sde_hw_top.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
  7. #include "sde_hwio.h"
  8. #include "sde_hw_catalog.h"
  9. #include "sde_hw_top.h"
  10. #include "sde_dbg.h"
  11. #include "sde_kms.h"
  12. #define SSPP_SPARE 0x28
  13. #define UBWC_DEC_HW_VERSION 0x058
  14. #define UBWC_STATIC 0x144
  15. #define UBWC_CTRL_2 0x150
  16. #define UBWC_PREDICTION_MODE 0x154
  17. #define FLD_SPLIT_DISPLAY_CMD BIT(1)
  18. #define FLD_SMART_PANEL_FREE_RUN BIT(2)
  19. #define FLD_INTF_1_SW_TRG_MUX BIT(4)
  20. #define FLD_INTF_2_SW_TRG_MUX BIT(8)
  21. #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
  22. #define MDP_DSPP_DBGBUS_CTRL 0x348
  23. #define MDP_DSPP_DBGBUS_STATUS 0x34C
  24. #define DANGER_STATUS 0x360
  25. #define SAFE_STATUS 0x364
  26. #define TE_LINE_INTERVAL 0x3F4
  27. #define TRAFFIC_SHAPER_EN BIT(31)
  28. #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
  29. #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
  30. #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
  31. #define MDP_WD_TIMER_0_CTL 0x380
  32. #define MDP_WD_TIMER_0_CTL2 0x384
  33. #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
  34. #define MDP_WD_TIMER_1_CTL 0x390
  35. #define MDP_WD_TIMER_1_CTL2 0x394
  36. #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
  37. #define MDP_PERIPH_DBGBUS_CTRL 0x418
  38. #define MDP_WD_TIMER_2_CTL 0x420
  39. #define MDP_WD_TIMER_2_CTL2 0x424
  40. #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
  41. #define MDP_WD_TIMER_3_CTL 0x430
  42. #define MDP_WD_TIMER_3_CTL2 0x434
  43. #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
  44. #define MDP_WD_TIMER_4_CTL 0x440
  45. #define MDP_WD_TIMER_4_CTL2 0x444
  46. #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
  47. #define MDP_PERIPH_TOP0 0x380
  48. #define MDP_SSPP_TOP2 0x3A8
  49. #define AUTOREFRESH_TEST_POINT 0x2
  50. #define TEST_MASK(id, tp) ((id << 4) | (tp << 1) | BIT(0))
  51. #define DCE_SEL 0x450
  52. #define MDP_SID_V2_VIG0 0x000
  53. #define MDP_SID_V2_DMA0 0x040
  54. #define MDP_SID_V2_CTL_0 0x100
  55. #define MDP_SID_V2_LTM0 0x400
  56. #define MDP_SID_V2_IPC_READ 0x200
  57. #define MDP_SID_V2_LUTDMA_RD 0x300
  58. #define MDP_SID_V2_LUTDMA_WR 0x304
  59. #define MDP_SID_V2_LUTDMA_SB_RD 0x308
  60. #define MDP_SID_V2_DSI0 0x500
  61. #define MDP_SID_V2_DSI1 0x504
  62. #define MDP_SID_VIG0 0x0
  63. #define MDP_SID_VIG1 0x4
  64. #define MDP_SID_VIG2 0x8
  65. #define MDP_SID_VIG3 0xC
  66. #define MDP_SID_DMA0 0x10
  67. #define MDP_SID_DMA1 0x14
  68. #define MDP_SID_DMA2 0x18
  69. #define MDP_SID_DMA3 0x1C
  70. #define MDP_SID_ROT_RD 0x20
  71. #define MDP_SID_ROT_WR 0x24
  72. #define MDP_SID_WB2 0x28
  73. #define MDP_SID_XIN7 0x2C
  74. #define ROT_SID_ID_VAL 0x1c
  75. /* HW Fences */
  76. #define MDP_CTL_HW_FENCE_CTRL 0x14000
  77. #define MDP_CTL_HW_FENCE_ID_START_ADDR 0x14004
  78. #define MDP_CTL_HW_FENCE_ID_STATUS 0x14008
  79. #define MDP_CTL_HW_FENCE_ID_TIMESTAMP_CTRL 0x1400c
  80. #define MDP_CTL_HW_FENCE_INPUT_START_TIMESTAMP0 0x14010
  81. #define MDP_CTL_HW_FENCE_INPUT_START_TIMESTAMP1 0x14014
  82. #define MDP_CTL_HW_FENCE_INPUT_END_TIMESTAMP0 0x14018
  83. #define MDP_CTL_HW_FENCE_INPUT_END_TIMESTAMP1 0x1401c
  84. #define MDP_CTL_HW_FENCE_QOS 0x14020
  85. #define MDP_CTL_HW_FENCE_IDn_ISR 0x14050
  86. #define MDP_CTL_HW_FENCE_IDm_ADDR 0x14054
  87. #define MDP_CTL_HW_FENCE_IDm_DATA 0x14058
  88. #define MDP_CTL_HW_FENCE_IDm_MASK 0x1405c
