRACE_LEVEL_ERROR,
  3403. FL("nbuf clone failed"));
  3404. break;
  3405. }
  3406. nbuf_clone = dp_tx_send_msdu_single(vdev, nbuf_clone,
  3407. msdu_info, peer_id,
  3408. NULL);
  3409. if (nbuf_clone) {
  3410. dp_tx_debug("pkt send failed");
  3411. qdf_nbuf_free(nbuf_clone);
  3412. } else {
  3413. if (peer_id != DP_INVALID_PEER)
  3414. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
  3415. tx.nawds_mcast,
  3416. 1, qdf_nbuf_len(nbuf), link_id);
  3417. }
  3418. }
  3419. }
  3420. qdf_spin_unlock_bh(&vdev->peer_list_lock);
  3421. }
  3422. #ifdef WLAN_MCAST_MLO
  3423. static inline bool
  3424. dp_tx_check_mesh_vdev(struct dp_vdev *vdev,
  3425. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3426. {
  3427. if (!tx_exc_metadata->is_mlo_mcast && qdf_unlikely(vdev->mesh_vdev))
  3428. return true;
  3429. return false;
  3430. }
  3431. #else
  3432. static inline bool
  3433. dp_tx_check_mesh_vdev(struct dp_vdev *vdev,
  3434. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3435. {
  3436. if (qdf_unlikely(vdev->mesh_vdev))
  3437. return true;
  3438. return false;
  3439. }
  3440. #endif
  3441. qdf_nbuf_t
  3442. dp_tx_send_exception(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3443. qdf_nbuf_t nbuf,
  3444. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3445. {
  3446. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3447. struct dp_tx_msdu_info_s msdu_info;
  3448. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  3449. DP_MOD_ID_TX_EXCEPTION);
  3450. if (qdf_unlikely(!vdev))
  3451. goto fail;
  3452. qdf_mem_zero(&msdu_info, sizeof(msdu_info));
  3453. if (!tx_exc_metadata)
  3454. goto fail;
  3455. msdu_info.tid = tx_exc_metadata->tid;
  3456. dp_verbose_debug("skb "QDF_MAC_ADDR_FMT,
  3457. QDF_MAC_ADDR_REF(nbuf->data));
  3458. DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
  3459. if (qdf_unlikely(!dp_check_exc_metadata(tx_exc_metadata))) {
  3460. dp_tx_err("Invalid parameters in exception path");
  3461. goto fail;
  3462. }
  3463. /* for peer based metadata check if peer is valid */
  3464. if (tx_exc_metadata->peer_id != CDP_INVALID_PEER) {
  3465. struct dp_peer *peer = NULL;
  3466. peer = dp_peer_get_ref_by_id(vdev->pdev->soc,
  3467. tx_exc_metadata->peer_id,
  3468. DP_MOD_ID_TX_EXCEPTION);
  3469. if (qdf_unlikely(!peer)) {
  3470. DP_STATS_INC(vdev,
  3471. tx_i.dropped.invalid_peer_id_in_exc_path,
  3472. 1);
  3473. goto fail;
  3474. }
  3475. dp_peer_unref_delete(peer, DP_MOD_ID_TX_EXCEPTION);
  3476. }
  3477. /* Basic sanity checks for unsupported packets */
  3478. /* MESH mode */
  3479. if (dp_tx_check_mesh_vdev(vdev, tx_exc_metadata)) {
  3480. dp_tx_err("Mesh mode is not supported in exception path");
  3481. goto fail;
  3482. }
  3483. /*
  3484. * Classify the frame and call corresponding
  3485. * "prepare" function which extracts the segment (TSO)
  3486. * and fragmentation information (for TSO , SG, ME, or Raw)
  3487. * into MSDU_INFO structure which is later used to fill
  3488. * SW and HW descriptors.
  3489. */
  3490. if (qdf_nbuf_is_tso(nbuf)) {
  3491. dp_verbose_debug("TSO frame %pK", vdev);
  3492. DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
  3493. qdf_nbuf_len(nbuf));
  3494. if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
  3495. DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
  3496. qdf_nbuf_len(nbuf));
  3497. goto fail;
  3498. }
  3499. DP_STATS_INC(vdev, tx_i.rcvd.num, msdu_info.num_seg - 1);
  3500. goto send_multiple;
  3501. }
  3502. /* SG */
  3503. if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
  3504. struct dp_tx_seg_info_s seg_info = {0};
  3505. nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info, &msdu_info);
  3506. if (!nbuf)
  3507. goto fail;
  3508. dp_verbose_debug("non-TSO SG frame %pK", vdev);
  3509. DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
  3510. qdf_nbuf_len(nbuf));
  3511. goto send_multiple;
  3512. }
  3513. if (qdf_likely(tx_exc_metadata->is_tx_sniffer)) {
  3514. DP_STATS_INC_PKT(vdev, tx_i.sniffer_rcvd, 1,
  3515. qdf_nbuf_len(nbuf));
  3516. dp_tx_add_tx_sniffer_meta_data(vdev, &msdu_info,
  3517. tx_exc_metadata->ppdu_cookie);
  3518. }
  3519. /*
  3520. * Get HW Queue to use for this frame.
  3521. * TCL supports upto 4 DMA rings, out of which 3 rings are
  3522. * dedicated for data and 1 for command.
  3523. * "queue_id" maps to one hardware ring.
  3524. * With each ring, we also associate a unique Tx descriptor pool
  3525. * to minimize lock contention for these resources.
  3526. */
  3527. dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
  3528. DP_STATS_INC(vdev, tx_i.rcvd_per_core[msdu_info.tx_queue.desc_pool_id],
  3529. 1);
  3530. /*
  3531. * if the packet is mcast packet send through mlo_macst handler
  3532. * for all prnt_vdevs
  3533. */
  3534. if (soc->arch_ops.dp_tx_mlo_mcast_send) {
  3535. nbuf = soc->arch_ops.dp_tx_mlo_mcast_send(soc, vdev,
  3536. nbuf,
  3537. tx_exc_metadata);
  3538. if (!nbuf)
  3539. goto fail;
  3540. }
  3541. if (qdf_likely(tx_exc_metadata->is_intrabss_fwd)) {
  3542. if (qdf_unlikely(vdev->nawds_enabled)) {
  3543. /*
  3544. * This is a multicast packet
  3545. */
  3546. dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
  3547. tx_exc_metadata->peer_id);
  3548. DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
  3549. 1, qdf_nbuf_len(nbuf));
  3550. }
  3551. nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
  3552. DP_INVALID_PEER, NULL);
  3553. } else {
  3554. /*
  3555. * Check exception descriptors
  3556. */
  3557. if (dp_tx_exception_limit_check(vdev))
  3558. goto fail;
  3559. /* Single linear frame */
  3560. /*
  3561. * If nbuf is a simple linear frame, use send_single function to
  3562. * prepare direct-buffer type TCL descriptor and enqueue to TCL
  3563. * SRNG. There is no need to setup a MSDU extension descriptor.
  3564. */
  3565. nbuf = dp_tx_send_msdu_single(vdev, nbuf, &msdu_info,
  3566. tx_exc_metadata->peer_id,
  3567. tx_exc_metadata);
  3568. }
  3569. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3570. return nbuf;
  3571. send_multiple:
  3572. nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
  3573. fail:
  3574. if (vdev)
  3575. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3576. dp_verbose_debug("pkt send failed");
  3577. return nbuf;
  3578. }
  3579. qdf_nbuf_t
  3580. dp_tx_send_exception_vdev_id_check(struct cdp_soc_t *soc_hdl,
  3581. uint8_t vdev_id, qdf_nbuf_t nbuf,
  3582. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3583. {
  3584. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3585. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  3586. DP_MOD_ID_TX_EXCEPTION);
  3587. if (qdf_unlikely(!vdev))
  3588. goto fail;
  3589. if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
  3590. == QDF_STATUS_E_FAILURE)) {
  3591. DP_STATS_INC(vdev, tx_i.dropped.fail_per_pkt_vdev_id_check, 1);
  3592. goto fail;
  3593. }
  3594. /* Unref count as it will again be taken inside dp_tx_exception */
  3595. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3596. return dp_tx_send_exception(soc_hdl, vdev_id, nbuf, tx_exc_metadata);
  3597. fail:
  3598. if (vdev)
  3599. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TX_EXCEPTION);
  3600. dp_verbose_debug("pkt send failed");
  3601. return nbuf;
  3602. }
  3603. #ifdef MESH_MODE_SUPPORT
  3604. qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3605. qdf_nbuf_t nbuf)
  3606. {
  3607. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3608. struct meta_hdr_s *mhdr;
  3609. qdf_nbuf_t nbuf_mesh = NULL;
  3610. qdf_nbuf_t nbuf_clone = NULL;
  3611. struct dp_vdev *vdev;
  3612. uint8_t no_enc_frame = 0;
  3613. nbuf_mesh = qdf_nbuf_unshare(nbuf);
  3614. if (!nbuf_mesh) {
  3615. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  3616. "qdf_nbuf_unshare failed");
  3617. return nbuf;
  3618. }
  3619. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_MESH);
  3620. if (!vdev) {
  3621. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  3622. "vdev is NULL for vdev_id %d", vdev_id);
  3623. return nbuf;
  3624. }
  3625. nbuf = nbuf_mesh;
  3626. mhdr = (struct meta_hdr_s *)qdf_nbuf_data(nbuf);
  3627. if ((vdev->sec_type != cdp_sec_type_none) &&
  3628. (mhdr->flags & METAHDR_FLAG_NOENCRYPT))
  3629. no_enc_frame = 1;
  3630. if (mhdr->flags & METAHDR_FLAG_NOQOS)
  3631. qdf_nbuf_set_priority(nbuf, HTT_TX_EXT_TID_NON_QOS_MCAST_BCAST);
  3632. if ((mhdr->flags & METAHDR_FLAG_INFO_UPDATED) &&
  3633. !no_enc_frame) {
  3634. nbuf_clone = qdf_nbuf_clone(nbuf);
  3635. if (!nbuf_clone) {
  3636. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  3637. "qdf_nbuf_clone failed");
  3638. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
  3639. return nbuf;
  3640. }
  3641. qdf_nbuf_set_tx_ftype(nbuf_clone, CB_FTYPE_MESH_TX_INFO);
  3642. }
  3643. if (nbuf_clone) {
  3644. if (!dp_tx_send(soc_hdl, vdev_id, nbuf_clone)) {
  3645. DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
  3646. } else {
  3647. qdf_nbuf_free(nbuf_clone);
  3648. }
  3649. }
  3650. if (no_enc_frame)
  3651. qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_MESH_TX_INFO);
  3652. else
  3653. qdf_nbuf_set_tx_ftype(nbuf, CB_FTYPE_INVALID);
  3654. nbuf = dp_tx_send(soc_hdl, vdev_id, nbuf);
  3655. if ((!nbuf) && no_enc_frame) {
  3656. DP_STATS_INC(vdev, tx_i.mesh.exception_fw, 1);
  3657. }
  3658. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_MESH);
  3659. return nbuf;
  3660. }
  3661. #else
  3662. qdf_nbuf_t dp_tx_send_mesh(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3663. qdf_nbuf_t nbuf)
  3664. {
  3665. return dp_tx_send(soc_hdl, vdev_id, nbuf);
  3666. }
  3667. #endif
  3668. #ifdef QCA_DP_TX_NBUF_AND_NBUF_DATA_PREFETCH
  3669. static inline
  3670. void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
  3671. {
  3672. if (nbuf) {
  3673. qdf_prefetch(&nbuf->len);
  3674. qdf_prefetch(&nbuf->data);
  3675. }
  3676. }
  3677. #else
  3678. static inline
  3679. void dp_tx_prefetch_nbuf_data(qdf_nbuf_t nbuf)
  3680. {
  3681. }
  3682. #endif
  3683. #ifdef DP_UMAC_HW_RESET_SUPPORT
  3684. qdf_nbuf_t dp_tx_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3685. qdf_nbuf_t nbuf)
  3686. {
  3687. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3688. struct dp_vdev *vdev = NULL;
  3689. vdev = soc->vdev_id_map[vdev_id];
  3690. if (qdf_unlikely(!vdev))
  3691. return nbuf;
  3692. DP_STATS_INC(vdev, tx_i.dropped.drop_ingress, 1);
  3693. return nbuf;
  3694. }
  3695. qdf_nbuf_t dp_tx_exc_drop(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3696. qdf_nbuf_t nbuf,
  3697. struct cdp_tx_exception_metadata *tx_exc_metadata)
  3698. {
  3699. return dp_tx_drop(soc_hdl, vdev_id, nbuf);
  3700. }
  3701. #endif
  3702. #ifdef FEATURE_DIRECT_LINK
  3703. /**
  3704. * dp_vdev_tx_mark_to_fw() - Mark to_fw bit for the tx packet
  3705. * @nbuf: skb
  3706. * @vdev: DP vdev handle
  3707. *
  3708. * Return: None
  3709. */
  3710. static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
  3711. {
  3712. if (qdf_unlikely(vdev->to_fw))
  3713. QDF_NBUF_CB_TX_PACKET_TO_FW(nbuf) = 1;
  3714. }
  3715. #else
  3716. static inline void dp_vdev_tx_mark_to_fw(qdf_nbuf_t nbuf, struct dp_vdev *vdev)
  3717. {
  3718. }
  3719. #endif
  3720. qdf_nbuf_t dp_tx_send(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  3721. qdf_nbuf_t nbuf)
  3722. {
  3723. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3724. uint16_t peer_id = HTT_INVALID_PEER;
  3725. /*
  3726. * doing a memzero is causing additional function call overhead
  3727. * so doing static stack clearing
  3728. */
  3729. struct dp_tx_msdu_info_s msdu_info = {0};
  3730. struct dp_vdev *vdev = NULL;
  3731. qdf_nbuf_t end_nbuf = NULL;
  3732. if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
  3733. return nbuf;
  3734. /*
  3735. * dp_vdev_get_ref_by_id does does a atomic operation avoid using
  3736. * this in per packet path.
  3737. *
  3738. * As in this path vdev memory is already protected with netdev
  3739. * tx lock
  3740. */
  3741. vdev = soc->vdev_id_map[vdev_id];
  3742. if (qdf_unlikely(!vdev))
  3743. return nbuf;
  3744. dp_tx_get_driver_ingress_ts(vdev, &msdu_info, nbuf);
  3745. dp_vdev_tx_mark_to_fw(nbuf, vdev);
  3746. /*
  3747. * Set Default Host TID value to invalid TID
  3748. * (TID override disabled)
  3749. */
  3750. msdu_info.tid = HTT_TX_EXT_TID_INVALID;
  3751. DP_STATS_INC_PKT(vdev, tx_i.rcvd, 1, qdf_nbuf_len(nbuf));
  3752. if (qdf_unlikely(vdev->mesh_vdev)) {
  3753. qdf_nbuf_t nbuf_mesh = dp_tx_extract_mesh_meta_data(vdev, nbuf,
  3754. &msdu_info);
  3755. if (!nbuf_mesh) {
  3756. dp_verbose_debug("Extracting mesh metadata failed");
  3757. return nbuf;
  3758. }
  3759. nbuf = nbuf_mesh;
  3760. }
  3761. /*
  3762. * Get HW Queue to use for this frame.
  3763. * TCL supports upto 4 DMA rings, out of which 3 rings are
  3764. * dedicated for data and 1 for command.
  3765. * "queue_id" maps to one hardware ring.
  3766. * With each ring, we also associate a unique Tx descriptor pool
  3767. * to minimize lock contention for these resources.
  3768. */
  3769. dp_tx_get_queue(vdev, nbuf, &msdu_info.tx_queue);
  3770. DP_STATS_INC(vdev, tx_i.rcvd_per_core[msdu_info.tx_queue.desc_pool_id],
  3771. 1);
  3772. /*
  3773. * TCL H/W supports 2 DSCP-TID mapping tables.
  3774. * Table 1 - Default DSCP-TID mapping table
  3775. * Table 2 - 1 DSCP-TID override table
  3776. *
  3777. * If we need a different DSCP-TID mapping for this vap,
  3778. * call tid_classify to extract DSCP/ToS from frame and
  3779. * map to a TID and store in msdu_info. This is later used
  3780. * to fill in TCL Input descriptor (per-packet TID override).
  3781. */
  3782. dp_tx_classify_tid(vdev, nbuf, &msdu_info);
  3783. /*
  3784. * Classify the frame and call corresponding
  3785. * "prepare" function which extracts the segment (TSO)
  3786. * and fragmentation information (for TSO , SG, ME, or Raw)
  3787. * into MSDU_INFO structure which is later used to fill
  3788. * SW and HW descriptors.
  3789. */
  3790. if (qdf_nbuf_is_tso(nbuf)) {
  3791. dp_verbose_debug("TSO frame %pK", vdev);
  3792. DP_STATS_INC_PKT(vdev->pdev, tso_stats.num_tso_pkts, 1,
  3793. qdf_nbuf_len(nbuf));
  3794. if (dp_tx_prepare_tso(vdev, nbuf, &msdu_info)) {
  3795. DP_STATS_INC_PKT(vdev->pdev, tso_stats.dropped_host, 1,
  3796. qdf_nbuf_len(nbuf));
  3797. return nbuf;
  3798. }
  3799. DP_STATS_INC(vdev, tx_i.rcvd.num, msdu_info.num_seg - 1);
  3800. goto send_multiple;
  3801. }
  3802. /* SG */
  3803. if (qdf_unlikely(qdf_nbuf_is_nonlinear(nbuf))) {
  3804. if (qdf_nbuf_get_nr_frags(nbuf) > DP_TX_MAX_NUM_FRAGS - 1) {
  3805. if (qdf_unlikely(qdf_nbuf_linearize(nbuf)))
  3806. return nbuf;
  3807. } else {
  3808. struct dp_tx_seg_info_s seg_info = {0};
  3809. if (qdf_unlikely(is_nbuf_frm_rmnet(nbuf, &msdu_info)))
  3810. goto send_single;
  3811. nbuf = dp_tx_prepare_sg(vdev, nbuf, &seg_info,
  3812. &msdu_info);
  3813. if (!nbuf)
  3814. return NULL;
  3815. dp_verbose_debug("non-TSO SG frame %pK", vdev);
  3816. DP_STATS_INC_PKT(vdev, tx_i.sg.sg_pkt, 1,
  3817. qdf_nbuf_len(nbuf));
  3818. goto send_multiple;
  3819. }
  3820. }
  3821. if (qdf_unlikely(!dp_tx_mcast_enhance(vdev, nbuf)))
  3822. return NULL;
  3823. if (qdf_unlikely(dp_tx_mcast_drop(vdev, nbuf)))
  3824. return nbuf;
  3825. /* RAW */
  3826. if (qdf_unlikely(vdev->tx_encap_type == htt_cmn_pkt_type_raw)) {
  3827. struct dp_tx_seg_info_s seg_info = {0};
  3828. nbuf = dp_tx_prepare_raw(vdev, nbuf, &seg_info, &msdu_info);
  3829. if (!nbuf)
  3830. return NULL;
  3831. dp_verbose_debug("Raw frame %pK", vdev);
  3832. goto send_multiple;
  3833. }
  3834. if (qdf_unlikely(vdev->nawds_enabled)) {
  3835. qdf_ether_header_t *eh = (qdf_ether_header_t *)
  3836. qdf_nbuf_data(nbuf);
  3837. if (DP_FRAME_IS_MULTICAST((eh)->ether_dhost)) {
  3838. uint16_t sa_peer_id = DP_INVALID_PEER;
  3839. if (!soc->ast_offload_support) {
  3840. struct dp_ast_entry *ast_entry = NULL;
  3841. qdf_spin_lock_bh(&soc->ast_lock);
  3842. ast_entry = dp_peer_ast_hash_find_by_pdevid
  3843. (soc,
  3844. (uint8_t *)(eh->ether_shost),
  3845. vdev->pdev->pdev_id);
  3846. if (ast_entry)
  3847. sa_peer_id = ast_entry->peer_id;
  3848. qdf_spin_unlock_bh(&soc->ast_lock);
  3849. }
  3850. dp_tx_nawds_handler(soc, vdev, &msdu_info, nbuf,
  3851. sa_peer_id);
  3852. }
  3853. peer_id = DP_INVALID_PEER;
  3854. DP_STATS_INC_PKT(vdev, tx_i.nawds_mcast,
  3855. 1, qdf_nbuf_len(nbuf));
  3856. }
  3857. send_single:
  3858. /* Single linear frame */
  3859. /*
  3860. * If nbuf is a simple linear frame, use send_single function to
  3861. * prepare direct-buffer type TCL descriptor and enqueue to TCL
  3862. * SRNG. There is no need to setup a MSDU extension descriptor.
