power.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/clk.h>
  7. #include <linux/delay.h>
  8. #if IS_ENABLED(CONFIG_MSM_QMP)
  9. #include <linux/mailbox/qmp.h>
  10. #endif
  11. #include <linux/of.h>
  12. #include <linux/of_gpio.h>
  13. #include <linux/pinctrl/consumer.h>
  14. #include <linux/regulator/consumer.h>
  15. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  16. #include <soc/qcom/cmd-db.h>
  17. #endif
  18. #include "main.h"
  19. #include "debug.h"
  20. #include "bus.h"
  21. #if IS_ENABLED(CONFIG_ARCH_QCOM)
  22. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  23. {"vdd-wlan-core", 1300000, 1300000, 0, 0, 0},
  24. {"vdd-wlan-io", 1800000, 1800000, 0, 0, 0},
  25. {"vdd-wlan-xtal-aon", 0, 0, 0, 0, 0},
  26. {"vdd-wlan-xtal", 1800000, 1800000, 0, 2, 0},
  27. {"vdd-wlan", 0, 0, 0, 0, 0},
  28. {"vdd-wlan-ctrl1", 0, 0, 0, 0, 0},
  29. {"vdd-wlan-ctrl2", 0, 0, 0, 0, 0},
  30. {"vdd-wlan-sp2t", 2700000, 2700000, 0, 0, 0},
  31. {"wlan-ant-switch", 1800000, 1800000, 0, 0, 0},
  32. {"wlan-soc-swreg", 1200000, 1200000, 0, 0, 0},
  33. {"vdd-wlan-aon", 950000, 950000, 0, 0, 0},
  34. {"vdd-wlan-dig", 950000, 952000, 0, 0, 0},
  35. {"vdd-wlan-rfa1", 1900000, 1900000, 0, 0, 0},
  36. {"vdd-wlan-rfa2", 1350000, 1350000, 0, 0, 0},
  37. {"vdd-wlan-rfa3", 1900000, 1900000, 450000, 0, 0},
  38. {"alt-sleep-clk", 0, 0, 0, 0, 0},
  39. {"vdd-wlan-en", 0, 0, 0, 10, 0},
  40. };
  41. static struct cnss_clk_cfg cnss_clk_list[] = {
  42. {"rf_clk", 0, 0},
  43. };
  44. #else
  45. static struct cnss_vreg_cfg cnss_vreg_list[] = {
  46. };
  47. static struct cnss_clk_cfg cnss_clk_list[] = {
  48. };
  49. #endif
  50. #define CNSS_VREG_INFO_SIZE ARRAY_SIZE(cnss_vreg_list)
  51. #define CNSS_CLK_INFO_SIZE ARRAY_SIZE(cnss_clk_list)
  52. #define MAX_PROP_SIZE 32
  53. #define BOOTSTRAP_GPIO "qcom,enable-bootstrap-gpio"
  54. #define BOOTSTRAP_ACTIVE "bootstrap_active"
  55. #define HOST_SOL_GPIO "wlan-host-sol-gpio"
  56. #define DEV_SOL_GPIO "wlan-dev-sol-gpio"
  57. #define SOL_DEFAULT "sol_default"
  58. #define WLAN_EN_GPIO "wlan-en-gpio"
  59. #define BT_EN_GPIO "qcom,bt-en-gpio"
  60. #define XO_CLK_GPIO "qcom,xo-clk-gpio"
  61. #define SW_CTRL_GPIO "qcom,sw-ctrl-gpio"
  62. #define WLAN_SW_CTRL_GPIO "qcom,wlan-sw-ctrl-gpio"
  63. #define WLAN_EN_ACTIVE "wlan_en_active"
  64. #define WLAN_EN_SLEEP "wlan_en_sleep"
  65. #define BOOTSTRAP_DELAY 1000
  66. #define WLAN_ENABLE_DELAY 1000
  67. #define TCS_CMD_DATA_ADDR_OFFSET 0x4
  68. #define TCS_OFFSET 0xC8
  69. #define TCS_CMD_OFFSET 0x10
  70. #define MAX_TCS_NUM 8
  71. #define MAX_TCS_CMD_NUM 5
  72. #define BT_CXMX_VOLTAGE_MV 950
  73. #define CNSS_MBOX_MSG_MAX_LEN 64
  74. #define CNSS_MBOX_TIMEOUT_MS 1000
  75. /* Platform HW config */
  76. #define CNSS_PMIC_VOLTAGE_STEP 4
  77. #define CNSS_PMIC_AUTO_HEADROOM 16
  78. #define CNSS_IR_DROP_WAKE 30
  79. #define CNSS_IR_DROP_SLEEP 10
  80. /**
  81. * enum cnss_aop_vreg_param: Voltage regulator TCS param
  82. * @CNSS_VREG_VOLTAGE: Provides voltage level in mV to be configured in TCS
  83. * @CNSS_VREG_MODE: Regulator mode
  84. * @CNSS_VREG_TCS_ENABLE: Set bool Voltage regulator enable config in TCS.
  85. */
  86. enum cnss_aop_vreg_param {
  87. CNSS_VREG_VOLTAGE,
  88. CNSS_VREG_MODE,
  89. CNSS_VREG_ENABLE,
  90. CNSS_VREG_PARAM_MAX
  91. };
  92. /** enum cnss_aop_vreg_param_mode: Voltage modes supported by AOP*/
  93. enum cnss_aop_vreg_param_mode {
  94. CNSS_VREG_RET_MODE = 3,
  95. CNSS_VREG_LPM_MODE = 4,
  96. CNSS_VREG_AUTO_MODE = 6,
  97. CNSS_VREG_NPM_MODE = 7,
  98. CNSS_VREG_MODE_MAX
  99. };
  100. /**
  101. * enum cnss_aop_tcs_seq: TCS sequence ID for trigger
  102. * @CNSS_TCS_UP_SEQ: TCS Sequence based on up trigger / Wake TCS
  103. * @CNSS_TCS_DOWN_SEQ: TCS Sequence based on down trigger / Sleep TCS
  104. * @CNSS_TCS_ENABLE_SEQ: Enable this TCS seq entry
  105. */
  106. enum cnss_aop_tcs_seq_param {
  107. CNSS_TCS_UP_SEQ,
  108. CNSS_TCS_DOWN_SEQ,
  109. CNSS_TCS_ENABLE_SEQ,
  110. CNSS_TCS_SEQ_MAX
  111. };
  112. static int cnss_get_vreg_single(struct cnss_plat_data *plat_priv,
  113. struct cnss_vreg_info *vreg)
  114. {
  115. int ret = 0;
  116. struct device *dev;
  117. struct regulator *reg;
  118. const __be32 *prop;
  119. char prop_name[MAX_PROP_SIZE] = {0};
  120. int len;
  121. dev = &plat_priv->plat_dev->dev;
  122. reg = devm_regulator_get_optional(dev, vreg->cfg.name);
  123. if (IS_ERR(reg)) {
  124. ret = PTR_ERR(reg);
  125. if (ret == -ENODEV)
  126. return ret;
  127. else if (ret == -EPROBE_DEFER)
  128. cnss_pr_info("EPROBE_DEFER for regulator: %s\n",
  129. vreg->cfg.name);
  130. else
  131. cnss_pr_err("Failed to get regulator %s, err = %d\n",
  132. vreg->cfg.name, ret);
  133. return ret;
  134. }
  135. vreg->reg = reg;
  136. snprintf(prop_name, MAX_PROP_SIZE, "qcom,%s-config",
  137. vreg->cfg.name);
  138. prop = of_get_property(dev->of_node, prop_name, &len);
  139. if (!prop || len != (5 * sizeof(__be32))) {
  140. cnss_pr_dbg("Property %s %s, use default\n", prop_name,
  141. prop ? "invalid format" : "doesn't exist");
  142. } else {
  143. vreg->cfg.min_uv = be32_to_cpup(&prop[0]);
  144. vreg->cfg.max_uv = be32_to_cpup(&prop[1]);
  145. vreg->cfg.load_ua = be32_to_cpup(&prop[2]);
  146. vreg->cfg.delay_us = be32_to_cpup(&prop[3]);
  147. vreg->cfg.need_unvote = be32_to_cpup(&prop[4]);
  148. }
  149. cnss_pr_dbg("Got regulator: %s, min_uv: %u, max_uv: %u, load_ua: %u, delay_us: %u, need_unvote: %u\n",
  150. vreg->cfg.name, vreg->cfg.min_uv,
  151. vreg->cfg.max_uv, vreg->cfg.load_ua,
  152. vreg->cfg.delay_us, vreg->cfg.need_unvote);
  153. return 0;
  154. }
  155. static void cnss_put_vreg_single(struct cnss_plat_data *plat_priv,
  156. struct cnss_vreg_info *vreg)
  157. {
  158. struct device *dev = &plat_priv->plat_dev->dev;
  159. cnss_pr_dbg("Put regulator: %s\n", vreg->cfg.name);
  160. devm_regulator_put(vreg->reg);
  161. devm_kfree(dev, vreg);
  162. }
  163. static int cnss_vreg_on_single(struct cnss_vreg_info *vreg)
  164. {
  165. int ret = 0;
  166. if (vreg->enabled) {