  89. #define MDP_CTL_HW_FENCE_IDm_ATTR 0x14060
  90. #define HW_FENCE_IPCC_PROTOCOLp_CLIENTc_SEND(ba, p, c) ((ba+0xc) + (0x40000*p) + (0x1000*c))
  91. #define HW_FENCE_IPCC_PROTOCOLp_CLIENTc_RECV_ID(ba, p, c) ((ba+0x10) + (0x40000*p) + (0x1000*c))
  92. #define MDP_CTL_HW_FENCE_ID_OFFSET_n(base, n) (base + (0x14*n))
  93. #define MDP_CTL_HW_FENCE_ID_OFFSET_m(base, m) (base + (0x14*m))
  94. #define MDP_CTL_FENCE_ATTRS(devicetype, size, resp_req) \
  95. (((resp_req & 0x1) << 16) | ((size & 0x7) << 4) | (devicetype & 0xf))
  96. #define MDP_CTL_FENCE_ISR_OP_CODE(opcode, op0, op1, op2) \
  97. (((op2 & 0xff) << 24) | ((op1 & 0xff) << 16) | ((op0 & 0xff) << 8) | (opcode & 0xff))
  98. #define HW_FENCE_DPU_INPUT_FENCE_START_N 0
  99. #define HW_FENCE_DPU_OUTPUT_FENCE_START_N 4
  100. static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp,
  101. struct split_pipe_cfg *cfg)
  102. {
  103. struct sde_hw_blk_reg_map *c;
  104. u32 upper_pipe = 0;
  105. u32 lower_pipe = 0;
  106. if (!mdp || !cfg)
  107. return;
  108. c = &mdp->hw;
  109. if (cfg->en) {
  110. if (cfg->mode == INTF_MODE_CMD) {
  111. lower_pipe = FLD_SPLIT_DISPLAY_CMD;
  112. /* interface controlling sw trigger */
  113. if (cfg->intf == INTF_2)
  114. lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
  115. else
  116. lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
  117. /* free run */
  118. if (cfg->pp_split_slave != INTF_MAX)
  119. lower_pipe = FLD_SMART_PANEL_FREE_RUN;
  120. upper_pipe = lower_pipe;
  121. /* smart panel align mode */
  122. lower_pipe |= BIT(mdp->caps->smart_panel_align_mode);
  123. } else {
  124. if (cfg->intf == INTF_2) {
  125. lower_pipe = FLD_INTF_1_SW_TRG_MUX;
  126. upper_pipe = FLD_INTF_2_SW_TRG_MUX;
  127. } else {
  128. lower_pipe = FLD_INTF_2_SW_TRG_MUX;
  129. upper_pipe = FLD_INTF_1_SW_TRG_MUX;
  130. }
  131. }
  132. }
  133. SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
  134. SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
  135. SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
  136. SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
  137. }
  138. static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp,
  139. struct split_pipe_cfg *cfg)
  140. {
  141. u32 ppb_config = 0x0;
  142. u32 ppb_control = 0x0;
  143. if (!mdp || !cfg)
  144. return;
  145. if (cfg->en && cfg->pp_split_slave != INTF_MAX) {
  146. ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20;
  147. ppb_config |= BIT(16); /* split enable */
  148. ppb_control = BIT(5); /* horz split*/
  149. }
  150. if (cfg->pp_split_index) {
  151. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0);
  152. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0);
  153. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config);
  154. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control);
  155. } else {
  156. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config);
  157. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control);
  158. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0);
  159. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0);
  160. }
  161. }
  162. static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp,
  163. struct cdm_output_cfg *cfg)
  164. {
  165. struct sde_hw_blk_reg_map *c;
  166. u32 out_ctl = 0;
  167. if (!mdp || !cfg)
  168. return;
  169. c = &mdp->hw;
  170. if (cfg->wb_en)
  171. out_ctl |= BIT(24);