  3863. */
  3864. dp_tx_prefetch_nbuf_data(nbuf);
  3865. nbuf = dp_tx_send_msdu_single_wrapper(vdev, nbuf, &msdu_info,
  3866. peer_id, end_nbuf);
  3867. return nbuf;
  3868. send_multiple:
  3869. nbuf = dp_tx_send_msdu_multiple(vdev, nbuf, &msdu_info);
  3870. if (qdf_unlikely(nbuf && msdu_info.frm_type == dp_tx_frm_raw))
  3871. dp_tx_raw_prepare_unset(vdev->pdev->soc, nbuf);
  3872. return nbuf;
  3873. }
  3874. qdf_nbuf_t dp_tx_send_vdev_id_check(struct cdp_soc_t *soc_hdl,
  3875. uint8_t vdev_id, qdf_nbuf_t nbuf)
  3876. {
  3877. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  3878. struct dp_vdev *vdev = NULL;
  3879. if (qdf_unlikely(vdev_id >= MAX_VDEV_CNT))
  3880. return nbuf;
  3881. /*
  3882. * dp_vdev_get_ref_by_id does does a atomic operation avoid using
  3883. * this in per packet path.
  3884. *
  3885. * As in this path vdev memory is already protected with netdev
  3886. * tx lock
  3887. */
  3888. vdev = soc->vdev_id_map[vdev_id];
  3889. if (qdf_unlikely(!vdev))
  3890. return nbuf;
  3891. if (qdf_unlikely(dp_tx_per_pkt_vdev_id_check(nbuf, vdev)
  3892. == QDF_STATUS_E_FAILURE)) {
  3893. DP_STATS_INC(vdev, tx_i.dropped.fail_per_pkt_vdev_id_check, 1);
  3894. return nbuf;
  3895. }
  3896. return dp_tx_send(soc_hdl, vdev_id, nbuf);
  3897. }
  3898. #ifdef UMAC_SUPPORT_PROXY_ARP
  3899. /**
  3900. * dp_tx_proxy_arp() - Tx proxy arp handler
  3901. * @vdev: datapath vdev handle
  3902. * @nbuf: sk buffer
  3903. *
  3904. * Return: status
  3905. */
  3906. int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3907. {
  3908. if (vdev->osif_proxy_arp)
  3909. return vdev->osif_proxy_arp(vdev->osif_vdev, nbuf);
  3910. /*
  3911. * when UMAC_SUPPORT_PROXY_ARP is defined, we expect
  3912. * osif_proxy_arp has a valid function pointer assigned
  3913. * to it
  3914. */
  3915. dp_tx_err("valid function pointer for osif_proxy_arp is expected!!\n");
  3916. return QDF_STATUS_NOT_INITIALIZED;
  3917. }
  3918. #else
  3919. int dp_tx_proxy_arp(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  3920. {
  3921. return QDF_STATUS_SUCCESS;
  3922. }
  3923. #endif
  3924. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  3925. !defined(CONFIG_MLO_SINGLE_DEV)
  3926. #ifdef WLAN_MCAST_MLO
  3927. static bool
  3928. dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
  3929. struct dp_tx_desc_s *tx_desc,
  3930. qdf_nbuf_t nbuf,
  3931. uint8_t reinject_reason)
  3932. {
  3933. if (reinject_reason == HTT_TX_FW2WBM_REINJECT_REASON_MLO_MCAST) {
  3934. if (soc->arch_ops.dp_tx_mcast_handler)
  3935. soc->arch_ops.dp_tx_mcast_handler(soc, vdev, nbuf);
  3936. dp_tx_desc_release(soc, tx_desc, tx_desc->pool_id);
  3937. return true;
  3938. }
  3939. return false;
  3940. }
  3941. #else /* WLAN_MCAST_MLO */
  3942. static inline bool
  3943. dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
  3944. struct dp_tx_desc_s *tx_desc,
  3945. qdf_nbuf_t nbuf,
  3946. uint8_t reinject_reason)
  3947. {
  3948. return false;
  3949. }
  3950. #endif /* WLAN_MCAST_MLO */
  3951. #else
  3952. static inline bool
  3953. dp_tx_reinject_mlo_hdl(struct dp_soc *soc, struct dp_vdev *vdev,
  3954. struct dp_tx_desc_s *tx_desc,
  3955. qdf_nbuf_t nbuf,
  3956. uint8_t reinject_reason)
  3957. {
  3958. return false;
  3959. }
  3960. #endif
  3961. void dp_tx_reinject_handler(struct dp_soc *soc,
  3962. struct dp_vdev *vdev,
  3963. struct dp_tx_desc_s *tx_desc,
  3964. uint8_t *status,
  3965. uint8_t reinject_reason)
  3966. {
  3967. struct dp_peer *peer = NULL;
  3968. uint32_t peer_id = HTT_INVALID_PEER;
  3969. qdf_nbuf_t nbuf = tx_desc->nbuf;
  3970. qdf_nbuf_t nbuf_copy = NULL;
  3971. struct dp_tx_msdu_info_s msdu_info;
  3972. #ifdef WDS_VENDOR_EXTENSION
  3973. int is_mcast = 0, is_ucast = 0;
  3974. int num_peers_3addr = 0;
  3975. qdf_ether_header_t *eth_hdr = (qdf_ether_header_t *)(qdf_nbuf_data(nbuf));
  3976. struct ieee80211_frame_addr4 *wh = (struct ieee80211_frame_addr4 *)(qdf_nbuf_data(nbuf));
  3977. #endif
  3978. struct dp_txrx_peer *txrx_peer;
  3979. qdf_assert(vdev);
  3980. dp_tx_debug("Tx reinject path");
  3981. DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
  3982. qdf_nbuf_len(tx_desc->nbuf));
  3983. if (dp_tx_reinject_mlo_hdl(soc, vdev, tx_desc, nbuf, reinject_reason))
  3984. return;
  3985. #ifdef WDS_VENDOR_EXTENSION
  3986. if (qdf_unlikely(vdev->tx_encap_type != htt_cmn_pkt_type_raw)) {
  3987. is_mcast = (IS_MULTICAST(wh->i_addr1)) ? 1 : 0;
  3988. } else {
  3989. is_mcast = (IS_MULTICAST(eth_hdr->ether_dhost)) ? 1 : 0;
  3990. }
  3991. is_ucast = !is_mcast;
  3992. qdf_spin_lock_bh(&vdev->peer_list_lock);
  3993. TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
  3994. txrx_peer = dp_get_txrx_peer(peer);
  3995. if (!txrx_peer || txrx_peer->bss_peer)
  3996. continue;
  3997. /* Detect wds peers that use 3-addr framing for mcast.
  3998. * if there are any, the bss_peer is used to send the
  3999. * the mcast frame using 3-addr format. all wds enabled
  4000. * peers that use 4-addr framing for mcast frames will
  4001. * be duplicated and sent as 4-addr frames below.
  4002. */
  4003. if (!txrx_peer->wds_enabled ||
  4004. !txrx_peer->wds_ecm.wds_tx_mcast_4addr) {
  4005. num_peers_3addr = 1;
  4006. break;
  4007. }
  4008. }
  4009. qdf_spin_unlock_bh(&vdev->peer_list_lock);
  4010. #endif
  4011. if (qdf_unlikely(vdev->mesh_vdev)) {
  4012. DP_TX_FREE_SINGLE_BUF(vdev->pdev->soc, tx_desc->nbuf);
  4013. } else {
  4014. qdf_spin_lock_bh(&vdev->peer_list_lock);
  4015. TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
  4016. txrx_peer = dp_get_txrx_peer(peer);
  4017. if (!txrx_peer)
  4018. continue;
  4019. if ((txrx_peer->peer_id != HTT_INVALID_PEER) &&
  4020. #ifdef WDS_VENDOR_EXTENSION
  4021. /*
  4022. * . if 3-addr STA, then send on BSS Peer
  4023. * . if Peer WDS enabled and accept 4-addr mcast,
  4024. * send mcast on that peer only
  4025. * . if Peer WDS enabled and accept 4-addr ucast,
  4026. * send ucast on that peer only
  4027. */
  4028. ((txrx_peer->bss_peer && num_peers_3addr && is_mcast) ||
  4029. (txrx_peer->wds_enabled &&
  4030. ((is_mcast && txrx_peer->wds_ecm.wds_tx_mcast_4addr) ||
  4031. (is_ucast &&
  4032. txrx_peer->wds_ecm.wds_tx_ucast_4addr))))) {
  4033. #else
  4034. (txrx_peer->bss_peer &&
  4035. (dp_tx_proxy_arp(vdev, nbuf) == QDF_STATUS_SUCCESS))) {
  4036. #endif
  4037. peer_id = DP_INVALID_PEER;
  4038. nbuf_copy = qdf_nbuf_copy(nbuf);
  4039. if (!nbuf_copy) {
  4040. dp_tx_debug("nbuf copy failed");
  4041. break;
  4042. }
  4043. qdf_mem_zero(&msdu_info, sizeof(msdu_info));
  4044. dp_tx_get_queue(vdev, nbuf,
  4045. &msdu_info.tx_queue);
  4046. nbuf_copy = dp_tx_send_msdu_single(vdev,
  4047. nbuf_copy,
  4048. &msdu_info,
  4049. peer_id,
  4050. NULL);
  4051. if (nbuf_copy) {
  4052. dp_tx_debug("pkt send failed");
  4053. qdf_nbuf_free(nbuf_copy);
  4054. }
  4055. }
  4056. }
  4057. qdf_spin_unlock_bh(&vdev->peer_list_lock);
  4058. qdf_nbuf_unmap_nbytes_single(vdev->osdev, nbuf,
  4059. QDF_DMA_TO_DEVICE, nbuf->len);
  4060. qdf_nbuf_free(nbuf);
  4061. }
  4062. dp_tx_desc_release(soc, tx_desc, tx_desc->pool_id);
  4063. }
  4064. void dp_tx_inspect_handler(struct dp_soc *soc,
  4065. struct dp_vdev *vdev,
  4066. struct dp_tx_desc_s *tx_desc,
  4067. uint8_t *status)
  4068. {
  4069. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  4070. "%s Tx inspect path",
  4071. __func__);
  4072. DP_STATS_INC_PKT(vdev, tx_i.inspect_pkts, 1,
  4073. qdf_nbuf_len(tx_desc->nbuf));
  4074. DP_TX_FREE_SINGLE_BUF(soc, tx_desc->nbuf);
  4075. dp_tx_desc_release(soc, tx_desc, tx_desc->pool_id);
  4076. }
  4077. #ifdef MESH_MODE_SUPPORT
  4078. /**
  4079. * dp_tx_comp_fill_tx_completion_stats() - Fill per packet Tx completion stats
  4080. * in mesh meta header
  4081. * @tx_desc: software descriptor head pointer
  4082. * @ts: pointer to tx completion stats
  4083. * Return: none
  4084. */
  4085. static
  4086. void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
  4087. struct hal_tx_completion_status *ts)
  4088. {
  4089. qdf_nbuf_t netbuf = tx_desc->nbuf;
  4090. if (!tx_desc->msdu_ext_desc) {
  4091. if (qdf_nbuf_pull_head(netbuf, tx_desc->pkt_offset) == NULL) {
  4092. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  4093. "netbuf %pK offset %d",
  4094. netbuf, tx_desc->pkt_offset);
  4095. return;
  4096. }
  4097. }
  4098. }
  4099. #else
  4100. static
  4101. void dp_tx_comp_fill_tx_completion_stats(struct dp_tx_desc_s *tx_desc,
  4102. struct hal_tx_completion_status *ts)
  4103. {
  4104. }
  4105. #endif
  4106. #ifdef CONFIG_SAWF
  4107. static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
  4108. struct dp_vdev *vdev,
  4109. struct dp_txrx_peer *txrx_peer,
  4110. struct dp_tx_desc_s *tx_desc,
  4111. struct hal_tx_completion_status *ts,
  4112. uint8_t tid)
  4113. {
  4114. dp_sawf_tx_compl_update_peer_stats(soc, vdev, txrx_peer, tx_desc,
  4115. ts, tid);
  4116. }
  4117. static void dp_tx_compute_delay_avg(struct cdp_delay_tx_stats *tx_delay,
  4118. uint32_t nw_delay,
  4119. uint32_t sw_delay,
  4120. uint32_t hw_delay)
  4121. {
  4122. dp_peer_tid_delay_avg(tx_delay,
  4123. nw_delay,
  4124. sw_delay,
  4125. hw_delay);
  4126. }
  4127. #else
  4128. static void dp_tx_update_peer_sawf_stats(struct dp_soc *soc,
  4129. struct dp_vdev *vdev,
  4130. struct dp_txrx_peer *txrx_peer,
  4131. struct dp_tx_desc_s *tx_desc,
  4132. struct hal_tx_completion_status *ts,
  4133. uint8_t tid)
  4134. {
  4135. }
  4136. static inline void
  4137. dp_tx_compute_delay_avg(struct cdp_delay_tx_stats *tx_delay,
  4138. uint32_t nw_delay, uint32_t sw_delay,
  4139. uint32_t hw_delay)
  4140. {
  4141. }
  4142. #endif
  4143. #ifdef QCA_PEER_EXT_STATS
  4144. #ifdef WLAN_CONFIG_TX_DELAY
  4145. static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  4146. struct dp_tx_desc_s *tx_desc,
  4147. struct hal_tx_completion_status *ts,
  4148. struct dp_vdev *vdev)
  4149. {
  4150. struct dp_soc *soc = vdev->pdev->soc;
  4151. struct cdp_delay_tx_stats *tx_delay = &stats->tx_delay;
  4152. int64_t timestamp_ingress, timestamp_hw_enqueue;
  4153. uint32_t sw_enqueue_delay, fwhw_transmit_delay = 0;
  4154. if (!ts->valid)
  4155. return;
  4156. timestamp_ingress = qdf_nbuf_get_timestamp_us(tx_desc->nbuf);
  4157. timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
  4158. sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
  4159. dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
  4160. if (soc->arch_ops.dp_tx_compute_hw_delay)
  4161. if (!soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
  4162. &fwhw_transmit_delay))
  4163. dp_hist_update_stats(&tx_delay->hwtx_delay,
  4164. fwhw_transmit_delay);
  4165. dp_tx_compute_delay_avg(tx_delay, 0, sw_enqueue_delay,
  4166. fwhw_transmit_delay);
  4167. }
  4168. #else
  4169. /**
  4170. * dp_tx_compute_tid_delay() - Compute per TID delay
  4171. * @stats: Per TID delay stats
  4172. * @tx_desc: Software Tx descriptor
  4173. * @ts: Tx completion status
  4174. * @vdev: vdev
  4175. *
  4176. * Compute the software enqueue and hw enqueue delays and
  4177. * update the respective histograms
  4178. *
  4179. * Return: void
  4180. */
  4181. static void dp_tx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  4182. struct dp_tx_desc_s *tx_desc,
  4183. struct hal_tx_completion_status *ts,
  4184. struct dp_vdev *vdev)
  4185. {
  4186. struct cdp_delay_tx_stats *tx_delay = &stats->tx_delay;
  4187. int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
  4188. uint32_t sw_enqueue_delay, fwhw_transmit_delay;
  4189. current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
  4190. timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
  4191. timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
  4192. sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
  4193. fwhw_transmit_delay = (uint32_t)(current_timestamp -
  4194. timestamp_hw_enqueue);
  4195. /*
  4196. * Update the Tx software enqueue delay and HW enque-Completion delay.
  4197. */
  4198. dp_hist_update_stats(&tx_delay->tx_swq_delay, sw_enqueue_delay);
  4199. dp_hist_update_stats(&tx_delay->hwtx_delay, fwhw_transmit_delay);
  4200. }
  4201. #endif
  4202. /**
  4203. * dp_tx_update_peer_delay_stats() - Update the peer delay stats
  4204. * @txrx_peer: DP peer context
  4205. * @tx_desc: Tx software descriptor
  4206. * @ts: Tx completion status
  4207. * @ring_id: Rx CPU context ID/CPU_ID
  4208. *
  4209. * Update the peer extended stats. These are enhanced other
  4210. * delay stats per msdu level.
