dsi_pll_5nm.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2016-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/err.h>
  7. #include <linux/iopoll.h>
  8. #include <linux/delay.h>
  9. #include <linux/of.h>
  10. #include <linux/platform_device.h>
  11. #include "dsi_pll_5nm.h"
  12. #define VCO_DELAY_USEC 1
  13. #define MHZ_250 250000000UL
  14. #define MHZ_500 500000000UL
  15. #define MHZ_1000 1000000000UL
  16. #define MHZ_1100 1100000000UL
  17. #define MHZ_1900 1900000000UL
  18. #define MHZ_3000 3000000000UL
  19. struct dsi_pll_regs {
  20. u32 pll_prop_gain_rate;
  21. u32 pll_lockdet_rate;
  22. u32 decimal_div_start;
  23. u32 frac_div_start_low;
  24. u32 frac_div_start_mid;
  25. u32 frac_div_start_high;
  26. u32 pll_clock_inverters;
  27. u32 ssc_stepsize_low;
  28. u32 ssc_stepsize_high;
  29. u32 ssc_div_per_low;
  30. u32 ssc_div_per_high;
  31. u32 ssc_adjper_low;
  32. u32 ssc_adjper_high;
  33. u32 ssc_control;
  34. };
  35. struct dsi_pll_config {
  36. u32 ref_freq;
  37. bool div_override;
  38. u32 output_div;
  39. bool ignore_frac;
  40. bool disable_prescaler;
  41. bool enable_ssc;
  42. bool ssc_center;
  43. u32 dec_bits;
  44. u32 frac_bits;
  45. u32 lock_timer;
  46. u32 ssc_freq;
  47. u32 ssc_offset;
  48. u32 ssc_adj_per;
  49. u32 thresh_cycles;
  50. u32 refclk_cycles;
  51. };
  52. struct dsi_pll_5nm {
  53. struct dsi_pll_resource *rsc;
  54. struct dsi_pll_config pll_configuration;
  55. struct dsi_pll_regs reg_setup;
  56. bool cphy_enabled;
  57. };
  58. static inline bool dsi_pll_5nm_is_hw_revision(
  59. struct dsi_pll_resource *rsc)
  60. {
  61. return (rsc->pll_revision == DSI_PLL_5NM) ?
  62. true : false;
  63. }
  64. static inline void dsi_pll_set_pll_post_div(struct dsi_pll_resource *pll, u32
  65. pll_post_div)
  66. {
  67. u32 pll_post_div_val = 0;
  68. if (pll_post_div == 1)
  69. pll_post_div_val = 0;
  70. if (pll_post_div == 2)
  71. pll_post_div_val = 1;
  72. if (pll_post_div == 4)
  73. pll_post_div_val = 2;
  74. if (pll_post_div == 8)
  75. pll_post_div_val = 3;
  76. DSI_PLL_REG_W(pll->pll_base, PLL_PLL_OUTDIV_RATE, pll_post_div_val);
  77. if (pll->slave)
  78. DSI_PLL_REG_W(pll->slave->pll_base, PLL_PLL_OUTDIV_RATE,
  79. pll_post_div_val);
  80. }
  81. static inline int dsi_pll_get_pll_post_div(struct dsi_pll_resource *pll)
  82. {
  83. u32 reg_val;
  84. reg_val = DSI_PLL_REG_R(pll->pll_base, PLL_PLL_OUTDIV_RATE);
  85. return (1 << reg_val);
  86. }
  87. static inline void dsi_pll_set_phy_post_div(struct dsi_pll_resource *pll, u32
  88. phy_post_div)
  89. {
  90. u32 reg_val = 0;
  91. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  92. reg_val &= ~0x0F;
  93. reg_val |= phy_post_div;
  94. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  95. /* For slave PLL, this divider always should be set to 1 */
  96. if (pll->slave) {
  97. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  98. reg_val &= ~0x0F;
  99. reg_val |= 0x1;
  100. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  101. }
  102. }
  103. static inline int dsi_pll_get_phy_post_div(struct dsi_pll_resource *pll)
  104. {
  105. u32 reg_val = 0;
  106. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  107. return (reg_val & 0xF);
  108. }
  109. static inline void dsi_pll_set_dsi_clk(struct dsi_pll_resource *pll, u32
  110. dsi_clk)
  111. {
  112. u32 reg_val = 0;
  113. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
  114. reg_val &= ~0x3;
  115. reg_val |= dsi_clk;
  116. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG1, reg_val);
  117. if (pll->slave) {
  118. reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG1);
  119. reg_val &= ~0x3;
  120. reg_val |= dsi_clk;
  121. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG1, reg_val);
  122. }
  123. }
  124. static inline int dsi_pll_get_dsi_clk(struct dsi_pll_resource *pll)
  125. {
  126. u32 reg_val;
  127. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG1);
  128. return (reg_val & 0x3);
  129. }
  130. static inline void dsi_pll_set_pclk_div(struct dsi_pll_resource *pll, u32
  131. pclk_div)
  132. {
  133. u32 reg_val = 0;
  134. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  135. reg_val &= ~0xF0;
  136. reg_val |= (pclk_div << 4);
  137. DSI_PLL_REG_W(pll->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  138. if (pll->slave) {
  139. reg_val = DSI_PLL_REG_R(pll->slave->phy_base, PHY_CMN_CLK_CFG0);
  140. reg_val &= ~0xF0;
  141. reg_val |= (pclk_div << 4);
  142. DSI_PLL_REG_W(pll->slave->phy_base, PHY_CMN_CLK_CFG0, reg_val);
  143. }
  144. }
  145. static inline int dsi_pll_get_pclk_div(struct dsi_pll_resource *pll)
  146. {
  147. u32 reg_val;
  148. reg_val = DSI_PLL_REG_R(pll->phy_base, PHY_CMN_CLK_CFG0);
  149. return ((reg_val & 0xF0) >> 4);
  150. }
  151. static struct dsi_pll_resource *pll_rsc_db[DSI_PLL_MAX];
  152. static struct dsi_pll_5nm plls[DSI_PLL_MAX];
  153. static void dsi_pll_config_slave(struct dsi_pll_resource *rsc)
  154. {
  155. u32 reg;
  156. struct dsi_pll_resource *orsc = pll_rsc_db[DSI_PLL_1];
  157. if (!rsc)
  158. return;
  159. /* Only DSI PLL0 can act as a master */
  160. if (rsc->index != DSI_PLL_0)
  161. return;
  162. /* default configuration: source is either internal or ref clock */
  163. rsc->slave = NULL;
  164. if (!orsc) {
  165. DSI_PLL_WARN(rsc,
  166. "slave PLL unavilable, assuming standalone config\n");
  167. return;
  168. }
  169. /* check to see if the source of DSI1 PLL bitclk is set to external */
  170. reg = DSI_PLL_REG_R(orsc->phy_base, PHY_CMN_CLK_CFG1);
  171. reg &= (BIT(2) | BIT(3));
  172. if (reg == 0x04)
  173. rsc->slave = pll_rsc_db[DSI_PLL_1]; /* external source */
  174. DSI_PLL_DBG(rsc, "Slave PLL %s\n",
  175. rsc->slave ? "configured" : "absent");
  176. }
  177. static void dsi_pll_setup_config(struct dsi_pll_5nm *pll,
  178. struct dsi_pll_resource *rsc)
  179. {
  180. struct dsi_pll_config *config = &pll->pll_configuration;
  181. config->ref_freq = 19200000;
  182. config->output_div = 1;
  183. config->dec_bits = 8;
  184. config->frac_bits = 18;
  185. config->lock_timer = 64;
  186. config->ssc_freq = 31500;
  187. config->ssc_offset = 4800;
  188. config->ssc_adj_per = 2;
  189. config->thresh_cycles = 32;
  190. config->refclk_cycles = 256;
  191. config->div_override = false;
  192. config->ignore_frac = false;
  193. config->disable_prescaler = false;
  194. config->enable_ssc = rsc->ssc_en;
  195. config->ssc_center = rsc->ssc_center;
  196. if (config->enable_ssc) {
  197. if (rsc->ssc_freq)
  198. config->ssc_freq = rsc->ssc_freq;
  199. if (rsc->ssc_ppm)
  200. config->ssc_offset = rsc->ssc_ppm;
  201. }
  202. }
  203. static void dsi_pll_calc_dec_frac(struct dsi_pll_5nm *pll,
  204. struct dsi_pll_resource *rsc)
  205. {
  206. struct dsi_pll_config *config = &pll->pll_configuration;
  207. struct dsi_pll_regs *regs = &pll->reg_setup;
  208. u64 fref = rsc->vco_ref_clk_rate;
  209. u64 pll_freq;
  210. u64 divider;
  211. u64 dec, dec_multiple;
  212. u32 frac;
  213. u64 multiplier;
  214. pll_freq = rsc->vco_current_rate;
  215. if (config->disable_prescaler)
  216. divider = fref;
  217. else
  218. divider = fref * 2;
  219. multiplier = 1 << config->frac_bits;
  220. dec_multiple = div_u64(pll_freq * multiplier, divider);