  167. cnss_pr_dbg("Regulator %s is already enabled\n",
  168. vreg->cfg.name);
  169. return 0;
  170. }
  171. cnss_pr_dbg("Regulator %s is being enabled\n", vreg->cfg.name);
  172. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  173. ret = regulator_set_voltage(vreg->reg,
  174. vreg->cfg.min_uv,
  175. vreg->cfg.max_uv);
  176. if (ret) {
  177. cnss_pr_err("Failed to set voltage for regulator %s, min_uv: %u, max_uv: %u, err = %d\n",
  178. vreg->cfg.name, vreg->cfg.min_uv,
  179. vreg->cfg.max_uv, ret);
  180. goto out;
  181. }
  182. }
  183. if (vreg->cfg.load_ua) {
  184. ret = regulator_set_load(vreg->reg,
  185. vreg->cfg.load_ua);
  186. if (ret < 0) {
  187. cnss_pr_err("Failed to set load for regulator %s, load: %u, err = %d\n",
  188. vreg->cfg.name, vreg->cfg.load_ua,
  189. ret);
  190. goto out;
  191. }
  192. }
  193. if (vreg->cfg.delay_us)
  194. udelay(vreg->cfg.delay_us);
  195. ret = regulator_enable(vreg->reg);
  196. if (ret) {
  197. cnss_pr_err("Failed to enable regulator %s, err = %d\n",
  198. vreg->cfg.name, ret);
  199. goto out;
  200. }
  201. vreg->enabled = true;
  202. out:
  203. return ret;
  204. }
  205. static int cnss_vreg_unvote_single(struct cnss_vreg_info *vreg)
  206. {
  207. int ret = 0;
  208. if (!vreg->enabled) {
  209. cnss_pr_dbg("Regulator %s is already disabled\n",
  210. vreg->cfg.name);
  211. return 0;
  212. }
  213. cnss_pr_dbg("Removing vote for Regulator %s\n", vreg->cfg.name);
  214. if (vreg->cfg.load_ua) {
  215. ret = regulator_set_load(vreg->reg, 0);
  216. if (ret < 0)
  217. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  218. vreg->cfg.name, ret);
  219. }
  220. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  221. ret = regulator_set_voltage(vreg->reg, 0,
  222. vreg->cfg.max_uv);
  223. if (ret)
  224. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  225. vreg->cfg.name, ret);
  226. }
  227. return ret;
  228. }
  229. static int cnss_vreg_off_single(struct cnss_vreg_info *vreg)
  230. {
  231. int ret = 0;
  232. if (!vreg->enabled) {
  233. cnss_pr_dbg("Regulator %s is already disabled\n",
  234. vreg->cfg.name);
  235. return 0;
  236. }
  237. cnss_pr_dbg("Regulator %s is being disabled\n",
  238. vreg->cfg.name);
  239. ret = regulator_disable(vreg->reg);
  240. if (ret)
  241. cnss_pr_err("Failed to disable regulator %s, err = %d\n",
  242. vreg->cfg.name, ret);
  243. if (vreg->cfg.load_ua) {
  244. ret = regulator_set_load(vreg->reg, 0);
  245. if (ret < 0)
  246. cnss_pr_err("Failed to set load for regulator %s, err = %d\n",
  247. vreg->cfg.name, ret);
  248. }
  249. if (vreg->cfg.min_uv != 0 && vreg->cfg.max_uv != 0) {
  250. ret = regulator_set_voltage(vreg->reg, 0,
  251. vreg->cfg.max_uv);
  252. if (ret)
  253. cnss_pr_err("Failed to set voltage for regulator %s, err = %d\n",
  254. vreg->cfg.name, ret);
  255. }
  256. vreg->enabled = false;
  257. return ret;
  258. }
  259. static struct cnss_vreg_cfg *get_vreg_list(u32 *vreg_list_size,
  260. enum cnss_vreg_type type)
  261. {
  262. switch (type) {
  263. case CNSS_VREG_PRIM:
  264. *vreg_list_size = CNSS_VREG_INFO_SIZE;
  265. return cnss_vreg_list;
  266. default:
  267. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  268. *vreg_list_size = 0;
  269. return NULL;
  270. }
  271. }
  272. static int cnss_get_vreg(struct cnss_plat_data *plat_priv,
  273. struct list_head *vreg_list,
  274. struct cnss_vreg_cfg *vreg_cfg,
  275. u32 vreg_list_size)
  276. {
  277. int ret = 0;
  278. int i;
  279. struct cnss_vreg_info *vreg;
  280. struct device *dev = &plat_priv->plat_dev->dev;
  281. if (!list_empty(vreg_list)) {
  282. cnss_pr_dbg("Vregs have already been updated\n");
  283. return 0;
  284. }
  285. for (i = 0; i < vreg_list_size; i++) {
  286. vreg = devm_kzalloc(dev, sizeof(*vreg), GFP_KERNEL);
  287. if (!vreg)
  288. return -ENOMEM;
  289. memcpy(&vreg->cfg, &vreg_cfg[i], sizeof(vreg->cfg));
  290. ret = cnss_get_vreg_single(plat_priv, vreg);
  291. if (ret != 0) {
  292. if (ret == -ENODEV) {
  293. devm_kfree(dev, vreg);
  294. continue;
  295. } else {
  296. devm_kfree(dev, vreg);
  297. return ret;
  298. }
  299. }
  300. list_add_tail(&vreg->list, vreg_list);
  301. }
  302. return 0;
  303. }
  304. static void cnss_put_vreg(struct cnss_plat_data *plat_priv,
  305. struct list_head *vreg_list)
  306. {
  307. struct cnss_vreg_info *vreg;
  308. while (!list_empty(vreg_list)) {
  309. vreg = list_first_entry(vreg_list,
  310. struct cnss_vreg_info, list);
  311. list_del(&vreg->list);
  312. if (IS_ERR_OR_NULL(vreg->reg))
  313. continue;
  314. cnss_put_vreg_single(plat_priv, vreg);
  315. }
  316. }
  317. static int cnss_vreg_on(struct cnss_plat_data *plat_priv,
  318. struct list_head *vreg_list)
  319. {
  320. struct cnss_vreg_info *vreg;
  321. int ret = 0;
  322. list_for_each_entry(vreg, vreg_list, list) {
  323. if (IS_ERR_OR_NULL(vreg->reg))
  324. continue;
  325. ret = cnss_vreg_on_single(vreg);
  326. if (ret)
  327. break;
  328. }
  329. if (!ret)
  330. return 0;
  331. list_for_each_entry_continue_reverse(vreg, vreg_list, list) {
  332. if (IS_ERR_OR_NULL(vreg->reg) || !vreg->enabled)
  333. continue;
  334. cnss_vreg_off_single(vreg);
  335. }
  336. return ret;
  337. }
  338. static int cnss_vreg_off(struct cnss_plat_data *plat_priv,
  339. struct list_head *vreg_list)
  340. {
  341. struct cnss_vreg_info *vreg;
  342. list_for_each_entry_reverse(vreg, vreg_list, list) {
  343. if (IS_ERR_OR_NULL(vreg->reg))
  344. continue;
  345. cnss_vreg_off_single(vreg);
  346. }
  347. return 0;
  348. }
  349. static int cnss_vreg_unvote(struct cnss_plat_data *plat_priv,
  350. struct list_head *vreg_list)
  351. {
  352. struct cnss_vreg_info *vreg;
  353. list_for_each_entry_reverse(vreg, vreg_list, list) {
  354. if (IS_ERR_OR_NULL(vreg->reg))
  355. continue;
  356. if (vreg->cfg.need_unvote)
  357. cnss_vreg_unvote_single(vreg);
  358. }
  359. return 0;
  360. }
  361. int cnss_get_vreg_type(struct cnss_plat_data *plat_priv,
  362. enum cnss_vreg_type type)
  363. {
  364. struct cnss_vreg_cfg *vreg_cfg;