  4211. *
  4212. * Return: void
  4213. */
  4214. static void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
  4215. struct dp_tx_desc_s *tx_desc,
  4216. struct hal_tx_completion_status *ts,
  4217. uint8_t ring_id)
  4218. {
  4219. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  4220. struct dp_soc *soc = NULL;
  4221. struct dp_peer_delay_stats *delay_stats = NULL;
  4222. uint8_t tid;
  4223. soc = pdev->soc;
  4224. if (qdf_likely(!wlan_cfg_is_peer_ext_stats_enabled(soc->wlan_cfg_ctx)))
  4225. return;
  4226. if (!txrx_peer->delay_stats)
  4227. return;
  4228. tid = ts->tid;
  4229. delay_stats = txrx_peer->delay_stats;
  4230. /*
  4231. * For non-TID packets use the TID 9
  4232. */
  4233. if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
  4234. tid = CDP_MAX_DATA_TIDS - 1;
  4235. dp_tx_compute_tid_delay(&delay_stats->delay_tid_stats[tid][ring_id],
  4236. tx_desc, ts, txrx_peer->vdev);
  4237. }
  4238. #else
  4239. static inline
  4240. void dp_tx_update_peer_delay_stats(struct dp_txrx_peer *txrx_peer,
  4241. struct dp_tx_desc_s *tx_desc,
  4242. struct hal_tx_completion_status *ts,
  4243. uint8_t ring_id)
  4244. {
  4245. }
  4246. #endif
  4247. #ifdef WLAN_PEER_JITTER
  4248. /**
  4249. * dp_tx_jitter_get_avg_jitter() - compute the average jitter
  4250. * @curr_delay: Current delay
  4251. * @prev_delay: Previous delay
  4252. * @avg_jitter: Average Jitter
  4253. * Return: Newly Computed Average Jitter
  4254. */
  4255. static uint32_t dp_tx_jitter_get_avg_jitter(uint32_t curr_delay,
  4256. uint32_t prev_delay,
  4257. uint32_t avg_jitter)
  4258. {
  4259. uint32_t curr_jitter;
  4260. int32_t jitter_diff;
  4261. curr_jitter = qdf_abs(curr_delay - prev_delay);
  4262. if (!avg_jitter)
  4263. return curr_jitter;
  4264. jitter_diff = curr_jitter - avg_jitter;
  4265. if (jitter_diff < 0)
  4266. avg_jitter = avg_jitter -
  4267. (qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
  4268. else
  4269. avg_jitter = avg_jitter +
  4270. (qdf_abs(jitter_diff) >> DP_AVG_JITTER_WEIGHT_DENOM);
  4271. return avg_jitter;
  4272. }
  4273. /**
  4274. * dp_tx_jitter_get_avg_delay() - compute the average delay
  4275. * @curr_delay: Current delay
  4276. * @avg_delay: Average delay
  4277. * Return: Newly Computed Average Delay
  4278. */
  4279. static uint32_t dp_tx_jitter_get_avg_delay(uint32_t curr_delay,
  4280. uint32_t avg_delay)
  4281. {
  4282. int32_t delay_diff;
  4283. if (!avg_delay)
  4284. return curr_delay;
  4285. delay_diff = curr_delay - avg_delay;
  4286. if (delay_diff < 0)
  4287. avg_delay = avg_delay - (qdf_abs(delay_diff) >>
  4288. DP_AVG_DELAY_WEIGHT_DENOM);
  4289. else
  4290. avg_delay = avg_delay + (qdf_abs(delay_diff) >>
  4291. DP_AVG_DELAY_WEIGHT_DENOM);
  4292. return avg_delay;
  4293. }
  4294. #ifdef WLAN_CONFIG_TX_DELAY
  4295. /**
  4296. * dp_tx_compute_cur_delay() - get the current delay
  4297. * @soc: soc handle
  4298. * @vdev: vdev structure for data path state
  4299. * @ts: Tx completion status
  4300. * @curr_delay: current delay
  4301. * @tx_desc: tx descriptor
  4302. * Return: void
  4303. */
  4304. static
  4305. QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
  4306. struct dp_vdev *vdev,
  4307. struct hal_tx_completion_status *ts,
  4308. uint32_t *curr_delay,
  4309. struct dp_tx_desc_s *tx_desc)
  4310. {
  4311. QDF_STATUS status = QDF_STATUS_E_FAILURE;
  4312. if (soc->arch_ops.dp_tx_compute_hw_delay)
  4313. status = soc->arch_ops.dp_tx_compute_hw_delay(soc, vdev, ts,
  4314. curr_delay);
  4315. return status;
  4316. }
  4317. #else
  4318. static
  4319. QDF_STATUS dp_tx_compute_cur_delay(struct dp_soc *soc,
  4320. struct dp_vdev *vdev,
  4321. struct hal_tx_completion_status *ts,
  4322. uint32_t *curr_delay,
  4323. struct dp_tx_desc_s *tx_desc)
  4324. {
  4325. int64_t current_timestamp, timestamp_hw_enqueue;
  4326. current_timestamp = qdf_ktime_to_us(qdf_ktime_real_get());
  4327. timestamp_hw_enqueue = qdf_ktime_to_us(tx_desc->timestamp);
  4328. *curr_delay = (uint32_t)(current_timestamp - timestamp_hw_enqueue);
  4329. return QDF_STATUS_SUCCESS;
  4330. }
  4331. #endif
  4332. /**
  4333. * dp_tx_compute_tid_jitter() - compute per tid per ring jitter
  4334. * @jitter: per tid per ring jitter stats
  4335. * @ts: Tx completion status
  4336. * @vdev: vdev structure for data path state
  4337. * @tx_desc: tx descriptor
  4338. * Return: void
  4339. */
  4340. static void dp_tx_compute_tid_jitter(struct cdp_peer_tid_stats *jitter,
  4341. struct hal_tx_completion_status *ts,
  4342. struct dp_vdev *vdev,
  4343. struct dp_tx_desc_s *tx_desc)
  4344. {
  4345. uint32_t curr_delay, avg_delay, avg_jitter, prev_delay;
  4346. struct dp_soc *soc = vdev->pdev->soc;
  4347. QDF_STATUS status = QDF_STATUS_E_FAILURE;
  4348. if (ts->status != HAL_TX_TQM_RR_FRAME_ACKED) {
  4349. jitter->tx_drop += 1;
  4350. return;
  4351. }
  4352. status = dp_tx_compute_cur_delay(soc, vdev, ts, &curr_delay,
  4353. tx_desc);
  4354. if (QDF_IS_STATUS_SUCCESS(status)) {
  4355. avg_delay = jitter->tx_avg_delay;
  4356. avg_jitter = jitter->tx_avg_jitter;
  4357. prev_delay = jitter->tx_prev_delay;
  4358. avg_jitter = dp_tx_jitter_get_avg_jitter(curr_delay,
  4359. prev_delay,
  4360. avg_jitter);
  4361. avg_delay = dp_tx_jitter_get_avg_delay(curr_delay, avg_delay);
  4362. jitter->tx_avg_delay = avg_delay;
  4363. jitter->tx_avg_jitter = avg_jitter;
  4364. jitter->tx_prev_delay = curr_delay;
  4365. jitter->tx_total_success += 1;
  4366. } else if (status == QDF_STATUS_E_FAILURE) {
  4367. jitter->tx_avg_err += 1;
  4368. }
  4369. }
  4370. /* dp_tx_update_peer_jitter_stats() - Update the peer jitter stats
  4371. * @txrx_peer: DP peer context
  4372. * @tx_desc: Tx software descriptor
  4373. * @ts: Tx completion status
  4374. * @ring_id: Rx CPU context ID/CPU_ID
  4375. * Return: void
  4376. */
  4377. static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
  4378. struct dp_tx_desc_s *tx_desc,
  4379. struct hal_tx_completion_status *ts,
  4380. uint8_t ring_id)
  4381. {
  4382. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  4383. struct dp_soc *soc = pdev->soc;
  4384. struct cdp_peer_tid_stats *jitter_stats = NULL;
  4385. uint8_t tid;
  4386. struct cdp_peer_tid_stats *rx_tid = NULL;
  4387. if (qdf_likely(!wlan_cfg_is_peer_jitter_stats_enabled(soc->wlan_cfg_ctx)))
  4388. return;
  4389. if (!txrx_peer->jitter_stats)
  4390. return;
  4391. tid = ts->tid;
  4392. jitter_stats = txrx_peer->jitter_stats;
  4393. /*
  4394. * For non-TID packets use the TID 9
  4395. */
  4396. if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
  4397. tid = CDP_MAX_DATA_TIDS - 1;
  4398. rx_tid = &jitter_stats[tid * CDP_MAX_TXRX_CTX + ring_id];
  4399. dp_tx_compute_tid_jitter(rx_tid,
  4400. ts, txrx_peer->vdev, tx_desc);
  4401. }
  4402. #else
  4403. static void dp_tx_update_peer_jitter_stats(struct dp_txrx_peer *txrx_peer,
  4404. struct dp_tx_desc_s *tx_desc,
  4405. struct hal_tx_completion_status *ts,
  4406. uint8_t ring_id)
  4407. {
  4408. }
  4409. #endif
  4410. #ifdef HW_TX_DELAY_STATS_ENABLE
  4411. /**
  4412. * dp_update_tx_delay_stats() - update the delay stats
  4413. * @vdev: vdev handle
  4414. * @delay: delay in ms or us based on the flag delay_in_us
  4415. * @tid: tid value
  4416. * @mode: type of tx delay mode
  4417. * @ring_id: ring number
  4418. * @delay_in_us: flag to indicate whether the delay is in ms or us
  4419. *
  4420. * Return: none
  4421. */
  4422. static inline
  4423. void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
  4424. uint8_t mode, uint8_t ring_id, bool delay_in_us)
  4425. {
  4426. struct cdp_tid_tx_stats *tstats =
  4427. &vdev->stats.tid_tx_stats[ring_id][tid];
  4428. dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
  4429. delay_in_us);
  4430. }
  4431. #else
  4432. static inline
  4433. void dp_update_tx_delay_stats(struct dp_vdev *vdev, uint32_t delay, uint8_t tid,
  4434. uint8_t mode, uint8_t ring_id, bool delay_in_us)
  4435. {
  4436. struct cdp_tid_tx_stats *tstats =
  4437. &vdev->pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
  4438. dp_update_delay_stats(tstats, NULL, delay, tid, mode, ring_id,
  4439. delay_in_us);
  4440. }
  4441. #endif
  4442. void dp_tx_compute_delay(struct dp_vdev *vdev, struct dp_tx_desc_s *tx_desc,
  4443. uint8_t tid, uint8_t ring_id)
  4444. {
  4445. int64_t current_timestamp, timestamp_ingress, timestamp_hw_enqueue;
  4446. uint32_t sw_enqueue_delay, fwhw_transmit_delay, interframe_delay;
  4447. uint32_t fwhw_transmit_delay_us;
  4448. if (qdf_likely(!vdev->pdev->delay_stats_flag) &&
  4449. qdf_likely(!dp_is_vdev_tx_delay_stats_enabled(vdev)))
  4450. return;
  4451. if (dp_is_vdev_tx_delay_stats_enabled(vdev)) {
  4452. fwhw_transmit_delay_us =
  4453. qdf_ktime_to_us(qdf_ktime_real_get()) -
  4454. qdf_ktime_to_us(tx_desc->timestamp);
  4455. /*
  4456. * Delay between packet enqueued to HW and Tx completion in us
  4457. */
  4458. dp_update_tx_delay_stats(vdev, fwhw_transmit_delay_us, tid,
  4459. CDP_DELAY_STATS_FW_HW_TRANSMIT,
  4460. ring_id, true);
  4461. /*
  4462. * For MCL, only enqueue to completion delay is required
  4463. * so return if the vdev flag is enabled.
  4464. */
  4465. return;
  4466. }
  4467. current_timestamp = qdf_ktime_to_ms(qdf_ktime_real_get());
  4468. timestamp_hw_enqueue = qdf_ktime_to_ms(tx_desc->timestamp);
  4469. fwhw_transmit_delay = (uint32_t)(current_timestamp -
  4470. timestamp_hw_enqueue);
  4471. if (!timestamp_hw_enqueue)
  4472. return;
  4473. /*
  4474. * Delay between packet enqueued to HW and Tx completion in ms
  4475. */
  4476. dp_update_tx_delay_stats(vdev, fwhw_transmit_delay, tid,
  4477. CDP_DELAY_STATS_FW_HW_TRANSMIT, ring_id,
  4478. false);
  4479. timestamp_ingress = qdf_nbuf_get_timestamp(tx_desc->nbuf);
  4480. sw_enqueue_delay = (uint32_t)(timestamp_hw_enqueue - timestamp_ingress);
  4481. interframe_delay = (uint32_t)(timestamp_ingress -
  4482. vdev->prev_tx_enq_tstamp);
  4483. /*
  4484. * Delay in software enqueue
  4485. */
  4486. dp_update_tx_delay_stats(vdev, sw_enqueue_delay, tid,
  4487. CDP_DELAY_STATS_SW_ENQ, ring_id,
  4488. false);
  4489. /*
  4490. * Update interframe delay stats calculated at hardstart receive point.
  4491. * Value of vdev->prev_tx_enq_tstamp will be 0 for 1st frame, so
  4492. * interframe delay will not be calculate correctly for 1st frame.
  4493. * On the other side, this will help in avoiding extra per packet check
  4494. * of !vdev->prev_tx_enq_tstamp.
  4495. */
  4496. dp_update_tx_delay_stats(vdev, interframe_delay, tid,
  4497. CDP_DELAY_STATS_TX_INTERFRAME, ring_id,
  4498. false);
  4499. vdev->prev_tx_enq_tstamp = timestamp_ingress;
  4500. }
  4501. #ifdef DISABLE_DP_STATS
  4502. static
  4503. inline void dp_update_no_ack_stats(qdf_nbuf_t nbuf,
  4504. struct dp_txrx_peer *txrx_peer,
  4505. uint8_t link_id)
  4506. {
  4507. }
  4508. #else
  4509. static inline void
  4510. dp_update_no_ack_stats(qdf_nbuf_t nbuf, struct dp_txrx_peer *txrx_peer,
  4511. uint8_t link_id)
  4512. {
  4513. enum qdf_proto_subtype subtype = QDF_PROTO_INVALID;
  4514. DPTRACE(qdf_dp_track_noack_check(nbuf, &subtype));
  4515. if (subtype != QDF_PROTO_INVALID)
  4516. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.no_ack_count[subtype],
  4517. 1, link_id);
  4518. }
  4519. #endif
  4520. #ifndef QCA_ENHANCED_STATS_SUPPORT
  4521. #ifdef DP_PEER_EXTENDED_API
  4522. static inline uint8_t
  4523. dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
  4524. {
  4525. return txrx_peer->mpdu_retry_threshold;
  4526. }
  4527. #else
  4528. static inline uint8_t
  4529. dp_tx_get_mpdu_retry_threshold(struct dp_txrx_peer *txrx_peer)
  4530. {
  4531. return 0;
  4532. }
  4533. #endif
  4534. /**
  4535. * dp_tx_update_peer_extd_stats()- Update Tx extended path stats for peer
  4536. *
  4537. * @ts: Tx compltion status
  4538. * @txrx_peer: datapath txrx_peer handle
  4539. * @link_id: Link id
  4540. *
  4541. * Return: void
  4542. */
  4543. static inline void
  4544. dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
  4545. struct dp_txrx_peer *txrx_peer, uint8_t link_id)
  4546. {
  4547. uint8_t mcs, pkt_type, dst_mcs_idx;
  4548. uint8_t retry_threshold = dp_tx_get_mpdu_retry_threshold(txrx_peer);
  4549. mcs = ts->mcs;
  4550. pkt_type = ts->pkt_type;
  4551. /* do HW to SW pkt type conversion */
  4552. pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
  4553. hal_2_dp_pkt_type_map[pkt_type]);
  4554. dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
  4555. if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
  4556. DP_PEER_EXTD_STATS_INC(txrx_peer,
  4557. tx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
  4558. 1, link_id);
  4559. DP_PEER_EXTD_STATS_INC(txrx_peer, tx.sgi_count[ts->sgi], 1, link_id);
  4560. DP_PEER_EXTD_STATS_INC(txrx_peer, tx.bw[ts->bw], 1, link_id);
  4561. DP_PEER_EXTD_STATS_UPD(txrx_peer, tx.last_ack_rssi, ts->ack_frame_rssi,
  4562. link_id);
  4563. DP_PEER_EXTD_STATS_INC(txrx_peer,
  4564. tx.wme_ac_type[TID_TO_WME_AC(ts->tid)], 1,
  4565. link_id);
  4566. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.stbc, 1, ts->stbc, link_id);
  4567. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.ldpc, 1, ts->ldpc, link_id);
  4568. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries, 1, ts->transmit_cnt > 1,
  4569. link_id);
  4570. if (ts->first_msdu) {
  4571. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.retries_mpdu, 1,
  4572. ts->transmit_cnt > 1, link_id);
  4573. if (!retry_threshold)
  4574. return;
  4575. DP_PEER_EXTD_STATS_INCC(txrx_peer, tx.mpdu_success_with_retries,
  4576. qdf_do_div(ts->transmit_cnt,
  4577. retry_threshold),
  4578. ts->transmit_cnt > retry_threshold,
  4579. link_id);
  4580. }
  4581. }
  4582. #else
  4583. static inline void
  4584. dp_tx_update_peer_extd_stats(struct hal_tx_completion_status *ts,
  4585. struct dp_txrx_peer *txrx_peer, uint8_t link_id)
  4586. {
  4587. }
  4588. #endif
  4589. #if defined(WLAN_FEATURE_11BE_MLO) && \
  4590. (defined(QCA_ENHANCED_STATS_SUPPORT) || \
  4591. defined(DP_MLO_LINK_STATS_SUPPORT))
  4592. static inline uint8_t
  4593. dp_tx_get_link_id_from_ppdu_id(struct dp_soc *soc,
  4594. struct hal_tx_completion_status *ts,
  4595. struct dp_txrx_peer *txrx_peer,
  4596. struct dp_vdev *vdev)
  4597. {
  4598. uint8_t hw_link_id = 0;
  4599. uint32_t ppdu_id;
  4600. uint8_t link_id_offset, link_id_bits;
  4601. if (!txrx_peer->is_mld_peer || !vdev->pdev->link_peer_stats)
  4602. return 0;
  4603. link_id_offset = soc->link_id_offset;
  4604. link_id_bits = soc->link_id_bits;
  4605. ppdu_id = ts->ppdu_id;
  4606. hw_link_id = ((DP_GET_HW_LINK_ID_FRM_PPDU_ID(ppdu_id, link_id_offset,
  4607. link_id_bits)) + 1);
  4608. if (hw_link_id > DP_MAX_MLO_LINKS) {
  4609. hw_link_id = 0;
  4610. DP_PEER_PER_PKT_STATS_INC(
  4611. txrx_peer,
  4612. tx.inval_link_id_pkt_cnt, 1, hw_link_id);
  4613. }
  4614. return hw_link_id;
  4615. }
  4616. #else
  4617. static inline uint8_t
  4618. dp_tx_get_link_id_from_ppdu_id(struct dp_soc *soc,
  4619. struct hal_tx_completion_status *ts,
  4620. struct dp_txrx_peer *txrx_peer,
  4621. struct dp_vdev *vdev)
  4622. {
  4623. return 0;
  4624. }
  4625. #endif
  4626. /**
  4627. * dp_tx_update_peer_stats() - Update peer stats from Tx completion indications
  4628. * per wbm ring
  4629. *
  4630. * @tx_desc: software descriptor head pointer
  4631. * @ts: Tx completion status
  4632. * @txrx_peer: peer handle
  4633. * @ring_id: ring number
  4634. * @link_id: Link id
  4635. *
  4636. * Return: None
  4637. */
  4638. static inline void
  4639. dp_tx_update_peer_stats(struct dp_tx_desc_s *tx_desc,
  4640. struct hal_tx_completion_status *ts,
  4641. struct dp_txrx_peer *txrx_peer, uint8_t ring_id,
  4642. uint8_t link_id)
  4643. {
  4644. struct dp_pdev *pdev = txrx_peer->vdev->pdev;
  4645. uint8_t tid = ts->tid;
  4646. uint32_t length;
  4647. struct cdp_tid_tx_stats *tid_stats;
  4648. if (!pdev)
  4649. return;
  4650. if (qdf_unlikely(tid >= CDP_MAX_DATA_TIDS))
  4651. tid = CDP_MAX_DATA_TIDS - 1;
  4652. tid_stats = &pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
  4653. if (ts->release_src != HAL_TX_COMP_RELEASE_SOURCE_TQM) {
  4654. dp_err_rl("Release source:%d is not from TQM", ts->release_src);
  4655. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.release_src_not_tqm, 1,
  4656. link_id);
  4657. return;
  4658. }
  4659. length = qdf_nbuf_len(tx_desc->nbuf);
  4660. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  4661. if (qdf_unlikely(pdev->delay_stats_flag) ||
  4662. qdf_unlikely(dp_is_vdev_tx_delay_stats_enabled(txrx_peer->vdev)))
  4663. dp_tx_compute_delay(txrx_peer->vdev, tx_desc, tid, ring_id);
  4664. if (ts->status < CDP_MAX_TX_TQM_STATUS) {
  4665. tid_stats->tqm_status_cnt[ts->status]++;
  4666. }
  4667. if (qdf_likely(ts->status == HAL_TX_TQM_RR_FRAME_ACKED)) {
  4668. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.retry_count, 1,
  4669. ts->transmit_cnt > 1, link_id);
  4670. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.multiple_retry_count,
  4671. 1, ts->transmit_cnt > 2, link_id);
  4672. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.ofdma, 1, ts->ofdma,
  4673. link_id);
  4674. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.amsdu_cnt, 1,
  4675. ts->msdu_part_of_amsdu, link_id);
  4676. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.non_amsdu_cnt, 1,
  4677. !ts->msdu_part_of_amsdu, link_id);
  4678. txrx_peer->stats[link_id].per_pkt_stats.tx.last_tx_ts =
  4679. qdf_system_ticks();
  4680. dp_tx_update_peer_extd_stats(ts, txrx_peer, link_id);
  4681. return;
  4682. }
  4683. /*
  4684. * tx_failed is ideally supposed to be updated from HTT ppdu
  4685. * completion stats. But in IPQ807X/IPQ6018 chipsets owing to
  4686. * hw limitation there are no completions for failed cases.