  172. else if (cfg->intf_en)
  173. out_ctl |= BIT(19);
  174. SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
  175. }
  176. static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp,
  177. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  178. {
  179. struct sde_hw_blk_reg_map *c;
  180. u32 reg_off, bit_off;
  181. u32 reg_val, new_val;
  182. bool clk_forced_on;
  183. if (!mdp)
  184. return false;
  185. c = &mdp->hw;
  186. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX)
  187. return false;
  188. reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
  189. bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
  190. reg_val = SDE_REG_READ(c, reg_off);
  191. if (enable)
  192. new_val = reg_val | BIT(bit_off);
  193. else
  194. new_val = reg_val & ~BIT(bit_off);
  195. SDE_REG_WRITE(c, reg_off, new_val);
  196. wmb(); /* ensure write finished before progressing */
  197. clk_forced_on = !(reg_val & BIT(bit_off));
  198. return clk_forced_on;
  199. }
  200. static int sde_hw_get_clk_ctrl_status(struct sde_hw_mdp *mdp,
  201. enum sde_clk_ctrl_type clk_ctrl, bool *status)
  202. {
  203. struct sde_hw_blk_reg_map *c;
  204. u32 reg_off, bit_off;
  205. if (!mdp)
  206. return -EINVAL;
  207. c = &mdp->hw;
  208. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX ||
  209. !mdp->caps->clk_status[clk_ctrl].reg_off)
  210. return -EINVAL;
  211. reg_off = mdp->caps->clk_status[clk_ctrl].reg_off;
  212. bit_off = mdp->caps->clk_status[clk_ctrl].bit_off;
  213. *status = SDE_REG_READ(c, reg_off) & BIT(bit_off);
  214. return 0;
  215. }
  216. static void _update_vsync_source(struct sde_hw_mdp *mdp,
  217. struct sde_vsync_source_cfg *cfg)
  218. {
  219. struct sde_hw_blk_reg_map *c;
  220. u32 reg, wd_load_value, wd_ctl, wd_ctl2;
  221. if (!mdp || !cfg)
  222. return;
  223. c = &mdp->hw;
  224. if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 &&
  225. cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) {
  226. switch (cfg->vsync_source) {
  227. case SDE_VSYNC_SOURCE_WD_TIMER_4:
  228. wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
  229. wd_ctl = MDP_WD_TIMER_4_CTL;
  230. wd_ctl2 = MDP_WD_TIMER_4_CTL2;
  231. break;
  232. case SDE_VSYNC_SOURCE_WD_TIMER_3:
  233. wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
  234. wd_ctl = MDP_WD_TIMER_3_CTL;
  235. wd_ctl2 = MDP_WD_TIMER_3_CTL2;
  236. break;
  237. case SDE_VSYNC_SOURCE_WD_TIMER_2:
  238. wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
  239. wd_ctl = MDP_WD_TIMER_2_CTL;
  240. wd_ctl2 = MDP_WD_TIMER_2_CTL2;
  241. break;
  242. case SDE_VSYNC_SOURCE_WD_TIMER_1:
  243. wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
  244. wd_ctl = MDP_WD_TIMER_1_CTL;
  245. wd_ctl2 = MDP_WD_TIMER_1_CTL2;
  246. break;
  247. case SDE_VSYNC_SOURCE_WD_TIMER_0:
  248. default:
  249. wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
  250. wd_ctl = MDP_WD_TIMER_0_CTL;
  251. wd_ctl2 = MDP_WD_TIMER_0_CTL2;
  252. break;
  253. }
  254. SDE_REG_WRITE(c, wd_load_value, CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
  255. SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
  256. reg = SDE_REG_READ(c, wd_ctl2);
  257. reg |= BIT(8); /* enable heartbeat timer */
  258. reg |= BIT(0); /* enable WD timer */
  259. SDE_REG_WRITE(c, wd_ctl2, reg);
  260. /* make sure that timers are enabled/disabled for vsync state */
  261. wmb();
  262. }
  263. }