  365. u32 vreg_list_size = 0;
  366. int ret = 0;
  367. vreg_cfg = get_vreg_list(&vreg_list_size, type);
  368. if (!vreg_cfg)
  369. return -EINVAL;
  370. switch (type) {
  371. case CNSS_VREG_PRIM:
  372. ret = cnss_get_vreg(plat_priv, &plat_priv->vreg_list,
  373. vreg_cfg, vreg_list_size);
  374. break;
  375. default:
  376. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  377. return -EINVAL;
  378. }
  379. return ret;
  380. }
  381. void cnss_put_vreg_type(struct cnss_plat_data *plat_priv,
  382. enum cnss_vreg_type type)
  383. {
  384. switch (type) {
  385. case CNSS_VREG_PRIM:
  386. cnss_put_vreg(plat_priv, &plat_priv->vreg_list);
  387. break;
  388. default:
  389. return;
  390. }
  391. }
  392. int cnss_vreg_on_type(struct cnss_plat_data *plat_priv,
  393. enum cnss_vreg_type type)
  394. {
  395. int ret = 0;
  396. switch (type) {
  397. case CNSS_VREG_PRIM:
  398. ret = cnss_vreg_on(plat_priv, &plat_priv->vreg_list);
  399. break;
  400. default:
  401. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  402. return -EINVAL;
  403. }
  404. return ret;
  405. }
  406. int cnss_vreg_off_type(struct cnss_plat_data *plat_priv,
  407. enum cnss_vreg_type type)
  408. {
  409. int ret = 0;
  410. switch (type) {
  411. case CNSS_VREG_PRIM:
  412. ret = cnss_vreg_off(plat_priv, &plat_priv->vreg_list);
  413. break;
  414. default:
  415. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  416. return -EINVAL;
  417. }
  418. return ret;
  419. }
  420. int cnss_vreg_unvote_type(struct cnss_plat_data *plat_priv,
  421. enum cnss_vreg_type type)
  422. {
  423. int ret = 0;
  424. switch (type) {
  425. case CNSS_VREG_PRIM:
  426. ret = cnss_vreg_unvote(plat_priv, &plat_priv->vreg_list);
  427. break;
  428. default:
  429. cnss_pr_err("Unsupported vreg type 0x%x\n", type);
  430. return -EINVAL;
  431. }
  432. return ret;
  433. }
  434. static int cnss_get_clk_single(struct cnss_plat_data *plat_priv,
  435. struct cnss_clk_info *clk_info)
  436. {
  437. struct device *dev = &plat_priv->plat_dev->dev;
  438. struct clk *clk;
  439. int ret;
  440. clk = devm_clk_get(dev, clk_info->cfg.name);
  441. if (IS_ERR(clk)) {
  442. ret = PTR_ERR(clk);
  443. if (clk_info->cfg.required)
  444. cnss_pr_err("Failed to get clock %s, err = %d\n",
  445. clk_info->cfg.name, ret);
  446. else
  447. cnss_pr_dbg("Failed to get optional clock %s, err = %d\n",
  448. clk_info->cfg.name, ret);
  449. return ret;
  450. }
  451. clk_info->clk = clk;
  452. cnss_pr_dbg("Got clock: %s, freq: %u\n",
  453. clk_info->cfg.name, clk_info->cfg.freq);
  454. return 0;
  455. }
  456. static void cnss_put_clk_single(struct cnss_plat_data *plat_priv,
  457. struct cnss_clk_info *clk_info)
  458. {
  459. struct device *dev = &plat_priv->plat_dev->dev;
  460. cnss_pr_dbg("Put clock: %s\n", clk_info->cfg.name);
  461. devm_clk_put(dev, clk_info->clk);
  462. }
  463. static int cnss_clk_on_single(struct cnss_clk_info *clk_info)
  464. {
  465. int ret;
  466. if (clk_info->enabled) {
  467. cnss_pr_dbg("Clock %s is already enabled\n",
  468. clk_info->cfg.name);
  469. return 0;
  470. }
  471. cnss_pr_dbg("Clock %s is being enabled\n", clk_info->cfg.name);
  472. if (clk_info->cfg.freq) {
  473. ret = clk_set_rate(clk_info->clk, clk_info->cfg.freq);
  474. if (ret) {
  475. cnss_pr_err("Failed to set frequency %u for clock %s, err = %d\n",
  476. clk_info->cfg.freq, clk_info->cfg.name,
  477. ret);
  478. return ret;
  479. }
  480. }
  481. ret = clk_prepare_enable(clk_info->clk);
  482. if (ret) {
  483. cnss_pr_err("Failed to enable clock %s, err = %d\n",
  484. clk_info->cfg.name, ret);
  485. return ret;
  486. }
  487. clk_info->enabled = true;
  488. return 0;
  489. }
  490. static int cnss_clk_off_single(struct cnss_clk_info *clk_info)
  491. {
  492. if (!clk_info->enabled) {
  493. cnss_pr_dbg("Clock %s is already disabled\n",
  494. clk_info->cfg.name);
  495. return 0;
  496. }
  497. cnss_pr_dbg("Clock %s is being disabled\n", clk_info->cfg.name);
  498. clk_disable_unprepare(clk_info->clk);
  499. clk_info->enabled = false;
  500. return 0;
  501. }
  502. int cnss_get_clk(struct cnss_plat_data *plat_priv)
  503. {
  504. struct device *dev;
  505. struct list_head *clk_list;
  506. struct cnss_clk_info *clk_info;
  507. int ret, i;
  508. if (!plat_priv)
  509. return -ENODEV;
  510. dev = &plat_priv->plat_dev->dev;
  511. clk_list = &plat_priv->clk_list;
  512. if (!list_empty(clk_list)) {
  513. cnss_pr_dbg("Clocks have already been updated\n");
  514. return 0;
  515. }
  516. for (i = 0; i < CNSS_CLK_INFO_SIZE; i++) {
  517. clk_info = devm_kzalloc(dev, sizeof(*clk_info), GFP_KERNEL);
  518. if (!clk_info) {
  519. ret = -ENOMEM;
  520. goto cleanup;
  521. }
  522. memcpy(&clk_info->cfg, &cnss_clk_list[i],
  523. sizeof(clk_info->cfg));
  524. ret = cnss_get_clk_single(plat_priv, clk_info);
  525. if (ret != 0) {
  526. if (clk_info->cfg.required) {
  527. devm_kfree(dev, clk_info);
  528. goto cleanup;
  529. } else {
  530. devm_kfree(dev, clk_info);
  531. continue;
  532. }
  533. }
  534. list_add_tail(&clk_info->list, clk_list);
  535. }
  536. return 0;
  537. cleanup:
  538. while (!list_empty(clk_list)) {
  539. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  540. list);
  541. list_del(&clk_info->list);
  542. if (IS_ERR_OR_NULL(clk_info->clk))
  543. continue;
  544. cnss_put_clk_single(plat_priv, clk_info);
  545. devm_kfree(dev, clk_info);
  546. }
  547. return ret;
  548. }
  549. void cnss_put_clk(struct cnss_plat_data *plat_priv)
  550. {
  551. struct device *dev;
  552. struct list_head *clk_list;
  553. struct cnss_clk_info *clk_info;
  554. if (!plat_priv)
  555. return;
  556. dev = &plat_priv->plat_dev->dev;
  557. clk_list = &plat_priv->clk_list;
  558. while (!list_empty(clk_list)) {
  559. clk_info = list_first_entry(clk_list, struct cnss_clk_info,
  560. list);
  561. list_del(&clk_info->list);
  562. if (IS_ERR_OR_NULL(clk_info->clk))
  563. continue;
  564. cnss_put_clk_single(plat_priv, clk_info);
  565. devm_kfree(dev, clk_info);