  4687. * Hence updating tx_failed from data path. Please note that
  4688. * if tx_failed is fixed to be from ppdu, then this has to be
  4689. * removed
  4690. */
  4691. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  4692. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, tx.failed_retry_count, 1,
  4693. ts->transmit_cnt > DP_RETRY_COUNT,
  4694. link_id);
  4695. dp_update_no_ack_stats(tx_desc->nbuf, txrx_peer, link_id);
  4696. if (ts->status == HAL_TX_TQM_RR_REM_CMD_AGED) {
  4697. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.age_out, 1,
  4698. link_id);
  4699. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_REM) {
  4700. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.dropped.fw_rem, 1,
  4701. length, link_id);
  4702. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_NOTX) {
  4703. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_notx, 1,
  4704. link_id);
  4705. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TX) {
  4706. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_rem_tx, 1,
  4707. link_id);
  4708. } else if (ts->status == HAL_TX_TQM_RR_FW_REASON1) {
  4709. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason1, 1,
  4710. link_id);
  4711. } else if (ts->status == HAL_TX_TQM_RR_FW_REASON2) {
  4712. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason2, 1,
  4713. link_id);
  4714. } else if (ts->status == HAL_TX_TQM_RR_FW_REASON3) {
  4715. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.fw_reason3, 1,
  4716. link_id);
  4717. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_DISABLE_QUEUE) {
  4718. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4719. tx.dropped.fw_rem_queue_disable, 1,
  4720. link_id);
  4721. } else if (ts->status == HAL_TX_TQM_RR_REM_CMD_TILL_NONMATCHING) {
  4722. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4723. tx.dropped.fw_rem_no_match, 1,
  4724. link_id);
  4725. } else if (ts->status == HAL_TX_TQM_RR_DROP_THRESHOLD) {
  4726. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4727. tx.dropped.drop_threshold, 1,
  4728. link_id);
  4729. } else if (ts->status == HAL_TX_TQM_RR_LINK_DESC_UNAVAILABLE) {
  4730. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4731. tx.dropped.drop_link_desc_na, 1,
  4732. link_id);
  4733. } else if (ts->status == HAL_TX_TQM_RR_DROP_OR_INVALID_MSDU) {
  4734. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4735. tx.dropped.invalid_drop, 1,
  4736. link_id);
  4737. } else if (ts->status == HAL_TX_TQM_RR_MULTICAST_DROP) {
  4738. DP_PEER_PER_PKT_STATS_INC(txrx_peer,
  4739. tx.dropped.mcast_vdev_drop, 1,
  4740. link_id);
  4741. } else {
  4742. DP_PEER_PER_PKT_STATS_INC(txrx_peer, tx.dropped.invalid_rr, 1,
  4743. link_id);
  4744. }
  4745. }
  4746. #ifdef QCA_LL_TX_FLOW_CONTROL_V2
  4747. /**
  4748. * dp_tx_flow_pool_lock() - take flow pool lock
  4749. * @soc: core txrx main context
  4750. * @tx_desc: tx desc
  4751. *
  4752. * Return: None
  4753. */
  4754. static inline
  4755. void dp_tx_flow_pool_lock(struct dp_soc *soc,
  4756. struct dp_tx_desc_s *tx_desc)
  4757. {
  4758. struct dp_tx_desc_pool_s *pool;
  4759. uint8_t desc_pool_id;
  4760. desc_pool_id = tx_desc->pool_id;
  4761. pool = &soc->tx_desc[desc_pool_id];
  4762. qdf_spin_lock_bh(&pool->flow_pool_lock);
  4763. }
  4764. /**
  4765. * dp_tx_flow_pool_unlock() - release flow pool lock
  4766. * @soc: core txrx main context
  4767. * @tx_desc: tx desc
  4768. *
  4769. * Return: None
  4770. */
  4771. static inline
  4772. void dp_tx_flow_pool_unlock(struct dp_soc *soc,
  4773. struct dp_tx_desc_s *tx_desc)
  4774. {
  4775. struct dp_tx_desc_pool_s *pool;
  4776. uint8_t desc_pool_id;
  4777. desc_pool_id = tx_desc->pool_id;
  4778. pool = &soc->tx_desc[desc_pool_id];
  4779. qdf_spin_unlock_bh(&pool->flow_pool_lock);
  4780. }
  4781. #else
  4782. static inline
  4783. void dp_tx_flow_pool_lock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
  4784. {
  4785. }
  4786. static inline
  4787. void dp_tx_flow_pool_unlock(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc)
  4788. {
  4789. }
  4790. #endif
  4791. /**
  4792. * dp_tx_notify_completion() - Notify tx completion for this desc
  4793. * @soc: core txrx main context
  4794. * @vdev: datapath vdev handle
  4795. * @tx_desc: tx desc
  4796. * @netbuf: buffer
  4797. * @status: tx status
  4798. *
  4799. * Return: none
  4800. */
  4801. static inline void dp_tx_notify_completion(struct dp_soc *soc,
  4802. struct dp_vdev *vdev,
  4803. struct dp_tx_desc_s *tx_desc,
  4804. qdf_nbuf_t netbuf,
  4805. uint8_t status)
  4806. {
  4807. void *osif_dev;
  4808. ol_txrx_completion_fp tx_compl_cbk = NULL;
  4809. uint16_t flag = BIT(QDF_TX_RX_STATUS_DOWNLOAD_SUCC);
  4810. qdf_assert(tx_desc);
  4811. if (!vdev ||
  4812. !vdev->osif_vdev) {
  4813. return;
  4814. }
  4815. osif_dev = vdev->osif_vdev;
  4816. tx_compl_cbk = vdev->tx_comp;
  4817. if (status == HAL_TX_TQM_RR_FRAME_ACKED)
  4818. flag |= BIT(QDF_TX_RX_STATUS_OK);
  4819. if (tx_compl_cbk)
  4820. tx_compl_cbk(netbuf, osif_dev, flag);
  4821. }
  4822. /**
  4823. * dp_tx_sojourn_stats_process() - Collect sojourn stats
  4824. * @pdev: pdev handle
  4825. * @txrx_peer: DP peer context
  4826. * @tid: tid value
  4827. * @txdesc_ts: timestamp from txdesc
  4828. * @ppdu_id: ppdu id
  4829. * @link_id: link id
  4830. *
  4831. * Return: none
  4832. */
  4833. #ifdef FEATURE_PERPKT_INFO
  4834. static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
  4835. struct dp_txrx_peer *txrx_peer,
  4836. uint8_t tid,
  4837. uint64_t txdesc_ts,
  4838. uint32_t ppdu_id,
  4839. uint8_t link_id)
  4840. {
  4841. uint64_t delta_ms;
  4842. struct cdp_tx_sojourn_stats *sojourn_stats;
  4843. struct dp_peer *primary_link_peer = NULL;
  4844. struct dp_soc *link_peer_soc = NULL;
  4845. if (qdf_unlikely(!pdev->enhanced_stats_en))
  4846. return;
  4847. if (qdf_unlikely(tid == HTT_INVALID_TID ||
  4848. tid >= CDP_DATA_TID_MAX))
  4849. return;
  4850. if (qdf_unlikely(!pdev->sojourn_buf))
  4851. return;
  4852. primary_link_peer = dp_get_primary_link_peer_by_id(pdev->soc,
  4853. txrx_peer->peer_id,
  4854. DP_MOD_ID_TX_COMP);
  4855. if (qdf_unlikely(!primary_link_peer))
  4856. return;
  4857. sojourn_stats = (struct cdp_tx_sojourn_stats *)
  4858. qdf_nbuf_data(pdev->sojourn_buf);
  4859. link_peer_soc = primary_link_peer->vdev->pdev->soc;
  4860. sojourn_stats->cookie = (void *)
  4861. dp_monitor_peer_get_peerstats_ctx(link_peer_soc,
  4862. primary_link_peer);
  4863. delta_ms = qdf_ktime_to_ms(qdf_ktime_real_get()) -
  4864. txdesc_ts;
  4865. qdf_ewma_tx_lag_add(&txrx_peer->stats[link_id].per_pkt_stats.tx.avg_sojourn_msdu[tid],
  4866. delta_ms);
  4867. sojourn_stats->sum_sojourn_msdu[tid] = delta_ms;
  4868. sojourn_stats->num_msdus[tid] = 1;
  4869. sojourn_stats->avg_sojourn_msdu[tid].internal =
  4870. txrx_peer->stats[link_id].
  4871. per_pkt_stats.tx.avg_sojourn_msdu[tid].internal;
  4872. dp_wdi_event_handler(WDI_EVENT_TX_SOJOURN_STAT, pdev->soc,
  4873. pdev->sojourn_buf, HTT_INVALID_PEER,
  4874. WDI_NO_VAL, pdev->pdev_id);
  4875. sojourn_stats->sum_sojourn_msdu[tid] = 0;
  4876. sojourn_stats->num_msdus[tid] = 0;
  4877. sojourn_stats->avg_sojourn_msdu[tid].internal = 0;
  4878. dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_TX_COMP);
  4879. }
  4880. #else
  4881. static inline void dp_tx_sojourn_stats_process(struct dp_pdev *pdev,
  4882. struct dp_txrx_peer *txrx_peer,
  4883. uint8_t tid,
  4884. uint64_t txdesc_ts,
  4885. uint32_t ppdu_id)
  4886. {
  4887. }
  4888. #endif
  4889. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  4890. void dp_send_completion_to_pkt_capture(struct dp_soc *soc,
  4891. struct dp_tx_desc_s *desc,
  4892. struct hal_tx_completion_status *ts)
  4893. {
  4894. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_TX_DATA, soc,
  4895. desc, ts->peer_id,
  4896. WDI_NO_VAL, desc->pdev->pdev_id);
  4897. }
  4898. #endif
  4899. void
  4900. dp_tx_comp_process_desc(struct dp_soc *soc,
  4901. struct dp_tx_desc_s *desc,
  4902. struct hal_tx_completion_status *ts,
  4903. struct dp_txrx_peer *txrx_peer)
  4904. {
  4905. uint64_t time_latency = 0;
  4906. uint16_t peer_id = DP_INVALID_PEER_ID;
  4907. /*
  4908. * m_copy/tx_capture modes are not supported for
  4909. * scatter gather packets
  4910. */
  4911. if (qdf_unlikely(!!desc->pdev->latency_capture_enable)) {
  4912. time_latency = (qdf_ktime_to_ms(qdf_ktime_real_get()) -
  4913. qdf_ktime_to_ms(desc->timestamp));
  4914. }
  4915. dp_send_completion_to_pkt_capture(soc, desc, ts);
  4916. if (dp_tx_pkt_tracepoints_enabled())
  4917. qdf_trace_dp_packet(desc->nbuf, QDF_TX,
  4918. desc->msdu_ext_desc ?
  4919. desc->msdu_ext_desc->tso_desc : NULL,
  4920. qdf_ktime_to_us(desc->timestamp));
  4921. if (!(desc->msdu_ext_desc)) {
  4922. dp_tx_enh_unmap(soc, desc);
  4923. if (txrx_peer)
  4924. peer_id = txrx_peer->peer_id;
  4925. if (QDF_STATUS_SUCCESS ==
  4926. dp_monitor_tx_add_to_comp_queue(soc, desc, ts, peer_id)) {
  4927. return;
  4928. }
  4929. if (QDF_STATUS_SUCCESS ==
  4930. dp_get_completion_indication_for_stack(soc,
  4931. desc->pdev,
  4932. txrx_peer, ts,
  4933. desc->nbuf,
  4934. time_latency)) {
  4935. dp_send_completion_to_stack(soc,
  4936. desc->pdev,
  4937. ts->peer_id,
  4938. ts->ppdu_id,
  4939. desc->nbuf);
  4940. return;
  4941. }
  4942. }
  4943. desc->flags |= DP_TX_DESC_FLAG_COMPLETED_TX;
  4944. dp_tx_comp_free_buf(soc, desc, false);
  4945. }
  4946. #ifdef DISABLE_DP_STATS
  4947. /**
  4948. * dp_tx_update_connectivity_stats() - update tx connectivity stats
  4949. * @soc: core txrx main context
  4950. * @vdev: virtual device instance
  4951. * @tx_desc: tx desc
  4952. * @status: tx status
  4953. *
  4954. * Return: none
  4955. */
  4956. static inline
  4957. void dp_tx_update_connectivity_stats(struct dp_soc *soc,
  4958. struct dp_vdev *vdev,
  4959. struct dp_tx_desc_s *tx_desc,
  4960. uint8_t status)
  4961. {
  4962. }
  4963. #else
  4964. static inline
  4965. void dp_tx_update_connectivity_stats(struct dp_soc *soc,
  4966. struct dp_vdev *vdev,
  4967. struct dp_tx_desc_s *tx_desc,
  4968. uint8_t status)
  4969. {
  4970. void *osif_dev;
  4971. ol_txrx_stats_rx_fp stats_cbk;
  4972. uint8_t pkt_type;
  4973. qdf_assert(tx_desc);
  4974. if (!vdev ||
  4975. !vdev->osif_vdev ||
  4976. !vdev->stats_cb)
  4977. return;
  4978. osif_dev = vdev->osif_vdev;
  4979. stats_cbk = vdev->stats_cb;
  4980. stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_HOST_FW_SENT, &pkt_type);
  4981. if (status == HAL_TX_TQM_RR_FRAME_ACKED)
  4982. stats_cbk(tx_desc->nbuf, osif_dev, PKT_TYPE_TX_ACK_CNT,
  4983. &pkt_type);
  4984. }
  4985. #endif
  4986. #if defined(WLAN_FEATURE_TSF_AUTO_REPORT) || defined(WLAN_CONFIG_TX_DELAY)
  4987. /* Mask for bit29 ~ bit31 */
  4988. #define DP_TX_TS_BIT29_31_MASK 0xE0000000
  4989. /* Timestamp value (unit us) if bit29 is set */
  4990. #define DP_TX_TS_BIT29_SET_VALUE BIT(29)
  4991. /**
  4992. * dp_tx_adjust_enqueue_buffer_ts() - adjust the enqueue buffer_timestamp
  4993. * @ack_ts: OTA ack timestamp, unit us.
  4994. * @enqueue_ts: TCL enqueue TX data to TQM timestamp, unit us.
  4995. * @base_delta_ts: base timestamp delta for ack_ts and enqueue_ts
  4996. *
  4997. * this function will restore the bit29 ~ bit31 3 bits value for
  4998. * buffer_timestamp in wbm2sw ring entry, currently buffer_timestamp only
  4999. * can support 0x7FFF * 1024 us (29 bits), but if the timestamp is >
  5000. * 0x7FFF * 1024 us, bit29~ bit31 will be lost.
  5001. *
  5002. * Return: the adjusted buffer_timestamp value
  5003. */
  5004. static inline
  5005. uint32_t dp_tx_adjust_enqueue_buffer_ts(uint32_t ack_ts,
  5006. uint32_t enqueue_ts,
  5007. uint32_t base_delta_ts)
  5008. {
  5009. uint32_t ack_buffer_ts;
  5010. uint32_t ack_buffer_ts_bit29_31;
  5011. uint32_t adjusted_enqueue_ts;
  5012. /* corresponding buffer_timestamp value when receive OTA Ack */
  5013. ack_buffer_ts = ack_ts - base_delta_ts;
  5014. ack_buffer_ts_bit29_31 = ack_buffer_ts & DP_TX_TS_BIT29_31_MASK;
  5015. /* restore the bit29 ~ bit31 value */
  5016. adjusted_enqueue_ts = ack_buffer_ts_bit29_31 | enqueue_ts;
  5017. /*
  5018. * if actual enqueue_ts value occupied 29 bits only, this enqueue_ts
  5019. * value + real UL delay overflow 29 bits, then 30th bit (bit-29)
  5020. * should not be marked, otherwise extra 0x20000000 us is added to
  5021. * enqueue_ts.
  5022. */
  5023. if (qdf_unlikely(adjusted_enqueue_ts > ack_buffer_ts))
  5024. adjusted_enqueue_ts -= DP_TX_TS_BIT29_SET_VALUE;
  5025. return adjusted_enqueue_ts;
  5026. }
  5027. QDF_STATUS
  5028. dp_tx_compute_hw_delay_us(struct hal_tx_completion_status *ts,
  5029. uint32_t delta_tsf,
  5030. uint32_t *delay_us)
  5031. {
  5032. uint32_t buffer_ts;
  5033. uint32_t delay;
  5034. if (!delay_us)
  5035. return QDF_STATUS_E_INVAL;
  5036. /* Tx_rate_stats_info_valid is 0 and tsf is invalid then */
  5037. if (!ts->valid)
  5038. return QDF_STATUS_E_INVAL;
  5039. /* buffer_timestamp is in units of 1024 us and is [31:13] of
  5040. * WBM_RELEASE_RING_4. After left shift 10 bits, it's
  5041. * valid up to 29 bits.
