dp_rx.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364
  1. /*
  2. * Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. #include "hal_hw_headers.h"
  20. #include "dp_types.h"
  21. #include "dp_rx.h"
  22. #include "dp_tx.h"
  23. #include "dp_peer.h"
  24. #include "hal_rx.h"
  25. #include "hal_api.h"
  26. #include "qdf_nbuf.h"
  27. #ifdef MESH_MODE_SUPPORT
  28. #include "if_meta_hdr.h"
  29. #endif
  30. #include "dp_internal.h"
  31. #include "dp_ipa.h"
  32. #include "dp_hist.h"
  33. #include "dp_rx_buffer_pool.h"
  34. #ifdef WIFI_MONITOR_SUPPORT
  35. #include "dp_htt.h"
  36. #include <dp_mon.h>
  37. #endif
  38. #ifdef FEATURE_WDS
  39. #include "dp_txrx_wds.h"
  40. #endif
  41. #ifdef DP_RATETABLE_SUPPORT
  42. #include "dp_ratetable.h"
  43. #endif
  44. #include "enet.h"
  45. #ifndef WLAN_SOFTUMAC_SUPPORT /* WLAN_SOFTUMAC_SUPPORT */
  46. #ifdef DUP_RX_DESC_WAR
  47. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  48. hal_ring_handle_t hal_ring,
  49. hal_ring_desc_t ring_desc,
  50. struct dp_rx_desc *rx_desc)
  51. {
  52. void *hal_soc = soc->hal_soc;
  53. hal_srng_dump_ring_desc(hal_soc, hal_ring, ring_desc);
  54. dp_rx_desc_dump(rx_desc);
  55. }
  56. #else
  57. void dp_rx_dump_info_and_assert(struct dp_soc *soc,
  58. hal_ring_handle_t hal_ring_hdl,
  59. hal_ring_desc_t ring_desc,
  60. struct dp_rx_desc *rx_desc)
  61. {
  62. hal_soc_handle_t hal_soc = soc->hal_soc;
  63. dp_rx_desc_dump(rx_desc);
  64. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl, ring_desc);
  65. hal_srng_dump_ring(hal_soc, hal_ring_hdl);
  66. qdf_assert_always(0);
  67. }
  68. #endif
  69. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  70. #ifdef RX_DESC_SANITY_WAR
  71. QDF_STATUS dp_rx_desc_sanity(struct dp_soc *soc, hal_soc_handle_t hal_soc,
  72. hal_ring_handle_t hal_ring_hdl,
  73. hal_ring_desc_t ring_desc,
  74. struct dp_rx_desc *rx_desc)
  75. {
  76. uint8_t return_buffer_manager;
  77. if (qdf_unlikely(!rx_desc)) {
  78. /*
  79. * This is an unlikely case where the cookie obtained
  80. * from the ring_desc is invalid and hence we are not
  81. * able to find the corresponding rx_desc
  82. */
  83. goto fail;
  84. }
  85. return_buffer_manager = hal_rx_ret_buf_manager_get(hal_soc, ring_desc);
  86. if (qdf_unlikely(!(return_buffer_manager ==
  87. HAL_RX_BUF_RBM_SW1_BM(soc->wbm_sw0_bm_id) ||
  88. return_buffer_manager ==
  89. HAL_RX_BUF_RBM_SW3_BM(soc->wbm_sw0_bm_id)))) {
  90. goto fail;
  91. }
  92. return QDF_STATUS_SUCCESS;
  93. fail:
  94. DP_STATS_INC(soc, rx.err.invalid_cookie, 1);
  95. dp_err("Ring Desc:");
  96. hal_srng_dump_ring_desc(hal_soc, hal_ring_hdl,
  97. ring_desc);
  98. return QDF_STATUS_E_NULL_VALUE;
  99. }
  100. #endif
  101. uint32_t dp_rx_srng_get_num_pending(hal_soc_handle_t hal_soc,
  102. hal_ring_handle_t hal_ring_hdl,
  103. uint32_t num_entries,
  104. bool *near_full)
  105. {
  106. uint32_t num_pending = 0;
  107. num_pending = hal_srng_dst_num_valid_locked(hal_soc,
  108. hal_ring_hdl,
  109. true);
  110. if (num_entries && (num_pending >= num_entries >> 1))
  111. *near_full = true;
  112. else
  113. *near_full = false;
  114. return num_pending;
  115. }
  116. #ifdef RX_DESC_DEBUG_CHECK
  117. QDF_STATUS dp_rx_desc_nbuf_sanity_check(struct dp_soc *soc,
  118. hal_ring_desc_t ring_desc,
  119. struct dp_rx_desc *rx_desc)
  120. {
  121. struct hal_buf_info hbi;
  122. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  123. /* Sanity check for possible buffer paddr corruption */
  124. if (dp_rx_desc_paddr_sanity_check(rx_desc, (&hbi)->paddr))
  125. return QDF_STATUS_SUCCESS;
  126. return QDF_STATUS_E_FAILURE;
  127. }
  128. /**
  129. * dp_rx_desc_nbuf_len_sanity_check - Add sanity check to catch Rx buffer
  130. * out of bound access from H.W
  131. *
  132. * @soc: DP soc
  133. * @pkt_len: Packet length received from H.W
  134. *
  135. * Return: NONE
  136. */
  137. static inline void
  138. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc,
  139. uint32_t pkt_len)
  140. {
  141. struct rx_desc_pool *rx_desc_pool;
  142. rx_desc_pool = &soc->rx_desc_buf[0];
  143. qdf_assert_always(pkt_len <= rx_desc_pool->buf_size);
  144. }
  145. #else
  146. static inline void
  147. dp_rx_desc_nbuf_len_sanity_check(struct dp_soc *soc, uint32_t pkt_len) { }
  148. #endif
  149. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  150. void
  151. dp_rx_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  152. hal_ring_desc_t ring_desc)
  153. {
  154. struct dp_buf_info_record *record;
  155. struct hal_buf_info hbi;
  156. uint32_t idx;
  157. if (qdf_unlikely(!soc->rx_ring_history[ring_num]))
  158. return;
  159. hal_rx_reo_buf_paddr_get(soc->hal_soc, ring_desc, &hbi);
  160. /* buffer_addr_info is the first element of ring_desc */
  161. hal_rx_buf_cookie_rbm_get(soc->hal_soc, (uint32_t *)ring_desc,
  162. &hbi);
  163. idx = dp_history_get_next_index(&soc->rx_ring_history[ring_num]->index,
  164. DP_RX_HIST_MAX);
  165. /* No NULL check needed for record since its an array */
  166. record = &soc->rx_ring_history[ring_num]->entry[idx];
  167. record->timestamp = qdf_get_log_timestamp();
  168. record->hbi.paddr = hbi.paddr;
  169. record->hbi.sw_cookie = hbi.sw_cookie;
  170. record->hbi.rbm = hbi.rbm;
  171. }
  172. #endif
  173. #ifdef WLAN_FEATURE_MARK_FIRST_WAKEUP_PACKET
  174. void dp_rx_mark_first_packet_after_wow_wakeup(struct dp_pdev *pdev,
  175. uint8_t *rx_tlv,
  176. qdf_nbuf_t nbuf)
  177. {
  178. struct dp_soc *soc;
  179. if (!pdev->is_first_wakeup_packet)
  180. return;
  181. soc = pdev->soc;
  182. if (hal_get_first_wow_wakeup_packet(soc->hal_soc, rx_tlv)) {
  183. qdf_nbuf_mark_wakeup_frame(nbuf);
  184. dp_info("First packet after WOW Wakeup rcvd");
  185. }
  186. }
  187. #endif
  188. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  189. #endif /* WLAN_SOFTUMAC_SUPPORT */
  190. /**
  191. * dp_pdev_frag_alloc_and_map() - Allocate frag for desc buffer and map
  192. *
  193. * @dp_soc: struct dp_soc *
  194. * @nbuf_frag_info_t: nbuf frag info
  195. * @dp_pdev: struct dp_pdev *
  196. * @rx_desc_pool: Rx desc pool
  197. *
  198. * Return: QDF_STATUS
  199. */
  200. #ifdef DP_RX_MON_MEM_FRAG
  201. static inline QDF_STATUS
  202. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  203. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  204. struct dp_pdev *dp_pdev,
  205. struct rx_desc_pool *rx_desc_pool)
  206. {
  207. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  208. (nbuf_frag_info_t->virt_addr).vaddr =
  209. qdf_frag_alloc(NULL, rx_desc_pool->buf_size);
  210. if (!((nbuf_frag_info_t->virt_addr).vaddr)) {
  211. dp_err("Frag alloc failed");
  212. DP_STATS_INC(dp_pdev, replenish.frag_alloc_fail, 1);
  213. return QDF_STATUS_E_NOMEM;
  214. }
  215. ret = qdf_mem_map_page(dp_soc->osdev,
  216. (nbuf_frag_info_t->virt_addr).vaddr,
  217. QDF_DMA_FROM_DEVICE,
  218. rx_desc_pool->buf_size,
  219. &nbuf_frag_info_t->paddr);
  220. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  221. qdf_frag_free((nbuf_frag_info_t->virt_addr).vaddr);
  222. dp_err("Frag map failed");
  223. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  224. return QDF_STATUS_E_FAULT;
  225. }
  226. return QDF_STATUS_SUCCESS;
  227. }
  228. #else
  229. static inline QDF_STATUS
  230. dp_pdev_frag_alloc_and_map(struct dp_soc *dp_soc,
  231. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  232. struct dp_pdev *dp_pdev,
  233. struct rx_desc_pool *rx_desc_pool)
  234. {
  235. return QDF_STATUS_SUCCESS;
  236. }
  237. #endif /* DP_RX_MON_MEM_FRAG */
  238. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  239. /**
  240. * dp_rx_refill_ring_record_entry() - Record an entry into refill_ring history
  241. * @soc: Datapath soc structure
  242. * @ring_num: Refill ring number
  243. * @hal_ring_hdl:
  244. * @num_req: number of buffers requested for refill
  245. * @num_refill: number of buffers refilled
  246. *
  247. * Return: None
  248. */
  249. static inline void
  250. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  251. hal_ring_handle_t hal_ring_hdl,
  252. uint32_t num_req, uint32_t num_refill)
  253. {
  254. struct dp_refill_info_record *record;
  255. uint32_t idx;
  256. uint32_t tp;
  257. uint32_t hp;
  258. if (qdf_unlikely(ring_num >= MAX_PDEV_CNT ||
  259. !soc->rx_refill_ring_history[ring_num]))
  260. return;
  261. idx = dp_history_get_next_index(&soc->rx_refill_ring_history[ring_num]->index,
  262. DP_RX_REFILL_HIST_MAX);
  263. /* No NULL check needed for record since its an array */
  264. record = &soc->rx_refill_ring_history[ring_num]->entry[idx];
  265. hal_get_sw_hptp(soc->hal_soc, hal_ring_hdl, &tp, &hp);
  266. record->timestamp = qdf_get_log_timestamp();
  267. record->num_req = num_req;
  268. record->num_refill = num_refill;