  566. }
  567. }
  568. static int cnss_clk_on(struct cnss_plat_data *plat_priv,
  569. struct list_head *clk_list)
  570. {
  571. struct cnss_clk_info *clk_info;
  572. int ret = 0;
  573. list_for_each_entry(clk_info, clk_list, list) {
  574. if (IS_ERR_OR_NULL(clk_info->clk))
  575. continue;
  576. ret = cnss_clk_on_single(clk_info);
  577. if (ret)
  578. break;
  579. }
  580. if (!ret)
  581. return 0;
  582. list_for_each_entry_continue_reverse(clk_info, clk_list, list) {
  583. if (IS_ERR_OR_NULL(clk_info->clk))
  584. continue;
  585. cnss_clk_off_single(clk_info);
  586. }
  587. return ret;
  588. }
  589. static int cnss_clk_off(struct cnss_plat_data *plat_priv,
  590. struct list_head *clk_list)
  591. {
  592. struct cnss_clk_info *clk_info;
  593. list_for_each_entry_reverse(clk_info, clk_list, list) {
  594. if (IS_ERR_OR_NULL(clk_info->clk))
  595. continue;
  596. cnss_clk_off_single(clk_info);
  597. }
  598. return 0;
  599. }
  600. int cnss_get_pinctrl(struct cnss_plat_data *plat_priv)
  601. {
  602. int ret = 0;
  603. struct device *dev;
  604. struct cnss_pinctrl_info *pinctrl_info;
  605. dev = &plat_priv->plat_dev->dev;
  606. pinctrl_info = &plat_priv->pinctrl_info;
  607. pinctrl_info->pinctrl = devm_pinctrl_get(dev);
  608. if (IS_ERR_OR_NULL(pinctrl_info->pinctrl)) {
  609. ret = PTR_ERR(pinctrl_info->pinctrl);
  610. cnss_pr_err("Failed to get pinctrl, err = %d\n", ret);
  611. goto out;
  612. }
  613. if (of_find_property(dev->of_node, BOOTSTRAP_GPIO, NULL)) {
  614. pinctrl_info->bootstrap_active =
  615. pinctrl_lookup_state(pinctrl_info->pinctrl,
  616. BOOTSTRAP_ACTIVE);
  617. if (IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  618. ret = PTR_ERR(pinctrl_info->bootstrap_active);
  619. cnss_pr_err("Failed to get bootstrap active state, err = %d\n",
  620. ret);
  621. goto out;
  622. }
  623. }
  624. if (of_find_property(dev->of_node, HOST_SOL_GPIO, NULL) &&
  625. of_find_property(dev->of_node, DEV_SOL_GPIO, NULL)) {
  626. pinctrl_info->sol_default =
  627. pinctrl_lookup_state(pinctrl_info->pinctrl,
  628. SOL_DEFAULT);
  629. if (IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  630. ret = PTR_ERR(pinctrl_info->sol_default);
  631. cnss_pr_err("Failed to get sol default state, err = %d\n",
  632. ret);
  633. goto out;
  634. }
  635. cnss_pr_dbg("Got sol default state\n");
  636. }
  637. if (of_find_property(dev->of_node, WLAN_EN_GPIO, NULL)) {
  638. pinctrl_info->wlan_en_active =
  639. pinctrl_lookup_state(pinctrl_info->pinctrl,
  640. WLAN_EN_ACTIVE);
  641. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  642. ret = PTR_ERR(pinctrl_info->wlan_en_active);
  643. cnss_pr_err("Failed to get wlan_en active state, err = %d\n",
  644. ret);
  645. goto out;
  646. }
  647. pinctrl_info->wlan_en_sleep =
  648. pinctrl_lookup_state(pinctrl_info->pinctrl,
  649. WLAN_EN_SLEEP);
  650. if (IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  651. ret = PTR_ERR(pinctrl_info->wlan_en_sleep);
  652. cnss_pr_err("Failed to get wlan_en sleep state, err = %d\n",
  653. ret);
  654. goto out;
  655. }
  656. }
  657. /* Added for QCA6490 PMU delayed WLAN_EN_GPIO */
  658. if (of_find_property(dev->of_node, BT_EN_GPIO, NULL)) {
  659. pinctrl_info->bt_en_gpio = of_get_named_gpio(dev->of_node,
  660. BT_EN_GPIO, 0);
  661. cnss_pr_dbg("BT GPIO: %d\n", pinctrl_info->bt_en_gpio);
  662. } else {
  663. pinctrl_info->bt_en_gpio = -EINVAL;
  664. }
  665. /* Added for QCA6490 to minimize XO CLK selection leakage prevention */
  666. if (of_find_property(dev->of_node, XO_CLK_GPIO, NULL)) {
  667. pinctrl_info->xo_clk_gpio = of_get_named_gpio(dev->of_node,
  668. XO_CLK_GPIO, 0);
  669. cnss_pr_dbg("QCA6490 XO_CLK GPIO: %d\n",
  670. pinctrl_info->xo_clk_gpio);
  671. cnss_set_feature_list(plat_priv, BOOTSTRAP_CLOCK_SELECT_V01);
  672. } else {
  673. pinctrl_info->xo_clk_gpio = -EINVAL;
  674. }
  675. if (of_find_property(dev->of_node, SW_CTRL_GPIO, NULL)) {
  676. pinctrl_info->sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  677. SW_CTRL_GPIO,
  678. 0);
  679. cnss_pr_dbg("Switch control GPIO: %d\n",
  680. pinctrl_info->sw_ctrl_gpio);
  681. } else {
  682. pinctrl_info->sw_ctrl_gpio = -EINVAL;
  683. }
  684. return 0;
  685. out:
  686. return ret;
  687. }
  688. int cnss_get_wlan_sw_ctrl(struct cnss_plat_data *plat_priv)
  689. {
  690. struct device *dev;
  691. struct cnss_pinctrl_info *pinctrl_info;
  692. dev = &plat_priv->plat_dev->dev;
  693. pinctrl_info = &plat_priv->pinctrl_info;
  694. if (of_find_property(dev->of_node, WLAN_SW_CTRL_GPIO, NULL)) {
  695. pinctrl_info->wlan_sw_ctrl_gpio = of_get_named_gpio(dev->of_node,
  696. WLAN_SW_CTRL_GPIO,
  697. 0);
  698. cnss_pr_dbg("WLAN Switch control GPIO: %d\n",
  699. pinctrl_info->wlan_sw_ctrl_gpio);
  700. } else {
  701. pinctrl_info->wlan_sw_ctrl_gpio = -EINVAL;
  702. }
  703. return 0;
  704. }
  705. #define CNSS_XO_CLK_RETRY_COUNT_MAX 5
  706. static void cnss_set_xo_clk_gpio_state(struct cnss_plat_data *plat_priv,
  707. bool enable)
  708. {
  709. int xo_clk_gpio = plat_priv->pinctrl_info.xo_clk_gpio, retry = 0, ret;
  710. if (xo_clk_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  711. return;
  712. retry_gpio_req:
  713. ret = gpio_request(xo_clk_gpio, "XO_CLK_GPIO");
  714. if (ret) {
  715. if (retry++ < CNSS_XO_CLK_RETRY_COUNT_MAX) {
  716. /* wait for ~(10 - 20) ms */
  717. usleep_range(10000, 20000);
  718. goto retry_gpio_req;
  719. }
  720. }
  721. if (ret) {
  722. cnss_pr_err("QCA6490 XO CLK Gpio request failed\n");
  723. return;
  724. }
  725. if (enable) {
  726. gpio_direction_output(xo_clk_gpio, 1);
  727. /*XO CLK must be asserted for some time before WLAN_EN */
  728. usleep_range(100, 200);
  729. } else {
  730. /* Assert XO CLK ~(2-5)ms before off for valid latch in HW */
  731. usleep_range(2000, 5000);
  732. gpio_direction_output(xo_clk_gpio, 0);
  733. }
  734. gpio_free(xo_clk_gpio);
  735. }
  736. static int cnss_select_pinctrl_state(struct cnss_plat_data *plat_priv,
  737. bool state)
  738. {
