sde_hw_rc.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  5. */
  6. #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
  7. #include <drm/msm_drm_pp.h>
  8. #include "sde_kms.h"
  9. #include "sde_reg_dma.h"
  10. #include "sde_hw_rc.h"
  11. #include "sde_hw_catalog.h"
  12. #include "sde_hw_util.h"
  13. #include "sde_hw_dspp.h"
  14. #include "sde_hw_reg_dma_v1_color_proc.h"
  15. /**
  16. * Hardware register set
  17. */
  18. #define SDE_HW_RC_REG0 0x00
  19. #define SDE_HW_RC_REG1 0x04
  20. #define SDE_HW_RC_REG2 0x08
  21. #define SDE_HW_RC_REG3 0x0C
  22. #define SDE_HW_RC_REG4 0x10
  23. #define SDE_HW_RC_REG5 0x14
  24. #define SDE_HW_RC_REG6 0x18
  25. #define SDE_HW_RC_REG7 0x1C
  26. #define SDE_HW_RC_REG8 0x20
  27. #define SDE_HW_RC_REG9 0x24
  28. #define SDE_HW_RC_REG10 0x28
  29. #define SDE_HW_RC_REG11 0x2C
  30. #define SDE_HW_RC_REG12 0x30
  31. #define SDE_HW_RC_REG13 0x34
  32. #define SDE_HW_RC_DATA_REG_SIZE 18
  33. #define SDE_HW_RC_SKIP_DATA_PROG 0x1
  34. #define SDE_HW_RC_DISABLE_R1 0x01E
  35. #define SDE_HW_RC_DISABLE_R2 0x1E0
  36. #define SDE_HW_RC_PU_SKIP_OP 0x1
  37. /**
  38. * struct sde_hw_rc_state - rounded corner cached state per RC instance
  39. *
  40. * @last_rc_mask_cfg: cached value of most recent programmed mask.
  41. * @mask_programmed: true if mask was programmed at least once to RC hardware.
  42. * @last_roi_list: cached value of most recent processed list of ROIs.
  43. * @roi_programmed: true if list of ROIs were processed at least once.
  44. */
  45. struct sde_hw_rc_state {
  46. struct drm_msm_rc_mask_cfg *last_rc_mask_cfg;
  47. bool mask_programmed;
  48. struct msm_roi_list *last_roi_list;
  49. bool roi_programmed;
  50. };
  51. static struct sde_hw_rc_state rc_state[RC_MAX - RC_0] = {
  52. {
  53. .last_rc_mask_cfg = NULL,
  54. .last_roi_list = NULL,
  55. .mask_programmed = false,
  56. .roi_programmed = false,
  57. },
  58. {
  59. .last_rc_mask_cfg = NULL,
  60. .last_roi_list = NULL,
  61. .mask_programmed = false,
  62. .roi_programmed = false,
  63. },
  64. };
  65. #define RC_IDX(hw_dspp) hw_dspp->cap->sblk->rc.idx
  66. #define RC_STATE(hw_dspp) rc_state[RC_IDX(hw_dspp)]
  67. enum rc_param_r {
  68. RC_PARAM_R0 = 0x0,
  69. RC_PARAM_R1 = 0x1,
  70. RC_PARAM_R2 = 0x2,
  71. RC_PARAM_R1R2 = (RC_PARAM_R1 | RC_PARAM_R2),
  72. };
  73. enum rc_param_a {
  74. RC_PARAM_A0 = 0x2,
  75. RC_PARAM_A1 = 0x4,
  76. };
  77. enum rc_param_b {
  78. RC_PARAM_B0 = 0x0,
  79. RC_PARAM_B1 = 0x1,
  80. RC_PARAM_B2 = 0x2,
  81. RC_PARAM_B1B2 = (RC_PARAM_B1 | RC_PARAM_B2),
  82. };
  83. enum rc_param_c {
  84. RC_PARAM_C0 = (BIT(8)),
  85. RC_PARAM_C1 = (BIT(10)),
  86. RC_PARAM_C2 = (BIT(10) | BIT(11)),
  87. RC_PARAM_C3 = (BIT(8) | BIT(10)),
  88. RC_PARAM_C4 = (BIT(8) | BIT(9)),
  89. RC_PARAM_C5 = (BIT(8) | BIT(9) | BIT(10) | BIT(11)),
  90. };
  91. enum rc_merge_mode {
  92. RC_MERGE_SINGLE_PIPE = 0x0,
  93. RC_MERGE_DUAL_PIPE = 0x1
  94. };
  95. struct rc_config_table {
  96. enum rc_param_a param_a;
  97. enum rc_param_b param_b;
  98. enum rc_param_c param_c;
  99. enum rc_merge_mode merge_mode;
  100. enum rc_merge_mode merge_mode_en;
  101. };
  102. static struct rc_config_table config_table[] = {
  103. /* RC_PARAM_A0 configurations */
  104. {
  105. .param_a = RC_PARAM_A0,
  106. .param_b = RC_PARAM_B0,
  107. .param_c = RC_PARAM_C5,
  108. .merge_mode = RC_MERGE_SINGLE_PIPE,
  109. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  110. },
  111. {
  112. .param_a = RC_PARAM_A0,
  113. .param_b = RC_PARAM_B1B2,
  114. .param_c = RC_PARAM_C3,
  115. .merge_mode = RC_MERGE_SINGLE_PIPE,
  116. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  117. },
  118. {
  119. .param_a = RC_PARAM_A0,
  120. .param_b = RC_PARAM_B1,
  121. .param_c = RC_PARAM_C0,
  122. .merge_mode = RC_MERGE_SINGLE_PIPE,
  123. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  124. },
  125. {
  126. .param_a = RC_PARAM_A0,
  127. .param_b = RC_PARAM_B2,
  128. .param_c = RC_PARAM_C1,
  129. .merge_mode = RC_MERGE_SINGLE_PIPE,
  130. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  131. },
  132. {