  221. div_u64_rem(dec_multiple, multiplier, &frac);
  222. dec = div_u64(dec_multiple, multiplier);
  223. switch (rsc->pll_revision) {
  224. case DSI_PLL_5NM:
  225. default:
  226. if (pll_freq <= 1000000000ULL)
  227. regs->pll_clock_inverters = 0xA0;
  228. else if (pll_freq <= 2500000000ULL)
  229. regs->pll_clock_inverters = 0x20;
  230. else if (pll_freq <= 3500000000ULL)
  231. regs->pll_clock_inverters = 0x00;
  232. else
  233. regs->pll_clock_inverters = 0x40;
  234. break;
  235. }
  236. regs->pll_lockdet_rate = config->lock_timer;
  237. regs->decimal_div_start = dec;
  238. regs->frac_div_start_low = (frac & 0xff);
  239. regs->frac_div_start_mid = (frac & 0xff00) >> 8;
  240. regs->frac_div_start_high = (frac & 0x30000) >> 16;
  241. regs->pll_prop_gain_rate = 10;
  242. }
  243. static void dsi_pll_calc_ssc(struct dsi_pll_5nm *pll,
  244. struct dsi_pll_resource *rsc)
  245. {
  246. struct dsi_pll_config *config = &pll->pll_configuration;
  247. struct dsi_pll_regs *regs = &pll->reg_setup;
  248. u32 ssc_per;
  249. u32 ssc_mod;
  250. u64 ssc_step_size;
  251. u64 frac;
  252. if (!config->enable_ssc) {
  253. DSI_PLL_DBG(rsc, "SSC not enabled\n");
  254. return;
  255. }
  256. ssc_per = DIV_ROUND_CLOSEST(config->ref_freq, config->ssc_freq) / 2 - 1;
  257. ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
  258. ssc_per -= ssc_mod;
  259. frac = regs->frac_div_start_low |
  260. (regs->frac_div_start_mid << 8) |
  261. (regs->frac_div_start_high << 16);
  262. ssc_step_size = regs->decimal_div_start;
  263. ssc_step_size *= (1 << config->frac_bits);
  264. ssc_step_size += frac;
  265. ssc_step_size *= config->ssc_offset;
  266. ssc_step_size *= (config->ssc_adj_per + 1);
  267. ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
  268. ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
  269. regs->ssc_div_per_low = ssc_per & 0xFF;
  270. regs->ssc_div_per_high = (ssc_per & 0xFF00) >> 8;
  271. regs->ssc_stepsize_low = (u32)(ssc_step_size & 0xFF);
  272. regs->ssc_stepsize_high = (u32)((ssc_step_size & 0xFF00) >> 8);
  273. regs->ssc_adjper_low = config->ssc_adj_per & 0xFF;
  274. regs->ssc_adjper_high = (config->ssc_adj_per & 0xFF00) >> 8;
  275. regs->ssc_control = config->ssc_center ? SSC_CENTER : 0;
  276. DSI_PLL_DBG(rsc, "SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
  277. regs->decimal_div_start, frac, config->frac_bits);
  278. DSI_PLL_DBG(rsc, "SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
  279. ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
  280. }
  281. static void dsi_pll_ssc_commit(struct dsi_pll_5nm *pll,
  282. struct dsi_pll_resource *rsc)
  283. {
  284. void __iomem *pll_base = rsc->pll_base;
  285. struct dsi_pll_regs *regs = &pll->reg_setup;
  286. if (pll->pll_configuration.enable_ssc) {
  287. DSI_PLL_DBG(rsc, "SSC is enabled\n");
  288. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1,
  289. regs->ssc_stepsize_low);
  290. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1,
  291. regs->ssc_stepsize_high);
  292. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1,
  293. regs->ssc_div_per_low);
  294. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1,
  295. regs->ssc_div_per_high);
  296. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1,
  297. regs->ssc_adjper_low);
  298. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1,
  299. regs->ssc_adjper_high);
  300. DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL,
  301. SSC_EN | regs->ssc_control);
  302. }
  303. }
  304. static void dsi_pll_config_hzindep_reg(struct dsi_pll_5nm *pll,
  305. struct dsi_pll_resource *rsc)
  306. {
  307. void __iomem *pll_base = rsc->pll_base;
  308. u64 vco_rate = rsc->vco_current_rate;
  309. switch (rsc->pll_revision) {
  310. case DSI_PLL_5NM:
  311. default:
  312. if (vco_rate < 3100000000ULL)
  313. DSI_PLL_REG_W(pll_base,
  314. PLL_ANALOG_CONTROLS_FIVE_1, 0x01);
  315. else
  316. DSI_PLL_REG_W(pll_base,
  317. PLL_ANALOG_CONTROLS_FIVE_1, 0x03);
  318. if (vco_rate < 1520000000ULL)
  319. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x08);
  320. else if (vco_rate < 2990000000ULL)
  321. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00);
  322. else
  323. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x01);
  324. break;
  325. }
  326. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE, 0x01);
  327. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_TWO, 0x03);
  328. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_THREE, 0x00);
  329. DSI_PLL_REG_W(pll_base, PLL_DSM_DIVIDER, 0x00);
  330. DSI_PLL_REG_W(pll_base, PLL_FEEDBACK_DIVIDER, 0x4e);
  331. DSI_PLL_REG_W(pll_base, PLL_CALIBRATION_SETTINGS, 0x40);
  332. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
  333. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
  334. DSI_PLL_REG_W(pll_base, PLL_OUTDIV, 0x00);
  335. DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00);
  336. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
  337. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
  338. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0xc0);
  339. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
  340. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
  341. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
  342. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x80);
  343. DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x29);
  344. DSI_PLL_REG_W(pll_base, PLL_PFILT, 0x2f);
  345. DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x2a);
  346. switch (rsc->pll_revision) {
  347. case DSI_PLL_5NM:
  348. default:
  349. DSI_PLL_REG_W(pll_base, PLL_IFILT, 0x3F);
  350. break;
  351. }
  352. DSI_PLL_REG_W(pll_base, PLL_PERF_OPTIMIZE, 0x22);
  353. if (rsc->slave)
  354. DSI_PLL_REG_W(rsc->slave->pll_base, PLL_PERF_OPTIMIZE, 0x22);
  355. }
  356. static void dsi_pll_init_val(struct dsi_pll_resource *rsc)
  357. {
  358. void __iomem *pll_base = rsc->pll_base;
  359. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_ONE, 0x00000000);
  360. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS, 0x0000003F);
  361. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_SETTINGS_TWO, 0x00000000);
  362. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FOUR, 0x00000000);
  363. DSI_PLL_REG_W(pll_base, PLL_INT_LOOP_CONTROLS, 0x00000080);
  364. DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES, 0x00000000);
  365. DSI_PLL_REG_W(pll_base, PLL_FREQ_UPDATE_CONTROL_OVERRIDES, 0x00000000);
  366. DSI_PLL_REG_W(pll_base, PLL_CMODE, 0x00000010);
  367. DSI_PLL_REG_W(pll_base, PLL_PSM_CTRL, 0x00000020);
  368. DSI_PLL_REG_W(pll_base, PLL_RSM_CTRL, 0x00000010);
  369. DSI_PLL_REG_W(pll_base, PLL_VCO_TUNE_MAP, 0x00000002);
  370. DSI_PLL_REG_W(pll_base, PLL_PLL_CNTRL, 0x0000001C);
  371. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_LOW, 0x00000000);
  372. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_TIMER_HIGH, 0x00000002);
  373. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS, 0x00000020);
  374. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MIN, 0x00000000);
  375. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_MAX, 0x000000FF);
  376. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_PFILT, 0x00000000);