  269. record->hp = hp;
  270. record->tp = tp;
  271. }
  272. #else
  273. static inline void
  274. dp_rx_refill_ring_record_entry(struct dp_soc *soc, uint8_t ring_num,
  275. hal_ring_handle_t hal_ring_hdl,
  276. uint32_t num_req, uint32_t num_refill)
  277. {
  278. }
  279. #endif
  280. /**
  281. * dp_pdev_nbuf_alloc_and_map_replenish() - Allocate nbuf for desc buffer and
  282. * map
  283. * @dp_soc: struct dp_soc *
  284. * @mac_id: Mac id
  285. * @num_entries_avail: num_entries_avail
  286. * @nbuf_frag_info_t: nbuf frag info
  287. * @dp_pdev: struct dp_pdev *
  288. * @rx_desc_pool: Rx desc pool
  289. *
  290. * Return: QDF_STATUS
  291. */
  292. static inline QDF_STATUS
  293. dp_pdev_nbuf_alloc_and_map_replenish(struct dp_soc *dp_soc,
  294. uint32_t mac_id,
  295. uint32_t num_entries_avail,
  296. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  297. struct dp_pdev *dp_pdev,
  298. struct rx_desc_pool *rx_desc_pool)
  299. {
  300. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  301. (nbuf_frag_info_t->virt_addr).nbuf =
  302. dp_rx_buffer_pool_nbuf_alloc(dp_soc,
  303. mac_id,
  304. rx_desc_pool,
  305. num_entries_avail);
  306. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  307. dp_err("nbuf alloc failed");
  308. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  309. return QDF_STATUS_E_NOMEM;
  310. }
  311. ret = dp_rx_buffer_pool_nbuf_map(dp_soc, rx_desc_pool,
  312. nbuf_frag_info_t);
  313. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  314. dp_rx_buffer_pool_nbuf_free(dp_soc,
  315. (nbuf_frag_info_t->virt_addr).nbuf, mac_id);
  316. dp_err("nbuf map failed");
  317. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  318. return QDF_STATUS_E_FAULT;
  319. }
  320. nbuf_frag_info_t->paddr =
  321. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  322. dp_ipa_handle_rx_buf_smmu_mapping(dp_soc, (qdf_nbuf_t)(
  323. (nbuf_frag_info_t->virt_addr).nbuf),
  324. rx_desc_pool->buf_size,
  325. true, __func__, __LINE__);
  326. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  327. &nbuf_frag_info_t->paddr,
  328. rx_desc_pool);
  329. if (ret == QDF_STATUS_E_FAILURE) {
  330. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  331. return QDF_STATUS_E_ADDRNOTAVAIL;
  332. }
  333. return QDF_STATUS_SUCCESS;
  334. }
  335. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  336. QDF_STATUS
  337. __dp_rx_buffers_no_map_lt_replenish(struct dp_soc *soc, uint32_t mac_id,
  338. struct dp_srng *dp_rxdma_srng,
  339. struct rx_desc_pool *rx_desc_pool)
  340. {
  341. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  342. uint32_t count;
  343. void *rxdma_ring_entry;
  344. union dp_rx_desc_list_elem_t *next = NULL;
  345. void *rxdma_srng;
  346. qdf_nbuf_t nbuf;
  347. qdf_dma_addr_t paddr;
  348. uint16_t num_entries_avail = 0;
  349. uint16_t num_alloc_desc = 0;
  350. union dp_rx_desc_list_elem_t *desc_list = NULL;
  351. union dp_rx_desc_list_elem_t *tail = NULL;
  352. int sync_hw_ptr = 0;
  353. rxdma_srng = dp_rxdma_srng->hal_srng;
  354. if (qdf_unlikely(!dp_pdev)) {
  355. dp_rx_err("%pK: pdev is null for mac_id = %d", soc, mac_id);
  356. return QDF_STATUS_E_FAILURE;
  357. }
  358. if (qdf_unlikely(!rxdma_srng)) {
  359. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  360. return QDF_STATUS_E_FAILURE;
  361. }
  362. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  363. num_entries_avail = hal_srng_src_num_avail(soc->hal_soc,
  364. rxdma_srng,
  365. sync_hw_ptr);
  366. dp_rx_debug("%pK: no of available entries in rxdma ring: %d",
  367. soc, num_entries_avail);
  368. if (qdf_unlikely(num_entries_avail <
  369. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  370. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  371. return QDF_STATUS_E_FAILURE;
  372. }
  373. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  374. num_alloc_desc = dp_rx_get_free_desc_list(soc, mac_id,
  375. rx_desc_pool,
  376. num_entries_avail,
  377. &desc_list,
  378. &tail);
  379. if (!num_alloc_desc) {
  380. dp_rx_err("%pK: no free rx_descs in freelist", soc);
  381. DP_STATS_INC(dp_pdev, err.desc_lt_alloc_fail,
  382. num_entries_avail);
  383. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  384. return QDF_STATUS_E_NOMEM;
  385. }
  386. for (count = 0; count < num_alloc_desc; count++) {
  387. next = desc_list->next;
  388. qdf_prefetch(next);
  389. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  390. if (qdf_unlikely(!nbuf)) {
  391. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  392. break;
  393. }
  394. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  395. rx_desc_pool->buf_size);
  396. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc,
  397. rxdma_srng);
  398. qdf_assert_always(rxdma_ring_entry);
  399. desc_list->rx_desc.nbuf = nbuf;
  400. dp_rx_set_reuse_nbuf(&desc_list->rx_desc, nbuf);
  401. desc_list->rx_desc.rx_buf_start = nbuf->data;
  402. desc_list->rx_desc.paddr_buf_start = paddr;
  403. desc_list->rx_desc.unmapped = 0;
  404. /* rx_desc.in_use should be zero at this time*/
  405. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  406. desc_list->rx_desc.in_use = 1;
  407. desc_list->rx_desc.in_err_state = 0;
  408. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  409. paddr,
  410. desc_list->rx_desc.cookie,
  411. rx_desc_pool->owner);
  412. desc_list = next;
  413. }
  414. qdf_dsb();
  415. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  416. /* No need to count the number of bytes received during replenish.
  417. * Therefore set replenish.pkts.bytes as 0.
  418. */
  419. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  420. DP_STATS_INC(dp_pdev, buf_freelist, (num_alloc_desc - count));
  421. /*
  422. * add any available free desc back to the free list
  423. */
  424. if (desc_list)
  425. dp_rx_add_desc_list_to_free_list(soc, &desc_list, &tail,
  426. mac_id, rx_desc_pool);
  427. return QDF_STATUS_SUCCESS;
  428. }
  429. QDF_STATUS
  430. __dp_rx_buffers_no_map_replenish(struct dp_soc *soc, uint32_t mac_id,
  431. struct dp_srng *dp_rxdma_srng,
  432. struct rx_desc_pool *rx_desc_pool,
  433. uint32_t num_req_buffers,
  434. union dp_rx_desc_list_elem_t **desc_list,
  435. union dp_rx_desc_list_elem_t **tail)
  436. {
  437. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  438. uint32_t count;
  439. void *rxdma_ring_entry;
  440. union dp_rx_desc_list_elem_t *next;
  441. void *rxdma_srng;
  442. qdf_nbuf_t nbuf;
  443. qdf_nbuf_t nbuf_next;
  444. qdf_nbuf_t nbuf_head = NULL;
  445. qdf_nbuf_t nbuf_tail = NULL;
  446. qdf_dma_addr_t paddr;
  447. rxdma_srng = dp_rxdma_srng->hal_srng;
  448. if (qdf_unlikely(!dp_pdev)) {
  449. dp_rx_err("%pK: pdev is null for mac_id = %d",
  450. soc, mac_id);
  451. return QDF_STATUS_E_FAILURE;
  452. }
  453. if (qdf_unlikely(!rxdma_srng)) {
  454. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  455. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  456. return QDF_STATUS_E_FAILURE;
  457. }
  458. /* Allocate required number of nbufs */
  459. for (count = 0; count < num_req_buffers; count++) {
  460. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  461. if (qdf_unlikely(!nbuf)) {
  462. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  463. /* Update num_req_buffers to nbufs allocated count */
  464. num_req_buffers = count;
  465. break;
  466. }
  467. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  468. rx_desc_pool->buf_size);
  469. QDF_NBUF_CB_PADDR(nbuf) = paddr;
  470. DP_RX_LIST_APPEND(nbuf_head,
  471. nbuf_tail,
  472. nbuf);
  473. }
  474. qdf_dsb();
  475. nbuf = nbuf_head;
  476. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  477. for (count = 0; count < num_req_buffers; count++) {
  478. next = (*desc_list)->next;
  479. nbuf_next = nbuf->next;
  480. qdf_prefetch(next);
  481. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  482. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  483. if (!rxdma_ring_entry)
  484. break;
  485. (*desc_list)->rx_desc.nbuf = nbuf;
  486. dp_rx_set_reuse_nbuf(&(*desc_list)->rx_desc, nbuf);
  487. (*desc_list)->rx_desc.rx_buf_start = nbuf->data;
  488. (*desc_list)->rx_desc.paddr_buf_start = QDF_NBUF_CB_PADDR(nbuf);
  489. (*desc_list)->rx_desc.unmapped = 0;
  490. /* rx_desc.in_use should be zero at this time*/
  491. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  492. (*desc_list)->rx_desc.in_use = 1;
  493. (*desc_list)->rx_desc.in_err_state = 0;
  494. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  495. QDF_NBUF_CB_PADDR(nbuf),
  496. (*desc_list)->rx_desc.cookie,
  497. rx_desc_pool->owner);
  498. *desc_list = next;
  499. nbuf = nbuf_next;
  500. }
  501. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  502. /* No need to count the number of bytes received during replenish.