  739. int ret = 0;
  740. struct cnss_pinctrl_info *pinctrl_info;
  741. if (!plat_priv) {
  742. cnss_pr_err("plat_priv is NULL!\n");
  743. ret = -ENODEV;
  744. goto out;
  745. }
  746. pinctrl_info = &plat_priv->pinctrl_info;
  747. if (state) {
  748. if (!IS_ERR_OR_NULL(pinctrl_info->bootstrap_active)) {
  749. ret = pinctrl_select_state
  750. (pinctrl_info->pinctrl,
  751. pinctrl_info->bootstrap_active);
  752. if (ret) {
  753. cnss_pr_err("Failed to select bootstrap active state, err = %d\n",
  754. ret);
  755. goto out;
  756. }
  757. udelay(BOOTSTRAP_DELAY);
  758. }
  759. if (!IS_ERR_OR_NULL(pinctrl_info->sol_default)) {
  760. ret = pinctrl_select_state
  761. (pinctrl_info->pinctrl,
  762. pinctrl_info->sol_default);
  763. if (ret) {
  764. cnss_pr_err("Failed to select sol default state, err = %d\n",
  765. ret);
  766. goto out;
  767. }
  768. cnss_pr_dbg("Selected sol default state\n");
  769. }
  770. cnss_set_xo_clk_gpio_state(plat_priv, true);
  771. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_active)) {
  772. ret = pinctrl_select_state
  773. (pinctrl_info->pinctrl,
  774. pinctrl_info->wlan_en_active);
  775. if (ret) {
  776. cnss_pr_err("Failed to select wlan_en active state, err = %d\n",
  777. ret);
  778. goto out;
  779. }
  780. udelay(WLAN_ENABLE_DELAY);
  781. }
  782. cnss_set_xo_clk_gpio_state(plat_priv, false);
  783. } else {
  784. if (!IS_ERR_OR_NULL(pinctrl_info->wlan_en_sleep)) {
  785. ret = pinctrl_select_state(pinctrl_info->pinctrl,
  786. pinctrl_info->wlan_en_sleep);
  787. if (ret) {
  788. cnss_pr_err("Failed to select wlan_en sleep state, err = %d\n",
  789. ret);
  790. goto out;
  791. }
  792. }
  793. }
  794. cnss_pr_dbg("%s WLAN_EN GPIO successfully\n",
  795. state ? "Assert" : "De-assert");
  796. return 0;
  797. out:
  798. return ret;
  799. }
  800. /**
  801. * cnss_select_pinctrl_enable - select WLAN_GPIO for Active pinctrl status
  802. * @plat_priv: Platform private data structure pointer
  803. *
  804. * For QCA6490, PMU requires minimum 100ms delay between BT_EN_GPIO off and
  805. * WLAN_EN_GPIO on. This is done to avoid power up issues.
  806. *
  807. * Return: Status of pinctrl select operation. 0 - Success.
  808. */
  809. static int cnss_select_pinctrl_enable(struct cnss_plat_data *plat_priv)
  810. {
  811. int ret = 0, bt_en_gpio = plat_priv->pinctrl_info.bt_en_gpio;
  812. u8 wlan_en_state = 0;
  813. if (bt_en_gpio < 0 || plat_priv->device_id != QCA6490_DEVICE_ID)
  814. goto set_wlan_en;
  815. if (gpio_get_value(bt_en_gpio)) {
  816. cnss_pr_dbg("BT_EN_GPIO State: On\n");
  817. ret = cnss_select_pinctrl_state(plat_priv, true);
  818. if (!ret)
  819. return ret;
  820. wlan_en_state = 1;
  821. }
  822. if (!gpio_get_value(bt_en_gpio)) {
  823. cnss_pr_dbg("BT_EN_GPIO State: Off. Delay WLAN_GPIO enable\n");
  824. /* check for BT_EN_GPIO down race during above operation */
  825. if (wlan_en_state) {
  826. cnss_pr_dbg("Reset WLAN_EN as BT got turned off during enable\n");
  827. cnss_select_pinctrl_state(plat_priv, false);
  828. wlan_en_state = 0;
  829. }
  830. /* 100 ms delay for BT_EN and WLAN_EN QCA6490 PMU sequencing */
  831. msleep(100);
  832. }
  833. set_wlan_en:
  834. if (!wlan_en_state)
  835. ret = cnss_select_pinctrl_state(plat_priv, true);
  836. return ret;
  837. }
  838. int cnss_get_input_gpio_value(struct cnss_plat_data *plat_priv, int gpio_num)
  839. {
  840. int ret;
  841. if (gpio_num < 0)
  842. return -EINVAL;
  843. ret = gpio_direction_input(gpio_num);
  844. if (ret) {
  845. cnss_pr_err("Failed to set direction of GPIO(%d), err = %d",
  846. gpio_num, ret);
  847. return -EINVAL;
  848. }
  849. return gpio_get_value(gpio_num);
  850. }
  851. int cnss_power_on_device(struct cnss_plat_data *plat_priv)
  852. {
  853. int ret = 0;
  854. if (plat_priv->powered_on) {
  855. cnss_pr_dbg("Already powered up");
  856. return 0;
  857. }
  858. ret = cnss_vreg_on_type(plat_priv, CNSS_VREG_PRIM);
  859. if (ret) {
  860. cnss_pr_err("Failed to turn on vreg, err = %d\n", ret);
  861. goto out;
  862. }
  863. ret = cnss_clk_on(plat_priv, &plat_priv->clk_list);
  864. if (ret) {
  865. cnss_pr_err("Failed to turn on clocks, err = %d\n", ret);
  866. goto vreg_off;
  867. }
  868. ret = cnss_select_pinctrl_enable(plat_priv);
  869. if (ret) {
  870. cnss_pr_err("Failed to select pinctrl state, err = %d\n", ret);
  871. goto clk_off;
  872. }
  873. plat_priv->powered_on = true;
  874. cnss_enable_dev_sol_irq(plat_priv);
  875. cnss_set_host_sol_value(plat_priv, 0);
  876. return 0;
  877. clk_off:
  878. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  879. vreg_off:
  880. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  881. out:
  882. return ret;
  883. }
  884. void cnss_power_off_device(struct cnss_plat_data *plat_priv)
  885. {
  886. if (!plat_priv->powered_on) {
  887. cnss_pr_dbg("Already powered down");
  888. return;
  889. }
  890. cnss_disable_dev_sol_irq(plat_priv);
  891. cnss_select_pinctrl_state(plat_priv, false);
  892. cnss_clk_off(plat_priv, &plat_priv->clk_list);
  893. cnss_vreg_off_type(plat_priv, CNSS_VREG_PRIM);
  894. plat_priv->powered_on = false;
  895. }
  896. bool cnss_is_device_powered_on(struct cnss_plat_data *plat_priv)
  897. {
  898. return plat_priv->powered_on;
  899. }
  900. void cnss_set_pin_connect_status(struct cnss_plat_data *plat_priv)
  901. {
  902. unsigned long pin_status = 0;
  903. set_bit(CNSS_WLAN_EN, &pin_status);
  904. set_bit(CNSS_PCIE_TXN, &pin_status);
  905. set_bit(CNSS_PCIE_TXP, &pin_status);
  906. set_bit(CNSS_PCIE_RXN, &pin_status);
  907. set_bit(CNSS_PCIE_RXP, &pin_status);
  908. set_bit(CNSS_PCIE_REFCLKN, &pin_status);
  909. set_bit(CNSS_PCIE_REFCLKP, &pin_status);
  910. set_bit(CNSS_PCIE_RST, &pin_status);
  911. plat_priv->pin_result.host_pin_result = pin_status;
  912. }
  913. #if IS_ENABLED(CONFIG_QCOM_COMMAND_DB)
  914. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  915. {
  916. return cmd_db_ready();
  917. }
  918. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  919. const char *res_id)