  377. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_IFILT, 0x0000000A);
  378. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_TWO, 0x00000025);
  379. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_THREE, 0x000000BA);
  380. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL_SETTINGS_FOUR, 0x0000004F);
  381. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_HIGH, 0x0000000A);
  382. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_ICODE_LOW, 0x00000000);
  383. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_SETTINGS_ONE, 0x0000000C);
  384. DSI_PLL_REG_W(pll_base, PLL_FREQ_DETECT_THRESH, 0x00000020);
  385. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_HIGH, 0x00000000);
  386. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_REFCLK_LOW, 0x000000FF);
  387. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_HIGH, 0x00000010);
  388. DSI_PLL_REG_W(pll_base, PLL_FREQ_DET_PLLCLK_LOW, 0x00000046);
  389. DSI_PLL_REG_W(pll_base, PLL_PLL_GAIN, 0x00000054);
  390. DSI_PLL_REG_W(pll_base, PLL_ICODE_LOW, 0x00000000);
  391. DSI_PLL_REG_W(pll_base, PLL_ICODE_HIGH, 0x00000000);
  392. DSI_PLL_REG_W(pll_base, PLL_LOCKDET, 0x00000040);
  393. DSI_PLL_REG_W(pll_base, PLL_FASTLOCK_CONTROL, 0x00000004);
  394. DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_ONE, 0x00000000);
  395. DSI_PLL_REG_W(pll_base, PLL_PASS_OUT_OVERRIDE_TWO, 0x00000000);
  396. DSI_PLL_REG_W(pll_base, PLL_CORE_OVERRIDE, 0x00000000);
  397. DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x00000010);
  398. DSI_PLL_REG_W(pll_base, PLL_RATE_CHANGE, 0x00000000);
  399. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS, 0x00000008);
  400. DSI_PLL_REG_W(pll_base, PLL_PLL_DIGITAL_TIMERS_TWO, 0x00000008);
  401. DSI_PLL_REG_W(pll_base, PLL_DEC_FRAC_MUXES, 0x00000000);
  402. DSI_PLL_REG_W(pll_base, PLL_MASH_CONTROL, 0x00000003);
  403. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW, 0x00000000);
  404. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH, 0x00000000);
  405. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW, 0x00000000);
  406. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH, 0x00000000);
  407. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW, 0x00000000);
  408. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH, 0x00000000);
  409. DSI_PLL_REG_W(pll_base, PLL_SSC_MUX_CONTROL, 0x00000000);
  410. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_1, 0x00000000);
  411. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_1, 0x00000000);
  412. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_1, 0x00000000);
  413. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_1, 0x00000000);
  414. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_1, 0x00000000);
  415. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_1, 0x00000000);
  416. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_LOW_2, 0x00000000);
  417. DSI_PLL_REG_W(pll_base, PLL_SSC_STEPSIZE_HIGH_2, 0x00000000);
  418. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_LOW_2, 0x00000000);
  419. DSI_PLL_REG_W(pll_base, PLL_SSC_DIV_PER_HIGH_2, 0x00000000);
  420. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_LOW_2, 0x00000000);
  421. DSI_PLL_REG_W(pll_base, PLL_SSC_ADJPER_HIGH_2, 0x00000000);
  422. DSI_PLL_REG_W(pll_base, PLL_SSC_CONTROL, 0x00000000);
  423. DSI_PLL_REG_W(pll_base, PLL_PLL_OUTDIV_RATE, 0x00000000);
  424. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, 0x00000040);
  425. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_2, 0x00000040);
  426. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_1, 0x0000000C);
  427. DSI_PLL_REG_W(pll_base, PLL_PLL_PROP_GAIN_RATE_2, 0x0000000A);
  428. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_1, 0x000000C0);
  429. DSI_PLL_REG_W(pll_base, PLL_PLL_BAND_SEL_RATE_2, 0x00000000);
  430. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x00000054);
  431. DSI_PLL_REG_W(pll_base, PLL_PLL_INT_GAIN_IFILT_BAND_2, 0x00000054);
  432. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x0000004C);
  433. DSI_PLL_REG_W(pll_base, PLL_PLL_FL_INT_GAIN_PFILT_BAND_2, 0x0000004C);
  434. DSI_PLL_REG_W(pll_base, PLL_PLL_FASTLOCK_EN_BAND, 0x00000003);
  435. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MID, 0x00000000);
  436. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_HIGH, 0x00000000);
  437. DSI_PLL_REG_W(pll_base, PLL_FREQ_TUNE_ACCUM_INIT_MUX, 0x00000000);
  438. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_OVERRIDE, 0x00000080);
  439. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x00000006);
  440. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_MIN_DELAY, 0x00000019);
  441. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS, 0x00000000);
  442. DSI_PLL_REG_W(pll_base, PLL_SPARE_AND_JPC_OVERRIDES, 0x00000000);
  443. DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_1, 0x00000040);
  444. DSI_PLL_REG_W(pll_base, PLL_BIAS_CONTROL_2, 0x00000020);
  445. DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_CTRL_1, 0x00000000);
  446. DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_ONE, 0x00000000);
  447. DSI_PLL_REG_W(pll_base, PLL_COMMON_STATUS_TWO, 0x00000000);
  448. DSI_PLL_REG_W(pll_base, PLL_BAND_SEL_CAL, 0x00000000);
  449. DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_LOW, 0x00000000);
  450. DSI_PLL_REG_W(pll_base, PLL_ICODE_ACCUM_STATUS_HIGH, 0x00000000);
  451. DSI_PLL_REG_W(pll_base, PLL_FD_OUT_LOW, 0x00000000);
  452. DSI_PLL_REG_W(pll_base, PLL_FD_OUT_HIGH, 0x00000000);
  453. DSI_PLL_REG_W(pll_base, PLL_ALOG_OBSV_BUS_STATUS_1, 0x00000000);
  454. DSI_PLL_REG_W(pll_base, PLL_PLL_MISC_CONFIG, 0x00000000);
  455. DSI_PLL_REG_W(pll_base, PLL_FLL_CONFIG, 0x00000002);
  456. DSI_PLL_REG_W(pll_base, PLL_FLL_FREQ_ACQ_TIME, 0x00000011);
  457. DSI_PLL_REG_W(pll_base, PLL_FLL_CODE0, 0x00000000);
  458. DSI_PLL_REG_W(pll_base, PLL_FLL_CODE1, 0x00000000);
  459. DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN0, 0x00000080);
  460. DSI_PLL_REG_W(pll_base, PLL_FLL_GAIN1, 0x00000000);
  461. DSI_PLL_REG_W(pll_base, PLL_SW_RESET, 0x00000000);
  462. DSI_PLL_REG_W(pll_base, PLL_FAST_PWRUP, 0x00000000);
  463. DSI_PLL_REG_W(pll_base, PLL_LOCKTIME0, 0x00000000);
  464. DSI_PLL_REG_W(pll_base, PLL_LOCKTIME1, 0x00000000);
  465. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS_SEL, 0x00000000);
  466. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS0, 0x00000000);
  467. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS1, 0x00000000);
  468. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS2, 0x00000000);
  469. DSI_PLL_REG_W(pll_base, PLL_DEBUG_BUS3, 0x00000000);
  470. DSI_PLL_REG_W(pll_base, PLL_ANALOG_FLL_CONTROL_OVERRIDES, 0x00000000);
  471. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG, 0x00000000);
  472. DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE0_STATUS, 0x00000000);
  473. DSI_PLL_REG_W(pll_base, PLL_VCO_CAL_CODE1_MODE1_STATUS, 0x00000000);
  474. DSI_PLL_REG_W(pll_base, PLL_RESET_SM_STATUS, 0x00000000);
  475. DSI_PLL_REG_W(pll_base, PLL_TDC_OFFSET, 0x00000000);
  476. DSI_PLL_REG_W(pll_base, PLL_PS3_PWRDOWN_CONTROLS, 0x0000001D);
  477. DSI_PLL_REG_W(pll_base, PLL_PS4_PWRDOWN_CONTROLS, 0x0000001C);