  133. .param_a = RC_PARAM_A0,
  134. .param_b = RC_PARAM_B0,
  135. .param_c = RC_PARAM_C5,
  136. .merge_mode = RC_MERGE_DUAL_PIPE,
  137. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  138. },
  139. {
  140. .param_a = RC_PARAM_A0,
  141. .param_b = RC_PARAM_B1B2,
  142. .param_c = RC_PARAM_C3,
  143. .merge_mode = RC_MERGE_DUAL_PIPE,
  144. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  145. },
  146. {
  147. .param_a = RC_PARAM_A0,
  148. .param_b = RC_PARAM_B1,
  149. .param_c = RC_PARAM_C0,
  150. .merge_mode = RC_MERGE_DUAL_PIPE,
  151. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  152. },
  153. {
  154. .param_a = RC_PARAM_A0,
  155. .param_b = RC_PARAM_B2,
  156. .param_c = RC_PARAM_C1,
  157. .merge_mode = RC_MERGE_DUAL_PIPE,
  158. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  159. },
  160. /* RC_PARAM_A1 configurations */
  161. {
  162. .param_a = RC_PARAM_A1,
  163. .param_b = RC_PARAM_B0,
  164. .param_c = RC_PARAM_C5,
  165. .merge_mode = RC_MERGE_SINGLE_PIPE,
  166. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  167. },
  168. {
  169. .param_a = RC_PARAM_A1,
  170. .param_b = RC_PARAM_B1B2,
  171. .param_c = RC_PARAM_C5,
  172. .merge_mode = RC_MERGE_SINGLE_PIPE,
  173. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  174. },
  175. {
  176. .param_a = RC_PARAM_A1,
  177. .param_b = RC_PARAM_B1,
  178. .param_c = RC_PARAM_C4,
  179. .merge_mode = RC_MERGE_SINGLE_PIPE,
  180. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  181. },
  182. {
  183. .param_a = RC_PARAM_A1,
  184. .param_b = RC_PARAM_B2,
  185. .param_c = RC_PARAM_C2,
  186. .merge_mode = RC_MERGE_SINGLE_PIPE,
  187. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  188. },
  189. {
  190. .param_a = RC_PARAM_A1,
  191. .param_b = RC_PARAM_B0,
  192. .param_c = RC_PARAM_C5,
  193. .merge_mode = RC_MERGE_DUAL_PIPE,
  194. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  195. },
  196. {
  197. .param_a = RC_PARAM_A1,
  198. .param_b = RC_PARAM_B1B2,
  199. .param_c = RC_PARAM_C5,
  200. .merge_mode = RC_MERGE_DUAL_PIPE,
  201. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  202. },
  203. {
  204. .param_a = RC_PARAM_A1,
  205. .param_b = RC_PARAM_B1,
  206. .param_c = RC_PARAM_C4,
  207. .merge_mode = RC_MERGE_DUAL_PIPE,
  208. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  209. },
  210. {
  211. .param_a = RC_PARAM_A1,
  212. .param_b = RC_PARAM_B2,
  213. .param_c = RC_PARAM_C2,
  214. .merge_mode = RC_MERGE_DUAL_PIPE,
  215. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  216. },
  217. };
  218. static inline void _sde_hw_rc_reg_write(
  219. struct sde_hw_dspp *hw_dspp,
  220. int offset,
  221. u32 value)
  222. {
  223. u32 address = hw_dspp->cap->sblk->rc.base + offset;
  224. SDE_DEBUG("rc:%u, address:0x%08X, value:0x%08X\n",
  225. RC_IDX(hw_dspp),
  226. hw_dspp->hw.blk_off + address, value);
  227. SDE_REG_WRITE(&hw_dspp->hw, address, value);
  228. }
  229. static int _sde_hw_rc_get_enable_bits(
  230. enum rc_param_a param_a,
  231. enum rc_param_b param_b,
  232. enum rc_param_c *param_c,
  233. u32 merge_mode,
  234. u32 *merge_mode_en)
  235. {
  236. int i = 0;
  237. if (!param_c || !merge_mode_en) {
  238. SDE_ERROR("invalid arguments\n");
  239. return -EINVAL;
  240. }
  241. for (i = 0; i < ARRAY_SIZE(config_table); i++) {
  242. if (merge_mode == config_table[i].merge_mode &&
  243. param_a == config_table[i].param_a &&
  244. param_b == config_table[i].param_b) {
  245. *param_c = config_table[i].param_c;
  246. *merge_mode_en = config_table[i].merge_mode_en;
  247. SDE_DEBUG("found param_c:0x%08X, merge_mode_en:%d\n",
  248. *param_c, *merge_mode_en);
  249. return 0;
  250. }
  251. }
  252. SDE_ERROR("configuration not supported");
  253. return -EINVAL;
  254. }
  255. static int _sde_hw_rc_get_merge_mode(
  256. const struct sde_hw_cp_cfg *hw_cfg,
  257. u32 *merge_mode)
  258. {
  259. int rc = 0;
  260. if (!hw_cfg || !merge_mode) {
  261. SDE_ERROR("invalid arguments\n");
  262. return -EINVAL;
  263. }
  264. if (hw_cfg->num_of_mixers == 1)
  265. *merge_mode = RC_MERGE_SINGLE_PIPE;