  503. * Therefore set replenish.pkts.bytes as 0.
  504. */
  505. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  506. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  507. /*
  508. * add any available free desc back to the free list
  509. */
  510. if (*desc_list)
  511. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  512. mac_id, rx_desc_pool);
  513. while (nbuf) {
  514. nbuf_next = nbuf->next;
  515. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, nbuf);
  516. qdf_nbuf_free(nbuf);
  517. nbuf = nbuf_next;
  518. }
  519. return QDF_STATUS_SUCCESS;
  520. }
  521. #ifdef WLAN_SUPPORT_PPEDS
  522. QDF_STATUS
  523. __dp_rx_comp2refill_replenish(struct dp_soc *soc, uint32_t mac_id,
  524. struct dp_srng *dp_rxdma_srng,
  525. struct rx_desc_pool *rx_desc_pool,
  526. uint32_t num_req_buffers,
  527. union dp_rx_desc_list_elem_t **desc_list,
  528. union dp_rx_desc_list_elem_t **tail)
  529. {
  530. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  531. uint32_t count;
  532. void *rxdma_ring_entry;
  533. union dp_rx_desc_list_elem_t *next;
  534. union dp_rx_desc_list_elem_t *cur;
  535. void *rxdma_srng;
  536. qdf_nbuf_t nbuf;
  537. rxdma_srng = dp_rxdma_srng->hal_srng;
  538. if (qdf_unlikely(!dp_pdev)) {
  539. dp_rx_err("%pK: pdev is null for mac_id = %d",
  540. soc, mac_id);
  541. return QDF_STATUS_E_FAILURE;
  542. }
  543. if (qdf_unlikely(!rxdma_srng)) {
  544. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  545. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  546. return QDF_STATUS_E_FAILURE;
  547. }
  548. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  549. for (count = 0; count < num_req_buffers; count++) {
  550. next = (*desc_list)->next;
  551. qdf_prefetch(next);
  552. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  553. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  554. if (!rxdma_ring_entry)
  555. break;
  556. (*desc_list)->rx_desc.in_use = 1;
  557. (*desc_list)->rx_desc.in_err_state = 0;
  558. (*desc_list)->rx_desc.nbuf = (*desc_list)->rx_desc.reuse_nbuf;
  559. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  560. (*desc_list)->rx_desc.paddr_buf_start,
  561. (*desc_list)->rx_desc.cookie,
  562. rx_desc_pool->owner);
  563. *desc_list = next;
  564. }
  565. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  566. /* No need to count the number of bytes received during replenish.
  567. * Therefore set replenish.pkts.bytes as 0.
  568. */
  569. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  570. DP_STATS_INC(dp_pdev, buf_freelist, (num_req_buffers - count));
  571. /*
  572. * add any available free desc back to the free list
  573. */
  574. cur = *desc_list;
  575. for ( ; count < num_req_buffers; count++) {
  576. next = cur->next;
  577. qdf_prefetch(next);
  578. nbuf = cur->rx_desc.reuse_nbuf;
  579. cur->rx_desc.nbuf = NULL;
  580. cur->rx_desc.in_use = 0;
  581. cur->rx_desc.has_reuse_nbuf = false;
  582. cur->rx_desc.reuse_nbuf = NULL;
  583. if (!nbuf->recycled_for_ds)
  584. dp_rx_nbuf_unmap_pool(soc, rx_desc_pool, nbuf);
  585. nbuf->recycled_for_ds = 0;
  586. nbuf->fast_recycled = 0;
  587. qdf_nbuf_free(nbuf);
  588. cur = next;
  589. }
  590. if (*desc_list)
  591. dp_rx_add_desc_list_to_free_list(soc, desc_list, tail,
  592. mac_id, rx_desc_pool);
  593. return QDF_STATUS_SUCCESS;
  594. }
  595. #endif
  596. QDF_STATUS __dp_pdev_rx_buffers_no_map_attach(struct dp_soc *soc,
  597. uint32_t mac_id,
  598. struct dp_srng *dp_rxdma_srng,
  599. struct rx_desc_pool *rx_desc_pool,
  600. uint32_t num_req_buffers)
  601. {
  602. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  603. uint32_t count;
  604. uint32_t nr_descs = 0;
  605. void *rxdma_ring_entry;
  606. union dp_rx_desc_list_elem_t *next;
  607. void *rxdma_srng;
  608. qdf_nbuf_t nbuf;
  609. qdf_dma_addr_t paddr;
  610. union dp_rx_desc_list_elem_t *desc_list = NULL;
  611. union dp_rx_desc_list_elem_t *tail = NULL;
  612. rxdma_srng = dp_rxdma_srng->hal_srng;
  613. if (qdf_unlikely(!dp_pdev)) {
  614. dp_rx_err("%pK: pdev is null for mac_id = %d",
  615. soc, mac_id);
  616. return QDF_STATUS_E_FAILURE;
  617. }
  618. if (qdf_unlikely(!rxdma_srng)) {
  619. dp_rx_debug("%pK: rxdma srng not initialized", soc);
  620. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  621. return QDF_STATUS_E_FAILURE;
  622. }
  623. dp_rx_debug("%pK: requested %d buffers for replenish",
  624. soc, num_req_buffers);
  625. nr_descs = dp_rx_get_free_desc_list(soc, mac_id, rx_desc_pool,
  626. num_req_buffers, &desc_list, &tail);
  627. if (!nr_descs) {
  628. dp_err("no free rx_descs in freelist");
  629. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  630. return QDF_STATUS_E_NOMEM;
  631. }
  632. dp_debug("got %u RX descs for driver attach", nr_descs);
  633. hal_srng_access_start(soc->hal_soc, rxdma_srng);
  634. for (count = 0; count < nr_descs; count++) {
  635. next = desc_list->next;
  636. qdf_prefetch(next);
  637. nbuf = dp_rx_nbuf_alloc(soc, rx_desc_pool);
  638. if (qdf_unlikely(!nbuf)) {
  639. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  640. break;
  641. }
  642. paddr = dp_rx_nbuf_sync_no_dsb(soc, nbuf,
  643. rx_desc_pool->buf_size);
  644. rxdma_ring_entry = (struct dp_buffer_addr_info *)
  645. hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  646. if (!rxdma_ring_entry)
  647. break;
  648. qdf_assert_always(rxdma_ring_entry);
  649. desc_list->rx_desc.nbuf = nbuf;
  650. dp_rx_set_reuse_nbuf(&desc_list->rx_desc, nbuf);
  651. desc_list->rx_desc.rx_buf_start = nbuf->data;
  652. desc_list->rx_desc.paddr_buf_start = paddr;
  653. desc_list->rx_desc.unmapped = 0;
  654. /* rx_desc.in_use should be zero at this time*/
  655. qdf_assert_always(desc_list->rx_desc.in_use == 0);
  656. desc_list->rx_desc.in_use = 1;
  657. desc_list->rx_desc.in_err_state = 0;
  658. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry,
  659. paddr,
  660. desc_list->rx_desc.cookie,
  661. rx_desc_pool->owner);
  662. desc_list = next;
  663. }
  664. qdf_dsb();
  665. hal_srng_access_end(soc->hal_soc, rxdma_srng);
  666. /* No need to count the number of bytes received during replenish.
  667. * Therefore set replenish.pkts.bytes as 0.