  478. DSI_PLL_REG_W(pll_base, PLL_PLL_RST_CONTROLS, 0x000000FF);
  479. DSI_PLL_REG_W(pll_base, PLL_GEAR_BAND_SELECT_CONTROLS, 0x00000022);
  480. DSI_PLL_REG_W(pll_base, PLL_PSM_CLK_CONTROLS, 0x00000009);
  481. DSI_PLL_REG_W(pll_base, PLL_SYSTEM_MUXES_2, 0x00000000);
  482. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_1, 0x00000000);
  483. DSI_PLL_REG_W(pll_base, PLL_VCO_CONFIG_2, 0x00000000);
  484. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1, 0x00000040);
  485. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_2, 0x00000000);
  486. DSI_PLL_REG_W(pll_base, PLL_CMODE_1, 0x00000010);
  487. DSI_PLL_REG_W(pll_base, PLL_CMODE_2, 0x00000010);
  488. DSI_PLL_REG_W(pll_base, PLL_ANALOG_CONTROLS_FIVE_2, 0x00000003);
  489. }
  490. static void dsi_pll_detect_phy_mode(struct dsi_pll_5nm *pll,
  491. struct dsi_pll_resource *rsc)
  492. {
  493. u32 reg_val;
  494. reg_val = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_GLBL_CTRL);
  495. pll->cphy_enabled = (reg_val & BIT(6)) ? true : false;
  496. }
  497. static void dsi_pll_commit(struct dsi_pll_5nm *pll,
  498. struct dsi_pll_resource *rsc)
  499. {
  500. void __iomem *pll_base = rsc->pll_base;
  501. struct dsi_pll_regs *reg = &pll->reg_setup;
  502. DSI_PLL_REG_W(pll_base, PLL_CORE_INPUT_OVERRIDE, 0x12);
  503. DSI_PLL_REG_W(pll_base, PLL_DECIMAL_DIV_START_1,
  504. reg->decimal_div_start);
  505. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_LOW_1,
  506. reg->frac_div_start_low);
  507. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_MID_1,
  508. reg->frac_div_start_mid);
  509. DSI_PLL_REG_W(pll_base, PLL_FRAC_DIV_START_HIGH_1,
  510. reg->frac_div_start_high);
  511. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCKDET_RATE_1, reg->pll_lockdet_rate);
  512. DSI_PLL_REG_W(pll_base, PLL_PLL_LOCK_DELAY, 0x06);
  513. DSI_PLL_REG_W(pll_base, PLL_CMODE_1,
  514. pll->cphy_enabled ? 0x00 : 0x10);
  515. DSI_PLL_REG_W(pll_base, PLL_CLOCK_INVERTERS_1,
  516. reg->pll_clock_inverters);
  517. }
  518. static int dsi_pll_5nm_lock_status(struct dsi_pll_resource *pll)
  519. {
  520. int rc;
  521. u32 status;
  522. u32 const delay_us = 100;
  523. u32 const timeout_us = 5000;
  524. rc = DSI_READ_POLL_TIMEOUT_ATOMIC_GEN(pll->pll_base, pll->index, PLL_COMMON_STATUS_ONE,
  525. status,
  526. ((status & BIT(0)) > 0),
  527. delay_us,
  528. timeout_us);
  529. if (rc)
  530. DSI_PLL_ERR(pll, "lock failed, status=0x%08x\n", status);
  531. return rc;
  532. }
  533. static void dsi_pll_disable_pll_bias(struct dsi_pll_resource *rsc)
  534. {
  535. u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
  536. DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0);
  537. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data & ~BIT(5));
  538. ndelay(250);
  539. }
  540. static void dsi_pll_enable_pll_bias(struct dsi_pll_resource *rsc)
  541. {
  542. u32 data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CTRL_0);
  543. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_0, data | BIT(5));
  544. DSI_PLL_REG_W(rsc->pll_base, PLL_SYSTEM_MUXES, 0xc0);
  545. ndelay(250);
  546. }
  547. static void dsi_pll_disable_global_clk(struct dsi_pll_resource *rsc)
  548. {
  549. u32 data;
  550. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  551. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data & ~BIT(5)));
  552. }
  553. static void dsi_pll_enable_global_clk(struct dsi_pll_resource *rsc)
  554. {
  555. u32 data;
  556. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CTRL_3, 0x04);
  557. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  558. /* Turn on clk_en_sel bit prior to resync toggle fifo */
  559. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_CLK_CFG1, (data | BIT(5) |
  560. BIT(4)));
  561. }
  562. static void dsi_pll_phy_dig_reset(struct dsi_pll_resource *rsc)
  563. {
  564. /*
  565. * Reset the PHY digital domain. This would be needed when
  566. * coming out of a CX or analog rail power collapse while
  567. * ensuring that the pads maintain LP00 or LP11 state
  568. */
  569. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
  570. wmb(); /* Ensure that the reset is asserted */
  571. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
  572. wmb(); /* Ensure that the reset is deasserted */
  573. }
  574. static void dsi_pll_disable_sub(struct dsi_pll_resource *rsc)
  575. {
  576. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_RBUF_CTRL, 0);
  577. dsi_pll_disable_pll_bias(rsc);
  578. }
  579. static void dsi_pll_unprepare_stub(struct clk_hw *hw)
  580. {
  581. return;
  582. }
  583. static int dsi_pll_prepare_stub(struct clk_hw *hw)
  584. {
  585. return 0;
  586. }
  587. static int dsi_pll_set_rate_stub(struct clk_hw *hw, unsigned long rate,
  588. unsigned long parent_rate)
  589. {
  590. return 0;
  591. }
  592. static long dsi_pll_byteclk_round_rate(struct clk_hw *hw, unsigned long rate,
  593. unsigned long *parent_rate)
  594. {
  595. struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
  596. struct dsi_pll_resource *pll_res = pll->priv;
  597. return pll_res->byteclk_rate;
  598. }
  599. static long dsi_pll_pclk_round_rate(struct clk_hw *hw, unsigned long rate,
  600. unsigned long *parent_rate)
  601. {
  602. struct dsi_pll_clk *pll = to_pll_clk_hw(hw);
  603. struct dsi_pll_resource *pll_res = pll->priv;
  604. return pll_res->pclk_rate;
  605. }
  606. static unsigned long dsi_pll_vco_recalc_rate(struct dsi_pll_resource *pll)
  607. {
  608. u64 ref_clk;
  609. u64 multiplier;
  610. u32 frac;
  611. u32 dec;
  612. u32 pll_post_div;
  613. u64 pll_freq, tmp64;
  614. u64 vco_rate;
  615. struct dsi_pll_5nm *pll_5nm;
  616. struct dsi_pll_config *config;
  617. ref_clk = pll->vco_ref_clk_rate;
  618. pll_5nm = pll->priv;
  619. if (!pll_5nm) {
  620. DSI_PLL_ERR(pll, "pll configuration not found\n");
  621. return -EINVAL;
  622. }
  623. config = &pll_5nm->pll_configuration;
  624. dec = DSI_PLL_REG_R(pll->pll_base, PLL_DECIMAL_DIV_START_1);
  625. dec &= 0xFF;
  626. frac = DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_LOW_1);
  627. frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_MID_1) & 0xFF)
  628. << 8);
  629. frac |= ((DSI_PLL_REG_R(pll->pll_base, PLL_FRAC_DIV_START_HIGH_1) & 0x3)
  630. << 16);
  631. multiplier = 1 << config->frac_bits;
  632. pll_freq = dec * (ref_clk * 2);
  633. tmp64 = (ref_clk * 2 * frac);
  634. pll_freq += div_u64(tmp64, multiplier);
  635. pll_post_div = dsi_pll_get_pll_post_div(pll);
  636. vco_rate = div_u64(pll_freq, pll_post_div);
  637. return vco_rate;
  638. }
  639. static unsigned long dsi_pll_byteclk_recalc_rate(struct clk_hw *hw,
  640. unsigned long parent_rate)
  641. {
  642. struct dsi_pll_clk *byte_pll = to_pll_clk_hw(hw);
  643. struct dsi_pll_resource *pll = NULL;
  644. u64 vco_rate = 0;
  645. u64 byte_rate = 0;
  646. u32 phy_post_div;
  647. if (!byte_pll->priv) {
  648. DSI_PLL_INFO(pll, "pll priv is null\n");
  649. return 0;
  650. }
  651. pll = byte_pll->priv;
  652. /*
  653. * In the case when byteclk rate is set, the recalculation function
  654. * should return the current rate. Recalc rate is also called during
  655. * clock registration, during which the function should reverse
  656. * calculate clock rates that were set as part of UEFI.