  266. else if (hw_cfg->num_of_mixers == 2)
  267. *merge_mode = RC_MERGE_DUAL_PIPE;
  268. else {
  269. SDE_ERROR("invalid number of mixers:%d\n",
  270. hw_cfg->num_of_mixers);
  271. return -EINVAL;
  272. }
  273. SDE_DEBUG("number mixers:%u, merge mode:%u\n",
  274. hw_cfg->num_of_mixers, *merge_mode);
  275. return rc;
  276. }
  277. static int _sde_hw_rc_get_ajusted_roi(
  278. const struct sde_hw_cp_cfg *hw_cfg,
  279. const struct sde_rect *pu_roi,
  280. struct sde_rect *rc_roi)
  281. {
  282. int rc = 0;
  283. if (!hw_cfg || !pu_roi || !rc_roi) {
  284. SDE_ERROR("invalid arguments\n");
  285. return -EINVAL;
  286. }
  287. /*when partial update is disabled, use full screen ROI*/
  288. if (pu_roi->w == 0 && pu_roi->h == 0) {
  289. rc_roi->x = pu_roi->x;
  290. rc_roi->y = pu_roi->y;
  291. rc_roi->w = hw_cfg->displayh;
  292. rc_roi->h = hw_cfg->displayv;
  293. } else {
  294. memcpy(rc_roi, pu_roi, sizeof(struct sde_rect));
  295. }
  296. SDE_DEBUG("displayh:%u, displayv:%u\n", hw_cfg->displayh,
  297. hw_cfg->displayv);
  298. SDE_DEBUG("pu_roi x:%u, y:%u, w:%u, h:%u\n", pu_roi->x, pu_roi->y,
  299. pu_roi->w, pu_roi->h);
  300. SDE_DEBUG("rc_roi x:%u, y:%u, w:%u, h:%u\n", rc_roi->x, rc_roi->y,
  301. rc_roi->w, rc_roi->h);
  302. return rc;
  303. }
  304. static int _sde_hw_rc_get_param_rb(
  305. const struct drm_msm_rc_mask_cfg *rc_mask_cfg,
  306. const struct sde_rect *rc_roi,
  307. enum rc_param_r *param_r,
  308. enum rc_param_b *param_b)
  309. {
  310. int rc = 0;
  311. int half_panel_x = 0, half_panel_w = 0;
  312. int cfg_param_01 = 0, cfg_param_02 = 0;
  313. int x1 = 0, x2 = 0, y1 = 0, y2 = 0;
  314. if (!rc_mask_cfg || !rc_roi || !param_r || !param_b) {
  315. SDE_ERROR("invalid arguments\n");
  316. return -EINVAL;
  317. }
  318. if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A1)
  319. half_panel_w = rc_mask_cfg->cfg_param_04[0] +
  320. rc_mask_cfg->cfg_param_04[1];
  321. else if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A0)
  322. half_panel_w = rc_mask_cfg->cfg_param_04[0];
  323. else {
  324. SDE_ERROR("invalid cfg_param_03:%u\n",
  325. rc_mask_cfg->cfg_param_03);
  326. return -EINVAL;
  327. }
  328. cfg_param_01 = rc_mask_cfg->cfg_param_01;
  329. cfg_param_02 = rc_mask_cfg->cfg_param_02;
  330. x1 = rc_roi->x;
  331. x2 = rc_roi->x + rc_roi->w - 1;
  332. y1 = rc_roi->y;
  333. y2 = rc_roi->y + rc_roi->h - 1;
  334. half_panel_x = half_panel_w - 1;
  335. SDE_DEBUG("x1:%u y1:%u x2:%u y2:%u\n", x1, y1, x2, y2);
  336. SDE_DEBUG("cfg_param_01:%u cfg_param_02:%u half_panel_x:%u",
  337. cfg_param_01, cfg_param_02, half_panel_x);
  338. if (x1 < 0 || x2 < 0 || y1 < 0 || y2 < 0 || half_panel_x < 0 ||
  339. x1 >= x2 || y1 >= y2) {
  340. SDE_ERROR("invalid coordinates\n");
  341. return -EINVAL;
  342. }
  343. if (y1 <= cfg_param_01) {
  344. *param_r |= RC_PARAM_R1;
  345. if (x1 <= half_panel_x && x2 <= half_panel_x)
  346. *param_b |= RC_PARAM_B1;
  347. else if (x1 > half_panel_x && x2 > half_panel_x)
  348. *param_b |= RC_PARAM_B2;
  349. else
  350. *param_b |= RC_PARAM_B1B2;
  351. }
  352. if (y2 >= cfg_param_02) {
  353. *param_r |= RC_PARAM_R2;
  354. if (x1 <= half_panel_x && x2 <= half_panel_x)
  355. *param_b |= RC_PARAM_B1;
  356. else if (x1 > half_panel_x && x2 > half_panel_x)
  357. *param_b |= RC_PARAM_B2;
  358. else
  359. *param_b |= RC_PARAM_B1B2;
  360. }
  361. SDE_DEBUG("param_r:0x%08X param_b:0x%08X\n", *param_r, *param_b);
  362. SDE_EVT32(rc_roi->x, rc_roi->y, rc_roi->w, rc_roi->h);
  363. SDE_EVT32(x1, y1, x2, y2, cfg_param_01, cfg_param_02, half_panel_x);
  364. return rc;
  365. }
  366. static int _sde_hw_rc_program_enable_bits(
  367. struct sde_hw_dspp *hw_dspp,
  368. struct drm_msm_rc_mask_cfg *rc_mask_cfg,
  369. enum rc_param_a param_a,
  370. enum rc_param_b param_b,
  371. enum rc_param_r param_r,
  372. int merge_mode,
  373. struct sde_rect *rc_roi)
  374. {
  375. int rc = 0;
  376. u32 val = 0, param_c = 0, rc_merge_mode = 0, ystart = 0;
  377. u64 flags = 0, mask_w = 0, mask_h = 0;
  378. bool r1_valid = false, r2_valid = false;