  668. */
  669. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  670. return QDF_STATUS_SUCCESS;
  671. }
  672. #endif
  673. #ifdef DP_UMAC_HW_RESET_SUPPORT
  674. #if defined(QCA_DP_RX_NBUF_NO_MAP_UNMAP) && !defined(BUILD_X86)
  675. static inline
  676. qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
  677. uint32_t buf_size)
  678. {
  679. return dp_rx_nbuf_sync_no_dsb(dp_soc, nbuf, buf_size);
  680. }
  681. #else
  682. static inline
  683. qdf_dma_addr_t dp_rx_rep_retrieve_paddr(struct dp_soc *dp_soc, qdf_nbuf_t nbuf,
  684. uint32_t buf_size)
  685. {
  686. return qdf_nbuf_get_frag_paddr(nbuf, 0);
  687. }
  688. #endif
  689. /**
  690. * dp_rx_desc_replenish() - Replenish the rx descriptors one at a time
  691. * @soc: core txrx main context
  692. * @dp_rxdma_srng: rxdma ring
  693. * @rx_desc_pool: rx descriptor pool
  694. * @rx_desc:rx descriptor
  695. *
  696. * Return: void
  697. */
  698. static inline
  699. void dp_rx_desc_replenish(struct dp_soc *soc, struct dp_srng *dp_rxdma_srng,
  700. struct rx_desc_pool *rx_desc_pool,
  701. struct dp_rx_desc *rx_desc)
  702. {
  703. void *rxdma_srng;
  704. void *rxdma_ring_entry;
  705. qdf_dma_addr_t paddr;
  706. rxdma_srng = dp_rxdma_srng->hal_srng;
  707. /* No one else should be accessing the srng at this point */
  708. hal_srng_access_start_unlocked(soc->hal_soc, rxdma_srng);
  709. rxdma_ring_entry = hal_srng_src_get_next(soc->hal_soc, rxdma_srng);
  710. qdf_assert_always(rxdma_ring_entry);
  711. rx_desc->in_err_state = 0;
  712. paddr = dp_rx_rep_retrieve_paddr(soc, rx_desc->nbuf,
  713. rx_desc_pool->buf_size);
  714. hal_rxdma_buff_addr_info_set(soc->hal_soc, rxdma_ring_entry, paddr,
  715. rx_desc->cookie, rx_desc_pool->owner);
  716. hal_srng_access_end_unlocked(soc->hal_soc, rxdma_srng);
  717. }
  718. void dp_rx_desc_reuse(struct dp_soc *soc, qdf_nbuf_t *nbuf_list)
  719. {
  720. int mac_id, i, j;
  721. union dp_rx_desc_list_elem_t *head = NULL;
  722. union dp_rx_desc_list_elem_t *tail = NULL;
  723. for (mac_id = 0; mac_id < MAX_PDEV_CNT; mac_id++) {
  724. struct dp_srng *dp_rxdma_srng =
  725. &soc->rx_refill_buf_ring[mac_id];
  726. struct rx_desc_pool *rx_desc_pool = &soc->rx_desc_buf[mac_id];
  727. uint32_t rx_sw_desc_num = rx_desc_pool->pool_size;
  728. /* Only fill up 1/3 of the ring size */
  729. uint32_t num_req_decs;
  730. if (!dp_rxdma_srng || !dp_rxdma_srng->hal_srng ||
  731. !rx_desc_pool->array)
  732. continue;
  733. num_req_decs = dp_rxdma_srng->num_entries / 3;
  734. for (i = 0, j = 0; i < rx_sw_desc_num; i++) {
  735. struct dp_rx_desc *rx_desc =
  736. (struct dp_rx_desc *)&rx_desc_pool->array[i];
  737. if (rx_desc->in_use) {
  738. if (j < (dp_rxdma_srng->num_entries - 1)) {
  739. dp_rx_desc_replenish(soc, dp_rxdma_srng,
  740. rx_desc_pool,
  741. rx_desc);
  742. } else {
  743. dp_rx_nbuf_unmap(soc, rx_desc, 0);
  744. rx_desc->unmapped = 0;
  745. rx_desc->nbuf->next = *nbuf_list;
  746. *nbuf_list = rx_desc->nbuf;
  747. dp_rx_add_to_free_desc_list(&head,
  748. &tail,
  749. rx_desc);
  750. }
  751. j++;
  752. }
  753. }
  754. if (head)
  755. dp_rx_add_desc_list_to_free_list(soc, &head, &tail,
  756. mac_id, rx_desc_pool);
  757. /* If num of descs in use were less, then we need to replenish
  758. * the ring with some buffers
  759. */
  760. head = NULL;
  761. tail = NULL;
  762. if (j < (num_req_decs - 1))
  763. dp_rx_buffers_replenish(soc, mac_id, dp_rxdma_srng,
  764. rx_desc_pool,
  765. ((num_req_decs - 1) - j),
  766. &head, &tail, true);
  767. }
  768. }
  769. #endif
  770. QDF_STATUS __dp_rx_buffers_replenish(struct dp_soc *dp_soc, uint32_t mac_id,
  771. struct dp_srng *dp_rxdma_srng,
  772. struct rx_desc_pool *rx_desc_pool,
  773. uint32_t num_req_buffers,
  774. union dp_rx_desc_list_elem_t **desc_list,
  775. union dp_rx_desc_list_elem_t **tail,
  776. bool req_only, const char *func_name)
  777. {
  778. uint32_t num_alloc_desc;
  779. uint16_t num_desc_to_free = 0;
  780. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  781. uint32_t num_entries_avail;
  782. uint32_t count;
  783. uint32_t extra_buffers;
  784. int sync_hw_ptr = 1;
  785. struct dp_rx_nbuf_frag_info nbuf_frag_info = {0};
  786. void *rxdma_ring_entry;
  787. union dp_rx_desc_list_elem_t *next;
  788. QDF_STATUS ret;
  789. void *rxdma_srng;
  790. union dp_rx_desc_list_elem_t *desc_list_append = NULL;
  791. union dp_rx_desc_list_elem_t *tail_append = NULL;
  792. union dp_rx_desc_list_elem_t *temp_list = NULL;
  793. rxdma_srng = dp_rxdma_srng->hal_srng;
  794. if (qdf_unlikely(!dp_pdev)) {
  795. dp_rx_err("%pK: pdev is null for mac_id = %d",
  796. dp_soc, mac_id);
  797. return QDF_STATUS_E_FAILURE;
  798. }
  799. if (qdf_unlikely(!rxdma_srng)) {
  800. dp_rx_debug("%pK: rxdma srng not initialized", dp_soc);
  801. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  802. return QDF_STATUS_E_FAILURE;
  803. }
  804. dp_verbose_debug("%pK: requested %d buffers for replenish",
  805. dp_soc, num_req_buffers);
  806. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  807. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  808. rxdma_srng,
  809. sync_hw_ptr);
  810. dp_verbose_debug("%pK: no of available entries in rxdma ring: %d",
  811. dp_soc, num_entries_avail);
  812. if (!req_only && !(*desc_list) && (num_entries_avail >
  813. ((dp_rxdma_srng->num_entries * 3) / 4))) {
  814. num_req_buffers = num_entries_avail;
  815. DP_STATS_INC(dp_pdev, replenish.low_thresh_intrs, 1);
  816. } else if (num_entries_avail < num_req_buffers) {
  817. num_desc_to_free = num_req_buffers - num_entries_avail;
  818. num_req_buffers = num_entries_avail;
  819. } else if ((*desc_list) &&
  820. dp_rxdma_srng->num_entries - num_entries_avail <
  821. CRITICAL_BUFFER_THRESHOLD) {
  822. /* set extra buffers to CRITICAL_BUFFER_THRESHOLD only if
  823. * total buff requested after adding extra buffers is less
  824. * than or equal to num entries available, else set it to max
  825. * possible additional buffers available at that moment
  826. */
  827. extra_buffers =
  828. ((num_req_buffers + CRITICAL_BUFFER_THRESHOLD) > num_entries_avail) ?
  829. (num_entries_avail - num_req_buffers) :
  830. CRITICAL_BUFFER_THRESHOLD;
  831. /* Append some free descriptors to tail */
  832. num_alloc_desc =
  833. dp_rx_get_free_desc_list(dp_soc, mac_id,
  834. rx_desc_pool,
  835. extra_buffers,
  836. &desc_list_append,
  837. &tail_append);
  838. if (num_alloc_desc) {
  839. temp_list = *desc_list;
  840. *desc_list = desc_list_append;
  841. tail_append->next = temp_list;
  842. num_req_buffers += num_alloc_desc;
  843. DP_STATS_DEC(dp_pdev,
  844. replenish.free_list,
  845. num_alloc_desc);
  846. } else
  847. dp_err_rl("%pK: no free rx_descs in freelist", dp_soc);
  848. }
  849. if (qdf_unlikely(!num_req_buffers)) {
  850. num_desc_to_free = num_req_buffers;
  851. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  852. goto free_descs;
  853. }
  854. /*
  855. * if desc_list is NULL, allocate the descs from freelist
  856. */
  857. if (!(*desc_list)) {
  858. num_alloc_desc = dp_rx_get_free_desc_list(dp_soc, mac_id,
  859. rx_desc_pool,
  860. num_req_buffers,
  861. desc_list,
  862. tail);
  863. if (!num_alloc_desc) {
  864. dp_rx_err("%pK: no free rx_descs in freelist", dp_soc);
  865. DP_STATS_INC(dp_pdev, err.desc_alloc_fail,
  866. num_req_buffers);
  867. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  868. return QDF_STATUS_E_NOMEM;
  869. }
  870. dp_verbose_debug("%pK: %d rx desc allocated", dp_soc,
  871. num_alloc_desc);
  872. num_req_buffers = num_alloc_desc;
  873. }
  874. count = 0;
  875. while (count < num_req_buffers) {
  876. /* Flag is set while pdev rx_desc_pool initialization */
  877. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  878. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  879. &nbuf_frag_info,
  880. dp_pdev,
  881. rx_desc_pool);
  882. else
  883. ret = dp_pdev_nbuf_alloc_and_map_replenish(dp_soc,
  884. mac_id,
  885. num_entries_avail, &nbuf_frag_info,
  886. dp_pdev, rx_desc_pool);
  887. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  888. if (qdf_unlikely(ret == QDF_STATUS_E_FAULT))
  889. continue;
  890. break;
  891. }
  892. count++;
  893. rxdma_ring_entry = hal_srng_src_get_next(dp_soc->hal_soc,
  894. rxdma_srng);
  895. qdf_assert_always(rxdma_ring_entry);
  896. next = (*desc_list)->next;
  897. /* Flag is set while pdev rx_desc_pool initialization */
  898. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  899. dp_rx_desc_frag_prep(&((*desc_list)->rx_desc),
  900. &nbuf_frag_info);
  901. else
  902. dp_rx_desc_prep(&((*desc_list)->rx_desc),
  903. &nbuf_frag_info);
  904. /* rx_desc.in_use should be zero at this time*/
  905. qdf_assert_always((*desc_list)->rx_desc.in_use == 0);
  906. (*desc_list)->rx_desc.in_use = 1;
  907. (*desc_list)->rx_desc.in_err_state = 0;
  908. dp_rx_desc_update_dbg_info(&(*desc_list)->rx_desc,
  909. func_name, RX_DESC_REPLENISHED);
  910. dp_verbose_debug("rx_netbuf=%pK, paddr=0x%llx, cookie=%d",
  911. nbuf_frag_info.virt_addr.nbuf,
  912. (unsigned long long)(nbuf_frag_info.paddr),
  913. (*desc_list)->rx_desc.cookie);
  914. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc, rxdma_ring_entry,
  915. nbuf_frag_info.paddr,
  916. (*desc_list)->rx_desc.cookie,
  917. rx_desc_pool->owner);
  918. *desc_list = next;
  919. }
  920. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id, rxdma_srng,
  921. num_req_buffers, count);
  922. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  923. dp_rx_schedule_refill_thread(dp_soc);
  924. dp_verbose_debug("replenished buffers %d, rx desc added back to free list %u",
  925. count, num_desc_to_free);
  926. /* No need to count the number of bytes received during replenish.