  657. */
  658. if (pll->byteclk_rate != 0) {
  659. DSI_PLL_DBG(pll, "returning byte clk rate = %lld %lld\n",
  660. pll->byteclk_rate, parent_rate);
  661. return pll->byteclk_rate;
  662. }
  663. vco_rate = dsi_pll_vco_recalc_rate(pll);
  664. phy_post_div = dsi_pll_get_phy_post_div(pll);
  665. byte_rate = div_u64(vco_rate, phy_post_div);
  666. if (pll->type == DSI_PHY_TYPE_DPHY)
  667. byte_rate = div_u64(byte_rate, 8);
  668. else
  669. byte_rate = div_u64(byte_rate, 7);
  670. return byte_rate;
  671. }
  672. static unsigned long dsi_pll_pclk_recalc_rate(struct clk_hw *hw,
  673. unsigned long parent_rate)
  674. {
  675. struct dsi_pll_clk *pix_pll = to_pll_clk_hw(hw);
  676. struct dsi_pll_resource *pll = NULL;
  677. u64 vco_rate = 0;
  678. u64 pclk_rate = 0;
  679. u32 phy_post_div, pclk_div;
  680. if (!pix_pll->priv) {
  681. DSI_PLL_INFO(pll, "pll priv is null\n");
  682. return 0;
  683. }
  684. pll = pix_pll->priv;
  685. /*
  686. * In the case when pclk rate is set, the recalculation function
  687. * should return the current rate. Recalc rate is also called during
  688. * clock registration, during which the function should reverse
  689. * calculate the clock rates that were set as part of UEFI.
  690. */
  691. if (pll->pclk_rate != 0) {
  692. DSI_PLL_DBG(pll, "returning pclk rate = %lld %lld\n",
  693. pll->pclk_rate, parent_rate);
  694. return pll->pclk_rate;
  695. }
  696. vco_rate = dsi_pll_vco_recalc_rate(pll);
  697. if (pll->type == DSI_PHY_TYPE_DPHY) {
  698. phy_post_div = dsi_pll_get_phy_post_div(pll);
  699. pclk_rate = div_u64(vco_rate, phy_post_div);
  700. pclk_rate = div_u64(pclk_rate, 2);
  701. pclk_div = dsi_pll_get_pclk_div(pll);
  702. pclk_rate = div_u64(pclk_rate, pclk_div);
  703. } else {
  704. pclk_rate = vco_rate * 2;
  705. pclk_rate = div_u64(pclk_rate, 7);
  706. pclk_div = dsi_pll_get_pclk_div(pll);
  707. pclk_rate = div_u64(pclk_rate, pclk_div);
  708. }
  709. return pclk_rate;
  710. }
  711. static const struct clk_ops pll_byteclk_ops = {
  712. .recalc_rate = dsi_pll_byteclk_recalc_rate,
  713. .set_rate = dsi_pll_set_rate_stub,
  714. .round_rate = dsi_pll_byteclk_round_rate,
  715. .prepare = dsi_pll_prepare_stub,
  716. .unprepare = dsi_pll_unprepare_stub,
  717. };
  718. static const struct clk_ops pll_pclk_ops = {
  719. .recalc_rate = dsi_pll_pclk_recalc_rate,
  720. .set_rate = dsi_pll_set_rate_stub,
  721. .round_rate = dsi_pll_pclk_round_rate,
  722. .prepare = dsi_pll_prepare_stub,
  723. .unprepare = dsi_pll_unprepare_stub,
  724. };
  725. /*
  726. * Clock tree for generating DSI byte and pclk.
  727. *
  728. *
  729. * +-------------------------------+ +----------------------------+
  730. * | dsi_phy_pll_out_byteclk | | dsi_phy_pll_out_dsiclk |
  731. * +---------------+---------------+ +--------------+-------------+
  732. * | |
  733. * | |
  734. * v v
  735. * dsi_byte_clk dsi_pclk
  736. *
  737. *
  738. */
  739. static struct dsi_pll_clk dsi0_phy_pll_out_byteclk = {
  740. .hw.init = &(struct clk_init_data){
  741. .name = "dsi0_phy_pll_out_byteclk",
  742. .ops = &pll_byteclk_ops,
  743. },
  744. };
  745. static struct dsi_pll_clk dsi1_phy_pll_out_byteclk = {
  746. .hw.init = &(struct clk_init_data){
  747. .name = "dsi1_phy_pll_out_byteclk",
  748. .ops = &pll_byteclk_ops,
  749. },
  750. };
  751. static struct dsi_pll_clk dsi0_phy_pll_out_dsiclk = {
  752. .hw.init = &(struct clk_init_data){
  753. .name = "dsi0_phy_pll_out_dsiclk",
  754. .ops = &pll_pclk_ops,
  755. },
  756. };
  757. static struct dsi_pll_clk dsi1_phy_pll_out_dsiclk = {
  758. .hw.init = &(struct clk_init_data){
  759. .name = "dsi1_phy_pll_out_dsiclk",
  760. .ops = &pll_pclk_ops,
  761. },
  762. };
  763. int dsi_pll_clock_register_5nm(struct platform_device *pdev,
  764. struct dsi_pll_resource *pll_res)
  765. {
  766. int rc = 0, ndx;
  767. struct clk *clk;
  768. struct clk_onecell_data *clk_data;
  769. int num_clks = 4;
  770. if (!pdev || !pdev->dev.of_node ||
  771. !pll_res || !pll_res->pll_base || !pll_res->phy_base) {
  772. DSI_PLL_ERR(pll_res, "Invalid params\n");
  773. return -EINVAL;
  774. }
  775. ndx = pll_res->index;
  776. if (ndx >= DSI_PLL_MAX) {
  777. DSI_PLL_ERR(pll_res, "not supported\n");
  778. return -EINVAL;
  779. }
  780. pll_rsc_db[ndx] = pll_res;
  781. plls[ndx].rsc = pll_res;
  782. pll_res->priv = &plls[ndx];
  783. pll_res->vco_delay = VCO_DELAY_USEC;
  784. pll_res->vco_min_rate = 600000000;
  785. pll_res->vco_ref_clk_rate = 19200000UL;
  786. dsi_pll_setup_config(pll_res->priv, pll_res);
  787. clk_data = devm_kzalloc(&pdev->dev, sizeof(struct clk_onecell_data),
  788. GFP_KERNEL);
  789. if (!clk_data)
  790. return -ENOMEM;
  791. clk_data->clks = devm_kzalloc(&pdev->dev, (num_clks *
  792. sizeof(struct clk *)), GFP_KERNEL);
  793. if (!clk_data->clks)
  794. return -ENOMEM;
  795. clk_data->clk_num = num_clks;
  796. /* Establish client data */
  797. if (ndx == 0) {
  798. dsi0_phy_pll_out_byteclk.priv = pll_res;
  799. dsi0_phy_pll_out_dsiclk.priv = pll_res;
  800. clk = devm_clk_register(&pdev->dev,
  801. &dsi0_phy_pll_out_byteclk.hw);
  802. if (IS_ERR(clk)) {
  803. DSI_PLL_ERR(pll_res,
  804. "clk registration failed for DSI clock\n");
  805. rc = -EINVAL;
  806. goto clk_register_fail;
  807. }
  808. clk_data->clks[0] = clk;
  809. clk = devm_clk_register(&pdev->dev,
  810. &dsi0_phy_pll_out_dsiclk.hw);
  811. if (IS_ERR(clk)) {
  812. DSI_PLL_ERR(pll_res,
  813. "clk registration failed for DSI clock\n");
  814. rc = -EINVAL;
  815. goto clk_register_fail;
  816. }
  817. clk_data->clks[1] = clk;
  818. rc = of_clk_add_provider(pdev->dev.of_node,
  819. of_clk_src_onecell_get, clk_data);
  820. } else {
  821. dsi1_phy_pll_out_byteclk.priv = pll_res;
  822. dsi1_phy_pll_out_dsiclk.priv = pll_res;
  823. clk = devm_clk_register(&pdev->dev,
  824. &dsi1_phy_pll_out_byteclk.hw);
  825. if (IS_ERR(clk)) {
  826. DSI_PLL_ERR(pll_res,
  827. "clk registration failed for DSI clock\n");
  828. rc = -EINVAL;
  829. goto clk_register_fail;
  830. }
  831. clk_data->clks[2] = clk;
  832. clk = devm_clk_register(&pdev->dev,
  833. &dsi1_phy_pll_out_dsiclk.hw);
  834. if (IS_ERR(clk)) {
  835. DSI_PLL_ERR(pll_res,
  836. "clk registration failed for DSI clock\n");
  837. rc = -EINVAL;
  838. goto clk_register_fail;
  839. }
  840. clk_data->clks[3] = clk;
  841. rc = of_clk_add_provider(pdev->dev.of_node,
  842. of_clk_src_onecell_get, clk_data);
  843. }
  844. if (!rc) {