  379. bool pu_in_r1 = false, pu_in_r2 = false;
  380. bool r1_enable = false, r2_enable = false;
  381. if (!hw_dspp || !rc_mask_cfg || !rc_roi) {
  382. SDE_ERROR("invalid arguments\n");
  383. return -EINVAL;
  384. }
  385. rc = _sde_hw_rc_get_enable_bits(param_a, param_b, &param_c,
  386. merge_mode, &rc_merge_mode);
  387. if (rc) {
  388. SDE_ERROR("invalid enable bits, rc:%d\n", rc);
  389. return rc;
  390. }
  391. flags = rc_mask_cfg->flags;
  392. mask_w = rc_mask_cfg->width;
  393. mask_h = rc_mask_cfg->height;
  394. r1_valid = ((flags & SDE_HW_RC_DISABLE_R1) != SDE_HW_RC_DISABLE_R1);
  395. r2_valid = ((flags & SDE_HW_RC_DISABLE_R2) != SDE_HW_RC_DISABLE_R2);
  396. pu_in_r1 = (param_r == RC_PARAM_R1 || param_r == RC_PARAM_R1R2);
  397. pu_in_r2 = (param_r == RC_PARAM_R2 || param_r == RC_PARAM_R1R2);
  398. r1_enable = (r1_valid && pu_in_r1);
  399. r2_enable = (r2_valid && pu_in_r2);
  400. if (r1_enable)
  401. val |= BIT(0);
  402. if (r2_enable)
  403. val |= BIT(4);
  404. /*corner case for partial update in R2 region*/
  405. if (!r1_enable && r2_enable)
  406. ystart = rc_roi->y;
  407. SDE_DEBUG("idx:%d w:%d h:%d flags:%x, R1:%d, R2:%d, PU R1:%d, PU R2:%d, Y_START:%d\n",
  408. RC_IDX(hw_dspp), mask_w, mask_h, flags, r1_valid, r2_valid, pu_in_r1,
  409. pu_in_r2, ystart);
  410. SDE_EVT32(RC_IDX(hw_dspp), mask_w, mask_h, flags, r1_valid, r2_valid, pu_in_r1, pu_in_r2,
  411. ystart);
  412. val |= param_c;
  413. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG1, val);
  414. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG13, ystart);
  415. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG9, rc_merge_mode);
  416. return rc;
  417. }
  418. static int _sde_hw_rc_program_roi(
  419. struct sde_hw_dspp *hw_dspp,
  420. struct drm_msm_rc_mask_cfg *rc_mask_cfg,
  421. int merge_mode,
  422. struct sde_rect *rc_roi)
  423. {
  424. int rc = 0;
  425. u32 val2 = 0, val3 = 0, val4 = 0;
  426. enum rc_param_r param_r = RC_PARAM_R0;
  427. enum rc_param_a param_a = RC_PARAM_A0;
  428. enum rc_param_b param_b = RC_PARAM_B0;
  429. if (!hw_dspp || !rc_mask_cfg || !rc_roi) {
  430. SDE_ERROR("invalid arguments\n");
  431. return -EINVAL;
  432. }
  433. rc = _sde_hw_rc_get_param_rb(rc_mask_cfg, rc_roi, &param_r,
  434. &param_b);
  435. if (rc) {
  436. SDE_ERROR("invalid rc roi, rc:%d\n", rc);
  437. return rc;
  438. }
  439. param_a = rc_mask_cfg->cfg_param_03;
  440. rc = _sde_hw_rc_program_enable_bits(hw_dspp, rc_mask_cfg,
  441. param_a, param_b, param_r, merge_mode, rc_roi);
  442. if (rc) {
  443. SDE_ERROR("failed to program enable bits, rc:%d\n", rc);
  444. return rc;
  445. }
  446. val2 = ((rc_mask_cfg->cfg_param_01 & 0x0000FFFF) |
  447. ((rc_mask_cfg->cfg_param_02 << 16) & 0xFFFF0000));
  448. if (param_a == RC_PARAM_A1) {
  449. val3 = (rc_mask_cfg->cfg_param_04[0] |
  450. (rc_mask_cfg->cfg_param_04[1] << 16));
  451. val4 = (rc_mask_cfg->cfg_param_04[2] |
  452. (rc_mask_cfg->cfg_param_04[3] << 16));
  453. } else if (param_a == RC_PARAM_A0) {
  454. val3 = (rc_mask_cfg->cfg_param_04[0]);
  455. val4 = (rc_mask_cfg->cfg_param_04[1]);
  456. }
  457. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG2, val2);
  458. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG3, val3);
  459. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG4, val4);
  460. return 0;
  461. }
  462. static int _sde_hw_rc_program_data_offset(
  463. struct sde_hw_dspp *hw_dspp,
  464. struct drm_msm_rc_mask_cfg *rc_mask_cfg)
  465. {
  466. int rc = 0;
  467. u32 val5 = 0, val6 = 0, val7 = 0, val8 = 0;
  468. u32 cfg_param_07;
  469. if (!hw_dspp || !rc_mask_cfg) {
  470. SDE_ERROR("invalid arguments\n");
  471. return -EINVAL;
  472. }
  473. cfg_param_07 = rc_mask_cfg->cfg_param_07;
  474. if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A1) {
  475. val5 = ((rc_mask_cfg->cfg_param_05[0] + cfg_param_07) |
  476. ((rc_mask_cfg->cfg_param_05[1] + cfg_param_07)
  477. << 16));
  478. val6 = ((rc_mask_cfg->cfg_param_05[2] + cfg_param_07)|
  479. ((rc_mask_cfg->cfg_param_05[3] + cfg_param_07)
  480. << 16));
  481. val7 = ((rc_mask_cfg->cfg_param_06[0] + cfg_param_07) |