  920. {
  921. return cmd_db_read_addr(res_id);
  922. }
  923. #else
  924. static int cnss_cmd_db_ready(struct cnss_plat_data *plat_priv)
  925. {
  926. return -EOPNOTSUPP;
  927. }
  928. static u32 cnss_cmd_db_read_addr(struct cnss_plat_data *plat_priv,
  929. const char *res_id)
  930. {
  931. return 0;
  932. }
  933. #endif
  934. int cnss_get_tcs_info(struct cnss_plat_data *plat_priv)
  935. {
  936. struct platform_device *plat_dev = plat_priv->plat_dev;
  937. struct resource *res;
  938. resource_size_t addr_len;
  939. void __iomem *tcs_cmd_base_addr;
  940. int ret = 0;
  941. res = platform_get_resource_byname(plat_dev, IORESOURCE_MEM, "tcs_cmd");
  942. if (!res) {
  943. cnss_pr_dbg("TCS CMD address is not present for CPR\n");
  944. goto out;
  945. }
  946. plat_priv->tcs_info.cmd_base_addr = res->start;
  947. addr_len = resource_size(res);
  948. cnss_pr_dbg("TCS CMD base address is %pa with length %pa\n",
  949. &plat_priv->tcs_info.cmd_base_addr, &addr_len);
  950. tcs_cmd_base_addr = devm_ioremap(&plat_dev->dev, res->start, addr_len);
  951. if (!tcs_cmd_base_addr) {
  952. ret = -EINVAL;
  953. cnss_pr_err("Failed to map TCS CMD address, err = %d\n",
  954. ret);
  955. goto out;
  956. }
  957. plat_priv->tcs_info.cmd_base_addr_io = tcs_cmd_base_addr;
  958. return 0;
  959. out:
  960. return ret;
  961. }
  962. int cnss_get_cpr_info(struct cnss_plat_data *plat_priv)
  963. {
  964. struct platform_device *plat_dev = plat_priv->plat_dev;
  965. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  966. const char *cmd_db_name;
  967. u32 cpr_pmic_addr = 0;
  968. int ret = 0;
  969. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  970. cnss_pr_dbg("TCS CMD not configured\n");
  971. return 0;
  972. }
  973. ret = of_property_read_string(plat_dev->dev.of_node,
  974. "qcom,cmd_db_name", &cmd_db_name);
  975. if (ret) {
  976. cnss_pr_dbg("CommandDB name is not present for CPR\n");
  977. goto out;
  978. }
  979. ret = cnss_cmd_db_ready(plat_priv);
  980. if (ret) {
  981. cnss_pr_err("CommandDB is not ready, err = %d\n", ret);
  982. goto out;
  983. }
  984. cpr_pmic_addr = cnss_cmd_db_read_addr(plat_priv, cmd_db_name);
  985. if (cpr_pmic_addr > 0) {
  986. cpr_info->cpr_pmic_addr = cpr_pmic_addr;
  987. cnss_pr_dbg("Get CPR PMIC address 0x%x from %s\n",
  988. cpr_info->cpr_pmic_addr, cmd_db_name);
  989. } else {
  990. cnss_pr_err("CPR PMIC address is not available for %s\n",
  991. cmd_db_name);
  992. ret = -EINVAL;
  993. goto out;
  994. }
  995. return 0;
  996. out:
  997. return ret;
  998. }
  999. #if IS_ENABLED(CONFIG_MSM_QMP)
  1000. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1001. {
  1002. struct mbox_client *mbox = &plat_priv->mbox_client_data;
  1003. struct mbox_chan *chan;
  1004. int ret;
  1005. plat_priv->mbox_chan = NULL;
  1006. mbox->dev = &plat_priv->plat_dev->dev;
  1007. mbox->tx_block = true;
  1008. mbox->tx_tout = CNSS_MBOX_TIMEOUT_MS;
  1009. mbox->knows_txdone = false;
  1010. chan = mbox_request_channel(mbox, 0);
  1011. if (IS_ERR(chan)) {
  1012. cnss_pr_err("Failed to get mbox channel\n");
  1013. return PTR_ERR(chan);
  1014. }
  1015. plat_priv->mbox_chan = chan;
  1016. cnss_pr_dbg("Mbox channel initialized\n");
  1017. ret = cnss_aop_pdc_reconfig(plat_priv);
  1018. if (ret)
  1019. cnss_pr_err("Failed to reconfig WLAN PDC, err = %d\n", ret);
  1020. return 0;
  1021. }
  1022. /**
  1023. * cnss_aop_send_msg: Sends json message to AOP using QMP
  1024. * @plat_priv: Pointer to cnss platform data
  1025. * @msg: String in json format
  1026. *
  1027. * AOP accepts JSON message to configure WLAN resources. Format as follows:
  1028. * To send VReg config: {class: wlan_pdc, ss: <pdc_name>,
  1029. * res: <VReg_name>.<param>, <seq_param>: <value>}
  1030. * To send PDC Config: {class: wlan_pdc, ss: <pdc_name>, res: pdc,
  1031. * enable: <Value>}
  1032. * QMP returns timeout error if format not correct or AOP operation fails.
  1033. *
  1034. * Return: 0 for success
  1035. */
  1036. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *mbox_msg)
  1037. {
  1038. struct qmp_pkt pkt;
  1039. int ret = 0;
  1040. cnss_pr_dbg("Sending AOP Mbox msg: %s\n", mbox_msg);
  1041. pkt.size = CNSS_MBOX_MSG_MAX_LEN;
  1042. pkt.data = mbox_msg;
  1043. ret = mbox_send_message(plat_priv->mbox_chan, &pkt);
  1044. if (ret < 0)
  1045. cnss_pr_err("Failed to send AOP mbox msg: %s\n", mbox_msg);
  1046. else
  1047. ret = 0;
  1048. return ret;
  1049. }
  1050. /* cnss_pdc_reconfig: Send PDC init table as configured in DT for wlan device */
  1051. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1052. {
  1053. u32 i;
  1054. int ret;
  1055. if (plat_priv->pdc_init_table_len <= 0 || !plat_priv->pdc_init_table)
  1056. return 0;
  1057. cnss_pr_dbg("Setting PDC defaults for device ID: %d\n",
  1058. plat_priv->device_id);
  1059. for (i = 0; i < plat_priv->pdc_init_table_len; i++) {
  1060. ret = cnss_aop_send_msg(plat_priv,
  1061. (char *)plat_priv->pdc_init_table[i]);
  1062. if (ret < 0)
  1063. break;
  1064. }
  1065. return ret;
  1066. }
  1067. /* cnss_aop_pdc_name_str: Get PDC name corresponding to VReg from DT Mapiping */
  1068. static const char *cnss_aop_pdc_name_str(struct cnss_plat_data *plat_priv,
  1069. const char *vreg_name)
  1070. {
  1071. u32 i;
  1072. static const char * const aop_pdc_ss_str[] = {"rf", "bb"};
  1073. const char *pdc = aop_pdc_ss_str[0], *vreg_map_name;
  1074. if (plat_priv->vreg_pdc_map_len <= 0 || !plat_priv->vreg_pdc_map)
  1075. goto end;
  1076. for (i = 0; i < plat_priv->vreg_pdc_map_len; i++) {
  1077. vreg_map_name = plat_priv->vreg_pdc_map[i];
  1078. if (strnstr(vreg_map_name, vreg_name, strlen(vreg_map_name))) {
  1079. pdc = plat_priv->vreg_pdc_map[i + 1];
  1080. break;
  1081. }
  1082. }
  1083. end:
  1084. cnss_pr_dbg("%s mapped to %s\n", vreg_name, pdc);
  1085. return pdc;
  1086. }
  1087. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1088. const char *vreg_name,
  1089. enum cnss_aop_vreg_param param,
  1090. enum cnss_aop_tcs_seq_param seq_param,