  845. DSI_PLL_INFO(pll_res, "Registered clocks successfully\n");
  846. return rc;
  847. }
  848. clk_register_fail:
  849. return rc;
  850. }
  851. static int dsi_pll_5nm_set_byteclk_div(struct dsi_pll_resource *pll,
  852. bool commit)
  853. {
  854. int i = 0;
  855. int table_size;
  856. u32 pll_post_div = 0, phy_post_div = 0;
  857. struct dsi_pll_div_table *table;
  858. u64 bitclk_rate;
  859. u64 const phy_rate_split = 1500000000UL;
  860. if (pll->type == DSI_PHY_TYPE_DPHY) {
  861. bitclk_rate = pll->byteclk_rate * 8;
  862. if (bitclk_rate <= phy_rate_split) {
  863. table = pll_5nm_dphy_lb;
  864. table_size = ARRAY_SIZE(pll_5nm_dphy_lb);
  865. } else {
  866. table = pll_5nm_dphy_hb;
  867. table_size = ARRAY_SIZE(pll_5nm_dphy_hb);
  868. }
  869. } else {
  870. bitclk_rate = pll->byteclk_rate * 7;
  871. if (bitclk_rate <= phy_rate_split) {
  872. table = pll_5nm_cphy_lb;
  873. table_size = ARRAY_SIZE(pll_5nm_cphy_lb);
  874. } else {
  875. table = pll_5nm_cphy_hb;
  876. table_size = ARRAY_SIZE(pll_5nm_cphy_hb);
  877. }
  878. }
  879. for (i = 0; i < table_size; i++) {
  880. if ((table[i].min_hz <= bitclk_rate) &&
  881. (bitclk_rate <= table[i].max_hz)) {
  882. pll_post_div = table[i].pll_div;
  883. phy_post_div = table[i].phy_div;
  884. break;
  885. }
  886. }
  887. DSI_PLL_DBG(pll, "bit clk rate: %llu, pll_post_div: %d, phy_post_div: %d\n",
  888. bitclk_rate, pll_post_div, phy_post_div);
  889. if (commit) {
  890. dsi_pll_set_pll_post_div(pll, pll_post_div);
  891. dsi_pll_set_phy_post_div(pll, phy_post_div);
  892. }
  893. pll->vco_rate = bitclk_rate * pll_post_div * phy_post_div;
  894. return 0;
  895. }
  896. static int dsi_pll_calc_dphy_pclk_div(struct dsi_pll_resource *pll)
  897. {
  898. u32 m_val, n_val; /* M and N values of MND trio */
  899. u32 pclk_div;
  900. if (pll->bpp == 30 && pll->lanes == 4) {
  901. /* RGB101010 */
  902. m_val = 2;
  903. n_val = 3;
  904. } else if (pll->bpp == 18 && pll->lanes == 2) {
  905. /* RGB666_packed */
  906. m_val = 2;
  907. n_val = 9;
  908. } else if (pll->bpp == 18 && pll->lanes == 4) {
  909. /* RGB666_packed */
  910. m_val = 4;
  911. n_val = 9;
  912. } else if (pll->bpp == 16 && pll->lanes == 3) {
  913. /* RGB565 */
  914. m_val = 3;
  915. n_val = 8;
  916. } else {
  917. m_val = 1;
  918. n_val = 1;
  919. }
  920. /* Calculating pclk_div assuming dsiclk_sel to be 1 */
  921. pclk_div = pll->bpp;
  922. pclk_div = mult_frac(pclk_div, m_val, n_val);
  923. do_div(pclk_div, 2);
  924. do_div(pclk_div, pll->lanes);
  925. DSI_PLL_DBG(pll, "bpp: %d, lanes: %d, m_val: %u, n_val: %u, pclk_div: %u\n",
  926. pll->bpp, pll->lanes, m_val, n_val, pclk_div);
  927. return pclk_div;
  928. }
  929. static int dsi_pll_calc_cphy_pclk_div(struct dsi_pll_resource *pll)
  930. {
  931. u32 m_val, n_val; /* M and N values of MND trio */
  932. u32 pclk_div;
  933. u32 phy_post_div = dsi_pll_get_phy_post_div(pll);
  934. if (pll->bpp == 24 && pll->lanes == 2) {
  935. /*
  936. * RGB888 or DSC is enabled
  937. * Skipping DSC enabled check
  938. */
  939. m_val = 2;
  940. n_val = 3;
  941. } else if (pll->bpp == 30) {
  942. /* RGB101010 */
  943. if (pll->lanes == 1) {
  944. m_val = 4;
  945. n_val = 15;
  946. } else {
  947. m_val = 16;
  948. n_val = 35;
  949. }
  950. } else if (pll->bpp == 18) {
  951. /* RGB666_packed */
  952. if (pll->lanes == 1) {
  953. m_val = 8;
  954. n_val = 63;
  955. } else if (pll->lanes == 2) {
  956. m_val = 16;
  957. n_val = 63;
  958. } else if (pll->lanes == 3) {
  959. m_val = 8;
  960. n_val = 21;
  961. } else {
  962. m_val = 1;
  963. n_val = 1;
  964. }
  965. } else if (pll->bpp == 16 && pll->lanes == 3) {
  966. /* RGB565 */
  967. m_val = 3;
  968. n_val = 7;
  969. } else {
  970. m_val = 1;
  971. n_val = 1;
  972. }
  973. /* Calculating pclk_div assuming dsiclk_sel to be 3 */
  974. pclk_div = pll->bpp * phy_post_div;
  975. pclk_div = mult_frac(pclk_div, m_val, n_val);
  976. do_div(pclk_div, 8);
  977. do_div(pclk_div, pll->lanes);
  978. DSI_PLL_DBG(pll, "bpp: %d, lanes: %d, m_val: %u, n_val: %u, phy_post_div: %u pclk_div: %u\n",
  979. pll->bpp, pll->lanes, m_val, n_val, phy_post_div, pclk_div);
  980. return pclk_div;
  981. }
  982. static int dsi_pll_5nm_set_pclk_div(struct dsi_pll_resource *pll, bool commit)
  983. {
  984. int dsi_clk = 0, pclk_div = 0;
  985. u64 pclk_src_rate;
  986. u32 pll_post_div;
  987. u32 phy_post_div;
  988. pll_post_div = dsi_pll_get_pll_post_div(pll);
  989. pclk_src_rate = div_u64(pll->vco_rate, pll_post_div);
  990. if (pll->type == DSI_PHY_TYPE_DPHY) {
  991. dsi_clk = 0x1;
  992. phy_post_div = dsi_pll_get_phy_post_div(pll);
  993. pclk_src_rate = div_u64(pclk_src_rate, phy_post_div);
  994. pclk_src_rate = div_u64(pclk_src_rate, 2);
  995. pclk_div = dsi_pll_calc_dphy_pclk_div(pll);
  996. } else {
  997. dsi_clk = 0x3;
  998. pclk_src_rate *= 2;
  999. pclk_src_rate = div_u64(pclk_src_rate, 7);
  1000. pclk_div = dsi_pll_calc_cphy_pclk_div(pll);
  1001. }
  1002. pll->pclk_rate = div_u64(pclk_src_rate, pclk_div);
  1003. DSI_PLL_DBG(pll, "pclk rate: %llu, dsi_clk: %d, pclk_div: %d\n",
  1004. pll->pclk_rate, dsi_clk, pclk_div);
  1005. if (commit) {
  1006. dsi_pll_set_dsi_clk(pll, dsi_clk);
  1007. dsi_pll_set_pclk_div(pll, pclk_div);
  1008. }
  1009. return 0;
  1010. }
  1011. static int dsi_pll_5nm_vco_set_rate(struct dsi_pll_resource *pll_res)
  1012. {
  1013. struct dsi_pll_5nm *pll;
  1014. pll = pll_res->priv;
  1015. if (!pll) {
  1016. DSI_PLL_ERR(pll_res, "pll configuration not found\n");
  1017. return -EINVAL;
  1018. }
  1019. DSI_PLL_DBG(pll_res, "rate=%lu\n", pll_res->vco_rate);
  1020. pll_res->vco_current_rate = pll_res->vco_rate;
  1021. dsi_pll_detect_phy_mode(pll, pll_res);
  1022. dsi_pll_calc_dec_frac(pll, pll_res);
  1023. dsi_pll_calc_ssc(pll, pll_res);
  1024. dsi_pll_commit(pll, pll_res);
  1025. dsi_pll_config_hzindep_reg(pll, pll_res);
  1026. dsi_pll_ssc_commit(pll, pll_res);
  1027. /* flush, ensure all register writes are done*/
  1028. wmb();
  1029. return 0;
  1030. }
  1031. static int dsi_pll_read_stored_trim_codes(struct dsi_pll_resource *pll_res,
  1032. unsigned long vco_clk_rate)
  1033. {
  1034. int i;
  1035. bool found = false;
  1036. if (!pll_res->dfps)
  1037. return -EINVAL;
  1038. for (i = 0; i < pll_res->dfps->vco_rate_cnt; i++) {
  1039. struct dfps_codes_info *codes_info =
  1040. &pll_res->dfps->codes_dfps[i];
  1041. DSI_PLL_DBG(pll_res, "valid=%d vco_rate=%d, code %d %d %d\n",