  5042. */
  5043. buffer_ts = ts->buffer_timestamp << 10;
  5044. buffer_ts = dp_tx_adjust_enqueue_buffer_ts(ts->tsf,
  5045. buffer_ts, delta_tsf);
  5046. delay = ts->tsf - buffer_ts - delta_tsf;
  5047. if (qdf_unlikely(delay & 0x80000000)) {
  5048. dp_err_rl("delay = 0x%x (-ve)\n"
  5049. "release_src = %d\n"
  5050. "ppdu_id = 0x%x\n"
  5051. "peer_id = 0x%x\n"
  5052. "tid = 0x%x\n"
  5053. "release_reason = %d\n"
  5054. "tsf = %u (0x%x)\n"
  5055. "buffer_timestamp = %u (0x%x)\n"
  5056. "delta_tsf = %u (0x%x)\n",
  5057. delay, ts->release_src, ts->ppdu_id, ts->peer_id,
  5058. ts->tid, ts->status, ts->tsf, ts->tsf,
  5059. ts->buffer_timestamp, ts->buffer_timestamp,
  5060. delta_tsf, delta_tsf);
  5061. delay = 0;
  5062. goto end;
  5063. }
  5064. delay &= 0x1FFFFFFF; /* mask 29 BITS */
  5065. if (delay > 0x1000000) {
  5066. dp_info_rl("----------------------\n"
  5067. "Tx completion status:\n"
  5068. "----------------------\n"
  5069. "release_src = %d\n"
  5070. "ppdu_id = 0x%x\n"
  5071. "release_reason = %d\n"
  5072. "tsf = %u (0x%x)\n"
  5073. "buffer_timestamp = %u (0x%x)\n"
  5074. "delta_tsf = %u (0x%x)\n",
  5075. ts->release_src, ts->ppdu_id, ts->status,
  5076. ts->tsf, ts->tsf, ts->buffer_timestamp,
  5077. ts->buffer_timestamp, delta_tsf, delta_tsf);
  5078. return QDF_STATUS_E_FAILURE;
  5079. }
  5080. end:
  5081. *delay_us = delay;
  5082. return QDF_STATUS_SUCCESS;
  5083. }
  5084. void dp_set_delta_tsf(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  5085. uint32_t delta_tsf)
  5086. {
  5087. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  5088. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  5089. DP_MOD_ID_CDP);
  5090. if (!vdev) {
  5091. dp_err_rl("vdev %d does not exist", vdev_id);
  5092. return;
  5093. }
  5094. vdev->delta_tsf = delta_tsf;
  5095. dp_debug("vdev id %u delta_tsf %u", vdev_id, delta_tsf);
  5096. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5097. }
  5098. #endif
  5099. #ifdef WLAN_FEATURE_TSF_UPLINK_DELAY
  5100. QDF_STATUS dp_set_tsf_ul_delay_report(struct cdp_soc_t *soc_hdl,
  5101. uint8_t vdev_id, bool enable)
  5102. {
  5103. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  5104. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  5105. DP_MOD_ID_CDP);
  5106. if (!vdev) {
  5107. dp_err_rl("vdev %d does not exist", vdev_id);
  5108. return QDF_STATUS_E_FAILURE;
  5109. }
  5110. qdf_atomic_set(&vdev->ul_delay_report, enable);
  5111. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5112. return QDF_STATUS_SUCCESS;
  5113. }
  5114. QDF_STATUS dp_get_uplink_delay(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  5115. uint32_t *val)
  5116. {
  5117. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  5118. struct dp_vdev *vdev;
  5119. uint32_t delay_accum;
  5120. uint32_t pkts_accum;
  5121. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_CDP);
  5122. if (!vdev) {
  5123. dp_err_rl("vdev %d does not exist", vdev_id);
  5124. return QDF_STATUS_E_FAILURE;
  5125. }
  5126. if (!qdf_atomic_read(&vdev->ul_delay_report)) {
  5127. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5128. return QDF_STATUS_E_FAILURE;
  5129. }
  5130. /* Average uplink delay based on current accumulated values */
  5131. delay_accum = qdf_atomic_read(&vdev->ul_delay_accum);
  5132. pkts_accum = qdf_atomic_read(&vdev->ul_pkts_accum);
  5133. *val = delay_accum / pkts_accum;
  5134. dp_debug("uplink_delay %u delay_accum %u pkts_accum %u", *val,
  5135. delay_accum, pkts_accum);
  5136. /* Reset accumulated values to 0 */
  5137. qdf_atomic_set(&vdev->ul_delay_accum, 0);
  5138. qdf_atomic_set(&vdev->ul_pkts_accum, 0);
  5139. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_CDP);
  5140. return QDF_STATUS_SUCCESS;
  5141. }
  5142. static void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
  5143. struct hal_tx_completion_status *ts)
  5144. {
  5145. uint32_t ul_delay;
  5146. if (qdf_unlikely(!vdev)) {
  5147. dp_info_rl("vdev is null or delete in progress");
  5148. return;
  5149. }
  5150. if (!qdf_atomic_read(&vdev->ul_delay_report))
  5151. return;
  5152. if (QDF_IS_STATUS_ERROR(dp_tx_compute_hw_delay_us(ts,
  5153. vdev->delta_tsf,
  5154. &ul_delay)))
  5155. return;
  5156. ul_delay /= 1000; /* in unit of ms */
  5157. qdf_atomic_add(ul_delay, &vdev->ul_delay_accum);
  5158. qdf_atomic_inc(&vdev->ul_pkts_accum);
  5159. }
  5160. #else /* !WLAN_FEATURE_TSF_UPLINK_DELAY */
  5161. static inline
  5162. void dp_tx_update_uplink_delay(struct dp_soc *soc, struct dp_vdev *vdev,
  5163. struct hal_tx_completion_status *ts)
  5164. {
  5165. }
  5166. #endif /* WLAN_FEATURE_TSF_UPLINK_DELAY */
  5167. void dp_tx_comp_process_tx_status(struct dp_soc *soc,
  5168. struct dp_tx_desc_s *tx_desc,
  5169. struct hal_tx_completion_status *ts,
  5170. struct dp_txrx_peer *txrx_peer,
  5171. uint8_t ring_id)
  5172. {
  5173. uint32_t length;
  5174. qdf_ether_header_t *eh;
  5175. struct dp_vdev *vdev = NULL;
  5176. qdf_nbuf_t nbuf = tx_desc->nbuf;
  5177. enum qdf_dp_tx_rx_status dp_status;
  5178. uint8_t link_id = 0;
  5179. enum QDF_OPMODE op_mode = QDF_MAX_NO_OF_MODE;
  5180. if (!nbuf) {
  5181. dp_info_rl("invalid tx descriptor. nbuf NULL");
  5182. goto out;
  5183. }
  5184. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  5185. length = dp_tx_get_pkt_len(tx_desc);
  5186. dp_status = dp_tx_hw_to_qdf(ts->status);
  5187. dp_tx_comp_debug("-------------------- \n"
  5188. "Tx Completion Stats: \n"
  5189. "-------------------- \n"
  5190. "ack_frame_rssi = %d \n"
  5191. "first_msdu = %d \n"
  5192. "last_msdu = %d \n"
  5193. "msdu_part_of_amsdu = %d \n"
  5194. "rate_stats valid = %d \n"
  5195. "bw = %d \n"
  5196. "pkt_type = %d \n"
  5197. "stbc = %d \n"
  5198. "ldpc = %d \n"
  5199. "sgi = %d \n"
  5200. "mcs = %d \n"
  5201. "ofdma = %d \n"
  5202. "tones_in_ru = %d \n"
  5203. "tsf = %d \n"
  5204. "ppdu_id = %d \n"
  5205. "transmit_cnt = %d \n"
  5206. "tid = %d \n"
  5207. "peer_id = %d\n"
  5208. "tx_status = %d\n"
  5209. "tx_release_source = %d\n",
  5210. ts->ack_frame_rssi, ts->first_msdu,
  5211. ts->last_msdu, ts->msdu_part_of_amsdu,
  5212. ts->valid, ts->bw, ts->pkt_type, ts->stbc,
  5213. ts->ldpc, ts->sgi, ts->mcs, ts->ofdma,
  5214. ts->tones_in_ru, ts->tsf, ts->ppdu_id,
  5215. ts->transmit_cnt, ts->tid, ts->peer_id,
  5216. ts->status, ts->release_src);
  5217. /* Update SoC level stats */
  5218. DP_STATS_INCC(soc, tx.dropped_fw_removed, 1,
  5219. (ts->status == HAL_TX_TQM_RR_REM_CMD_REM));
  5220. if (!txrx_peer) {
  5221. dp_info_rl("peer is null or deletion in progress");
  5222. DP_STATS_INC_PKT(soc, tx.tx_invalid_peer, 1, length);
  5223. goto out_log;
  5224. }
  5225. vdev = txrx_peer->vdev;
  5226. link_id = dp_tx_get_link_id_from_ppdu_id(soc, ts, txrx_peer, vdev);
  5227. dp_tx_set_nbuf_band(nbuf, txrx_peer, link_id);
  5228. op_mode = vdev->qdf_opmode;
  5229. dp_tx_update_connectivity_stats(soc, vdev, tx_desc, ts->status);
  5230. dp_tx_update_uplink_delay(soc, vdev, ts);
  5231. /* check tx complete notification */
  5232. if (qdf_nbuf_tx_notify_comp_get(nbuf))
  5233. dp_tx_notify_completion(soc, vdev, tx_desc,
  5234. nbuf, ts->status);
  5235. /* Update per-packet stats for mesh mode */
  5236. if (qdf_unlikely(vdev->mesh_vdev) &&
  5237. !(tx_desc->flags & DP_TX_DESC_FLAG_TO_FW))
  5238. dp_tx_comp_fill_tx_completion_stats(tx_desc, ts);
  5239. /* Update peer level stats */
  5240. if (qdf_unlikely(txrx_peer->bss_peer &&
  5241. vdev->opmode == wlan_op_mode_ap)) {
  5242. if (ts->status != HAL_TX_TQM_RR_REM_CMD_REM) {
  5243. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.mcast, 1,
  5244. length, link_id);
  5245. if (txrx_peer->vdev->tx_encap_type ==
  5246. htt_cmn_pkt_type_ethernet &&
  5247. QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  5248. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
  5249. tx.bcast, 1,
  5250. length, link_id);
  5251. }
  5252. }
  5253. } else {
  5254. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.ucast, 1, length,
  5255. link_id);
  5256. if (ts->status == HAL_TX_TQM_RR_FRAME_ACKED) {
  5257. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, tx.tx_success,
  5258. 1, length, link_id);
  5259. if (qdf_unlikely(txrx_peer->in_twt)) {
  5260. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer,
  5261. tx.tx_success_twt,
  5262. 1, length,
  5263. link_id);
  5264. }
  5265. }
  5266. }
  5267. dp_tx_update_peer_stats(tx_desc, ts, txrx_peer, ring_id, link_id);
  5268. dp_tx_update_peer_delay_stats(txrx_peer, tx_desc, ts, ring_id);
  5269. dp_tx_update_peer_jitter_stats(txrx_peer, tx_desc, ts, ring_id);
  5270. dp_tx_update_peer_sawf_stats(soc, vdev, txrx_peer, tx_desc,
  5271. ts, ts->tid);
  5272. dp_tx_send_pktlog(soc, vdev->pdev, tx_desc, nbuf, dp_status);
  5273. dp_tx_latency_stats_update(soc, txrx_peer, tx_desc, ts, link_id);
  5274. #ifdef QCA_SUPPORT_RDK_STATS
  5275. if (soc->peerstats_enabled)
  5276. dp_tx_sojourn_stats_process(vdev->pdev, txrx_peer, ts->tid,
  5277. qdf_ktime_to_ms(tx_desc->timestamp),
  5278. ts->ppdu_id, link_id);
  5279. #endif
  5280. out_log:
  5281. DPTRACE(qdf_dp_trace_ptr(tx_desc->nbuf,
  5282. QDF_DP_TRACE_LI_DP_FREE_PACKET_PTR_RECORD,
  5283. QDF_TRACE_DEFAULT_PDEV_ID,
  5284. qdf_nbuf_data_addr(nbuf),
  5285. sizeof(qdf_nbuf_data(nbuf)),
  5286. tx_desc->id, ts->status, dp_status, op_mode));
  5287. out:
  5288. return;
  5289. }
  5290. #if defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT) && \
  5291. defined(QCA_ENHANCED_STATS_SUPPORT)
  5292. void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
  5293. uint32_t length, uint8_t tx_status,
  5294. bool update)
  5295. {
  5296. if (update || (!txrx_peer->hw_txrx_stats_en)) {
  5297. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  5298. if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
  5299. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  5300. }
  5301. }
  5302. #elif defined(QCA_VDEV_STATS_HW_OFFLOAD_SUPPORT)
  5303. void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
  5304. uint32_t length, uint8_t tx_status,
  5305. bool update)
  5306. {
  5307. if (!txrx_peer->hw_txrx_stats_en) {
  5308. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  5309. if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
  5310. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  5311. }
  5312. }
  5313. #else
  5314. void dp_tx_update_peer_basic_stats(struct dp_txrx_peer *txrx_peer,
  5315. uint32_t length, uint8_t tx_status,
  5316. bool update)
  5317. {
  5318. DP_PEER_STATS_FLAT_INC_PKT(txrx_peer, comp_pkt, 1, length);
  5319. if (tx_status != HAL_TX_TQM_RR_FRAME_ACKED)
  5320. DP_PEER_STATS_FLAT_INC(txrx_peer, tx_failed, 1);
  5321. }
  5322. #endif
  5323. /**
  5324. * dp_tx_prefetch_next_nbuf_data(): Prefetch nbuf and nbuf data
  5325. * @next: descriptor of the nrxt buffer
  5326. *
  5327. * Return: none
  5328. */
  5329. #ifdef QCA_DP_RX_NBUF_AND_NBUF_DATA_PREFETCH
  5330. static inline
  5331. void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
  5332. {
  5333. qdf_nbuf_t nbuf = NULL;
  5334. if (next)
  5335. nbuf = next->nbuf;
  5336. if (nbuf)
  5337. qdf_prefetch(nbuf);
  5338. }
  5339. #else
  5340. static inline
  5341. void dp_tx_prefetch_next_nbuf_data(struct dp_tx_desc_s *next)
  5342. {
  5343. }
  5344. #endif
  5345. /**
  5346. * dp_tx_mcast_reinject_handler() - Tx reinjected multicast packets handler
  5347. * @soc: core txrx main context
  5348. * @desc: software descriptor
  5349. *
  5350. * Return: true when packet is reinjected
  5351. */
  5352. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  5353. defined(WLAN_MCAST_MLO) && !defined(CONFIG_MLO_SINGLE_DEV)
  5354. static inline bool
  5355. dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  5356. {
  5357. struct dp_vdev *vdev = NULL;
  5358. if (desc->tx_status == HAL_TX_TQM_RR_MULTICAST_DROP) {
  5359. if (!soc->arch_ops.dp_tx_mcast_handler ||
  5360. !soc->arch_ops.dp_tx_is_mcast_primary)
  5361. return false;
  5362. vdev = dp_vdev_get_ref_by_id(soc, desc->vdev_id,
  5363. DP_MOD_ID_REINJECT);
  5364. if (qdf_unlikely(!vdev)) {
  5365. dp_tx_comp_info_rl("Unable to get vdev ref %d",
  5366. desc->id);
  5367. return false;
  5368. }
  5369. if (!(soc->arch_ops.dp_tx_is_mcast_primary(soc, vdev))) {
  5370. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
  5371. return false;
  5372. }
  5373. DP_STATS_INC_PKT(vdev, tx_i.reinject_pkts, 1,
  5374. qdf_nbuf_len(desc->nbuf));
  5375. soc->arch_ops.dp_tx_mcast_handler(soc, vdev, desc->nbuf);
  5376. dp_tx_desc_release(soc, desc, desc->pool_id);
  5377. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_REINJECT);
  5378. return true;
  5379. }
  5380. return false;
  5381. }
  5382. #else
  5383. static inline bool
  5384. dp_tx_mcast_reinject_handler(struct dp_soc *soc, struct dp_tx_desc_s *desc)
  5385. {
  5386. return false;
  5387. }
  5388. #endif
  5389. #ifdef QCA_DP_TX_NBUF_LIST_FREE
  5390. static inline void
  5391. dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5392. {
  5393. qdf_nbuf_queue_head_init(nbuf_queue_head);
  5394. }
  5395. static inline void
  5396. dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5397. struct dp_tx_desc_s *desc)
  5398. {
  5399. qdf_nbuf_t nbuf = NULL;
  5400. nbuf = desc->nbuf;
  5401. if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_FAST))
  5402. qdf_nbuf_dev_queue_head(nbuf_queue_head, nbuf);
  5403. else
  5404. qdf_nbuf_free(nbuf);
  5405. }
  5406. static inline void
  5407. dp_tx_nbuf_dev_queue_free_no_flag(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5408. qdf_nbuf_t nbuf)
  5409. {
  5410. if (!nbuf)
  5411. return;
  5412. if (nbuf->is_from_recycler)
  5413. qdf_nbuf_dev_queue_head(nbuf_queue_head, nbuf);
  5414. else
  5415. qdf_nbuf_free(nbuf);
  5416. }
  5417. static inline void
  5418. dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5419. {
  5420. qdf_nbuf_dev_kfree_list(nbuf_queue_head);
  5421. }
  5422. #else
  5423. static inline void
  5424. dp_tx_nbuf_queue_head_init(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5425. {
  5426. }
  5427. static inline void
  5428. dp_tx_nbuf_dev_queue_free(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5429. struct dp_tx_desc_s *desc)
  5430. {
  5431. qdf_nbuf_free(desc->nbuf);
  5432. }
  5433. static inline void
  5434. dp_tx_nbuf_dev_queue_free_no_flag(qdf_nbuf_queue_head_t *nbuf_queue_head,
  5435. qdf_nbuf_t nbuf)
  5436. {
  5437. qdf_nbuf_free(nbuf);
  5438. }
  5439. static inline void
  5440. dp_tx_nbuf_dev_kfree_list(qdf_nbuf_queue_head_t *nbuf_queue_head)
  5441. {
  5442. }
  5443. #endif
  5444. #ifdef WLAN_SUPPORT_PPEDS
  5445. static inline void
  5446. dp_tx_update_ppeds_tx_comp_stats(struct dp_soc *soc,
  5447. struct dp_txrx_peer *txrx_peer,
  5448. struct hal_tx_completion_status *ts,
  5449. struct dp_tx_desc_s *desc,
  5450. uint8_t ring_id)
  5451. {
  5452. uint8_t link_id = 0;
  5453. struct dp_vdev *vdev = NULL;
  5454. if (qdf_likely(txrx_peer)) {
  5455. if (!(desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
  5456. hal_tx_comp_get_status(&desc->comp,
  5457. ts,
  5458. soc->hal_soc);
  5459. vdev = txrx_peer->vdev;
  5460. link_id = dp_tx_get_link_id_from_ppdu_id(soc,
  5461. ts,
  5462. txrx_peer,
  5463. vdev);
  5464. if (link_id < 1 || link_id > DP_MAX_MLO_LINKS)
  5465. link_id = 0;
  5466. dp_tx_update_peer_stats(desc, ts,
  5467. txrx_peer,
  5468. ring_id,
  5469. link_id);
  5470. } else {
  5471. dp_tx_update_peer_basic_stats(txrx_peer, desc->length,
  5472. desc->tx_status, false);
  5473. }
  5474. }
  5475. }
  5476. #else
  5477. static inline void
  5478. dp_tx_update_ppeds_tx_comp_stats(struct dp_soc *soc,
  5479. struct dp_txrx_peer *txrx_peer,
  5480. struct hal_tx_completion_status *ts,
  5481. struct dp_tx_desc_s *desc,
  5482. uint8_t ring_id)
  5483. {
  5484. }
  5485. #endif
  5486. void
  5487. dp_tx_comp_process_desc_list_fast(struct dp_soc *soc,
  5488. struct dp_tx_desc_s *head_desc,
  5489. struct dp_tx_desc_s *tail_desc,
  5490. uint8_t ring_id,
  5491. uint32_t fast_desc_count)
  5492. {
  5493. struct dp_tx_desc_pool_s *pool = NULL;
  5494. pool = dp_get_tx_desc_pool(soc, head_desc->pool_id);
  5495. dp_tx_outstanding_sub(head_desc->pdev, fast_desc_count);
  5496. dp_tx_desc_free_list(pool, head_desc, tail_desc, fast_desc_count);
  5497. }
  5498. void
  5499. dp_tx_comp_process_desc_list(struct dp_soc *soc,
  5500. struct dp_tx_desc_s *comp_head, uint8_t ring_id)
  5501. {
  5502. struct dp_tx_desc_s *desc;
  5503. struct dp_tx_desc_s *next;
  5504. struct hal_tx_completion_status ts;
  5505. struct dp_txrx_peer *txrx_peer = NULL;
  5506. uint16_t peer_id = DP_INVALID_PEER;
  5507. dp_txrx_ref_handle txrx_ref_handle = NULL;
  5508. qdf_nbuf_queue_head_t h;
  5509. desc = comp_head;
  5510. dp_tx_nbuf_queue_head_init(&h);
  5511. while (desc) {
  5512. next = desc->next;
  5513. dp_tx_prefetch_next_nbuf_data(next);
  5514. if (peer_id != desc->peer_id) {
  5515. if (txrx_peer)
  5516. dp_txrx_peer_unref_delete(txrx_ref_handle,
  5517. DP_MOD_ID_TX_COMP);
  5518. peer_id = desc->peer_id;