  927. * Therefore set replenish.pkts.bytes as 0.
  928. */
  929. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, count, 0);
  930. DP_STATS_INC(dp_pdev, replenish.free_list, num_req_buffers - count);
  931. free_descs:
  932. DP_STATS_INC(dp_pdev, buf_freelist, num_desc_to_free);
  933. /*
  934. * add any available free desc back to the free list
  935. */
  936. if (*desc_list)
  937. dp_rx_add_desc_list_to_free_list(dp_soc, desc_list, tail,
  938. mac_id, rx_desc_pool);
  939. return QDF_STATUS_SUCCESS;
  940. }
  941. qdf_export_symbol(__dp_rx_buffers_replenish);
  942. void
  943. dp_rx_deliver_raw(struct dp_vdev *vdev, qdf_nbuf_t nbuf_list,
  944. struct dp_txrx_peer *txrx_peer, uint8_t link_id)
  945. {
  946. qdf_nbuf_t deliver_list_head = NULL;
  947. qdf_nbuf_t deliver_list_tail = NULL;
  948. qdf_nbuf_t nbuf;
  949. nbuf = nbuf_list;
  950. while (nbuf) {
  951. qdf_nbuf_t next = qdf_nbuf_next(nbuf);
  952. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail, nbuf);
  953. DP_STATS_INC(vdev->pdev, rx_raw_pkts, 1);
  954. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.raw, 1,
  955. qdf_nbuf_len(nbuf), link_id);
  956. /*
  957. * reset the chfrag_start and chfrag_end bits in nbuf cb
  958. * as this is a non-amsdu pkt and RAW mode simulation expects
  959. * these bit s to be 0 for non-amsdu pkt.
  960. */
  961. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  962. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  963. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  964. qdf_nbuf_set_rx_chfrag_end(nbuf, 0);
  965. }
  966. nbuf = next;
  967. }
  968. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &deliver_list_head,
  969. &deliver_list_tail);
  970. vdev->osif_rx(vdev->osif_vdev, deliver_list_head);
  971. }
  972. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  973. #ifndef FEATURE_WDS
  974. void dp_rx_da_learn(struct dp_soc *soc, uint8_t *rx_tlv_hdr,
  975. struct dp_txrx_peer *ta_peer, qdf_nbuf_t nbuf)
  976. {
  977. }
  978. #endif
  979. #ifdef QCA_SUPPORT_TX_MIN_RATES_FOR_SPECIAL_FRAMES
  980. /**
  981. * dp_classify_critical_pkts() - API for marking critical packets
  982. * @soc: dp_soc context
  983. * @vdev: vdev on which packet is to be sent
  984. * @nbuf: nbuf that has to be classified
  985. *
  986. * The function parses the packet, identifies whether its a critical frame and
  987. * marks QDF_NBUF_CB_TX_EXTRA_IS_CRITICAL bit in qdf_nbuf_cb for the nbuf.
  988. * Code for marking which frames are CRITICAL is accessed via callback.
  989. * EAPOL, ARP, DHCP, DHCPv6, ICMPv6 NS/NA are the typical critical frames.
  990. *
  991. * Return: None
  992. */
  993. static
  994. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  995. qdf_nbuf_t nbuf)
  996. {
  997. if (vdev->tx_classify_critical_pkt_cb)
  998. vdev->tx_classify_critical_pkt_cb(vdev->osif_vdev, nbuf);
  999. }
  1000. #else
  1001. static inline
  1002. void dp_classify_critical_pkts(struct dp_soc *soc, struct dp_vdev *vdev,
  1003. qdf_nbuf_t nbuf)
  1004. {
  1005. }
  1006. #endif
  1007. #ifdef QCA_OL_TX_MULTIQ_SUPPORT
  1008. static inline
  1009. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  1010. {
  1011. qdf_nbuf_set_queue_mapping(nbuf, ring_id);
  1012. }
  1013. #else
  1014. static inline
  1015. void dp_rx_nbuf_queue_mapping_set(qdf_nbuf_t nbuf, uint8_t ring_id)
  1016. {
  1017. }
  1018. #endif
  1019. bool dp_rx_intrabss_mcbc_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  1020. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  1021. struct cdp_tid_rx_stats *tid_stats,
  1022. uint8_t link_id)
  1023. {
  1024. uint16_t len;
  1025. qdf_nbuf_t nbuf_copy;
  1026. if (dp_rx_intrabss_eapol_drop_check(soc, ta_peer, rx_tlv_hdr,
  1027. nbuf))
  1028. return true;
  1029. if (!dp_rx_check_ndi_mdns_fwding(ta_peer, nbuf, link_id))
  1030. return false;
  1031. /* If the source peer in the isolation list
  1032. * then dont forward instead push to bridge stack
  1033. */
  1034. if (dp_get_peer_isolation(ta_peer))
  1035. return false;
  1036. nbuf_copy = qdf_nbuf_copy(nbuf);
  1037. if (!nbuf_copy)
  1038. return false;
  1039. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1040. qdf_mem_set(nbuf_copy->cb, 0x0, sizeof(nbuf_copy->cb));
  1041. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf_copy);
  1042. if (soc->arch_ops.dp_rx_intrabss_mcast_handler(soc, ta_peer,
  1043. nbuf_copy,
  1044. tid_stats,
  1045. link_id))
  1046. return false;
  1047. /* Don't send packets if tx is paused */
  1048. if (!soc->is_tx_pause &&
  1049. !dp_tx_send((struct cdp_soc_t *)soc,
  1050. ta_peer->vdev->vdev_id, nbuf_copy)) {
  1051. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  1052. len, link_id);
  1053. tid_stats->intrabss_cnt++;
  1054. } else {
  1055. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  1056. len, link_id);
  1057. tid_stats->fail_cnt[INTRABSS_DROP]++;
  1058. dp_rx_nbuf_free(nbuf_copy);
  1059. }
  1060. return false;
  1061. }
  1062. bool dp_rx_intrabss_ucast_fwd(struct dp_soc *soc, struct dp_txrx_peer *ta_peer,
  1063. uint8_t tx_vdev_id,
  1064. uint8_t *rx_tlv_hdr, qdf_nbuf_t nbuf,
  1065. struct cdp_tid_rx_stats *tid_stats,
  1066. uint8_t link_id)
  1067. {
  1068. uint16_t len;
  1069. len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1070. /* linearize the nbuf just before we send to
  1071. * dp_tx_send()
  1072. */
  1073. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  1074. if (qdf_nbuf_linearize(nbuf) == -ENOMEM)
  1075. return false;
  1076. nbuf = qdf_nbuf_unshare(nbuf);
  1077. if (!nbuf) {
  1078. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer,
  1079. rx.intra_bss.fail,
  1080. 1, len, link_id);
  1081. /* return true even though the pkt is
  1082. * not forwarded. Basically skb_unshare
  1083. * failed and we want to continue with
  1084. * next nbuf.