  1042. codes_info->is_valid, codes_info->clk_rate,
  1043. codes_info->pll_codes.pll_codes_1,
  1044. codes_info->pll_codes.pll_codes_2,
  1045. codes_info->pll_codes.pll_codes_3);
  1046. if (vco_clk_rate != codes_info->clk_rate &&
  1047. codes_info->is_valid)
  1048. continue;
  1049. pll_res->cache_pll_trim_codes[0] =
  1050. codes_info->pll_codes.pll_codes_1;
  1051. pll_res->cache_pll_trim_codes[1] =
  1052. codes_info->pll_codes.pll_codes_2;
  1053. pll_res->cache_pll_trim_codes[2] =
  1054. codes_info->pll_codes.pll_codes_3;
  1055. found = true;
  1056. break;
  1057. }
  1058. if (!found)
  1059. return -EINVAL;
  1060. DSI_PLL_DBG(pll_res, "trim_code_0=0x%x trim_code_1=0x%x trim_code_2=0x%x\n",
  1061. pll_res->cache_pll_trim_codes[0],
  1062. pll_res->cache_pll_trim_codes[1],
  1063. pll_res->cache_pll_trim_codes[2]);
  1064. return 0;
  1065. }
  1066. static void dsi_pll_5nm_dynamic_refresh(struct dsi_pll_5nm *pll,
  1067. struct dsi_pll_resource *rsc)
  1068. {
  1069. u32 data;
  1070. u32 offset = DSI_PHY_TO_PLL_OFFSET;
  1071. u32 upper_addr = 0;
  1072. u32 upper_addr2 = 0;
  1073. struct dsi_pll_regs *reg = &pll->reg_setup;
  1074. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1);
  1075. data &= ~BIT(5);
  1076. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL0,
  1077. PHY_CMN_CLK_CFG1, PHY_CMN_PLL_CNTRL, data, 0);
  1078. upper_addr |= (upper_8_bit(PHY_CMN_CLK_CFG1) << 0);
  1079. upper_addr |= (upper_8_bit(PHY_CMN_PLL_CNTRL) << 1);
  1080. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL1,
  1081. PHY_CMN_RBUF_CTRL,
  1082. (PLL_CORE_INPUT_OVERRIDE + offset),
  1083. 0, 0x12);
  1084. upper_addr |= (upper_8_bit(PHY_CMN_RBUF_CTRL) << 2);
  1085. upper_addr |= (upper_8_bit(PLL_CORE_INPUT_OVERRIDE + offset) << 3);
  1086. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL2,
  1087. (PLL_DECIMAL_DIV_START_1 + offset),
  1088. (PLL_FRAC_DIV_START_LOW_1 + offset),
  1089. reg->decimal_div_start, reg->frac_div_start_low);
  1090. upper_addr |= (upper_8_bit(PLL_DECIMAL_DIV_START_1 + offset) << 4);
  1091. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_LOW_1 + offset) << 5);
  1092. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL3,
  1093. (PLL_FRAC_DIV_START_MID_1 + offset),
  1094. (PLL_FRAC_DIV_START_HIGH_1 + offset),
  1095. reg->frac_div_start_mid, reg->frac_div_start_high);
  1096. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_MID_1 + offset) << 6);
  1097. upper_addr |= (upper_8_bit(PLL_FRAC_DIV_START_HIGH_1 + offset) << 7);
  1098. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL4,
  1099. (PLL_SYSTEM_MUXES + offset),
  1100. (PLL_PLL_LOCKDET_RATE_1 + offset),
  1101. 0xc0, 0x10);
  1102. upper_addr |= (upper_8_bit(PLL_SYSTEM_MUXES + offset) << 8);
  1103. upper_addr |= (upper_8_bit(PLL_PLL_LOCKDET_RATE_1 + offset) << 9);
  1104. data = DSI_PLL_REG_R(rsc->pll_base, PLL_PLL_OUTDIV_RATE) & 0x03;
  1105. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL5,
  1106. (PLL_PLL_OUTDIV_RATE + offset),
  1107. (PLL_PLL_LOCK_DELAY + offset),
  1108. data, 0x06);
  1109. upper_addr |= (upper_8_bit(PLL_PLL_OUTDIV_RATE + offset) << 10);
  1110. upper_addr |= (upper_8_bit(PLL_PLL_LOCK_DELAY + offset) << 11);
  1111. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL6,
  1112. (PLL_CMODE_1 + offset),
  1113. (PLL_CLOCK_INVERTERS_1 + offset),
  1114. pll->cphy_enabled ? 0x00 : 0x10,
  1115. reg->pll_clock_inverters);
  1116. upper_addr |= (upper_8_bit(PLL_CMODE_1 + offset) << 12);
  1117. upper_addr |= (upper_8_bit(PLL_CLOCK_INVERTERS_1 + offset) << 13);
  1118. data = DSI_PLL_REG_R(rsc->pll_base, PLL_VCO_CONFIG_1);
  1119. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL7,
  1120. (PLL_ANALOG_CONTROLS_FIVE_1 + offset),
  1121. (PLL_VCO_CONFIG_1 + offset),
  1122. 0x01, data);
  1123. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE_1 + offset) << 14);
  1124. upper_addr |= (upper_8_bit(PLL_VCO_CONFIG_1 + offset) << 15);
  1125. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL8,
  1126. (PLL_ANALOG_CONTROLS_FIVE + offset),
  1127. (PLL_ANALOG_CONTROLS_TWO + offset), 0x01, 0x03);
  1128. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_FIVE + offset) << 16);
  1129. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_TWO + offset) << 17);
  1130. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL9,
  1131. (PLL_ANALOG_CONTROLS_THREE + offset),
  1132. (PLL_DSM_DIVIDER + offset),
  1133. rsc->cache_pll_trim_codes[2], 0x00);
  1134. upper_addr |= (upper_8_bit(PLL_ANALOG_CONTROLS_THREE + offset) << 18);
  1135. upper_addr |= (upper_8_bit(PLL_DSM_DIVIDER + offset) << 19);
  1136. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL10,
  1137. (PLL_FEEDBACK_DIVIDER + offset),
  1138. (PLL_CALIBRATION_SETTINGS + offset), 0x4E, 0x40);
  1139. upper_addr |= (upper_8_bit(PLL_FEEDBACK_DIVIDER + offset) << 20);
  1140. upper_addr |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 21);
  1141. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL11,
  1142. (PLL_BAND_SEL_CAL_SETTINGS_THREE + offset),
  1143. (PLL_FREQ_DETECT_SETTINGS_ONE + offset), 0xBA, 0x0C);
  1144. upper_addr |= (upper_8_bit(PLL_BAND_SEL_CAL_SETTINGS_THREE + offset)
  1145. << 22);
  1146. upper_addr |= (upper_8_bit(PLL_FREQ_DETECT_SETTINGS_ONE + offset)
  1147. << 23);
  1148. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL12,
  1149. (PLL_OUTDIV + offset),
  1150. (PLL_CORE_OVERRIDE + offset), 0, 0);
  1151. upper_addr |= (upper_8_bit(PLL_OUTDIV + offset) << 24);
  1152. upper_addr |= (upper_8_bit(PLL_CORE_OVERRIDE + offset) << 25);
  1153. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL13,
  1154. (PLL_PLL_DIGITAL_TIMERS_TWO + offset),
  1155. (PLL_PLL_PROP_GAIN_RATE_1 + offset),
  1156. 0x08, reg->pll_prop_gain_rate);
  1157. upper_addr |= (upper_8_bit(PLL_PLL_DIGITAL_TIMERS_TWO + offset) << 26);
  1158. upper_addr |= (upper_8_bit(PLL_PLL_PROP_GAIN_RATE_1 + offset) << 27);
  1159. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL14,
  1160. (PLL_PLL_BAND_SEL_RATE_1 + offset),
  1161. (PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset),
  1162. 0xC0, 0x82);
  1163. upper_addr |= (upper_8_bit(PLL_PLL_BAND_SEL_RATE_1 + offset) << 28);
  1164. upper_addr |= (upper_8_bit(PLL_PLL_INT_GAIN_IFILT_BAND_1 + offset)
  1165. << 29);
  1166. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL15,
  1167. (PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset),
  1168. (PLL_PLL_LOCK_OVERRIDE + offset),
  1169. 0x4c, 0x80);