  482. ((rc_mask_cfg->cfg_param_06[1] + cfg_param_07)
  483. << 16));
  484. val8 = ((rc_mask_cfg->cfg_param_06[2] + cfg_param_07) |
  485. ((rc_mask_cfg->cfg_param_06[3] + cfg_param_07)
  486. << 16));
  487. } else if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A0) {
  488. val5 = (rc_mask_cfg->cfg_param_05[0] + cfg_param_07);
  489. val6 = (rc_mask_cfg->cfg_param_05[1] + cfg_param_07);
  490. val7 = (rc_mask_cfg->cfg_param_06[0] + cfg_param_07);
  491. val8 = (rc_mask_cfg->cfg_param_06[1] + cfg_param_07);
  492. }
  493. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG5, val5);
  494. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG6, val6);
  495. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG7, val7);
  496. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG8, val8);
  497. return rc;
  498. }
  499. static int sde_hw_rc_check_mask_cfg(
  500. struct sde_hw_dspp *hw_dspp,
  501. struct sde_hw_cp_cfg *hw_cfg,
  502. struct drm_msm_rc_mask_cfg *rc_mask_cfg)
  503. {
  504. int rc = 0;
  505. u32 i = 0;
  506. u32 panel_width, panel_height, half_panel_width;
  507. u32 mem_total_size, min_region_width;
  508. u64 flags;
  509. u32 cfg_param_01, cfg_param_02, cfg_param_03;
  510. u32 cfg_param_07, cfg_param_08;
  511. u32 *cfg_param_04, *cfg_param_05, *cfg_param_06;
  512. u32 mask_width, mask_height;
  513. bool r1_enable, r2_enable;
  514. if (!hw_dspp || !hw_cfg || !rc_mask_cfg) {
  515. SDE_ERROR("invalid arguments\n");
  516. return -EINVAL;
  517. }
  518. flags = rc_mask_cfg->flags;
  519. cfg_param_01 = rc_mask_cfg->cfg_param_01;
  520. cfg_param_02 = rc_mask_cfg->cfg_param_02;
  521. cfg_param_03 = rc_mask_cfg->cfg_param_03;
  522. cfg_param_04 = rc_mask_cfg->cfg_param_04;
  523. cfg_param_05 = rc_mask_cfg->cfg_param_05;
  524. cfg_param_06 = rc_mask_cfg->cfg_param_06;
  525. cfg_param_07 = rc_mask_cfg->cfg_param_07;
  526. cfg_param_08 = rc_mask_cfg->cfg_param_08;
  527. mask_width = rc_mask_cfg->width;
  528. mask_height = rc_mask_cfg->height;
  529. r1_enable = ((flags & SDE_HW_RC_DISABLE_R1) != SDE_HW_RC_DISABLE_R1);
  530. r2_enable = ((flags & SDE_HW_RC_DISABLE_R2) != SDE_HW_RC_DISABLE_R2);
  531. mem_total_size = hw_dspp->cap->sblk->rc.mem_total_size;
  532. min_region_width = hw_dspp->cap->sblk->rc.min_region_width;
  533. panel_width = hw_cfg->panel_width;
  534. panel_height = hw_cfg->panel_height;
  535. half_panel_width = panel_width / cfg_param_03 * 2;
  536. SDE_EVT32(RC_IDX(hw_dspp), mask_width, mask_height, panel_width, panel_height,
  537. half_panel_width);
  538. SDE_EVT32(RC_IDX(hw_dspp), flags, cfg_param_01, cfg_param_02, cfg_param_03, cfg_param_04,
  539. cfg_param_05, cfg_param_06, cfg_param_07, cfg_param_08);
  540. SDE_EVT32(RC_IDX(hw_dspp), r1_enable, r2_enable, mem_total_size, min_region_width);
  541. if (mask_width != panel_width || mask_height != panel_height) {
  542. SDE_ERROR("RC mask Layer: w %d h %d panel: w %d h %d mismatch\n",
  543. mask_width, mask_height, panel_width, panel_height);
  544. return -EINVAL;
  545. }
  546. if (cfg_param_07 > mem_total_size) {
  547. SDE_ERROR("invalid cfg_param_07:%d\n", cfg_param_07);
  548. return -EINVAL;
  549. }
  550. if (cfg_param_08 > RC_DATA_SIZE_MAX) {
  551. SDE_ERROR("invalid cfg_param_08:%d\n", cfg_param_08);
  552. return -EINVAL;
  553. }
  554. if ((cfg_param_07 + cfg_param_08) > mem_total_size) {
  555. SDE_ERROR("invalid cfg_param_08:%d, cfg_param_07:%d, max:%u\n",
  556. cfg_param_08, cfg_param_07, mem_total_size);
  557. return -EINVAL;
  558. }
  559. if (!(cfg_param_03 == RC_PARAM_A1 || cfg_param_03 == RC_PARAM_A0)) {
  560. SDE_ERROR("invalid cfg_param_03:%d\n", cfg_param_03);
  561. return -EINVAL;
  562. }
  563. for (i = 0; i < cfg_param_03; i++) {
  564. if (cfg_param_04[i] < min_region_width) {
  565. SDE_ERROR("invalid cfg_param_04[%d]:%d\n", i,
  566. cfg_param_04[i]);
  567. return -EINVAL;
  568. }
  569. }
  570. for (i = 0; i < cfg_param_03; i += 2) {
  571. if (cfg_param_04[i] + cfg_param_04[i+1] != half_panel_width) {
  572. SDE_ERROR("invalid ratio [%d]:%d, [%d]:%d, %d\n",
  573. i, cfg_param_04[i], i+1,