  1091. int val)
  1092. {
  1093. char msg[CNSS_MBOX_MSG_MAX_LEN];
  1094. static const char * const aop_vreg_param_str[] = {
  1095. [CNSS_VREG_VOLTAGE] = "v", [CNSS_VREG_MODE] = "m",
  1096. [CNSS_VREG_ENABLE] = "e",};
  1097. static const char * const aop_tcs_seq_str[] = {
  1098. [CNSS_TCS_UP_SEQ] = "upval", [CNSS_TCS_DOWN_SEQ] = "dwnval",
  1099. [CNSS_TCS_ENABLE_SEQ] = "enable",};
  1100. if (param >= CNSS_VREG_PARAM_MAX || seq_param >= CNSS_TCS_SEQ_MAX ||
  1101. !vreg_name)
  1102. return -EINVAL;
  1103. snprintf(msg, CNSS_MBOX_MSG_MAX_LEN,
  1104. "{class: wlan_pdc, ss: %s, res: %s.%s, %s: %d}",
  1105. cnss_aop_pdc_name_str(plat_priv, vreg_name),
  1106. vreg_name, aop_vreg_param_str[param],
  1107. aop_tcs_seq_str[seq_param], val);
  1108. return cnss_aop_send_msg(plat_priv, msg);
  1109. }
  1110. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1111. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1112. {
  1113. const char *pmu_pin, *vreg;
  1114. struct wlfw_pmu_param_v01 *fw_pmu_param;
  1115. u32 fw_pmu_param_len, i, j, plat_vreg_param_len = 0;
  1116. int ret = 0;
  1117. struct platform_vreg_param {
  1118. char vreg[MAX_PROP_SIZE];
  1119. u32 wake_volt;
  1120. u32 sleep_volt;
  1121. } plat_vreg_param[QMI_WLFW_PMU_PARAMS_MAX_V01] = {0};
  1122. static bool config_done;
  1123. if (config_done)
  1124. return 0;
  1125. if (plat_priv->pmu_vreg_map_len <= 0 || !plat_priv->mbox_chan ||
  1126. !plat_priv->pmu_vreg_map) {
  1127. cnss_pr_dbg("Mbox channel / PMU VReg Map not configured\n");
  1128. goto end;
  1129. }
  1130. if (!fw_pmu_cfg)
  1131. return -EINVAL;
  1132. fw_pmu_param = fw_pmu_cfg->pmu_param;
  1133. fw_pmu_param_len = fw_pmu_cfg->pmu_param_len;
  1134. /* Get PMU Pin name to Platfom Vreg Mapping */
  1135. for (i = 0; i < fw_pmu_param_len; i++) {
  1136. cnss_pr_dbg("FW_PMU Data: %s %d %d %d %d\n",
  1137. fw_pmu_param[i].pin_name,
  1138. fw_pmu_param[i].wake_volt_valid,
  1139. fw_pmu_param[i].wake_volt,
  1140. fw_pmu_param[i].sleep_volt_valid,
  1141. fw_pmu_param[i].sleep_volt);
  1142. if (!fw_pmu_param[i].wake_volt_valid &&
  1143. !fw_pmu_param[i].sleep_volt_valid)
  1144. continue;
  1145. vreg = NULL;
  1146. for (j = 0; j < plat_priv->pmu_vreg_map_len; j += 2) {
  1147. pmu_pin = plat_priv->pmu_vreg_map[j];
  1148. if (strnstr(pmu_pin, fw_pmu_param[i].pin_name,
  1149. strlen(pmu_pin))) {
  1150. vreg = plat_priv->pmu_vreg_map[j + 1];
  1151. break;
  1152. }
  1153. }
  1154. if (!vreg) {
  1155. cnss_pr_err("No VREG mapping for %s\n",
  1156. fw_pmu_param[i].pin_name);
  1157. continue;
  1158. } else {
  1159. cnss_pr_dbg("%s mapped to %s\n",
  1160. fw_pmu_param[i].pin_name, vreg);
  1161. }
  1162. for (j = 0; j < QMI_WLFW_PMU_PARAMS_MAX_V01; j++) {
  1163. u32 wake_volt = 0, sleep_volt = 0;
  1164. if (plat_vreg_param[j].vreg[0] == '\0')
  1165. strlcpy(plat_vreg_param[j].vreg, vreg,
  1166. sizeof(plat_vreg_param[j].vreg));
  1167. else if (!strnstr(plat_vreg_param[j].vreg, vreg,
  1168. strlen(plat_vreg_param[j].vreg)))
  1169. continue;
  1170. if (fw_pmu_param[i].wake_volt_valid)
  1171. wake_volt = roundup(fw_pmu_param[i].wake_volt,
  1172. CNSS_PMIC_VOLTAGE_STEP) -
  1173. CNSS_PMIC_AUTO_HEADROOM +
  1174. CNSS_IR_DROP_WAKE;
  1175. if (fw_pmu_param[i].sleep_volt_valid)
  1176. sleep_volt = roundup(fw_pmu_param[i].sleep_volt,
  1177. CNSS_PMIC_VOLTAGE_STEP) -
  1178. CNSS_PMIC_AUTO_HEADROOM +
  1179. CNSS_IR_DROP_SLEEP;
  1180. plat_vreg_param[j].wake_volt =
  1181. (wake_volt > plat_vreg_param[j].wake_volt ?
  1182. wake_volt : plat_vreg_param[j].wake_volt);
  1183. plat_vreg_param[j].sleep_volt =
  1184. (sleep_volt > plat_vreg_param[j].sleep_volt ?
  1185. sleep_volt : plat_vreg_param[j].sleep_volt);
  1186. plat_vreg_param_len = (plat_vreg_param_len > j ?
  1187. plat_vreg_param_len : j);
  1188. cnss_pr_dbg("Plat VReg Data: %s %d %d\n",
  1189. plat_vreg_param[j].vreg,
  1190. plat_vreg_param[j].wake_volt,
  1191. plat_vreg_param[j].sleep_volt);
  1192. break;
  1193. }
  1194. }
  1195. for (i = 0; i <= plat_vreg_param_len; i++) {
  1196. if (plat_vreg_param[i].wake_volt > 0) {
  1197. ret =
  1198. cnss_aop_set_vreg_param(plat_priv,
  1199. plat_vreg_param[i].vreg,
  1200. CNSS_VREG_VOLTAGE,
  1201. CNSS_TCS_UP_SEQ,
  1202. plat_vreg_param[i].wake_volt);
  1203. }
  1204. if (plat_vreg_param[i].sleep_volt > 0) {
  1205. ret =
  1206. cnss_aop_set_vreg_param(plat_priv,
  1207. plat_vreg_param[i].vreg,
  1208. CNSS_VREG_VOLTAGE,
  1209. CNSS_TCS_DOWN_SEQ,
  1210. plat_vreg_param[i].sleep_volt);
  1211. }
  1212. if (ret < 0)
  1213. break;
  1214. }
  1215. end:
  1216. config_done = true;
  1217. return ret;
  1218. }
  1219. #else
  1220. int cnss_aop_mbox_init(struct cnss_plat_data *plat_priv)
  1221. {
  1222. return 0;
  1223. }
  1224. int cnss_aop_send_msg(struct cnss_plat_data *plat_priv, char *msg)
  1225. {
  1226. return 0;
  1227. }
  1228. int cnss_aop_pdc_reconfig(struct cnss_plat_data *plat_priv)
  1229. {
  1230. return 0;
  1231. }
  1232. static int cnss_aop_set_vreg_param(struct cnss_plat_data *plat_priv,
  1233. const char *vreg_name,
  1234. enum cnss_aop_vreg_param param,
  1235. enum cnss_aop_tcs_seq_pram seq_param,
  1236. int val)
  1237. {
  1238. return 0;
  1239. }
  1240. int cnss_aop_ol_cpr_cfg_setup(struct cnss_plat_data *plat_priv,
  1241. struct wlfw_pmu_cfg_v01 *fw_pmu_cfg)
  1242. {
  1243. return 0;
  1244. }
  1245. #endif
  1246. void cnss_power_misc_params_init(struct cnss_plat_data *plat_priv)
  1247. {
  1248. struct device *dev = &plat_priv->plat_dev->dev;
  1249. int ret;
  1250. /* common DT Entries */
  1251. plat_priv->pdc_init_table_len =
  1252. of_property_count_strings(dev->of_node,
  1253. "qcom,pdc_init_table");
  1254. if (plat_priv->pdc_init_table_len > 0) {
  1255. plat_priv->pdc_init_table =
  1256. kcalloc(plat_priv->pdc_init_table_len,
  1257. sizeof(char *), GFP_KERNEL);
  1258. ret =
  1259. of_property_read_string_array(dev->of_node,
  1260. "qcom,pdc_init_table",
  1261. plat_priv->pdc_init_table,
  1262. plat_priv->pdc_init_table_len);