  5519. txrx_peer =
  5520. dp_txrx_peer_get_ref_by_id(soc, peer_id,
  5521. &txrx_ref_handle,
  5522. DP_MOD_ID_TX_COMP);
  5523. }
  5524. if (dp_tx_mcast_reinject_handler(soc, desc)) {
  5525. desc = next;
  5526. continue;
  5527. }
  5528. if (desc->flags & DP_TX_DESC_FLAG_PPEDS) {
  5529. qdf_nbuf_t nbuf;
  5530. dp_tx_update_ppeds_tx_comp_stats(soc, txrx_peer, &ts,
  5531. desc, ring_id);
  5532. if (desc->pool_id != DP_TX_PPEDS_POOL_ID) {
  5533. nbuf = desc->nbuf;
  5534. dp_tx_nbuf_dev_queue_free_no_flag(&h, nbuf);
  5535. if (desc->flags & DP_TX_DESC_FLAG_SPECIAL)
  5536. dp_tx_spcl_desc_free(soc, desc,
  5537. desc->pool_id);
  5538. else
  5539. dp_tx_desc_free(soc, desc,
  5540. desc->pool_id);
  5541. __dp_tx_outstanding_dec(soc);
  5542. } else {
  5543. nbuf = dp_ppeds_tx_desc_free(soc, desc);
  5544. dp_tx_nbuf_dev_queue_free_no_flag(&h, nbuf);
  5545. }
  5546. desc = next;
  5547. continue;
  5548. }
  5549. if (qdf_likely(desc->flags & DP_TX_DESC_FLAG_SIMPLE)) {
  5550. struct dp_pdev *pdev = desc->pdev;
  5551. if (qdf_likely(txrx_peer))
  5552. dp_tx_update_peer_basic_stats(txrx_peer,
  5553. desc->length,
  5554. desc->tx_status,
  5555. false);
  5556. qdf_assert(pdev);
  5557. dp_tx_outstanding_dec(pdev);
  5558. /*
  5559. * Calling a QDF WRAPPER here is creating significant
  5560. * performance impact so avoided the wrapper call here
  5561. */
  5562. dp_tx_desc_history_add(soc, desc->dma_addr, desc->nbuf,
  5563. desc->id, DP_TX_COMP_UNMAP);
  5564. dp_tx_nbuf_unmap(soc, desc);
  5565. dp_tx_nbuf_dev_queue_free(&h, desc);
  5566. dp_tx_desc_free(soc, desc, desc->pool_id);
  5567. desc = next;
  5568. continue;
  5569. }
  5570. hal_tx_comp_get_status(&desc->comp, &ts, soc->hal_soc);
  5571. dp_tx_comp_process_tx_status(soc, desc, &ts, txrx_peer,
  5572. ring_id);
  5573. dp_tx_comp_process_desc(soc, desc, &ts, txrx_peer);
  5574. dp_tx_desc_release(soc, desc, desc->pool_id);
  5575. desc = next;
  5576. }
  5577. dp_tx_nbuf_dev_kfree_list(&h);
  5578. if (txrx_peer)
  5579. dp_txrx_peer_unref_delete(txrx_ref_handle, DP_MOD_ID_TX_COMP);
  5580. }
  5581. #ifndef WLAN_SOFTUMAC_SUPPORT
  5582. /**
  5583. * dp_tx_dump_tx_desc() - Dump tx desc for debugging
  5584. * @tx_desc: software descriptor head pointer
  5585. *
  5586. * This function will dump tx desc for further debugging
  5587. *
  5588. * Return: none
  5589. */
  5590. static
  5591. void dp_tx_dump_tx_desc(struct dp_tx_desc_s *tx_desc)
  5592. {
  5593. if (tx_desc) {
  5594. dp_tx_comp_warn("tx_desc->nbuf: %pK", tx_desc->nbuf);
  5595. dp_tx_comp_warn("tx_desc->flags: 0x%x", tx_desc->flags);
  5596. dp_tx_comp_warn("tx_desc->id: %u", tx_desc->id);
  5597. dp_tx_comp_warn("tx_desc->dma_addr: 0x%x",
  5598. tx_desc->dma_addr);
  5599. dp_tx_comp_warn("tx_desc->vdev_id: %u",
  5600. tx_desc->vdev_id);
  5601. dp_tx_comp_warn("tx_desc->tx_status: %u",
  5602. tx_desc->tx_status);
  5603. dp_tx_comp_warn("tx_desc->pdev: %pK",
  5604. tx_desc->pdev);
  5605. dp_tx_comp_warn("tx_desc->tx_encap_type: %u",
  5606. tx_desc->tx_encap_type);
  5607. dp_tx_comp_warn("tx_desc->buffer_src: %u",
  5608. tx_desc->buffer_src);
  5609. dp_tx_comp_warn("tx_desc->frm_type: %u",
  5610. tx_desc->frm_type);
  5611. dp_tx_comp_warn("tx_desc->pkt_offset: %u",
  5612. tx_desc->pkt_offset);
  5613. dp_tx_comp_warn("tx_desc->pool_id: %u",
  5614. tx_desc->pool_id);
  5615. }
  5616. }
  5617. #endif
  5618. #ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
  5619. static inline
  5620. bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
  5621. int max_reap_limit)
  5622. {
  5623. bool limit_hit = false;
  5624. limit_hit =
  5625. (num_reaped >= max_reap_limit) ? true : false;
  5626. if (limit_hit)
  5627. DP_STATS_INC(soc, tx.tx_comp_loop_pkt_limit_hit, 1);
  5628. return limit_hit;
  5629. }
  5630. static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
  5631. {
  5632. return soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check;
  5633. }
  5634. static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
  5635. {
  5636. struct wlan_cfg_dp_soc_ctxt *cfg = soc->wlan_cfg_ctx;
  5637. return cfg->tx_comp_loop_pkt_limit;
  5638. }
  5639. #else
  5640. static inline
  5641. bool dp_tx_comp_loop_pkt_limit_hit(struct dp_soc *soc, int num_reaped,
  5642. int max_reap_limit)
  5643. {
  5644. return false;
  5645. }
  5646. static inline bool dp_tx_comp_enable_eol_data_check(struct dp_soc *soc)
  5647. {
  5648. return false;
  5649. }
  5650. static inline int dp_tx_comp_get_loop_pkt_limit(struct dp_soc *soc)
  5651. {
  5652. return 0;
  5653. }
  5654. #endif
  5655. #ifdef WLAN_FEATURE_NEAR_FULL_IRQ
  5656. static inline int
  5657. dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
  5658. int *max_reap_limit)
  5659. {
  5660. return soc->arch_ops.dp_srng_test_and_update_nf_params(soc, dp_srng,
  5661. max_reap_limit);
  5662. }
  5663. #else
  5664. static inline int
  5665. dp_srng_test_and_update_nf_params(struct dp_soc *soc, struct dp_srng *dp_srng,
  5666. int *max_reap_limit)
  5667. {
  5668. return 0;
  5669. }
  5670. #endif
  5671. #ifdef DP_TX_TRACKING
  5672. void dp_tx_desc_check_corruption(struct dp_tx_desc_s *tx_desc)
  5673. {
  5674. if ((tx_desc->magic != DP_TX_MAGIC_PATTERN_INUSE) &&
  5675. (tx_desc->magic != DP_TX_MAGIC_PATTERN_FREE)) {
  5676. dp_err_rl("tx_desc %u is corrupted", tx_desc->id);
  5677. qdf_trigger_self_recovery(NULL, QDF_TX_DESC_LEAK);
  5678. }
  5679. }
  5680. #endif
  5681. #ifndef WLAN_SOFTUMAC_SUPPORT
  5682. uint32_t dp_tx_comp_handler(struct dp_intr *int_ctx, struct dp_soc *soc,
  5683. hal_ring_handle_t hal_ring_hdl, uint8_t ring_id,
  5684. uint32_t quota)
  5685. {
  5686. void *tx_comp_hal_desc;
  5687. void *last_prefetched_hw_desc = NULL;
  5688. struct dp_tx_desc_s *last_prefetched_sw_desc = NULL;
  5689. hal_soc_handle_t hal_soc;
  5690. uint8_t buffer_src;
  5691. struct dp_tx_desc_s *tx_desc = NULL;
  5692. struct dp_tx_desc_s *head_desc = NULL;
  5693. struct dp_tx_desc_s *tail_desc = NULL;
  5694. struct dp_tx_desc_s *fast_head_desc = NULL;
  5695. struct dp_tx_desc_s *fast_tail_desc = NULL;
  5696. uint32_t num_processed = 0;
  5697. uint32_t fast_desc_count = 0;
  5698. uint32_t count;
  5699. uint32_t num_avail_for_reap = 0;
  5700. bool force_break = false;
  5701. struct dp_srng *tx_comp_ring = &soc->tx_comp_ring[ring_id];
  5702. int max_reap_limit, ring_near_full;
  5703. uint32_t num_entries;
  5704. qdf_nbuf_queue_head_t h;
  5705. DP_HIST_INIT();
  5706. num_entries = hal_srng_get_num_entries(soc->hal_soc, hal_ring_hdl);
  5707. more_data:
  5708. hal_soc = soc->hal_soc;
  5709. /* Re-initialize local variables to be re-used */
  5710. head_desc = NULL;
  5711. tail_desc = NULL;
  5712. count = 0;
  5713. max_reap_limit = dp_tx_comp_get_loop_pkt_limit(soc);
  5714. ring_near_full = dp_srng_test_and_update_nf_params(soc, tx_comp_ring,
  5715. &max_reap_limit);
  5716. if (qdf_unlikely(dp_srng_access_start(int_ctx, soc, hal_ring_hdl))) {
  5717. dp_err("HAL RING Access Failed -- %pK", hal_ring_hdl);
  5718. return 0;
  5719. }
  5720. if (!num_avail_for_reap)
  5721. num_avail_for_reap = hal_srng_dst_num_valid(hal_soc,
  5722. hal_ring_hdl, 0);
  5723. if (num_avail_for_reap >= quota)
  5724. num_avail_for_reap = quota;
  5725. dp_srng_dst_inv_cached_descs(soc, hal_ring_hdl, num_avail_for_reap);
  5726. last_prefetched_hw_desc = dp_srng_dst_prefetch_32_byte_desc(hal_soc,
  5727. hal_ring_hdl,
  5728. num_avail_for_reap);
  5729. dp_tx_nbuf_queue_head_init(&h);
  5730. /* Find head descriptor from completion ring */
  5731. while (qdf_likely(num_avail_for_reap--)) {
  5732. tx_comp_hal_desc = dp_srng_dst_get_next(soc, hal_ring_hdl);
  5733. if (qdf_unlikely(!tx_comp_hal_desc))
  5734. break;
  5735. buffer_src = hal_tx_comp_get_buffer_source(hal_soc,
  5736. tx_comp_hal_desc);
  5737. /* If this buffer was not released by TQM or FW, then it is not
  5738. * Tx completion indication, assert */
  5739. if (qdf_unlikely(buffer_src !=
  5740. HAL_TX_COMP_RELEASE_SOURCE_TQM) &&
  5741. (qdf_unlikely(buffer_src !=
  5742. HAL_TX_COMP_RELEASE_SOURCE_FW))) {
  5743. uint8_t wbm_internal_error;
  5744. dp_err_rl(
  5745. "Tx comp release_src != TQM | FW but from %d",
  5746. buffer_src);
  5747. hal_dump_comp_desc(tx_comp_hal_desc);
  5748. DP_STATS_INC(soc, tx.invalid_release_source, 1);
  5749. /* When WBM sees NULL buffer_addr_info in any of
  5750. * ingress rings it sends an error indication,
  5751. * with wbm_internal_error=1, to a specific ring.
  5752. * The WBM2SW ring used to indicate these errors is
  5753. * fixed in HW, and that ring is being used as Tx
  5754. * completion ring. These errors are not related to
  5755. * Tx completions, and should just be ignored
  5756. */
  5757. wbm_internal_error = hal_get_wbm_internal_error(
  5758. hal_soc,
  5759. tx_comp_hal_desc);
  5760. if (wbm_internal_error) {
  5761. dp_err_rl("Tx comp wbm_internal_error!!");
  5762. DP_STATS_INC(soc, tx.wbm_internal_error[WBM_INT_ERROR_ALL], 1);
  5763. if (HAL_TX_COMP_RELEASE_SOURCE_REO ==
  5764. buffer_src)
  5765. dp_handle_wbm_internal_error(
  5766. soc,
  5767. tx_comp_hal_desc,
  5768. hal_tx_comp_get_buffer_type(
  5769. tx_comp_hal_desc));
  5770. } else {
  5771. dp_err_rl("Tx comp wbm_internal_error false");
  5772. DP_STATS_INC(soc, tx.non_wbm_internal_err, 1);
  5773. }
  5774. continue;
  5775. }
  5776. soc->arch_ops.tx_comp_get_params_from_hal_desc(soc,
  5777. tx_comp_hal_desc,
  5778. &tx_desc);
  5779. if (qdf_unlikely(!tx_desc)) {
  5780. dp_err("unable to retrieve tx_desc!");
  5781. hal_dump_comp_desc(tx_comp_hal_desc);
  5782. DP_STATS_INC(soc, tx.invalid_tx_comp_desc, 1);
  5783. QDF_BUG(0);
  5784. continue;
  5785. }
  5786. tx_desc->buffer_src = buffer_src;
  5787. /*
  5788. * If the release source is FW, process the HTT status
  5789. */
  5790. if (qdf_unlikely(buffer_src ==
  5791. HAL_TX_COMP_RELEASE_SOURCE_FW)) {
  5792. uint8_t htt_tx_status[HAL_TX_COMP_HTT_STATUS_LEN];
  5793. hal_tx_comp_get_htt_desc(tx_comp_hal_desc,
  5794. htt_tx_status);
  5795. /* Collect hw completion contents */
  5796. hal_tx_comp_desc_sync(tx_comp_hal_desc,
  5797. &tx_desc->comp, 1);
  5798. soc->arch_ops.dp_tx_process_htt_completion(
  5799. soc,
  5800. tx_desc,
  5801. htt_tx_status,
  5802. ring_id);
  5803. if (qdf_unlikely(!tx_desc->pdev)) {
  5804. dp_tx_dump_tx_desc(tx_desc);
  5805. }
  5806. } else {
  5807. if (tx_desc->flags & DP_TX_DESC_FLAG_FASTPATH_SIMPLE ||
  5808. tx_desc->flags & DP_TX_DESC_FLAG_PPEDS)
  5809. goto add_to_pool2;
  5810. tx_desc->tx_status =
  5811. hal_tx_comp_get_tx_status(tx_comp_hal_desc);
  5812. tx_desc->buffer_src = buffer_src;
  5813. /*
  5814. * If the fast completion mode is enabled extended
  5815. * metadata from descriptor is not copied
  5816. */
  5817. if (qdf_likely(tx_desc->flags &
  5818. DP_TX_DESC_FLAG_SIMPLE))
  5819. goto add_to_pool;
  5820. /*
  5821. * If the descriptor is already freed in vdev_detach,
  5822. * continue to next descriptor
  5823. */
  5824. if (qdf_unlikely
  5825. ((tx_desc->vdev_id == DP_INVALID_VDEV_ID) &&
  5826. !tx_desc->flags)) {
  5827. dp_tx_comp_info_rl("Descriptor freed in vdev_detach %d",
  5828. tx_desc->id);
  5829. DP_STATS_INC(soc, tx.tx_comp_exception, 1);
  5830. dp_tx_desc_check_corruption(tx_desc);
  5831. continue;
  5832. }
  5833. if (qdf_unlikely(!tx_desc->pdev)) {
  5834. dp_tx_comp_warn("The pdev is NULL in TX desc, ignored.");
  5835. dp_tx_dump_tx_desc(tx_desc);
  5836. DP_STATS_INC(soc, tx.tx_comp_exception, 1);
  5837. continue;
  5838. }
  5839. if (qdf_unlikely(tx_desc->pdev->is_pdev_down)) {
  5840. dp_tx_comp_info_rl("pdev in down state %d",
  5841. tx_desc->id);
  5842. tx_desc->flags |= DP_TX_DESC_FLAG_TX_COMP_ERR;
  5843. dp_tx_comp_free_buf(soc, tx_desc, false);
  5844. dp_tx_desc_release(soc, tx_desc,
  5845. tx_desc->pool_id);
  5846. goto next_desc;
  5847. }
  5848. if (!(tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED) ||
  5849. !(tx_desc->flags & DP_TX_DESC_FLAG_QUEUED_TX)) {
  5850. dp_tx_comp_alert("Txdesc invalid, flgs = %x,id = %d",
  5851. tx_desc->flags, tx_desc->id);
  5852. qdf_assert_always(0);
  5853. }
  5854. /* Collect hw completion contents */
  5855. hal_tx_comp_desc_sync(tx_comp_hal_desc,
  5856. &tx_desc->comp, 1);
  5857. add_to_pool:
  5858. DP_HIST_PACKET_COUNT_INC(tx_desc->pdev->pdev_id);
  5859. add_to_pool2:
  5860. /* First ring descriptor on the cycle */
  5861. if (tx_desc->flags & DP_TX_DESC_FLAG_FASTPATH_SIMPLE ||
  5862. tx_desc->flags & DP_TX_DESC_FLAG_PPEDS) {
  5863. dp_tx_nbuf_dev_queue_free(&h, tx_desc);
  5864. fast_desc_count++;
  5865. if (!fast_head_desc) {
  5866. fast_head_desc = tx_desc;
  5867. fast_tail_desc = tx_desc;
  5868. }
  5869. fast_tail_desc->next = tx_desc;
  5870. fast_tail_desc = tx_desc;
  5871. dp_tx_desc_clear(tx_desc);
  5872. } else {
  5873. if (!head_desc) {
  5874. head_desc = tx_desc;
  5875. tail_desc = tx_desc;
  5876. }
  5877. tail_desc->next = tx_desc;
  5878. tx_desc->next = NULL;
  5879. tail_desc = tx_desc;
  5880. }
  5881. }
  5882. next_desc:
  5883. num_processed += !(count & DP_TX_NAPI_BUDGET_DIV_MASK);
  5884. /*
  5885. * Processed packet count is more than given quota
  5886. * stop to processing
  5887. */
  5888. count++;
  5889. dp_tx_prefetch_hw_sw_nbuf_desc(soc, hal_soc,
  5890. num_avail_for_reap,
  5891. hal_ring_hdl,
  5892. &last_prefetched_hw_desc,
  5893. &last_prefetched_sw_desc);
  5894. if (dp_tx_comp_loop_pkt_limit_hit(soc, count, max_reap_limit))
  5895. break;
  5896. }
  5897. dp_srng_access_end(int_ctx, soc, hal_ring_hdl);
  5898. /* Process the reaped descriptors that were sent via fast path */
  5899. if (fast_head_desc) {
  5900. dp_tx_comp_process_desc_list_fast(soc, fast_head_desc,
  5901. fast_tail_desc, ring_id,
  5902. fast_desc_count);
  5903. dp_tx_nbuf_dev_kfree_list(&h);
  5904. }
  5905. /* Process the reaped descriptors */
  5906. if (head_desc)
  5907. dp_tx_comp_process_desc_list(soc, head_desc, ring_id);
  5908. DP_STATS_INC(soc, tx.tx_comp[ring_id], count);
  5909. /*
  5910. * If we are processing in near-full condition, there are 3 scenario
  5911. * 1) Ring entries has reached critical state
  5912. * 2) Ring entries are still near high threshold
  5913. * 3) Ring entries are below the safe level
  5914. *
  5915. * One more loop will move the state to normal processing and yield
  5916. */
  5917. if (ring_near_full)
  5918. goto more_data;
  5919. if (dp_tx_comp_enable_eol_data_check(soc)) {
  5920. if (num_processed >= quota)
  5921. force_break = true;
  5922. if (!force_break &&
  5923. hal_srng_dst_peek_sync_locked(soc->hal_soc,
  5924. hal_ring_hdl)) {
  5925. DP_STATS_INC(soc, tx.hp_oos2, 1);
  5926. if (!hif_exec_should_yield(soc->hif_handle,
  5927. int_ctx->dp_intr_id))
  5928. goto more_data;
  5929. num_avail_for_reap =
  5930. hal_srng_dst_num_valid_locked(soc->hal_soc,
  5931. hal_ring_hdl,
  5932. true);
  5933. if (qdf_unlikely(num_entries &&
  5934. (num_avail_for_reap >=
  5935. num_entries >> 1))) {
  5936. DP_STATS_INC(soc, tx.near_full, 1);
  5937. goto more_data;
  5938. }
  5939. }
  5940. }
  5941. DP_TX_HIST_STATS_PER_PDEV();
  5942. return num_processed;
  5943. }
  5944. #endif
  5945. #ifdef FEATURE_WLAN_TDLS
  5946. qdf_nbuf_t dp_tx_non_std(struct cdp_soc_t *soc_hdl, uint8_t vdev_id,
  5947. enum ol_tx_spec tx_spec, qdf_nbuf_t msdu_list)
  5948. {
  5949. struct dp_soc *soc = cdp_soc_t_to_dp_soc(soc_hdl);
  5950. struct dp_vdev *vdev = dp_vdev_get_ref_by_id(soc, vdev_id,
  5951. DP_MOD_ID_TDLS);
  5952. if (!vdev) {
  5953. dp_err("vdev handle for id %d is NULL", vdev_id);
  5954. return NULL;
  5955. }
  5956. if (tx_spec & OL_TX_SPEC_NO_FREE)
  5957. vdev->is_tdls_frame = true;
  5958. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_TDLS);
  5959. return dp_tx_send(soc_hdl, vdev_id, msdu_list);
  5960. }
  5961. #endif
  5962. QDF_STATUS dp_tx_vdev_attach(struct dp_vdev *vdev)
  5963. {
  5964. int pdev_id;
  5965. /*
  5966. * Fill HTT TCL Metadata with Vdev ID and MAC ID
  5967. */
  5968. DP_TX_TCL_METADATA_TYPE_SET(vdev->htt_tcl_metadata,
  5969. DP_TCL_METADATA_TYPE_VDEV_BASED);
  5970. DP_TX_TCL_METADATA_VDEV_ID_SET(vdev->htt_tcl_metadata,
  5971. vdev->vdev_id);
  5972. pdev_id =
  5973. dp_get_target_pdev_id_for_host_pdev_id(vdev->pdev->soc,
  5974. vdev->pdev->pdev_id);
  5975. DP_TX_TCL_METADATA_PDEV_ID_SET(vdev->htt_tcl_metadata, pdev_id);
  5976. /*
  5977. * Set HTT Extension Valid bit to 0 by default
  5978. */
  5979. DP_TX_TCL_METADATA_VALID_HTT_SET(vdev->htt_tcl_metadata, 0);
  5980. dp_tx_vdev_update_search_flags(vdev);
  5981. return QDF_STATUS_SUCCESS;
  5982. }
  5983. #ifndef FEATURE_WDS
  5984. static inline bool dp_tx_da_search_override(struct dp_vdev *vdev)
  5985. {
  5986. return false;
  5987. }
  5988. #endif
  5989. void dp_tx_vdev_update_search_flags(struct dp_vdev *vdev)
  5990. {
  5991. struct dp_soc *soc = vdev->pdev->soc;
  5992. /*
  5993. * Enable both AddrY (SA based search) and AddrX (Da based search)
  5994. * for TDLS link
  5995. *
  5996. * Enable AddrY (SA based search) only for non-WDS STA and
  5997. * ProxySTA VAP (in HKv1) modes.