  264. static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp,
  265. struct sde_vsync_source_cfg *cfg)
  266. {
  267. struct sde_hw_blk_reg_map *c;
  268. u32 reg, i;
  269. static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
  270. if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
  271. return;
  272. c = &mdp->hw;
  273. reg = SDE_REG_READ(c, MDP_VSYNC_SEL);
  274. for (i = 0; i < cfg->pp_count; i++) {
  275. int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
  276. if (pp_idx >= ARRAY_SIZE(pp_offset))
  277. continue;
  278. reg &= ~(0xf << pp_offset[pp_idx]);
  279. reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
  280. }
  281. SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg);
  282. _update_vsync_source(mdp, cfg);
  283. }
  284. static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp,
  285. struct sde_vsync_source_cfg *cfg)
  286. {
  287. _update_vsync_source(mdp, cfg);
  288. }
  289. void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m)
  290. {
  291. struct sde_hw_blk_reg_map c;
  292. u32 ubwc_dec_version;
  293. u32 ubwc_enc_version;
  294. if (!mdp || !m)
  295. return;
  296. /* force blk offset to zero to access beginning of register region */
  297. c = mdp->hw;
  298. c.blk_off = 0x0;
  299. ubwc_dec_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION);
  300. ubwc_enc_version = m->ubwc_rev;
  301. if (IS_UBWC_40_SUPPORTED(ubwc_dec_version) || IS_UBWC_43_SUPPORTED(ubwc_dec_version)) {
  302. u32 ver = IS_UBWC_43_SUPPORTED(ubwc_dec_version) ? 3 : 2;
  303. u32 mode = 1;
  304. u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) |
  305. ((m->mdp[0].ubwc_static & 0x1) << 3) |
  306. ((m->mdp[0].highest_bank_bit & 0x7) << 4) |
  307. ((m->macrotile_mode & 0x1) << 12);
  308. if (IS_UBWC_30_SUPPORTED(ubwc_enc_version)) {
  309. ver = 1;
  310. mode = 0;
  311. }
  312. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  313. SDE_REG_WRITE(&c, UBWC_CTRL_2, ver);
  314. SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode);
  315. } else if (IS_UBWC_20_SUPPORTED(ubwc_dec_version)) {
  316. SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
  317. } else if (IS_UBWC_30_SUPPORTED(ubwc_dec_version)) {
  318. u32 reg = m->mdp[0].ubwc_static |
  319. (m->mdp[0].ubwc_swizzle & 0x1) |
  320. ((m->mdp[0].highest_bank_bit & 0x3) << 4) |
  321. ((m->macrotile_mode & 0x1) << 12);
  322. if (IS_UBWC_30_SUPPORTED(ubwc_enc_version))
  323. reg |= BIT(10);
  324. if (IS_UBWC_10_SUPPORTED(ubwc_enc_version))
  325. reg |= BIT(8);
  326. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  327. } else {
  328. SDE_ERROR("unsupported ubwc decoder version 0x%08x\n", ubwc_dec_version);
  329. }
  330. }
  331. static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp)
  332. {
  333. struct sde_hw_blk_reg_map *c;
  334. if (!mdp)
  335. return;
  336. c = &mdp->hw;
  337. SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
  338. }
  339. static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable)
  340. {
  341. struct sde_hw_blk_reg_map *c;
  342. if (!mdp)
  343. return;
  344. c = &mdp->hw;
  345. SDE_REG_WRITE(c, HW_EVENTS_CTL, enable);
  346. }
  347. void sde_hw_set_vm_sid_v2(struct sde_hw_sid *sid, u32 vm, struct sde_mdss_cfg *m)
  348. {
  349. u32 offset = 0;
  350. int i;
  351. if (!sid || !m)
  352. return;
  353. for (i = 0; i < m->ctl_count; i++) {
  354. offset = MDP_SID_V2_CTL_0 + (i * 4);
  355. SDE_REG_WRITE(&sid->hw, offset, vm << 2);