  1170. upper_addr |= (upper_8_bit(PLL_PLL_FL_INT_GAIN_PFILT_BAND_1 + offset)
  1171. << 30);
  1172. upper_addr |= (upper_8_bit(PLL_PLL_LOCK_OVERRIDE + offset) << 31);
  1173. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL16,
  1174. (PLL_PFILT + offset),
  1175. (PLL_IFILT + offset),
  1176. 0x29, 0x3f);
  1177. upper_addr2 |= (upper_8_bit(PLL_PFILT + offset) << 0);
  1178. upper_addr2 |= (upper_8_bit(PLL_IFILT + offset) << 1);
  1179. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL17,
  1180. (PLL_SYSTEM_MUXES + offset),
  1181. (PLL_CALIBRATION_SETTINGS + offset),
  1182. 0xe0, 0x44);
  1183. upper_addr2 |= (upper_8_bit(PLL_BAND_SEL_CAL + offset) << 2);
  1184. upper_addr2 |= (upper_8_bit(PLL_CALIBRATION_SETTINGS + offset) << 3);
  1185. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG0);
  1186. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL18,
  1187. PHY_CMN_CTRL_2, PHY_CMN_CLK_CFG0, 0x40, data);
  1188. if (rsc->slave)
  1189. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1190. DSI_DYNAMIC_REFRESH_PLL_CTRL10,
  1191. PHY_CMN_CLK_CFG0, PHY_CMN_CTRL_0,
  1192. data, 0x7f);
  1193. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL27,
  1194. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1195. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL28,
  1196. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1197. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL29,
  1198. PHY_CMN_PLL_CNTRL, PHY_CMN_PLL_CNTRL, 0x01, 0x01);
  1199. data = DSI_PLL_REG_R(rsc->phy_base, PHY_CMN_CLK_CFG1) | BIT(5);
  1200. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL30,
  1201. PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL, data, 0x01);
  1202. DSI_DYN_PLL_REG_W(rsc->dyn_pll_base, DSI_DYNAMIC_REFRESH_PLL_CTRL31,
  1203. PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1, data, data);
  1204. if (rsc->slave) {
  1205. data = DSI_PLL_REG_R(rsc->slave->phy_base, PHY_CMN_CLK_CFG1) |
  1206. BIT(5);
  1207. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1208. DSI_DYNAMIC_REFRESH_PLL_CTRL30,
  1209. PHY_CMN_CLK_CFG1, PHY_CMN_RBUF_CTRL,
  1210. data, 0x01);
  1211. DSI_DYN_PLL_REG_W(rsc->slave->dyn_pll_base,
  1212. DSI_DYNAMIC_REFRESH_PLL_CTRL31,
  1213. PHY_CMN_CLK_CFG1, PHY_CMN_CLK_CFG1,
  1214. data, data);
  1215. }
  1216. DSI_PLL_REG_W(rsc->dyn_pll_base,
  1217. DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR, upper_addr);
  1218. DSI_PLL_REG_W(rsc->dyn_pll_base,
  1219. DSI_DYNAMIC_REFRESH_PLL_UPPER_ADDR2, upper_addr2);
  1220. wmb(); /* commit register writes */
  1221. }
  1222. static int dsi_pll_5nm_dynamic_clk_vco_set_rate(struct dsi_pll_resource *rsc)
  1223. {
  1224. int rc;
  1225. struct dsi_pll_5nm *pll;
  1226. u32 rate;
  1227. if (!rsc) {
  1228. DSI_PLL_ERR(rsc, "pll resource not found\n");
  1229. return -EINVAL;
  1230. }
  1231. rate = rsc->vco_rate;
  1232. pll = rsc->priv;
  1233. if (!pll) {
  1234. DSI_PLL_ERR(rsc, "pll configuration not found\n");
  1235. return -EINVAL;
  1236. }
  1237. rc = dsi_pll_read_stored_trim_codes(rsc, rate);
  1238. if (rc) {
  1239. DSI_PLL_ERR(rsc, "cannot find pll codes rate=%ld\n", rate);
  1240. return -EINVAL;
  1241. }
  1242. DSI_PLL_DBG(rsc, "ndx=%d, rate=%lu\n", rsc->index, rate);
  1243. rsc->vco_current_rate = rate;
  1244. dsi_pll_calc_dec_frac(pll, rsc);
  1245. /* program dynamic refresh control registers */
  1246. dsi_pll_5nm_dynamic_refresh(pll, rsc);
  1247. return 0;
  1248. }
  1249. static int dsi_pll_5nm_enable(struct dsi_pll_resource *rsc)
  1250. {
  1251. int rc = 0;
  1252. /* Start PLL */
  1253. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0x01);
  1254. /*
  1255. * ensure all PLL configurations are written prior to checking
  1256. * for PLL lock.
  1257. */
  1258. wmb();
  1259. /* Check for PLL lock */
  1260. rc = dsi_pll_5nm_lock_status(rsc);
  1261. if (rc) {
  1262. DSI_PLL_ERR(rsc, "lock failed\n");
  1263. goto error;
  1264. }
  1265. /*
  1266. * assert power on reset for PHY digital in case the PLL is
  1267. * enabled after CX of analog domain power collapse. This needs
  1268. * to be done before enabling the global clk.
  1269. */
  1270. dsi_pll_phy_dig_reset(rsc);
  1271. if (rsc->slave)
  1272. dsi_pll_phy_dig_reset(rsc->slave);
  1273. dsi_pll_enable_global_clk(rsc);
  1274. if (rsc->slave)
  1275. dsi_pll_enable_global_clk(rsc->slave);
  1276. /* flush, ensure all register writes are done*/
  1277. wmb();
  1278. error:
  1279. return rc;
  1280. }
  1281. static int dsi_pll_5nm_disable(struct dsi_pll_resource *rsc)
  1282. {
  1283. int rc = 0;
  1284. DSI_PLL_DBG(rsc, "stop PLL\n");
  1285. /*
  1286. * To avoid any stray glitches while
  1287. * abruptly powering down the PLL
  1288. * make sure to gate the clock using
  1289. * the clock enable bit before powering
  1290. * down the PLL
  1291. */
  1292. dsi_pll_disable_global_clk(rsc);
  1293. DSI_PLL_REG_W(rsc->phy_base, PHY_CMN_PLL_CNTRL, 0);
  1294. dsi_pll_disable_sub(rsc);
  1295. if (rsc->slave) {
  1296. dsi_pll_disable_global_clk(rsc->slave);
  1297. dsi_pll_disable_sub(rsc->slave);
  1298. }
  1299. /* flush, ensure all register writes are done*/
  1300. wmb();
  1301. return rc;
  1302. }
  1303. int dsi_pll_5nm_configure(void *pll, bool commit)
  1304. {
  1305. int rc = 0;
  1306. struct dsi_pll_resource *rsc = (struct dsi_pll_resource *)pll;
  1307. dsi_pll_config_slave(rsc);
  1308. /* PLL power needs to be enabled before accessing PLL registers */
  1309. dsi_pll_enable_pll_bias(rsc);
  1310. if (rsc->slave)
  1311. dsi_pll_enable_pll_bias(rsc->slave);
  1312. dsi_pll_init_val(rsc);
  1313. rc = dsi_pll_5nm_set_byteclk_div(rsc, commit);
  1314. if (commit) {
  1315. rc = dsi_pll_5nm_set_pclk_div(rsc, commit);
  1316. rc = dsi_pll_5nm_vco_set_rate(rsc);
  1317. } else {
  1318. rc = dsi_pll_5nm_dynamic_clk_vco_set_rate(rsc);
  1319. }
  1320. return 0;
  1321. }
  1322. int dsi_pll_5nm_toggle(void *pll, bool prepare)
  1323. {
  1324. int rc = 0;
  1325. struct dsi_pll_resource *pll_res = (struct dsi_pll_resource *)pll;
  1326. if (!pll_res) {
  1327. DSI_PLL_ERR(pll_res, "dsi pll resources are not available\n");
  1328. return -EINVAL;
  1329. }
  1330. if (prepare) {
  1331. rc = dsi_pll_5nm_enable(pll_res);
  1332. if (rc)
  1333. DSI_PLL_ERR(pll_res, "enable failed: %d\n", rc);
  1334. } else {
  1335. rc = dsi_pll_5nm_disable(pll_res);
  1336. if (rc)
  1337. DSI_PLL_ERR(pll_res, "disable failed: %d\n", rc);
  1338. }
  1339. return rc;
  1340. }