  574. cfg_param_04[i+1], half_panel_width);
  575. return -EINVAL;
  576. }
  577. }
  578. if (r1_enable && r2_enable) {
  579. if (cfg_param_01 > cfg_param_02) {
  580. SDE_ERROR("invalid cfg_param_01:%d, cfg_param_02:%d\n",
  581. cfg_param_01, cfg_param_02);
  582. return -EINVAL;
  583. }
  584. } else {
  585. SDE_DEBUG("R1 or R2 disabled, skip overlap check");
  586. }
  587. if (r1_enable) {
  588. if (cfg_param_01 < 1) {
  589. SDE_ERROR("invalid min cfg_param_01:%d\n",
  590. cfg_param_01);
  591. return -EINVAL;
  592. }
  593. for (i = 0; i < cfg_param_03 - 1; i++) {
  594. if (cfg_param_05[i] >= cfg_param_05[i+1]) {
  595. SDE_ERROR("invalid cfg_param_05 %d, %d\n",
  596. cfg_param_05[i],
  597. cfg_param_05[i+1]);
  598. return -EINVAL;
  599. }
  600. }
  601. for (i = 0; i < cfg_param_03; i++) {
  602. if (cfg_param_05[i] > RC_DATA_SIZE_MAX) {
  603. SDE_ERROR("invalid cfg_param_05[%d]:%d\n", i,
  604. cfg_param_05[i]);
  605. return -EINVAL;
  606. }
  607. }
  608. } else {
  609. SDE_DEBUG("R1 is disabled, skip parameter checks\n");
  610. }
  611. if (r2_enable) {
  612. if ((hw_cfg->panel_height - cfg_param_02) < 1) {
  613. SDE_ERROR("invalid max cfg_param_02:%d, panel_height:%d\n",
  614. cfg_param_02, hw_cfg->panel_height);
  615. return -EINVAL;
  616. }
  617. for (i = 0; i < cfg_param_03 - 1; i++) {
  618. if (cfg_param_06[i] >= cfg_param_06[i+1]) {
  619. SDE_ERROR("invalid cfg_param_06 %d, %d\n",
  620. cfg_param_06[i],
  621. cfg_param_06[i+1]);
  622. return -EINVAL;
  623. }
  624. }
  625. for (i = 0; i < cfg_param_03; i++) {
  626. if (cfg_param_06[i] > RC_DATA_SIZE_MAX) {
  627. SDE_ERROR("invalid cfg_param_06[%d]:%d\n", i,
  628. cfg_param_06[i]);
  629. return -EINVAL;
  630. }
  631. }
  632. } else {
  633. SDE_DEBUG("R2 is disabled, skip parameter checks\n");
  634. }
  635. return rc;
  636. }
  637. int sde_hw_rc_check_mask(struct sde_hw_dspp *hw_dspp, void *cfg)
  638. {
  639. int rc = 0;
  640. struct sde_hw_cp_cfg *hw_cfg = cfg;
  641. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  642. if (!hw_dspp || !hw_cfg) {
  643. SDE_ERROR("invalid arguments\n");
  644. return -EINVAL;
  645. }
  646. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  647. SDE_DEBUG("RC feature disabled, skip mask checks\n");
  648. return 0;
  649. }
  650. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  651. !hw_cfg->payload) {
  652. SDE_ERROR("invalid payload len %d exp %zd\n", hw_cfg->len,
  653. sizeof(struct drm_msm_rc_mask_cfg));
  654. return -EINVAL;
  655. }
  656. rc_mask_cfg = hw_cfg->payload;
  657. if (hw_cfg->num_of_mixers != 1 && hw_cfg->num_of_mixers != 2) {
  658. SDE_ERROR("invalid number of mixers:%d\n",
  659. hw_cfg->num_of_mixers);
  660. return -EINVAL;
  661. }
  662. rc = sde_hw_rc_check_mask_cfg(hw_dspp, hw_cfg, rc_mask_cfg);
  663. if (rc) {
  664. SDE_ERROR("invalid rc mask configuration, rc:%d\n", rc);
  665. return rc;
  666. }
  667. return 0;
  668. }
  669. int sde_hw_rc_check_pu_roi(struct sde_hw_dspp *hw_dspp, void *cfg)
  670. {
  671. int rc = 0;
  672. struct sde_hw_cp_cfg *hw_cfg = cfg;
  673. struct msm_roi_list *roi_list;
  674. struct msm_roi_list empty_roi_list;
  675. struct sde_rect rc_roi, merged_roi;
  676. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  677. bool mask_programmed = false;
  678. enum rc_param_r param_r = RC_PARAM_R0;
  679. enum rc_param_b param_b = RC_PARAM_B0;
  680. if (!hw_dspp || !hw_cfg) {
  681. SDE_ERROR("invalid arguments\n");
  682. return -EINVAL;
  683. }
  684. if (hw_cfg->len != sizeof(struct sde_drm_roi_v1)) {
  685. SDE_ERROR("invalid payload size\n");
  686. return -EINVAL;
  687. }
  688. roi_list = hw_cfg->payload;
  689. if (!roi_list) {
  690. SDE_DEBUG("full frame update\n");
  691. memset(&empty_roi_list, 0, sizeof(struct msm_roi_list));
  692. roi_list = &empty_roi_list;
  693. }
  694. rc_mask_cfg = RC_STATE(hw_dspp).last_rc_mask_cfg;
  695. mask_programmed = RC_STATE(hw_dspp).mask_programmed;
  696. /* early return when there is no mask in memory */
  697. if (!mask_programmed || !rc_mask_cfg) {
  698. SDE_DEBUG("no previous rc mask programmed\n");