  1085. */
  1086. tid_stats->fail_cnt[INTRABSS_DROP]++;
  1087. return false;
  1088. }
  1089. }
  1090. qdf_mem_set(nbuf->cb, 0x0, sizeof(nbuf->cb));
  1091. dp_classify_critical_pkts(soc, ta_peer->vdev, nbuf);
  1092. /* Don't send packets if tx is paused */
  1093. if (!soc->is_tx_pause && !dp_tx_send((struct cdp_soc_t *)soc,
  1094. tx_vdev_id, nbuf)) {
  1095. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.pkts, 1,
  1096. len, link_id);
  1097. } else {
  1098. DP_PEER_PER_PKT_STATS_INC_PKT(ta_peer, rx.intra_bss.fail, 1,
  1099. len, link_id);
  1100. tid_stats->fail_cnt[INTRABSS_DROP]++;
  1101. return false;
  1102. }
  1103. return true;
  1104. }
  1105. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1106. #ifdef MESH_MODE_SUPPORT
  1107. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1108. uint8_t *rx_tlv_hdr,
  1109. struct dp_txrx_peer *txrx_peer)
  1110. {
  1111. struct mesh_recv_hdr_s *rx_info = NULL;
  1112. uint32_t pkt_type;
  1113. uint32_t nss;
  1114. uint32_t rate_mcs;
  1115. uint32_t bw;
  1116. uint8_t primary_chan_num;
  1117. uint32_t center_chan_freq;
  1118. struct dp_soc *soc = vdev->pdev->soc;
  1119. struct dp_peer *peer;
  1120. struct dp_peer *primary_link_peer;
  1121. struct dp_soc *link_peer_soc;
  1122. cdp_peer_stats_param_t buf = {0};
  1123. /* fill recv mesh stats */
  1124. rx_info = qdf_mem_malloc(sizeof(struct mesh_recv_hdr_s));
  1125. /* upper layers are responsible to free this memory */
  1126. if (!rx_info) {
  1127. dp_rx_err("%pK: Memory allocation failed for mesh rx stats",
  1128. vdev->pdev->soc);
  1129. DP_STATS_INC(vdev->pdev, mesh_mem_alloc, 1);
  1130. return;
  1131. }
  1132. rx_info->rs_flags = MESH_RXHDR_VER1;
  1133. if (qdf_nbuf_is_rx_chfrag_start(nbuf))
  1134. rx_info->rs_flags |= MESH_RX_FIRST_MSDU;
  1135. if (qdf_nbuf_is_rx_chfrag_end(nbuf))
  1136. rx_info->rs_flags |= MESH_RX_LAST_MSDU;
  1137. peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id, DP_MOD_ID_MESH);
  1138. if (peer) {
  1139. if (hal_rx_tlv_get_is_decrypted(soc->hal_soc, rx_tlv_hdr)) {
  1140. rx_info->rs_flags |= MESH_RX_DECRYPTED;
  1141. rx_info->rs_keyix = hal_rx_msdu_get_keyid(soc->hal_soc,
  1142. rx_tlv_hdr);
  1143. if (vdev->osif_get_key)
  1144. vdev->osif_get_key(vdev->osif_vdev,
  1145. &rx_info->rs_decryptkey[0],
  1146. &peer->mac_addr.raw[0],
  1147. rx_info->rs_keyix);
  1148. }
  1149. dp_peer_unref_delete(peer, DP_MOD_ID_MESH);
  1150. }
  1151. primary_link_peer = dp_get_primary_link_peer_by_id(soc,
  1152. txrx_peer->peer_id,
  1153. DP_MOD_ID_MESH);
  1154. if (qdf_likely(primary_link_peer)) {
  1155. link_peer_soc = primary_link_peer->vdev->pdev->soc;
  1156. dp_monitor_peer_get_stats_param(link_peer_soc,
  1157. primary_link_peer,
  1158. cdp_peer_rx_snr, &buf);
  1159. rx_info->rs_snr = buf.rx_snr;
  1160. dp_peer_unref_delete(primary_link_peer, DP_MOD_ID_MESH);
  1161. }
  1162. rx_info->rs_rssi = rx_info->rs_snr + DP_DEFAULT_NOISEFLOOR;
  1163. soc = vdev->pdev->soc;
  1164. primary_chan_num = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr);
  1165. center_chan_freq = hal_rx_tlv_get_freq(soc->hal_soc, rx_tlv_hdr) >> 16;
  1166. if (soc->cdp_soc.ol_ops && soc->cdp_soc.ol_ops->freq_to_band) {
  1167. rx_info->rs_band = soc->cdp_soc.ol_ops->freq_to_band(
  1168. soc->ctrl_psoc,
  1169. vdev->pdev->pdev_id,
  1170. center_chan_freq);
  1171. }
  1172. rx_info->rs_channel = primary_chan_num;
  1173. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  1174. rate_mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  1175. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  1176. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  1177. /*
  1178. * The MCS index does not start with 0 when NSS>1 in HT mode.
  1179. * MCS params for optional 20/40MHz, NSS=1~3, EQM(NSS>1):
  1180. * ------------------------------------------------------
  1181. * NSS | 1 | 2 | 3 | 4
  1182. * ------------------------------------------------------
  1183. * MCS index: HT20 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  1184. * ------------------------------------------------------
  1185. * MCS index: HT40 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  1186. * ------------------------------------------------------
  1187. * Currently, the MAX_NSS=2. If NSS>2, MCS index = 8 * (NSS-1)
  1188. */
  1189. if ((pkt_type == DOT11_N) && (nss == 2))
  1190. rate_mcs += 8;
  1191. rx_info->rs_ratephy1 = rate_mcs | (nss << 0x8) | (pkt_type << 16) |
  1192. (bw << 24);
  1193. qdf_nbuf_set_rx_fctx_type(nbuf, (void *)rx_info, CB_FTYPE_MESH_RX_INFO);
  1194. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_MED,
  1195. FL("Mesh rx stats: flags %x, rssi %x, chn %x, rate %x, kix %x, snr %x"),
  1196. rx_info->rs_flags,
  1197. rx_info->rs_rssi,
  1198. rx_info->rs_channel,
  1199. rx_info->rs_ratephy1,
  1200. rx_info->rs_keyix,
  1201. rx_info->rs_snr);
  1202. }
  1203. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1204. uint8_t *rx_tlv_hdr)
  1205. {
  1206. union dp_align_mac_addr mac_addr;
  1207. struct dp_soc *soc = vdev->pdev->soc;
  1208. if (qdf_unlikely(vdev->mesh_rx_filter)) {
  1209. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_FROMDS)
  1210. if (hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  1211. rx_tlv_hdr))
  1212. return QDF_STATUS_SUCCESS;
  1213. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TODS)
  1214. if (hal_rx_mpdu_get_to_ds(soc->hal_soc,
  1215. rx_tlv_hdr))
  1216. return QDF_STATUS_SUCCESS;
  1217. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_NODS)
  1218. if (!hal_rx_mpdu_get_fr_ds(soc->hal_soc,
  1219. rx_tlv_hdr) &&
  1220. !hal_rx_mpdu_get_to_ds(soc->hal_soc,
  1221. rx_tlv_hdr))
  1222. return QDF_STATUS_SUCCESS;
  1223. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_RA) {
  1224. if (hal_rx_mpdu_get_addr1(soc->hal_soc,
  1225. rx_tlv_hdr,
  1226. &mac_addr.raw[0]))
  1227. return QDF_STATUS_E_FAILURE;
  1228. if (!qdf_mem_cmp(&mac_addr.raw[0],
  1229. &vdev->mac_addr.raw[0],
  1230. QDF_MAC_ADDR_SIZE))
  1231. return QDF_STATUS_SUCCESS;
  1232. }
  1233. if (vdev->mesh_rx_filter & MESH_FILTER_OUT_TA) {
  1234. if (hal_rx_mpdu_get_addr2(soc->hal_soc,
  1235. rx_tlv_hdr,
  1236. &mac_addr.raw[0]))
  1237. return QDF_STATUS_E_FAILURE;
  1238. if (!qdf_mem_cmp(&mac_addr.raw[0],
  1239. &vdev->mac_addr.raw[0],
  1240. QDF_MAC_ADDR_SIZE))
  1241. return QDF_STATUS_SUCCESS;
  1242. }
  1243. }
  1244. return QDF_STATUS_E_FAILURE;
  1245. }
  1246. #else
  1247. void dp_rx_fill_mesh_stats(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1248. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *peer)
  1249. {
  1250. }
  1251. QDF_STATUS dp_rx_filter_mesh_packets(struct dp_vdev *vdev, qdf_nbuf_t nbuf,
  1252. uint8_t *rx_tlv_hdr)
  1253. {
  1254. return QDF_STATUS_E_FAILURE;
  1255. }
  1256. #endif
  1257. #ifdef RX_PEER_INVALID_ENH
  1258. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1259. uint8_t mac_id)
  1260. {
  1261. struct dp_invalid_peer_msg msg;
  1262. struct dp_vdev *vdev = NULL;
  1263. struct dp_pdev *pdev = NULL;
  1264. struct ieee80211_frame *wh;
  1265. qdf_nbuf_t curr_nbuf, next_nbuf;
  1266. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1267. uint8_t *rx_pkt_hdr = NULL;
  1268. int i = 0;
  1269. if (!HAL_IS_DECAP_FORMAT_RAW(soc->hal_soc, rx_tlv_hdr)) {
  1270. dp_rx_debug("%pK: Drop decapped frames", soc);
  1271. goto free;
  1272. }
  1273. /* In RAW packet, packet header will be part of data */
  1274. rx_pkt_hdr = rx_tlv_hdr + soc->rx_pkt_tlv_size;
  1275. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1276. if (!DP_FRAME_IS_DATA(wh)) {
  1277. dp_rx_debug("%pK: NAWDS valid only for data frames", soc);
  1278. goto free;
  1279. }
  1280. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1281. dp_rx_err("%pK: Invalid nbuf length", soc);
  1282. goto free;
  1283. }
  1284. /* In DMAC case the rx_desc_pools are common across PDEVs
  1285. * so PDEV cannot be derived from the pool_id.
  1286. *
  1287. * link_id need to derived from the TLV tag word which is
  1288. * disabled by default. For now adding a WAR to get vdev
  1289. * with brute force this need to fixed with word based subscription
  1290. * support is added by enabling TLV tag word
  1291. */
  1292. if (soc->features.dmac_cmn_src_rxbuf_ring_enabled) {
  1293. for (i = 0; i < MAX_PDEV_CNT; i++) {
  1294. pdev = soc->pdev_list[i];
  1295. if (!pdev || qdf_unlikely(pdev->is_pdev_down))
  1296. continue;
  1297. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1298. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1299. QDF_MAC_ADDR_SIZE) == 0) {
  1300. goto out;
  1301. }
  1302. }
  1303. }
  1304. } else {
  1305. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1306. if (!pdev || qdf_unlikely(pdev->is_pdev_down)) {
  1307. dp_rx_err("%pK: PDEV %s",
  1308. soc, !pdev ? "not found" : "down");
  1309. goto free;
  1310. }
  1311. if (dp_monitor_filter_neighbour_peer(pdev, rx_pkt_hdr) ==
  1312. QDF_STATUS_SUCCESS)
  1313. return 0;
  1314. TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
  1315. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1316. QDF_MAC_ADDR_SIZE) == 0) {
  1317. goto out;
  1318. }
  1319. }
  1320. }
  1321. if (!vdev) {
  1322. dp_rx_err("%pK: VDEV not found", soc);
  1323. goto free;
  1324. }
  1325. out:
  1326. msg.wh = wh;
  1327. qdf_nbuf_pull_head(mpdu, soc->rx_pkt_tlv_size);
  1328. msg.nbuf = mpdu;
  1329. msg.vdev_id = vdev->vdev_id;
  1330. /*
  1331. * NOTE: Only valid for HKv1.