  356. }
  357. for (i = 0; i < m->ltm_count; i++) {
  358. offset = MDP_SID_V2_LTM0 + (i * 4);
  359. SDE_REG_WRITE(&sid->hw, offset, vm << 2);
  360. }
  361. SDE_REG_WRITE(&sid->hw, MDP_SID_V2_IPC_READ, vm << 2);
  362. SDE_REG_WRITE(&sid->hw, MDP_SID_V2_LUTDMA_RD, vm << 2);
  363. SDE_REG_WRITE(&sid->hw, MDP_SID_V2_LUTDMA_WR, vm << 2);
  364. SDE_REG_WRITE(&sid->hw, MDP_SID_V2_LUTDMA_SB_RD, vm << 2);
  365. SDE_REG_WRITE(&sid->hw, MDP_SID_V2_DSI0, vm << 2);
  366. SDE_REG_WRITE(&sid->hw, MDP_SID_V2_DSI1, vm << 2);
  367. }
  368. void sde_hw_set_vm_sid(struct sde_hw_sid *sid, u32 vm, struct sde_mdss_cfg *m)
  369. {
  370. if (!sid || !m)
  371. return;
  372. SDE_REG_WRITE(&sid->hw, MDP_SID_XIN7, vm << 2);
  373. }
  374. struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr,
  375. u32 sid_len, const struct sde_mdss_cfg *m)
  376. {
  377. struct sde_hw_sid *c;
  378. c = kzalloc(sizeof(*c), GFP_KERNEL);
  379. if (!c)
  380. return ERR_PTR(-ENOMEM);
  381. c->hw.base_off = addr;
  382. c->hw.blk_off = 0;
  383. c->hw.length = sid_len;
  384. c->hw.hw_rev = m->hw_rev;
  385. c->hw.log_mask = SDE_DBG_MASK_SID;
  386. if (IS_SDE_SID_REV_200(m->sid_rev))
  387. c->ops.set_vm_sid = sde_hw_set_vm_sid_v2;
  388. else
  389. c->ops.set_vm_sid = sde_hw_set_vm_sid;
  390. return c;
  391. }
  392. void sde_hw_set_rotator_sid(struct sde_hw_sid *sid)
  393. {
  394. if (!sid)
  395. return;
  396. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_RD, ROT_SID_ID_VAL);
  397. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_WR, ROT_SID_ID_VAL);
  398. }
  399. void sde_hw_set_sspp_sid(struct sde_hw_sid *sid, u32 pipe, u32 vm,
  400. struct sde_mdss_cfg *m)
  401. {
  402. u32 offset = 0;
  403. u32 vig_sid_offset = MDP_SID_VIG0;
  404. u32 dma_sid_offset = MDP_SID_DMA0;
  405. if (!sid)
  406. return;
  407. if (IS_SDE_SID_REV_200(m->sid_rev)) {
  408. vig_sid_offset = MDP_SID_V2_VIG0;
  409. dma_sid_offset = MDP_SID_V2_DMA0;
  410. }
  411. if (SDE_SSPP_VALID_VIG(pipe))
  412. offset = vig_sid_offset + ((pipe - SSPP_VIG0) * 4);
  413. else if (SDE_SSPP_VALID_DMA(pipe))
  414. offset = dma_sid_offset + ((pipe - SSPP_DMA0) * 4);
  415. else
  416. return;
  417. SDE_REG_WRITE(&sid->hw, offset, vm << 2);
  418. }
  419. static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp,
  420. bool dual, bool dspp_out)
  421. {
  422. u32 value = dspp_out ? 0x4 : 0x0;
  423. SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value);
  424. if (dual) {
  425. value |= 0x1;
  426. SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value);
  427. }
  428. }
  429. static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp,
  430. u8 *payload, u32 len, u32 stream_id)
  431. {
  432. u32 i, b;
  433. u32 length = len - 1;
  434. u32 d_offset, nb_offset, data = 0;
  435. const u32 dword_size = sizeof(u32);
  436. bool is_4k_aligned = mdp->caps->features &
  437. BIT(SDE_MDP_DHDR_MEMPOOL_4K);
  438. if (!payload || !len) {
  439. SDE_ERROR("invalid payload with length: %d\n", len);
  440. return;
  441. }
  442. if (stream_id) {
  443. if (is_4k_aligned) {
  444. d_offset = DP_DHDR_MEM_POOL_1_DATA_4K;
  445. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES_4K;
  446. } else {
  447. d_offset = DP_DHDR_MEM_POOL_1_DATA;
  448. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES;
  449. }
  450. } else {
  451. if (is_4k_aligned) {
  452. d_offset = DP_DHDR_MEM_POOL_0_DATA_4K;