  5998. *
  5999. * In all other VAP modes, only DA based search should be
  6000. * enabled
  6001. */
  6002. if (vdev->opmode == wlan_op_mode_sta &&
  6003. vdev->tdls_link_connected)
  6004. vdev->hal_desc_addr_search_flags =
  6005. (HAL_TX_DESC_ADDRX_EN | HAL_TX_DESC_ADDRY_EN);
  6006. else if ((vdev->opmode == wlan_op_mode_sta) &&
  6007. !dp_tx_da_search_override(vdev))
  6008. vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRY_EN;
  6009. else
  6010. vdev->hal_desc_addr_search_flags = HAL_TX_DESC_ADDRX_EN;
  6011. if (vdev->opmode == wlan_op_mode_sta && !vdev->tdls_link_connected)
  6012. vdev->search_type = soc->sta_mode_search_policy;
  6013. else
  6014. vdev->search_type = HAL_TX_ADDR_SEARCH_DEFAULT;
  6015. }
  6016. #ifdef WLAN_SUPPORT_PPEDS
  6017. static inline bool
  6018. dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
  6019. struct dp_vdev *vdev,
  6020. struct dp_tx_desc_s *tx_desc)
  6021. {
  6022. if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
  6023. return false;
  6024. if (tx_desc->flags & DP_TX_DESC_FLAG_PPEDS)
  6025. return true;
  6026. /*
  6027. * if vdev is given, then only check whether desc
  6028. * vdev match. if vdev is NULL, then check whether
  6029. * desc pdev match.
  6030. */
  6031. return vdev ? (tx_desc->vdev_id == vdev->vdev_id) :
  6032. (tx_desc->pdev == pdev);
  6033. }
  6034. #else
  6035. static inline bool
  6036. dp_is_tx_desc_flush_match(struct dp_pdev *pdev,
  6037. struct dp_vdev *vdev,
  6038. struct dp_tx_desc_s *tx_desc)
  6039. {
  6040. if (!(tx_desc && (tx_desc->flags & DP_TX_DESC_FLAG_ALLOCATED)))
  6041. return false;
  6042. /*
  6043. * if vdev is given, then only check whether desc
  6044. * vdev match. if vdev is NULL, then check whether
  6045. * desc pdev match.
  6046. */
  6047. return vdev ? (tx_desc->vdev_id == vdev->vdev_id) :
  6048. (tx_desc->pdev == pdev);
  6049. }
  6050. #endif
  6051. #ifdef QCA_LL_TX_FLOW_CONTROL_V2
  6052. void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
  6053. bool force_free)
  6054. {
  6055. uint8_t i;
  6056. uint32_t j;
  6057. uint32_t num_desc, page_id, offset;
  6058. uint16_t num_desc_per_page;
  6059. struct dp_soc *soc = pdev->soc;
  6060. struct dp_tx_desc_s *tx_desc = NULL;
  6061. struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
  6062. if (!vdev && !force_free) {
  6063. dp_err("Reset TX desc vdev, Vdev param is required!");
  6064. return;
  6065. }
  6066. for (i = 0; i < MAX_TXDESC_POOLS; i++) {
  6067. tx_desc_pool = &soc->tx_desc[i];
  6068. if (!(tx_desc_pool->pool_size) ||
  6069. IS_TX_DESC_POOL_STATUS_INACTIVE(tx_desc_pool) ||
  6070. !(tx_desc_pool->desc_pages.cacheable_pages))
  6071. continue;
  6072. /*
  6073. * Add flow pool lock protection in case pool is freed
  6074. * due to all tx_desc is recycled when handle TX completion.
  6075. * this is not necessary when do force flush as:
  6076. * a. double lock will happen if dp_tx_desc_release is
  6077. * also trying to acquire it.
  6078. * b. dp interrupt has been disabled before do force TX desc
  6079. * flush in dp_pdev_deinit().
  6080. */
  6081. if (!force_free)
  6082. qdf_spin_lock_bh(&tx_desc_pool->flow_pool_lock);
  6083. num_desc = tx_desc_pool->pool_size;
  6084. num_desc_per_page =
  6085. tx_desc_pool->desc_pages.num_element_per_page;
  6086. for (j = 0; j < num_desc; j++) {
  6087. page_id = j / num_desc_per_page;
  6088. offset = j % num_desc_per_page;
  6089. if (qdf_unlikely(!(tx_desc_pool->
  6090. desc_pages.cacheable_pages)))
  6091. break;
  6092. tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
  6093. false);
  6094. if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
  6095. /*
  6096. * Free TX desc if force free is
  6097. * required, otherwise only reset vdev
  6098. * in this TX desc.
  6099. */
  6100. if (force_free) {
  6101. tx_desc->flags |= DP_TX_DESC_FLAG_FLUSH;
  6102. dp_tx_comp_free_buf(soc, tx_desc,
  6103. false);
  6104. dp_tx_desc_release(soc, tx_desc, i);
  6105. } else {
  6106. tx_desc->vdev_id = DP_INVALID_VDEV_ID;
  6107. }
  6108. }
  6109. }
  6110. if (!force_free)
  6111. qdf_spin_unlock_bh(&tx_desc_pool->flow_pool_lock);
  6112. }
  6113. }
  6114. #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
  6115. /**
  6116. * dp_tx_desc_reset_vdev() - reset vdev to NULL in TX Desc
  6117. *
  6118. * @soc: Handle to DP soc structure
  6119. * @tx_desc: pointer of one TX desc
  6120. * @desc_pool_id: TX Desc pool id
  6121. * @spcl_pool: Special pool
  6122. */
  6123. static inline void
  6124. dp_tx_desc_reset_vdev(struct dp_soc *soc, struct dp_tx_desc_s *tx_desc,
  6125. uint8_t desc_pool_id, bool spcl_pool)
  6126. {
  6127. struct dp_tx_desc_pool_s *pool = NULL;
  6128. pool = spcl_pool ? dp_get_spcl_tx_desc_pool(soc, desc_pool_id) :
  6129. dp_get_tx_desc_pool(soc, desc_pool_id);
  6130. TX_DESC_LOCK_LOCK(&pool->lock);
  6131. tx_desc->vdev_id = DP_INVALID_VDEV_ID;
  6132. TX_DESC_LOCK_UNLOCK(&pool->lock);
  6133. }
  6134. void __dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
  6135. bool force_free, bool spcl_pool)
  6136. {
  6137. uint8_t i, num_pool;
  6138. uint32_t j;
  6139. uint32_t num_desc_t, page_id, offset;
  6140. uint16_t num_desc_per_page;
  6141. struct dp_soc *soc = pdev->soc;
  6142. struct dp_tx_desc_s *tx_desc = NULL;
  6143. struct dp_tx_desc_pool_s *tx_desc_pool = NULL;
  6144. if (!vdev && !force_free) {
  6145. dp_err("Reset TX desc vdev, Vdev param is required!");
  6146. return;
  6147. }
  6148. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6149. for (i = 0; i < num_pool; i++) {
  6150. tx_desc_pool = spcl_pool ? dp_get_spcl_tx_desc_pool(soc, i) :
  6151. dp_get_tx_desc_pool(soc, i);
  6152. num_desc_t = tx_desc_pool->elem_count;
  6153. if (!tx_desc_pool->desc_pages.cacheable_pages)
  6154. continue;
  6155. num_desc_per_page =
  6156. tx_desc_pool->desc_pages.num_element_per_page;
  6157. for (j = 0; j < num_desc_t; j++) {
  6158. page_id = j / num_desc_per_page;
  6159. offset = j % num_desc_per_page;
  6160. tx_desc = dp_tx_desc_find(soc, i, page_id, offset,
  6161. spcl_pool);
  6162. if (dp_is_tx_desc_flush_match(pdev, vdev, tx_desc)) {
  6163. if (force_free) {
  6164. dp_tx_comp_free_buf(soc, tx_desc,
  6165. false);
  6166. dp_tx_desc_release(soc, tx_desc, i);
  6167. } else {
  6168. dp_tx_desc_reset_vdev(soc, tx_desc,
  6169. i, spcl_pool);
  6170. }
  6171. }
  6172. }
  6173. }
  6174. }
  6175. void dp_tx_desc_flush(struct dp_pdev *pdev, struct dp_vdev *vdev,
  6176. bool force_free)
  6177. {
  6178. __dp_tx_desc_flush(pdev, vdev, force_free, false);
  6179. __dp_tx_desc_flush(pdev, vdev, force_free, true);
  6180. }
  6181. #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
  6182. QDF_STATUS dp_tx_vdev_detach(struct dp_vdev *vdev)
  6183. {
  6184. struct dp_pdev *pdev = vdev->pdev;
  6185. /* Reset TX desc associated to this Vdev as NULL */
  6186. dp_tx_desc_flush(pdev, vdev, false);
  6187. return QDF_STATUS_SUCCESS;
  6188. }
  6189. #ifdef QCA_LL_TX_FLOW_CONTROL_V2
  6190. /* Pools will be allocated dynamically */
  6191. static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
  6192. int num_desc)
  6193. {
  6194. uint8_t i;
  6195. for (i = 0; i < num_pool; i++) {
  6196. qdf_spinlock_create(&soc->tx_desc[i].flow_pool_lock);
  6197. soc->tx_desc[i].status = FLOW_POOL_INACTIVE;
  6198. }
  6199. return QDF_STATUS_SUCCESS;
  6200. }
  6201. static QDF_STATUS dp_tx_spcl_alloc_static_pools(struct dp_soc *soc,
  6202. int num_pool,
  6203. int num_spcl_desc)
  6204. {
  6205. return QDF_STATUS_SUCCESS;
  6206. }
  6207. static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
  6208. uint32_t num_desc)
  6209. {
  6210. return QDF_STATUS_SUCCESS;
  6211. }
  6212. static QDF_STATUS dp_tx_spcl_init_static_pools(struct dp_soc *soc, int num_pool,
  6213. uint32_t num_spcl_desc)
  6214. {
  6215. return QDF_STATUS_SUCCESS;
  6216. }
  6217. static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6218. {
  6219. }
  6220. static void dp_tx_spcl_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6221. {
  6222. }
  6223. static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
  6224. {
  6225. uint8_t i;
  6226. for (i = 0; i < num_pool; i++)
  6227. qdf_spinlock_destroy(&soc->tx_desc[i].flow_pool_lock);
  6228. }
  6229. static void dp_tx_spcl_delete_static_pools(struct dp_soc *soc, int num_pool)
  6230. {
  6231. }
  6232. #else /* QCA_LL_TX_FLOW_CONTROL_V2! */
  6233. static QDF_STATUS dp_tx_alloc_static_pools(struct dp_soc *soc, int num_pool,
  6234. uint32_t num_desc)
  6235. {
  6236. uint8_t i, count;
  6237. struct dp_global_context *dp_global;
  6238. dp_global = wlan_objmgr_get_global_ctx();
  6239. /* Allocate software Tx descriptor pools */
  6240. if (dp_global->tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6241. for (i = 0; i < num_pool; i++) {
  6242. if (dp_tx_desc_pool_alloc(soc, i, num_desc, false)) {
  6243. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  6244. FL("Tx Desc Pool alloc %d failed %pK"),
  6245. i, soc);
  6246. goto fail;
  6247. }
  6248. }
  6249. }
  6250. dp_global->tx_desc_pool_alloc_cnt[soc->arch_id]++;
  6251. return QDF_STATUS_SUCCESS;
  6252. fail:
  6253. for (count = 0; count < i; count++)
  6254. dp_tx_desc_pool_free(soc, count, false);
  6255. return QDF_STATUS_E_NOMEM;
  6256. }
  6257. static QDF_STATUS dp_tx_spcl_alloc_static_pools(struct dp_soc *soc,
  6258. int num_pool,
  6259. uint32_t num_spcl_desc)
  6260. {
  6261. uint8_t j, count;
  6262. struct dp_global_context *dp_global;
  6263. dp_global = wlan_objmgr_get_global_ctx();
  6264. /* Allocate software Tx descriptor pools */
  6265. if (dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6266. for (j = 0; j < num_pool; j++) {
  6267. if (dp_tx_desc_pool_alloc(soc, j, num_spcl_desc, true)) {
  6268. QDF_TRACE(QDF_MODULE_ID_DP,
  6269. QDF_TRACE_LEVEL_ERROR,
  6270. FL("Tx special Desc Pool alloc %d failed %pK"),
  6271. j, soc);
  6272. goto fail;
  6273. }
  6274. }
  6275. }
  6276. dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id]++;
  6277. return QDF_STATUS_SUCCESS;
  6278. fail:
  6279. for (count = 0; count < j; count++)
  6280. dp_tx_desc_pool_free(soc, count, true);
  6281. return QDF_STATUS_E_NOMEM;
  6282. }
  6283. static QDF_STATUS dp_tx_init_static_pools(struct dp_soc *soc, int num_pool,
  6284. uint32_t num_desc)
  6285. {
  6286. uint8_t i;
  6287. struct dp_global_context *dp_global;
  6288. dp_global = wlan_objmgr_get_global_ctx();
  6289. if (dp_global->tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6290. for (i = 0; i < num_pool; i++) {
  6291. if (dp_tx_desc_pool_init(soc, i, num_desc, false)) {
  6292. QDF_TRACE(QDF_MODULE_ID_DP,
  6293. QDF_TRACE_LEVEL_ERROR,
  6294. FL("Tx Desc Pool init %d failed %pK"),
  6295. i, soc);
  6296. return QDF_STATUS_E_NOMEM;
  6297. }
  6298. }
  6299. }
  6300. dp_global->tx_desc_pool_init_cnt[soc->arch_id]++;
  6301. return QDF_STATUS_SUCCESS;
  6302. }
  6303. static QDF_STATUS dp_tx_spcl_init_static_pools(struct dp_soc *soc, int num_pool,
  6304. uint32_t num_spcl_desc)
  6305. {
  6306. uint8_t i;
  6307. struct dp_global_context *dp_global;
  6308. dp_global = wlan_objmgr_get_global_ctx();
  6309. if (dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6310. for (i = 0; i < num_pool; i++) {
  6311. if (dp_tx_desc_pool_init(soc, i, num_spcl_desc, true)) {
  6312. QDF_TRACE(QDF_MODULE_ID_DP,
  6313. QDF_TRACE_LEVEL_ERROR,
  6314. FL("Tx special Desc Pool init %d failed %pK"),
  6315. i, soc);
  6316. return QDF_STATUS_E_NOMEM;
  6317. }
  6318. }
  6319. }
  6320. dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id]++;
  6321. return QDF_STATUS_SUCCESS;
  6322. }
  6323. static void dp_tx_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6324. {
  6325. uint8_t i;
  6326. struct dp_global_context *dp_global;
  6327. dp_global = wlan_objmgr_get_global_ctx();
  6328. dp_global->tx_desc_pool_init_cnt[soc->arch_id]--;
  6329. if (dp_global->tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6330. for (i = 0; i < num_pool; i++)
  6331. dp_tx_desc_pool_deinit(soc, i, false);
  6332. }
  6333. }
  6334. static void dp_tx_spcl_deinit_static_pools(struct dp_soc *soc, int num_pool)
  6335. {
  6336. uint8_t i;
  6337. struct dp_global_context *dp_global;
  6338. dp_global = wlan_objmgr_get_global_ctx();
  6339. dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id]--;
  6340. if (dp_global->spcl_tx_desc_pool_init_cnt[soc->arch_id] == 0) {
  6341. for (i = 0; i < num_pool; i++)
  6342. dp_tx_desc_pool_deinit(soc, i, true);
  6343. }
  6344. }
  6345. static void dp_tx_delete_static_pools(struct dp_soc *soc, int num_pool)
  6346. {
  6347. uint8_t i;
  6348. struct dp_global_context *dp_global;
  6349. dp_global = wlan_objmgr_get_global_ctx();
  6350. dp_global->tx_desc_pool_alloc_cnt[soc->arch_id]--;
  6351. if (dp_global->tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6352. for (i = 0; i < num_pool; i++)
  6353. dp_tx_desc_pool_free(soc, i, false);
  6354. }
  6355. }
  6356. static void dp_tx_spcl_delete_static_pools(struct dp_soc *soc, int num_pool)
  6357. {
  6358. uint8_t i;
  6359. struct dp_global_context *dp_global;
  6360. dp_global = wlan_objmgr_get_global_ctx();
  6361. dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id]--;
  6362. if (dp_global->spcl_tx_desc_pool_alloc_cnt[soc->arch_id] == 0) {
  6363. for (i = 0; i < num_pool; i++)
  6364. dp_tx_desc_pool_free(soc, i, true);
  6365. }
  6366. }
  6367. #endif /* !QCA_LL_TX_FLOW_CONTROL_V2 */
  6368. /**
  6369. * dp_tx_tso_cmn_desc_pool_deinit() - de-initialize TSO descriptors
  6370. * @soc: core txrx main context
  6371. * @num_pool: number of pools
  6372. *
  6373. */
  6374. static void dp_tx_tso_cmn_desc_pool_deinit(struct dp_soc *soc, uint8_t num_pool)
  6375. {
  6376. dp_tx_tso_desc_pool_deinit(soc, num_pool);
  6377. dp_tx_tso_num_seg_pool_deinit(soc, num_pool);
  6378. }
  6379. /**
  6380. * dp_tx_tso_cmn_desc_pool_free() - free TSO descriptors
  6381. * @soc: core txrx main context
  6382. * @num_pool: number of pools
  6383. *
  6384. */
  6385. static void dp_tx_tso_cmn_desc_pool_free(struct dp_soc *soc, uint8_t num_pool)
  6386. {
  6387. dp_tx_tso_desc_pool_free(soc, num_pool);
  6388. dp_tx_tso_num_seg_pool_free(soc, num_pool);
  6389. }
  6390. #ifndef WLAN_SOFTUMAC_SUPPORT
  6391. void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc)
  6392. {
  6393. uint8_t num_pool, num_ext_pool;
  6394. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6395. return;
  6396. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6397. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6398. dp_tx_tso_cmn_desc_pool_free(soc, num_pool);
  6399. dp_tx_ext_desc_pool_free(soc, num_ext_pool);
  6400. dp_tx_delete_static_pools(soc, num_pool);
  6401. dp_tx_spcl_delete_static_pools(soc, num_pool);
  6402. }
  6403. void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc)
  6404. {
  6405. uint8_t num_pool, num_ext_pool;
  6406. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6407. return;
  6408. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6409. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6410. dp_tx_flow_control_deinit(soc);
  6411. dp_tx_tso_cmn_desc_pool_deinit(soc, num_pool);
  6412. dp_tx_ext_desc_pool_deinit(soc, num_ext_pool);
  6413. dp_tx_deinit_static_pools(soc, num_pool);
  6414. dp_tx_spcl_deinit_static_pools(soc, num_pool);
  6415. }
  6416. #else
  6417. void dp_soc_tx_desc_sw_pools_free(struct dp_soc *soc)
  6418. {
  6419. uint8_t num_pool;
  6420. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6421. return;
  6422. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6423. dp_tx_delete_static_pools(soc, num_pool);