  1332. * If smart monitor mode is enabled on RE, we are getting invalid
  1333. * peer frames with RA as STA mac of RE and the TA not matching
  1334. * with any NAC list or the the BSSID.Such frames need to dropped
  1335. * in order to avoid HM_WDS false addition.
  1336. */
  1337. if (pdev->soc->cdp_soc.ol_ops->rx_invalid_peer) {
  1338. if (dp_monitor_drop_inv_peer_pkts(vdev) == QDF_STATUS_SUCCESS) {
  1339. dp_rx_warn("%pK: Drop inv peer pkts with STA RA:%pm",
  1340. soc, wh->i_addr1);
  1341. goto free;
  1342. }
  1343. pdev->soc->cdp_soc.ol_ops->rx_invalid_peer(
  1344. (struct cdp_ctrl_objmgr_psoc *)soc->ctrl_psoc,
  1345. pdev->pdev_id, &msg);
  1346. }
  1347. free:
  1348. /* Drop and free packet */
  1349. curr_nbuf = mpdu;
  1350. while (curr_nbuf) {
  1351. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1352. dp_rx_nbuf_free(curr_nbuf);
  1353. curr_nbuf = next_nbuf;
  1354. }
  1355. return 0;
  1356. }
  1357. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1358. qdf_nbuf_t mpdu, bool mpdu_done,
  1359. uint8_t mac_id)
  1360. {
  1361. /* Only trigger the process when mpdu is completed */
  1362. if (mpdu_done)
  1363. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1364. }
  1365. #else
  1366. uint8_t dp_rx_process_invalid_peer(struct dp_soc *soc, qdf_nbuf_t mpdu,
  1367. uint8_t mac_id)
  1368. {
  1369. qdf_nbuf_t curr_nbuf, next_nbuf;
  1370. struct dp_pdev *pdev;
  1371. struct dp_vdev *vdev = NULL;
  1372. struct ieee80211_frame *wh;
  1373. struct dp_peer *peer = NULL;
  1374. uint8_t *rx_tlv_hdr = qdf_nbuf_data(mpdu);
  1375. uint8_t *rx_pkt_hdr = hal_rx_pkt_hdr_get(soc->hal_soc, rx_tlv_hdr);
  1376. wh = (struct ieee80211_frame *)rx_pkt_hdr;
  1377. if (!DP_FRAME_IS_DATA(wh)) {
  1378. QDF_TRACE_ERROR_RL(QDF_MODULE_ID_DP,
  1379. "only for data frames");
  1380. goto free;
  1381. }
  1382. if (qdf_nbuf_len(mpdu) < sizeof(struct ieee80211_frame)) {
  1383. dp_rx_info_rl("%pK: Invalid nbuf length", soc);
  1384. goto free;
  1385. }
  1386. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1387. if (!pdev) {
  1388. dp_rx_info_rl("%pK: PDEV not found", soc);
  1389. goto free;
  1390. }
  1391. qdf_spin_lock_bh(&pdev->vdev_list_lock);
  1392. DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
  1393. if (qdf_mem_cmp(wh->i_addr1, vdev->mac_addr.raw,
  1394. QDF_MAC_ADDR_SIZE) == 0) {
  1395. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1396. goto out;
  1397. }
  1398. }
  1399. qdf_spin_unlock_bh(&pdev->vdev_list_lock);
  1400. if (!vdev) {
  1401. dp_rx_info_rl("%pK: VDEV not found", soc);
  1402. goto free;
  1403. }
  1404. out:
  1405. if (vdev->opmode == wlan_op_mode_ap) {
  1406. peer = dp_peer_find_hash_find(soc, wh->i_addr2, 0,
  1407. vdev->vdev_id,
  1408. DP_MOD_ID_RX_ERR);
  1409. /* If SA is a valid peer in vdev,
  1410. * don't send disconnect
  1411. */
  1412. if (peer) {
  1413. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1414. DP_STATS_INC(soc, rx.err.decrypt_err_drop, 1);
  1415. dp_err_rl("invalid peer frame with correct SA/RA is freed");
  1416. goto free;
  1417. }
  1418. }
  1419. if (soc->cdp_soc.ol_ops->rx_invalid_peer)
  1420. soc->cdp_soc.ol_ops->rx_invalid_peer(vdev->vdev_id, wh);
  1421. free:
  1422. /* Drop and free packet */
  1423. curr_nbuf = mpdu;
  1424. while (curr_nbuf) {
  1425. next_nbuf = qdf_nbuf_next(curr_nbuf);
  1426. dp_rx_nbuf_free(curr_nbuf);
  1427. curr_nbuf = next_nbuf;
  1428. }
  1429. /* Reset the head and tail pointers */
  1430. pdev = dp_get_pdev_for_lmac_id(soc, mac_id);
  1431. if (pdev) {
  1432. pdev->invalid_peer_head_msdu = NULL;
  1433. pdev->invalid_peer_tail_msdu = NULL;
  1434. }
  1435. return 0;
  1436. }
  1437. void dp_rx_process_invalid_peer_wrapper(struct dp_soc *soc,
  1438. qdf_nbuf_t mpdu, bool mpdu_done,
  1439. uint8_t mac_id)
  1440. {
  1441. /* Process the nbuf */
  1442. dp_rx_process_invalid_peer(soc, mpdu, mac_id);
  1443. }
  1444. #endif
  1445. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  1446. #ifdef RECEIVE_OFFLOAD
  1447. /**
  1448. * dp_rx_print_offload_info() - Print offload info from RX TLV
  1449. * @soc: dp soc handle
  1450. * @msdu: MSDU for which the offload info is to be printed
  1451. *
  1452. * Return: None
  1453. */
  1454. static void dp_rx_print_offload_info(struct dp_soc *soc,
  1455. qdf_nbuf_t msdu)
  1456. {
  1457. dp_verbose_debug("----------------------RX DESC LRO/GRO----------------------");
  1458. dp_verbose_debug("lro_eligible 0x%x",
  1459. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu));
  1460. dp_verbose_debug("pure_ack 0x%x", QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu));
  1461. dp_verbose_debug("chksum 0x%x", QDF_NBUF_CB_RX_TCP_CHKSUM(msdu));
  1462. dp_verbose_debug("TCP seq num 0x%x", QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu));
  1463. dp_verbose_debug("TCP ack num 0x%x", QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu));
  1464. dp_verbose_debug("TCP window 0x%x", QDF_NBUF_CB_RX_TCP_WIN(msdu));
  1465. dp_verbose_debug("TCP protocol 0x%x", QDF_NBUF_CB_RX_TCP_PROTO(msdu));
  1466. dp_verbose_debug("TCP offset 0x%x", QDF_NBUF_CB_RX_TCP_OFFSET(msdu));
  1467. dp_verbose_debug("toeplitz 0x%x", QDF_NBUF_CB_RX_FLOW_ID(msdu));
  1468. dp_verbose_debug("---------------------------------------------------------");
  1469. }
  1470. void dp_rx_fill_gro_info(struct dp_soc *soc, uint8_t *rx_tlv,
  1471. qdf_nbuf_t msdu, uint32_t *rx_ol_pkt_cnt)
  1472. {
  1473. struct hal_offload_info offload_info;
  1474. if (!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx))
  1475. return;
  1476. if (hal_rx_tlv_get_offload_info(soc->hal_soc, rx_tlv, &offload_info))
  1477. return;
  1478. *rx_ol_pkt_cnt = *rx_ol_pkt_cnt + 1;
  1479. QDF_NBUF_CB_RX_LRO_ELIGIBLE(msdu) = offload_info.lro_eligible;
  1480. QDF_NBUF_CB_RX_TCP_PURE_ACK(msdu) = offload_info.tcp_pure_ack;
  1481. QDF_NBUF_CB_RX_TCP_CHKSUM(msdu) =
  1482. hal_rx_tlv_get_tcp_chksum(soc->hal_soc,
  1483. rx_tlv);
  1484. QDF_NBUF_CB_RX_TCP_SEQ_NUM(msdu) = offload_info.tcp_seq_num;
  1485. QDF_NBUF_CB_RX_TCP_ACK_NUM(msdu) = offload_info.tcp_ack_num;
  1486. QDF_NBUF_CB_RX_TCP_WIN(msdu) = offload_info.tcp_win;
  1487. QDF_NBUF_CB_RX_TCP_PROTO(msdu) = offload_info.tcp_proto;
  1488. QDF_NBUF_CB_RX_IPV6_PROTO(msdu) = offload_info.ipv6_proto;
  1489. QDF_NBUF_CB_RX_TCP_OFFSET(msdu) = offload_info.tcp_offset;
  1490. QDF_NBUF_CB_RX_FLOW_ID(msdu) = offload_info.flow_id;
  1491. dp_rx_print_offload_info(soc, msdu);
  1492. }
  1493. #endif /* RECEIVE_OFFLOAD */
  1494. /**
  1495. * dp_rx_adjust_nbuf_len() - set appropriate msdu length in nbuf.
  1496. *
  1497. * @soc: DP soc handle
  1498. * @nbuf: pointer to msdu.
  1499. * @mpdu_len: mpdu length
  1500. * @l3_pad_len: L3 padding length by HW
  1501. *
  1502. * Return: returns true if nbuf is last msdu of mpdu else returns false.