  1263. if (ret < 0)
  1264. cnss_pr_err("Failed to get PDC Init Table\n");
  1265. } else {
  1266. cnss_pr_dbg("PDC Init Table not configured\n");
  1267. }
  1268. plat_priv->vreg_pdc_map_len =
  1269. of_property_count_strings(dev->of_node,
  1270. "qcom,vreg_pdc_map");
  1271. if (plat_priv->vreg_pdc_map_len > 0) {
  1272. plat_priv->vreg_pdc_map =
  1273. kcalloc(plat_priv->vreg_pdc_map_len,
  1274. sizeof(char *), GFP_KERNEL);
  1275. ret =
  1276. of_property_read_string_array(dev->of_node,
  1277. "qcom,vreg_pdc_map",
  1278. plat_priv->vreg_pdc_map,
  1279. plat_priv->vreg_pdc_map_len);
  1280. if (ret < 0)
  1281. cnss_pr_err("Failed to get VReg PDC Mapping\n");
  1282. } else {
  1283. cnss_pr_dbg("VReg PDC Mapping not configured\n");
  1284. }
  1285. plat_priv->pmu_vreg_map_len =
  1286. of_property_count_strings(dev->of_node,
  1287. "qcom,pmu_vreg_map");
  1288. if (plat_priv->pmu_vreg_map_len > 0) {
  1289. plat_priv->pmu_vreg_map = kcalloc(plat_priv->pmu_vreg_map_len,
  1290. sizeof(char *), GFP_KERNEL);
  1291. ret =
  1292. of_property_read_string_array(dev->of_node, "qcom,pmu_vreg_map",
  1293. plat_priv->pmu_vreg_map,
  1294. plat_priv->pmu_vreg_map_len);
  1295. if (ret < 0)
  1296. cnss_pr_err("Fail to get PMU VReg Mapping\n");
  1297. } else {
  1298. cnss_pr_dbg("PMU VReg Mapping not configured\n");
  1299. }
  1300. /* Device DT Specific */
  1301. if (plat_priv->device_id == QCA6390_DEVICE_ID ||
  1302. plat_priv->device_id == QCA6490_DEVICE_ID) {
  1303. ret = of_property_read_string(dev->of_node,
  1304. "qcom,vreg_ol_cpr",
  1305. &plat_priv->vreg_ol_cpr);
  1306. if (ret)
  1307. cnss_pr_dbg("VReg for QCA6490 OL CPR not configured\n");
  1308. ret = of_property_read_string(dev->of_node,
  1309. "qcom,vreg_ipa",
  1310. &plat_priv->vreg_ipa);
  1311. if (ret)
  1312. cnss_pr_dbg("VReg for QCA6490 Int Power Amp not configured\n");
  1313. }
  1314. }
  1315. int cnss_update_cpr_info(struct cnss_plat_data *plat_priv)
  1316. {
  1317. struct cnss_cpr_info *cpr_info = &plat_priv->cpr_info;
  1318. u32 pmic_addr, voltage = 0, voltage_tmp, offset;
  1319. void __iomem *tcs_cmd_addr, *tcs_cmd_data_addr;
  1320. int i, j;
  1321. if (cpr_info->voltage == 0) {
  1322. cnss_pr_err("OL CPR Voltage %dm is not valid\n",
  1323. cpr_info->voltage);
  1324. return -EINVAL;
  1325. }
  1326. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1327. return -EINVAL;
  1328. if (!plat_priv->vreg_ol_cpr || !plat_priv->mbox_chan) {
  1329. cnss_pr_dbg("Mbox channel / OL CPR Vreg not configured\n");
  1330. } else {
  1331. return cnss_aop_set_vreg_param(plat_priv,
  1332. plat_priv->vreg_ol_cpr,
  1333. CNSS_VREG_VOLTAGE,
  1334. CNSS_TCS_UP_SEQ,
  1335. cpr_info->voltage);
  1336. }
  1337. if (plat_priv->tcs_info.cmd_base_addr == 0) {
  1338. cnss_pr_dbg("TCS CMD not configured for OL CPR update\n");
  1339. return 0;
  1340. }
  1341. if (cpr_info->cpr_pmic_addr == 0) {
  1342. cnss_pr_err("PMIC address 0x%x is not valid\n",
  1343. cpr_info->cpr_pmic_addr);
  1344. return -EINVAL;
  1345. }
  1346. if (cpr_info->tcs_cmd_data_addr_io)
  1347. goto update_cpr;
  1348. for (i = 0; i < MAX_TCS_NUM; i++) {
  1349. for (j = 0; j < MAX_TCS_CMD_NUM; j++) {
  1350. offset = i * TCS_OFFSET + j * TCS_CMD_OFFSET;
  1351. tcs_cmd_addr = plat_priv->tcs_info.cmd_base_addr_io +
  1352. offset;
  1353. pmic_addr = readl_relaxed(tcs_cmd_addr);
  1354. if (pmic_addr == cpr_info->cpr_pmic_addr) {
  1355. tcs_cmd_data_addr = tcs_cmd_addr +
  1356. TCS_CMD_DATA_ADDR_OFFSET;
  1357. voltage_tmp = readl_relaxed(tcs_cmd_data_addr);
  1358. cnss_pr_dbg("Got voltage %dmV from i: %d, j: %d\n",
  1359. voltage_tmp, i, j);
  1360. if (voltage_tmp > voltage) {
  1361. voltage = voltage_tmp;
  1362. cpr_info->tcs_cmd_data_addr =
  1363. plat_priv->tcs_info.cmd_base_addr +
  1364. offset + TCS_CMD_DATA_ADDR_OFFSET;
  1365. cpr_info->tcs_cmd_data_addr_io =
  1366. tcs_cmd_data_addr;
  1367. }
  1368. }
  1369. }
  1370. }
  1371. if (!cpr_info->tcs_cmd_data_addr_io) {
  1372. cnss_pr_err("Failed to find proper TCS CMD data address\n");
  1373. return -EINVAL;
  1374. }
  1375. update_cpr:
  1376. cpr_info->voltage = cpr_info->voltage > BT_CXMX_VOLTAGE_MV ?
  1377. cpr_info->voltage : BT_CXMX_VOLTAGE_MV;
  1378. cnss_pr_dbg("Update TCS CMD data address %pa with voltage %dmV\n",
  1379. &cpr_info->tcs_cmd_data_addr, cpr_info->voltage);
  1380. writel_relaxed(cpr_info->voltage, cpr_info->tcs_cmd_data_addr_io);
  1381. return 0;
  1382. }
  1383. int cnss_enable_int_pow_amp_vreg(struct cnss_plat_data *plat_priv)
  1384. {
  1385. struct platform_device *plat_dev = plat_priv->plat_dev;
  1386. u32 offset, addr_val, data_val;
  1387. void __iomem *tcs_cmd;
  1388. int ret;
  1389. static bool config_done;
  1390. if (plat_priv->device_id != QCA6490_DEVICE_ID)
  1391. return -EINVAL;
  1392. if (config_done) {
  1393. cnss_pr_dbg("IPA Vreg already configured\n");
  1394. return 0;
  1395. }
  1396. if (!plat_priv->vreg_ipa || !plat_priv->mbox_chan) {
  1397. cnss_pr_dbg("Mbox channel / IPA Vreg not configured\n");
  1398. } else {
  1399. ret = cnss_aop_set_vreg_param(plat_priv,
  1400. plat_priv->vreg_ipa,
  1401. CNSS_VREG_ENABLE,
  1402. CNSS_TCS_UP_SEQ, 1);
  1403. if (ret == 0)
  1404. config_done = true;
  1405. return ret;
  1406. }
  1407. if (!plat_priv->tcs_info.cmd_base_addr_io) {
  1408. cnss_pr_err("TCS CMD not configured for IPA Vreg enable\n");
  1409. return -EINVAL;
  1410. }
  1411. ret = of_property_read_u32(plat_dev->dev.of_node,
  1412. "qcom,tcs_offset_int_pow_amp_vreg",
  1413. &offset);
  1414. if (ret) {
  1415. cnss_pr_dbg("Internal Power Amp Vreg not configured\n");
  1416. return -EINVAL;
  1417. }
  1418. tcs_cmd = plat_priv->tcs_info.cmd_base_addr_io + offset;
  1419. addr_val = readl_relaxed(tcs_cmd);
  1420. tcs_cmd += TCS_CMD_DATA_ADDR_OFFSET;
  1421. /* 1 = enable Vreg */
  1422. writel_relaxed(1, tcs_cmd);
  1423. data_val = readl_relaxed(tcs_cmd);
  1424. cnss_pr_dbg("Setup S3E TCS Addr: %x Data: %d\n", addr_val, data_val);
  1425. config_done = true;
  1426. return 0;
  1427. }