  699. return SDE_HW_RC_PU_SKIP_OP;
  700. }
  701. rc = sde_hw_rc_check_mask_cfg(hw_dspp, hw_cfg, rc_mask_cfg);
  702. if (rc) {
  703. SDE_ERROR("invalid rc mask configuration, rc:%d\n", rc);
  704. return rc;
  705. }
  706. sde_kms_rect_merge_rectangles(roi_list, &merged_roi);
  707. rc = _sde_hw_rc_get_ajusted_roi(hw_cfg, &merged_roi, &rc_roi);
  708. if (rc) {
  709. SDE_ERROR("failed to get adjusted roi, rc:%d\n", rc);
  710. return rc;
  711. }
  712. rc = _sde_hw_rc_get_param_rb(rc_mask_cfg, &rc_roi,
  713. &param_r, &param_b);
  714. if (rc) {
  715. SDE_ERROR("invalid rc roi, rc:%d\n", rc);
  716. return rc;
  717. }
  718. return 0;
  719. }
  720. int sde_hw_rc_setup_pu_roi(struct sde_hw_dspp *hw_dspp, void *cfg)
  721. {
  722. int rc = 0;
  723. struct sde_hw_cp_cfg *hw_cfg = cfg;
  724. struct msm_roi_list *roi_list;
  725. struct msm_roi_list empty_roi_list;
  726. struct sde_rect rc_roi, merged_roi;
  727. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  728. enum rc_param_r param_r = RC_PARAM_R0;
  729. enum rc_param_a param_a = RC_PARAM_A0;
  730. enum rc_param_b param_b = RC_PARAM_B0;
  731. u32 merge_mode = 0;
  732. bool mask_programmed = false;
  733. if (!hw_dspp || !hw_cfg) {
  734. SDE_ERROR("invalid arguments\n");
  735. return -EINVAL;
  736. }
  737. if (hw_cfg->len != sizeof(struct sde_drm_roi_v1)) {
  738. SDE_ERROR("invalid payload size\n");
  739. return -EINVAL;
  740. }
  741. roi_list = hw_cfg->payload;
  742. if (!roi_list) {
  743. SDE_DEBUG("full frame update\n");
  744. memset(&empty_roi_list, 0, sizeof(struct msm_roi_list));
  745. roi_list = &empty_roi_list;
  746. }
  747. rc_mask_cfg = RC_STATE(hw_dspp).last_rc_mask_cfg;
  748. mask_programmed = RC_STATE(hw_dspp).mask_programmed;
  749. /* early return when there is no mask in memory */
  750. if (!mask_programmed || !rc_mask_cfg) {
  751. SDE_DEBUG("no previous rc mask programmed\n");
  752. return SDE_HW_RC_PU_SKIP_OP;
  753. }
  754. sde_kms_rect_merge_rectangles(roi_list, &merged_roi);
  755. rc = _sde_hw_rc_get_ajusted_roi(hw_cfg, &merged_roi, &rc_roi);
  756. if (rc) {
  757. SDE_ERROR("failed to get adjusted roi, rc:%d\n", rc);
  758. return rc;
  759. }
  760. rc = _sde_hw_rc_get_merge_mode(hw_cfg, &merge_mode);
  761. if (rc) {
  762. SDE_ERROR("invalid merge_mode, rc:%d\n", rc);
  763. return rc;
  764. }
  765. rc = _sde_hw_rc_get_param_rb(rc_mask_cfg, &rc_roi, &param_r,
  766. &param_b);
  767. if (rc) {
  768. SDE_ERROR("invalid roi, rc:%d\n", rc);
  769. return rc;
  770. }
  771. param_a = rc_mask_cfg->cfg_param_03;
  772. rc = _sde_hw_rc_program_enable_bits(hw_dspp, rc_mask_cfg,
  773. param_a, param_b, param_r, merge_mode, &rc_roi);
  774. if (rc) {
  775. SDE_ERROR("failed to program enable bits, rc:%d\n", rc);
  776. return rc;
  777. }
  778. memcpy(RC_STATE(hw_dspp).last_roi_list,
  779. roi_list, sizeof(struct msm_roi_list));
  780. RC_STATE(hw_dspp).roi_programmed = true;
  781. return 0;
  782. }
  783. int sde_hw_rc_setup_mask(struct sde_hw_dspp *hw_dspp, void *cfg)
  784. {
  785. int rc = 0;
  786. struct sde_hw_cp_cfg *hw_cfg = cfg;
  787. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  788. struct sde_rect rc_roi, merged_roi;
  789. struct msm_roi_list *last_roi_list;
  790. u32 merge_mode = 0;
  791. bool roi_programmed = false;
  792. if (!hw_dspp || !hw_cfg) {
  793. SDE_ERROR("invalid arguments\n");
  794. return -EINVAL;
  795. }
  796. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  797. SDE_DEBUG("RC feature disabled\n");
  798. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG1, 0);
  799. memset(RC_STATE(hw_dspp).last_rc_mask_cfg, 0,
  800. sizeof(struct drm_msm_rc_mask_cfg));
  801. RC_STATE(hw_dspp).mask_programmed = false;
  802. memset(RC_STATE(hw_dspp).last_roi_list, 0,
  803. sizeof(struct msm_roi_list));
  804. RC_STATE(hw_dspp).roi_programmed = false;
  805. return 0;
  806. }
  807. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  808. !hw_cfg->payload) {
  809. SDE_ERROR("invalid payload\n");
  810. return -EINVAL;
  811. }
  812. rc_mask_cfg = hw_cfg->payload;
  813. last_roi_list = RC_STATE(hw_dspp).last_roi_list;