  453. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES_4K;
  454. } else {
  455. d_offset = DP_DHDR_MEM_POOL_0_DATA;
  456. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES;
  457. }
  458. }
  459. /* payload[0] is set in VSCEXT header byte 1, skip programming here */
  460. SDE_REG_WRITE(&mdp->hw, nb_offset, length);
  461. for (i = 1; i < len; i += dword_size) {
  462. for (b = 0; (i + b) < len && b < dword_size; b++)
  463. data |= payload[i + b] << (8 * b);
  464. SDE_REG_WRITE(&mdp->hw, d_offset, data);
  465. data = 0;
  466. }
  467. }
  468. static u32 sde_hw_get_autorefresh_status(struct sde_hw_mdp *mdp, u32 intf_idx)
  469. {
  470. struct sde_hw_blk_reg_map *c;
  471. u32 autorefresh_status;
  472. u32 blk_id = (intf_idx == INTF_2) ? 65 : 64;
  473. if (!mdp)
  474. return 0;
  475. c = &mdp->hw;
  476. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL,
  477. TEST_MASK(blk_id, AUTOREFRESH_TEST_POINT));
  478. SDE_REG_WRITE(&mdp->hw, MDP_DSPP_DBGBUS_CTRL, 0x7001);
  479. wmb(); /* make sure test bits were written */
  480. autorefresh_status = SDE_REG_READ(&mdp->hw, MDP_DSPP_DBGBUS_STATUS);
  481. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL, 0x0);
  482. return autorefresh_status;
  483. }
  484. static void sde_hw_hw_fence_timestamp_ctrl(struct sde_hw_mdp *mdp, bool enable, bool clear)
  485. {
  486. struct sde_hw_blk_reg_map c;
  487. u32 val;
  488. if (!mdp) {
  489. SDE_ERROR("invalid mdp, won't enable hw-fence timestamping\n");
  490. return;
  491. }
  492. /* start from the base-address of the mdss */
  493. c = mdp->hw;
  494. c.blk_off = 0x0;
  495. val = SDE_REG_READ(&c, MDP_CTL_HW_FENCE_ID_TIMESTAMP_CTRL);
  496. if (enable)
  497. val |= BIT(0);
  498. else
  499. val &= ~BIT(0);
  500. if (clear)
  501. val |= BIT(1);
  502. else
  503. val &= ~BIT(1);
  504. SDE_REG_WRITE(&c, MDP_CTL_HW_FENCE_ID_TIMESTAMP_CTRL, val);
  505. }
  506. static void sde_hw_input_hw_fence_status(struct sde_hw_mdp *mdp, u64 *s_val, u64 *e_val)
  507. {
  508. u32 start_h, start_l, end_h, end_l;
  509. struct sde_hw_blk_reg_map c;
  510. if (!mdp || IS_ERR_OR_NULL(s_val) || IS_ERR_OR_NULL(e_val)) {
  511. SDE_ERROR("invalid mdp\n");
  512. return;
  513. }
  514. /* start from the base-address of the mdss */
  515. c = mdp->hw;
  516. c.blk_off = 0x0;
  517. start_l = SDE_REG_READ(&c, MDP_CTL_HW_FENCE_INPUT_START_TIMESTAMP0);
  518. start_h = SDE_REG_READ(&c, MDP_CTL_HW_FENCE_INPUT_START_TIMESTAMP1);
  519. *s_val = (u64)start_h << 32 | start_l;
  520. end_l = SDE_REG_READ(&c, MDP_CTL_HW_FENCE_INPUT_END_TIMESTAMP0);
  521. end_h = SDE_REG_READ(&c, MDP_CTL_HW_FENCE_INPUT_END_TIMESTAMP1);
  522. *e_val = (u64)end_h << 32 | end_l;
  523. /* clear the timestamps */
  524. sde_hw_hw_fence_timestamp_ctrl(mdp, false, true);
  525. wmb(); /* make sure the timestamps are cleared */
  526. }
  527. static void sde_hw_setup_hw_fences_config(struct sde_hw_mdp *mdp, u32 protocol_id,
  528. unsigned long ipcc_base_addr)
  529. {
  530. u32 val, offset;
  531. struct sde_hw_blk_reg_map c;
  532. if (!mdp) {
  533. SDE_ERROR("invalid mdp, won't configure hw-fences\n");
  534. return;
  535. }
  536. /* start from the base-address of the mdss */
  537. c = mdp->hw;
  538. c.blk_off = 0x0;
  539. /*select ipcc protocol id for dpu */
  540. SDE_REG_WRITE(&c, MDP_CTL_HW_FENCE_CTRL, protocol_id);
  541. /* configure the start of the FENCE_IDn_ISR ops for input and output fence isr's */