  6424. dp_tx_spcl_delete_static_pools(soc, num_pool);
  6425. }
  6426. void dp_soc_tx_desc_sw_pools_deinit(struct dp_soc *soc)
  6427. {
  6428. uint8_t num_pool;
  6429. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6430. return;
  6431. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6432. dp_tx_flow_control_deinit(soc);
  6433. dp_tx_deinit_static_pools(soc, num_pool);
  6434. dp_tx_spcl_deinit_static_pools(soc, num_pool);
  6435. }
  6436. #endif /*WLAN_SOFTUMAC_SUPPORT*/
  6437. /**
  6438. * dp_tx_tso_cmn_desc_pool_alloc() - TSO cmn desc pool allocator
  6439. * @soc: DP soc handle
  6440. * @num_pool: Number of pools
  6441. * @num_desc: Number of descriptors
  6442. *
  6443. * Reserve TSO descriptor buffers
  6444. *
  6445. * Return: QDF_STATUS_E_FAILURE on failure or
  6446. * QDF_STATUS_SUCCESS on success
  6447. */
  6448. static QDF_STATUS dp_tx_tso_cmn_desc_pool_alloc(struct dp_soc *soc,
  6449. uint8_t num_pool,
  6450. uint32_t num_desc)
  6451. {
  6452. if (dp_tx_tso_desc_pool_alloc(soc, num_pool, num_desc)) {
  6453. dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
  6454. return QDF_STATUS_E_FAILURE;
  6455. }
  6456. if (dp_tx_tso_num_seg_pool_alloc(soc, num_pool, num_desc)) {
  6457. dp_err("TSO Num of seg Pool alloc %d failed %pK",
  6458. num_pool, soc);
  6459. return QDF_STATUS_E_FAILURE;
  6460. }
  6461. return QDF_STATUS_SUCCESS;
  6462. }
  6463. /**
  6464. * dp_tx_tso_cmn_desc_pool_init() - TSO cmn desc pool init
  6465. * @soc: DP soc handle
  6466. * @num_pool: Number of pools
  6467. * @num_desc: Number of descriptors
  6468. *
  6469. * Initialize TSO descriptor pools
  6470. *
  6471. * Return: QDF_STATUS_E_FAILURE on failure or
  6472. * QDF_STATUS_SUCCESS on success
  6473. */
  6474. static QDF_STATUS dp_tx_tso_cmn_desc_pool_init(struct dp_soc *soc,
  6475. uint8_t num_pool,
  6476. uint32_t num_desc)
  6477. {
  6478. if (dp_tx_tso_desc_pool_init(soc, num_pool, num_desc)) {
  6479. dp_err("TSO Desc Pool alloc %d failed %pK", num_pool, soc);
  6480. return QDF_STATUS_E_FAILURE;
  6481. }
  6482. if (dp_tx_tso_num_seg_pool_init(soc, num_pool, num_desc)) {
  6483. dp_err("TSO Num of seg Pool alloc %d failed %pK",
  6484. num_pool, soc);
  6485. return QDF_STATUS_E_FAILURE;
  6486. }
  6487. return QDF_STATUS_SUCCESS;
  6488. }
  6489. #ifndef WLAN_SOFTUMAC_SUPPORT
  6490. QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc)
  6491. {
  6492. uint8_t num_pool, num_ext_pool;
  6493. uint32_t num_desc;
  6494. uint32_t num_spcl_desc;
  6495. uint32_t num_ext_desc;
  6496. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6497. return QDF_STATUS_SUCCESS;
  6498. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6499. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6500. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6501. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6502. num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
  6503. dp_info("Tx Desc Alloc num_pool: %d descs: %d", num_pool, num_desc);
  6504. if ((num_pool > MAX_TXDESC_POOLS) ||
  6505. (num_ext_pool > MAX_TXDESC_POOLS) ||
  6506. (num_desc > WLAN_CFG_NUM_TX_DESC_MAX) ||
  6507. (num_spcl_desc > WLAN_CFG_NUM_TX_SPL_DESC_MAX))
  6508. goto fail1;
  6509. if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
  6510. goto fail1;
  6511. if (dp_tx_spcl_alloc_static_pools(soc, num_pool, num_spcl_desc))
  6512. goto fail2;
  6513. if (dp_tx_ext_desc_pool_alloc(soc, num_ext_pool, num_ext_desc))
  6514. goto fail3;
  6515. if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
  6516. return QDF_STATUS_SUCCESS;
  6517. if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_ext_pool, num_ext_desc))
  6518. goto fail4;
  6519. return QDF_STATUS_SUCCESS;
  6520. fail4:
  6521. dp_tx_ext_desc_pool_free(soc, num_ext_pool);
  6522. fail3:
  6523. dp_tx_spcl_delete_static_pools(soc, num_pool);
  6524. fail2:
  6525. dp_tx_delete_static_pools(soc, num_pool);
  6526. fail1:
  6527. return QDF_STATUS_E_RESOURCES;
  6528. }
  6529. QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc)
  6530. {
  6531. uint8_t num_pool, num_ext_pool;
  6532. uint32_t num_desc;
  6533. uint32_t num_spcl_desc;
  6534. uint32_t num_ext_desc;
  6535. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6536. return QDF_STATUS_SUCCESS;
  6537. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6538. num_ext_pool = dp_get_ext_tx_desc_pool_num(soc);
  6539. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6540. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6541. num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
  6542. if (dp_tx_init_static_pools(soc, num_pool, num_desc))
  6543. goto fail1;
  6544. if (dp_tx_spcl_init_static_pools(soc, num_pool, num_spcl_desc))
  6545. goto fail2;
  6546. if (dp_tx_ext_desc_pool_init(soc, num_ext_pool, num_ext_desc))
  6547. goto fail3;
  6548. if (wlan_cfg_is_tso_desc_attach_defer(soc->wlan_cfg_ctx))
  6549. return QDF_STATUS_SUCCESS;
  6550. if (dp_tx_tso_cmn_desc_pool_init(soc, num_ext_pool, num_ext_desc))
  6551. goto fail4;
  6552. dp_tx_flow_control_init(soc);
  6553. soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
  6554. return QDF_STATUS_SUCCESS;
  6555. fail4:
  6556. dp_tx_ext_desc_pool_deinit(soc, num_ext_pool);
  6557. fail3:
  6558. dp_tx_spcl_deinit_static_pools(soc, num_pool);
  6559. fail2:
  6560. dp_tx_deinit_static_pools(soc, num_pool);
  6561. fail1:
  6562. return QDF_STATUS_E_RESOURCES;
  6563. }
  6564. #else
  6565. QDF_STATUS dp_soc_tx_desc_sw_pools_alloc(struct dp_soc *soc)
  6566. {
  6567. uint8_t num_pool;
  6568. uint32_t num_desc;
  6569. uint32_t num_spcl_desc;
  6570. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6571. return QDF_STATUS_SUCCESS;
  6572. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6573. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6574. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6575. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  6576. "%s Tx Desc Alloc num_pool = %d, descs = %d",
  6577. __func__, num_pool, num_desc);
  6578. if ((num_pool > MAX_TXDESC_POOLS) ||
  6579. (num_desc > WLAN_CFG_NUM_TX_DESC_MAX) ||
  6580. (num_spcl_desc > WLAN_CFG_NUM_TX_SPL_DESC_MAX))
  6581. goto fail1;
  6582. if (dp_tx_alloc_static_pools(soc, num_pool, num_desc))
  6583. goto fail1;
  6584. if (dp_tx_spcl_alloc_static_pools(soc, num_pool, num_spcl_desc))
  6585. goto fail2;
  6586. return QDF_STATUS_SUCCESS;
  6587. fail2:
  6588. dp_tx_delete_static_pools(soc, num_pool);
  6589. fail1:
  6590. return QDF_STATUS_E_RESOURCES;
  6591. }
  6592. QDF_STATUS dp_soc_tx_desc_sw_pools_init(struct dp_soc *soc)
  6593. {
  6594. uint8_t num_pool;
  6595. uint32_t num_desc;
  6596. uint32_t num_spcl_desc;
  6597. if (wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx))
  6598. return QDF_STATUS_SUCCESS;
  6599. num_pool = wlan_cfg_get_num_tx_desc_pool(soc->wlan_cfg_ctx);
  6600. num_desc = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
  6601. num_spcl_desc = wlan_cfg_get_num_tx_spl_desc(soc->wlan_cfg_ctx);
  6602. if (dp_tx_init_static_pools(soc, num_pool, num_desc))
  6603. goto fail;
  6604. if (dp_tx_spcl_init_static_pools(soc, num_pool, num_spcl_desc))
  6605. goto fail1;
  6606. dp_tx_flow_control_init(soc);
  6607. soc->process_tx_status = CONFIG_PROCESS_TX_STATUS;
  6608. return QDF_STATUS_SUCCESS;
  6609. fail1:
  6610. dp_tx_deinit_static_pools(soc, num_pool);
  6611. fail:
  6612. return QDF_STATUS_E_RESOURCES;
  6613. }
  6614. #endif
  6615. QDF_STATUS dp_tso_soc_attach(struct cdp_soc_t *txrx_soc)
  6616. {
  6617. struct dp_soc *soc = (struct dp_soc *)txrx_soc;
  6618. uint8_t num_ext_desc_pool;
  6619. uint32_t num_ext_desc;
  6620. num_ext_desc_pool = dp_get_ext_tx_desc_pool_num(soc);
  6621. num_ext_desc = wlan_cfg_get_num_tx_ext_desc(soc->wlan_cfg_ctx);
  6622. if (dp_tx_tso_cmn_desc_pool_alloc(soc, num_ext_desc_pool, num_ext_desc))
  6623. return QDF_STATUS_E_FAILURE;
  6624. if (dp_tx_tso_cmn_desc_pool_init(soc, num_ext_desc_pool, num_ext_desc))
  6625. return QDF_STATUS_E_FAILURE;
  6626. return QDF_STATUS_SUCCESS;
  6627. }
  6628. QDF_STATUS dp_tso_soc_detach(struct cdp_soc_t *txrx_soc)
  6629. {
  6630. struct dp_soc *soc = (struct dp_soc *)txrx_soc;
  6631. uint8_t num_ext_desc_pool = dp_get_ext_tx_desc_pool_num(soc);
  6632. dp_tx_tso_cmn_desc_pool_deinit(soc, num_ext_desc_pool);
  6633. dp_tx_tso_cmn_desc_pool_free(soc, num_ext_desc_pool);
  6634. return QDF_STATUS_SUCCESS;
  6635. }
  6636. #ifdef CONFIG_DP_PKT_ADD_TIMESTAMP
  6637. void dp_pkt_add_timestamp(struct dp_vdev *vdev,
  6638. enum qdf_pkt_timestamp_index index, uint64_t time,
  6639. qdf_nbuf_t nbuf)
  6640. {
  6641. if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled())) {
  6642. uint64_t tsf_time;
  6643. if (vdev->get_tsf_time) {
  6644. vdev->get_tsf_time(vdev->osif_vdev, time, &tsf_time);
  6645. qdf_add_dp_pkt_timestamp(nbuf, index, tsf_time);
  6646. }
  6647. }
  6648. }
  6649. void dp_pkt_get_timestamp(uint64_t *time)
  6650. {
  6651. if (qdf_unlikely(qdf_is_dp_pkt_timestamp_enabled()))
  6652. *time = qdf_get_log_timestamp();
  6653. }
  6654. #endif
  6655. #ifdef QCA_MULTIPASS_SUPPORT
  6656. void dp_tx_add_groupkey_metadata(struct dp_vdev *vdev,
  6657. struct dp_tx_msdu_info_s *msdu_info,
  6658. uint16_t group_key)
  6659. {
  6660. struct htt_tx_msdu_desc_ext2_t *meta_data =
  6661. (struct htt_tx_msdu_desc_ext2_t *)&msdu_info->meta_data[0];
  6662. qdf_mem_zero(meta_data, sizeof(struct htt_tx_msdu_desc_ext2_t));
  6663. /*
  6664. * When attempting to send a multicast packet with multi-passphrase,
  6665. * host shall add HTT EXT meta data "struct htt_tx_msdu_desc_ext2_t"
  6666. * ref htt.h indicating the group_id field in "key_flags" also having
  6667. * "valid_key_flags" as 1. Assign “key_flags = group_key_ix”.
  6668. */
  6669. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info->meta_data[0],
  6670. 1);
  6671. HTT_TX_MSDU_EXT2_DESC_KEY_FLAGS_SET(msdu_info->meta_data[2], group_key);
  6672. }
  6673. #if defined(WLAN_FEATURE_11BE_MLO) && defined(WLAN_MLO_MULTI_CHIP) && \
  6674. defined(WLAN_MCAST_MLO)
  6675. /**
  6676. * dp_tx_need_mcast_reinject() - If frame needs to be processed in reinject path
  6677. * @vdev: DP vdev handle
  6678. *
  6679. * Return: true if reinject handling is required else false
  6680. */
  6681. static inline bool
  6682. dp_tx_need_mcast_reinject(struct dp_vdev *vdev)
  6683. {
  6684. if (vdev->mlo_vdev && vdev->opmode == wlan_op_mode_ap)
  6685. return true;
  6686. return false;
  6687. }
  6688. #else
  6689. static inline bool
  6690. dp_tx_need_mcast_reinject(struct dp_vdev *vdev)
  6691. {
  6692. return false;
  6693. }
  6694. #endif
  6695. /**
  6696. * dp_tx_need_multipass_process() - If frame needs multipass phrase processing
  6697. * @soc: dp soc handle
  6698. * @vdev: DP vdev handle
  6699. * @buf: frame
  6700. * @vlan_id: vlan id of frame
  6701. *
  6702. * Return: whether peer is special or classic
  6703. */
  6704. static
  6705. uint8_t dp_tx_need_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  6706. qdf_nbuf_t buf, uint16_t *vlan_id)
  6707. {
  6708. struct dp_txrx_peer *txrx_peer = NULL;
  6709. struct dp_peer *peer = NULL;
  6710. qdf_ether_header_t *eh = (qdf_ether_header_t *)qdf_nbuf_data(buf);
  6711. struct vlan_ethhdr *veh = NULL;
  6712. bool not_vlan = ((vdev->tx_encap_type == htt_cmn_pkt_type_raw) ||
  6713. (htons(eh->ether_type) != ETH_P_8021Q));
  6714. if (qdf_unlikely(not_vlan))
  6715. return DP_VLAN_UNTAGGED;
  6716. veh = (struct vlan_ethhdr *)eh;
  6717. *vlan_id = (ntohs(veh->h_vlan_TCI) & VLAN_VID_MASK);
  6718. if (qdf_unlikely(DP_FRAME_IS_MULTICAST((eh)->ether_dhost))) {
  6719. /* look for handling of multicast packets in reinject path */
  6720. if (dp_tx_need_mcast_reinject(vdev))
  6721. return DP_VLAN_UNTAGGED;
  6722. qdf_spin_lock_bh(&vdev->mpass_peer_mutex);
  6723. TAILQ_FOREACH(txrx_peer, &vdev->mpass_peer_list,
  6724. mpass_peer_list_elem) {
  6725. if (*vlan_id == txrx_peer->vlan_id) {
  6726. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  6727. return DP_VLAN_TAGGED_MULTICAST;
  6728. }
  6729. }
  6730. qdf_spin_unlock_bh(&vdev->mpass_peer_mutex);
  6731. return DP_VLAN_UNTAGGED;
  6732. }
  6733. peer = dp_peer_find_hash_find(soc, eh->ether_dhost, 0, DP_VDEV_ALL,
  6734. DP_MOD_ID_TX_MULTIPASS);
  6735. if (qdf_unlikely(!peer))
  6736. return DP_VLAN_UNTAGGED;
  6737. /*
  6738. * Do not drop the frame when vlan_id doesn't match.
  6739. * Send the frame as it is.
  6740. */
  6741. if (*vlan_id == peer->txrx_peer->vlan_id) {
  6742. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  6743. return DP_VLAN_TAGGED_UNICAST;
  6744. }
  6745. dp_peer_unref_delete(peer, DP_MOD_ID_TX_MULTIPASS);
  6746. return DP_VLAN_UNTAGGED;
  6747. }
  6748. #ifndef WLAN_REPEATER_NOT_SUPPORTED
  6749. static inline void
  6750. dp_tx_multipass_send_pkt_to_repeater(struct dp_soc *soc, struct dp_vdev *vdev,
  6751. qdf_nbuf_t nbuf,
  6752. struct dp_tx_msdu_info_s *msdu_info)
  6753. {
  6754. qdf_nbuf_t nbuf_copy = NULL;
  6755. /* AP can have classic clients, special clients &
  6756. * classic repeaters.
  6757. * 1. Classic clients & special client:
  6758. * Remove vlan header, find corresponding group key
  6759. * index, fill in metaheader and enqueue multicast
  6760. * frame to TCL.
  6761. * 2. Classic repeater:
  6762. * Pass through to classic repeater with vlan tag
  6763. * intact without any group key index. Hardware
  6764. * will know which key to use to send frame to
  6765. * repeater.
  6766. */
  6767. nbuf_copy = qdf_nbuf_copy(nbuf);
  6768. /*
  6769. * Send multicast frame to special peers even
  6770. * if pass through to classic repeater fails.
  6771. */
  6772. if (nbuf_copy) {
  6773. struct dp_tx_msdu_info_s msdu_info_copy;
  6774. qdf_mem_zero(&msdu_info_copy, sizeof(msdu_info_copy));
  6775. msdu_info_copy.tid = HTT_TX_EXT_TID_INVALID;
  6776. HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_SET(msdu_info_copy.meta_data[0], 1);
  6777. nbuf_copy = dp_tx_send_msdu_single(vdev, nbuf_copy,
  6778. &msdu_info_copy,
  6779. HTT_INVALID_PEER, NULL);
  6780. if (nbuf_copy) {
  6781. qdf_nbuf_free(nbuf_copy);
  6782. dp_info_rl("nbuf_copy send failed");
  6783. }
  6784. }
  6785. }
  6786. #else
  6787. static inline void
  6788. dp_tx_multipass_send_pkt_to_repeater(struct dp_soc *soc, struct dp_vdev *vdev,
  6789. qdf_nbuf_t nbuf,
  6790. struct dp_tx_msdu_info_s *msdu_info)
  6791. {
  6792. }
  6793. #endif
  6794. bool dp_tx_multipass_process(struct dp_soc *soc, struct dp_vdev *vdev,
  6795. qdf_nbuf_t nbuf,
  6796. struct dp_tx_msdu_info_s *msdu_info)
  6797. {
  6798. uint16_t vlan_id = 0;
  6799. uint16_t group_key = 0;
  6800. uint8_t is_spcl_peer = DP_VLAN_UNTAGGED;
  6801. if (HTT_TX_MSDU_EXT2_DESC_FLAG_VALID_KEY_FLAGS_GET(msdu_info->meta_data[0]))
  6802. return true;
  6803. is_spcl_peer = dp_tx_need_multipass_process(soc, vdev, nbuf, &vlan_id);
  6804. if ((is_spcl_peer != DP_VLAN_TAGGED_MULTICAST) &&
  6805. (is_spcl_peer != DP_VLAN_TAGGED_UNICAST))
  6806. return true;
  6807. if (is_spcl_peer == DP_VLAN_TAGGED_UNICAST) {
  6808. dp_tx_remove_vlan_tag(vdev, nbuf);
  6809. return true;
  6810. }
  6811. dp_tx_multipass_send_pkt_to_repeater(soc, vdev, nbuf, msdu_info);
  6812. group_key = vdev->iv_vlan_map[vlan_id];
  6813. /*
  6814. * If group key is not installed, drop the frame.
  6815. */
  6816. if (!group_key)
  6817. return false;
  6818. dp_tx_remove_vlan_tag(vdev, nbuf);
  6819. dp_tx_add_groupkey_metadata(vdev, msdu_info, group_key);
  6820. msdu_info->exception_fw = 1;
  6821. return true;
  6822. }
  6823. #endif /* QCA_MULTIPASS_SUPPORT */