  814. roi_programmed = RC_STATE(hw_dspp).roi_programmed;
  815. if (!roi_programmed) {
  816. SDE_DEBUG("full frame update\n");
  817. memset(&merged_roi, 0, sizeof(struct sde_rect));
  818. } else {
  819. SDE_DEBUG("partial frame update\n");
  820. sde_kms_rect_merge_rectangles(last_roi_list, &merged_roi);
  821. }
  822. rc = _sde_hw_rc_get_ajusted_roi(hw_cfg, &merged_roi, &rc_roi);
  823. if (rc) {
  824. SDE_ERROR("failed to get adjusted roi, rc:%d\n", rc);
  825. return rc;
  826. }
  827. rc = _sde_hw_rc_get_merge_mode(hw_cfg, &merge_mode);
  828. if (rc) {
  829. SDE_ERROR("invalid merge_mode, rc:%d\n", rc);
  830. return rc;
  831. }
  832. rc = _sde_hw_rc_program_roi(hw_dspp, rc_mask_cfg,
  833. merge_mode, &rc_roi);
  834. if (rc) {
  835. SDE_ERROR("unable to program rc roi, rc:%d\n", rc);
  836. return rc;
  837. }
  838. rc = _sde_hw_rc_program_data_offset(hw_dspp, rc_mask_cfg);
  839. if (rc) {
  840. SDE_ERROR("unable to program data offsets, rc:%d\n", rc);
  841. return rc;
  842. }
  843. memcpy(RC_STATE(hw_dspp).last_rc_mask_cfg, rc_mask_cfg,
  844. sizeof(struct drm_msm_rc_mask_cfg));
  845. RC_STATE(hw_dspp).mask_programmed = true;
  846. return 0;
  847. }
  848. int sde_hw_rc_setup_data_dma(struct sde_hw_dspp *hw_dspp, void *cfg)
  849. {
  850. int rc = 0;
  851. struct sde_hw_cp_cfg *hw_cfg = cfg;
  852. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  853. if (!hw_dspp || !hw_cfg) {
  854. SDE_ERROR("invalid arguments\n");
  855. return -EINVAL;
  856. }
  857. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  858. SDE_DEBUG("RC feature disabled, skip data programming\n");
  859. return 0;
  860. }
  861. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  862. !hw_cfg->payload) {
  863. SDE_ERROR("invalid payload\n");
  864. return -EINVAL;
  865. }
  866. rc_mask_cfg = hw_cfg->payload;
  867. if (rc_mask_cfg->flags & SDE_HW_RC_SKIP_DATA_PROG) {
  868. SDE_DEBUG("skip data programming\n");
  869. return 0;
  870. }
  871. rc = reg_dmav1_setup_rc_datav1(hw_dspp, cfg);
  872. if (rc) {
  873. SDE_ERROR("unable to setup rc with dma, rc:%d\n", rc);
  874. return rc;
  875. }
  876. return rc;
  877. }
  878. int sde_hw_rc_setup_data_ahb(struct sde_hw_dspp *hw_dspp, void *cfg)
  879. {
  880. int rc = 0, i = 0;
  881. u32 data = 0, cfg_param_07 = 0;
  882. struct sde_hw_cp_cfg *hw_cfg = cfg;
  883. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  884. if (!hw_dspp || !hw_cfg) {
  885. SDE_ERROR("invalid arguments\n");
  886. return -EINVAL;
  887. }
  888. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  889. SDE_DEBUG("rc feature disabled, skip data programming\n");
  890. return 0;
  891. }
  892. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  893. !hw_cfg->payload) {
  894. SDE_ERROR("invalid payload\n");
  895. return -EINVAL;
  896. }
  897. rc_mask_cfg = hw_cfg->payload;
  898. if (rc_mask_cfg->flags & SDE_HW_RC_SKIP_DATA_PROG) {
  899. SDE_DEBUG("skip data programming\n");
  900. return 0;
  901. }
  902. cfg_param_07 = rc_mask_cfg->cfg_param_07;
  903. SDE_DEBUG("cfg_param_07:%u\n", cfg_param_07);
  904. for (i = 0; i < rc_mask_cfg->cfg_param_08; i++) {
  905. SDE_DEBUG("cfg_param_09[%d] = 0x%016llX at %u\n", i,
  906. rc_mask_cfg->cfg_param_09[i], i + cfg_param_07);
  907. data = (i == 0) ? (BIT(30) | (cfg_param_07 << 18)) : 0;
  908. data |= (rc_mask_cfg->cfg_param_09[i] & 0x3FFFF);
  909. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG10, data);
  910. data = ((rc_mask_cfg->cfg_param_09[i] >>
  911. SDE_HW_RC_DATA_REG_SIZE) & 0x3FFFF);
  912. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG10, data);
  913. }
  914. return rc;
  915. }
  916. int sde_hw_rc_init(struct sde_hw_dspp *hw_dspp)
  917. {
  918. int rc = 0;
  919. RC_STATE(hw_dspp).last_roi_list = kzalloc(
  920. sizeof(struct msm_roi_list), GFP_KERNEL);
  921. if (!RC_STATE(hw_dspp).last_roi_list)
  922. return -ENOMEM;
  923. RC_STATE(hw_dspp).last_rc_mask_cfg = kzalloc(
  924. sizeof(struct drm_msm_rc_mask_cfg), GFP_KERNEL);
  925. if (!RC_STATE(hw_dspp).last_rc_mask_cfg)
  926. return -ENOMEM;
  927. return rc;
  928. }