  542. val = (HW_FENCE_DPU_OUTPUT_FENCE_START_N << 16) | (HW_FENCE_DPU_INPUT_FENCE_START_N & 0xFF);
  543. SDE_REG_WRITE(&c, MDP_CTL_HW_FENCE_ID_START_ADDR, val);
  544. /* setup input fence isr */
  545. /* configure the attribs for the isr read_reg op */
  546. offset = MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_ADDR, 0);
  547. val = HW_FENCE_IPCC_PROTOCOLp_CLIENTc_RECV_ID(ipcc_base_addr,
  548. protocol_id, HW_FENCE_IPCC_CLIENT_DPU);
  549. SDE_REG_WRITE(&c, offset, val);
  550. offset = MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_ATTR, 0);
  551. val = MDP_CTL_FENCE_ATTRS(0x1, 0x2, 0x1);
  552. SDE_REG_WRITE(&c, offset, val);
  553. offset = MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_MASK, 0);
  554. SDE_REG_WRITE(&c, offset, 0xFFFFFFFF);
  555. /* configure the attribs for the write if eq data */
  556. offset = MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_DATA, 1);
  557. SDE_REG_WRITE(&c, offset, 0x1);
  558. /* program input-fence isr ops */
  559. /* set read_reg op */
  560. offset = MDP_CTL_HW_FENCE_ID_OFFSET_n(MDP_CTL_HW_FENCE_IDn_ISR,
  561. HW_FENCE_DPU_INPUT_FENCE_START_N);
  562. val = MDP_CTL_FENCE_ISR_OP_CODE(0x0, 0x0, 0x0, 0x0);
  563. SDE_REG_WRITE(&c, offset, val);
  564. /* set write if eq op for flush ready */
  565. offset = MDP_CTL_HW_FENCE_ID_OFFSET_n(MDP_CTL_HW_FENCE_IDn_ISR,
  566. (HW_FENCE_DPU_INPUT_FENCE_START_N + 1));
  567. val = MDP_CTL_FENCE_ISR_OP_CODE(0x7, 0x0, 0x1, 0x0);
  568. SDE_REG_WRITE(&c, offset, val);
  569. /* set exit op */
  570. offset = MDP_CTL_HW_FENCE_ID_OFFSET_n(MDP_CTL_HW_FENCE_IDn_ISR,
  571. (HW_FENCE_DPU_INPUT_FENCE_START_N + 2));
  572. val = MDP_CTL_FENCE_ISR_OP_CODE(0xf, 0x0, 0x0, 0x0);
  573. SDE_REG_WRITE(&c, offset, val);
  574. /*setup output fence isr */
  575. /* configure the attribs for the isr load_data op */
  576. offset = MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_ADDR, 4);
  577. val = HW_FENCE_IPCC_PROTOCOLp_CLIENTc_SEND(ipcc_base_addr,
  578. protocol_id, HW_FENCE_IPCC_CLIENT_DPU);
  579. SDE_REG_WRITE(&c, offset, val);
  580. offset = MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_ATTR, 4);
  581. val = MDP_CTL_FENCE_ATTRS(0x1, 0x2, 0x0);
  582. SDE_REG_WRITE(&c, offset, val);
  583. offset = MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_MASK, 4);
  584. SDE_REG_WRITE(&c, offset, 0xFFFFFFFF);
  585. /* program output-fence isr ops */
  586. /* set load_data op*/
  587. offset = MDP_CTL_HW_FENCE_ID_OFFSET_n(MDP_CTL_HW_FENCE_IDn_ISR,
  588. HW_FENCE_DPU_OUTPUT_FENCE_START_N);
  589. val = MDP_CTL_FENCE_ISR_OP_CODE(0x6, 0x0, 0x4, 0x0);
  590. SDE_REG_WRITE(&c, offset, val);
  591. /* set write_reg op */
  592. offset = MDP_CTL_HW_FENCE_ID_OFFSET_n(MDP_CTL_HW_FENCE_IDn_ISR,
  593. (HW_FENCE_DPU_OUTPUT_FENCE_START_N + 1));
  594. val = MDP_CTL_FENCE_ISR_OP_CODE(0x2, 0x4, 0x0, 0x0);
  595. SDE_REG_WRITE(&c, offset, val);
  596. /* set exit op */
  597. offset = MDP_CTL_HW_FENCE_ID_OFFSET_n(MDP_CTL_HW_FENCE_IDn_ISR,
  598. (HW_FENCE_DPU_OUTPUT_FENCE_START_N + 2));
  599. val = MDP_CTL_FENCE_ISR_OP_CODE(0xf, 0x0, 0x0, 0x0);
  600. SDE_REG_WRITE(&c, offset, val);
  601. }
  602. static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops, unsigned long cap, u32 hw_fence_rev)
  603. {
  604. ops->setup_split_pipe = sde_hw_setup_split_pipe;
  605. ops->setup_pp_split = sde_hw_setup_pp_split;
  606. ops->setup_cdm_output = sde_hw_setup_cdm_output;
  607. ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl;
  608. ops->get_clk_ctrl_status = sde_hw_get_clk_ctrl_status;
  609. ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl;
  610. ops->reset_ubwc = sde_hw_reset_ubwc;
  611. ops->intf_audio_select = sde_hw_intf_audio_select;
  612. ops->set_mdp_hw_events = sde_hw_mdp_events;
  613. if (cap & BIT(SDE_MDP_VSYNC_SEL))
  614. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  615. else if (cap & BIT(SDE_MDP_WD_TIMER))
  616. ops->setup_vsync_source = sde_hw_setup_vsync_source_v1;
  617. if (cap & BIT(SDE_MDP_DHDR_MEMPOOL_4K) ||
  618. cap & BIT(SDE_MDP_DHDR_MEMPOOL))
  619. ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata;
  620. ops->get_autorefresh_status = sde_hw_get_autorefresh_status;
  621. if (hw_fence_rev) {
  622. ops->setup_hw_fences = sde_hw_setup_hw_fences_config;
  623. ops->hw_fence_input_timestamp_ctrl = sde_hw_hw_fence_timestamp_ctrl;
  624. ops->hw_fence_input_status = sde_hw_input_hw_fence_status;
  625. }
  626. }
  627. static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp,
  628. const struct sde_mdss_cfg *m,
  629. void __iomem *addr,
  630. struct sde_hw_blk_reg_map *b)
  631. {
  632. int i;
  633. if (!m || !addr || !b)
  634. return ERR_PTR(-EINVAL);
  635. for (i = 0; i < m->mdp_count; i++) {
  636. if (mdp == m->mdp[i].id) {
  637. b->base_off = addr;
  638. b->blk_off = m->mdp[i].base;
  639. b->length = m->mdp[i].len;
  640. b->hw_rev = m->hw_rev;
  641. b->log_mask = SDE_DBG_MASK_TOP;
  642. return &m->mdp[i];
  643. }
  644. }
  645. return ERR_PTR(-EINVAL);
  646. }
  647. struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx,
  648. void __iomem *addr,
  649. const struct sde_mdss_cfg *m)
  650. {
  651. struct sde_hw_mdp *mdp;
  652. const struct sde_mdp_cfg *cfg;
  653. if (!addr || !m)
  654. return ERR_PTR(-EINVAL);
  655. mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
  656. if (!mdp)
  657. return ERR_PTR(-ENOMEM);
  658. cfg = _top_offset(idx, m, addr, &mdp->hw);
  659. if (IS_ERR_OR_NULL(cfg)) {
  660. kfree(mdp);
  661. return ERR_PTR(-EINVAL);
  662. }
  663. /*
  664. * Assign ops
  665. */
  666. mdp->idx = idx;
  667. mdp->caps = cfg;
  668. _setup_mdp_ops(&mdp->ops, mdp->caps->features, m->hw_fence_rev);
  669. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, "mdss_hw", 0,
  670. m->mdss_hw_block_size, 0);
  671. if (test_bit(SDE_MDP_PERIPH_TOP_0_REMOVED, &m->mdp[0].features)) {
  672. char name[SDE_HW_BLK_NAME_LEN];
  673. snprintf(name, sizeof(name), "%s_1", cfg->name);
  674. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, mdp->hw.blk_off,
  675. mdp->hw.blk_off + MDP_PERIPH_TOP0, mdp->hw.xin_id);
  676. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, name, mdp->hw.blk_off + MDP_SSPP_TOP2,
  677. mdp->hw.blk_off + mdp->hw.length, mdp->hw.xin_id);
  678. /* do not use blk_off, following offsets start from mdp_phys */
  679. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, "hw_fence", MDP_CTL_HW_FENCE_CTRL,
  680. MDP_CTL_HW_FENCE_ID_OFFSET_m(MDP_CTL_HW_FENCE_IDm_ATTR, 5), mdp->hw.xin_id);
  681. } else {
  682. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name,
  683. mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length,
  684. mdp->hw.xin_id);
  685. }
  686. sde_dbg_set_sde_top_offset(mdp->hw.blk_off);
  687. return mdp;
  688. }
  689. void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp)
  690. {
  691. kfree(mdp);
  692. }