  1503. */
  1504. static inline bool dp_rx_adjust_nbuf_len(struct dp_soc *soc,
  1505. qdf_nbuf_t nbuf,
  1506. uint16_t *mpdu_len,
  1507. uint32_t l3_pad_len)
  1508. {
  1509. bool last_nbuf;
  1510. uint32_t pkt_hdr_size;
  1511. pkt_hdr_size = soc->rx_pkt_tlv_size + l3_pad_len;
  1512. if ((*mpdu_len + pkt_hdr_size) > RX_DATA_BUFFER_SIZE) {
  1513. qdf_nbuf_set_pktlen(nbuf, RX_DATA_BUFFER_SIZE);
  1514. last_nbuf = false;
  1515. *mpdu_len -= (RX_DATA_BUFFER_SIZE - pkt_hdr_size);
  1516. } else {
  1517. qdf_nbuf_set_pktlen(nbuf, (*mpdu_len + pkt_hdr_size));
  1518. last_nbuf = true;
  1519. *mpdu_len = 0;
  1520. }
  1521. return last_nbuf;
  1522. }
  1523. /**
  1524. * dp_get_l3_hdr_pad_len() - get L3 header padding length.
  1525. *
  1526. * @soc: DP soc handle
  1527. * @nbuf: pointer to msdu.
  1528. *
  1529. * Return: returns padding length in bytes.
  1530. */
  1531. static inline uint32_t dp_get_l3_hdr_pad_len(struct dp_soc *soc,
  1532. qdf_nbuf_t nbuf)
  1533. {
  1534. uint32_t l3_hdr_pad = 0;
  1535. uint8_t *rx_tlv_hdr;
  1536. struct hal_rx_msdu_metadata msdu_metadata;
  1537. while (nbuf) {
  1538. if (!qdf_nbuf_is_rx_chfrag_cont(nbuf)) {
  1539. /* scattered msdu end with continuation is 0 */
  1540. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  1541. hal_rx_msdu_metadata_get(soc->hal_soc,
  1542. rx_tlv_hdr,
  1543. &msdu_metadata);
  1544. l3_hdr_pad = msdu_metadata.l3_hdr_pad;
  1545. break;
  1546. }
  1547. nbuf = nbuf->next;
  1548. }
  1549. return l3_hdr_pad;
  1550. }
  1551. qdf_nbuf_t dp_rx_sg_create(struct dp_soc *soc, qdf_nbuf_t nbuf)
  1552. {
  1553. qdf_nbuf_t parent, frag_list, next = NULL;
  1554. uint16_t frag_list_len = 0;
  1555. uint16_t mpdu_len;
  1556. bool last_nbuf;
  1557. uint32_t l3_hdr_pad_offset = 0;
  1558. /*
  1559. * Use msdu len got from REO entry descriptor instead since
  1560. * there is case the RX PKT TLV is corrupted while msdu_len
  1561. * from REO descriptor is right for non-raw RX scatter msdu.
  1562. */
  1563. mpdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  1564. /*
  1565. * this is a case where the complete msdu fits in one single nbuf.
  1566. * in this case HW sets both start and end bit and we only need to
  1567. * reset these bits for RAW mode simulator to decap the pkt
  1568. */
  1569. if (qdf_nbuf_is_rx_chfrag_start(nbuf) &&
  1570. qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1571. qdf_nbuf_set_pktlen(nbuf, mpdu_len + soc->rx_pkt_tlv_size);
  1572. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size);
  1573. return nbuf;
  1574. }
  1575. l3_hdr_pad_offset = dp_get_l3_hdr_pad_len(soc, nbuf);
  1576. /*
  1577. * This is a case where we have multiple msdus (A-MSDU) spread across
  1578. * multiple nbufs. here we create a fraglist out of these nbufs.
  1579. *
  1580. * the moment we encounter a nbuf with continuation bit set we
  1581. * know for sure we have an MSDU which is spread across multiple
  1582. * nbufs. We loop through and reap nbufs till we reach last nbuf.
  1583. */
  1584. parent = nbuf;
  1585. frag_list = nbuf->next;
  1586. nbuf = nbuf->next;
  1587. /*
  1588. * set the start bit in the first nbuf we encounter with continuation
  1589. * bit set. This has the proper mpdu length set as it is the first
  1590. * msdu of the mpdu. this becomes the parent nbuf and the subsequent
  1591. * nbufs will form the frag_list of the parent nbuf.
  1592. */
  1593. qdf_nbuf_set_rx_chfrag_start(parent, 1);
  1594. /*
  1595. * L3 header padding is only needed for the 1st buffer
  1596. * in a scattered msdu
  1597. */
  1598. last_nbuf = dp_rx_adjust_nbuf_len(soc, parent, &mpdu_len,
  1599. l3_hdr_pad_offset);
  1600. /*
  1601. * MSDU cont bit is set but reported MPDU length can fit
  1602. * in to single buffer
  1603. *
  1604. * Increment error stats and avoid SG list creation
  1605. */
  1606. if (last_nbuf) {
  1607. DP_STATS_INC(soc, rx.err.msdu_continuation_err, 1);
  1608. qdf_nbuf_pull_head(parent,
  1609. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1610. return parent;
  1611. }
  1612. /*
  1613. * this is where we set the length of the fragments which are
  1614. * associated to the parent nbuf. We iterate through the frag_list
  1615. * till we hit the last_nbuf of the list.
  1616. */
  1617. do {
  1618. last_nbuf = dp_rx_adjust_nbuf_len(soc, nbuf, &mpdu_len, 0);
  1619. qdf_nbuf_pull_head(nbuf,
  1620. soc->rx_pkt_tlv_size);
  1621. frag_list_len += qdf_nbuf_len(nbuf);
  1622. if (last_nbuf) {
  1623. next = nbuf->next;
  1624. nbuf->next = NULL;
  1625. break;
  1626. } else if (qdf_nbuf_is_rx_chfrag_end(nbuf)) {
  1627. dp_err("Invalid packet length\n");
  1628. qdf_assert_always(0);
  1629. }
  1630. nbuf = nbuf->next;
  1631. } while (!last_nbuf);
  1632. qdf_nbuf_set_rx_chfrag_start(nbuf, 0);
  1633. qdf_nbuf_append_ext_list(parent, frag_list, frag_list_len);
  1634. parent->next = next;
  1635. qdf_nbuf_pull_head(parent,
  1636. soc->rx_pkt_tlv_size + l3_hdr_pad_offset);
  1637. return parent;
  1638. }
  1639. #ifdef DP_RX_SG_FRAME_SUPPORT
  1640. bool dp_rx_is_sg_supported(void)
  1641. {
  1642. return true;
  1643. }
  1644. #else
  1645. bool dp_rx_is_sg_supported(void)
  1646. {
  1647. return false;
  1648. }
  1649. #endif
  1650. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  1651. #ifdef QCA_PEER_EXT_STATS
  1652. void dp_rx_compute_tid_delay(struct cdp_delay_tid_stats *stats,
  1653. qdf_nbuf_t nbuf)
  1654. {
  1655. struct cdp_delay_rx_stats *rx_delay = &stats->rx_delay;
  1656. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1657. dp_hist_update_stats(&rx_delay->to_stack_delay, to_stack);
  1658. }
  1659. #endif /* QCA_PEER_EXT_STATS */
  1660. void dp_rx_compute_delay(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  1661. {
  1662. uint8_t ring_id = QDF_NBUF_CB_RX_CTX_ID(nbuf);
  1663. int64_t current_ts = qdf_ktime_to_ms(qdf_ktime_get());
  1664. uint32_t to_stack = qdf_nbuf_get_timedelta_ms(nbuf);
  1665. uint8_t tid = qdf_nbuf_get_tid_val(nbuf);
  1666. uint32_t interframe_delay =
  1667. (uint32_t)(current_ts - vdev->prev_rx_deliver_tstamp);
  1668. struct cdp_tid_rx_stats *rstats =
  1669. &vdev->pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1670. dp_update_delay_stats(NULL, rstats, to_stack, tid,
  1671. CDP_DELAY_STATS_REAP_STACK, ring_id, false);
  1672. /*
  1673. * Update interframe delay stats calculated at deliver_data_ol point.
  1674. * Value of vdev->prev_rx_deliver_tstamp will be 0 for 1st frame, so
  1675. * interframe delay will not be calculate correctly for 1st frame.
  1676. * On the other side, this will help in avoiding extra per packet check
  1677. * of vdev->prev_rx_deliver_tstamp.
  1678. */
  1679. dp_update_delay_stats(NULL, rstats, interframe_delay, tid,
  1680. CDP_DELAY_STATS_RX_INTERFRAME, ring_id, false);
  1681. vdev->prev_rx_deliver_tstamp = current_ts;
  1682. }
  1683. /**
  1684. * dp_rx_drop_nbuf_list() - drop an nbuf list
  1685. * @pdev: dp pdev reference
  1686. * @buf_list: buffer list to be dropepd
  1687. *
  1688. * Return: int (number of bufs dropped)
  1689. */
  1690. static inline int dp_rx_drop_nbuf_list(struct dp_pdev *pdev,
  1691. qdf_nbuf_t buf_list)
  1692. {
  1693. struct cdp_tid_rx_stats *stats = NULL;
  1694. uint8_t tid = 0, ring_id = 0;
  1695. int num_dropped = 0;
  1696. qdf_nbuf_t buf, next_buf;
  1697. buf = buf_list;
  1698. while (buf) {
  1699. ring_id = QDF_NBUF_CB_RX_CTX_ID(buf);
  1700. next_buf = qdf_nbuf_queue_next(buf);
  1701. tid = qdf_nbuf_get_tid_val(buf);
  1702. if (qdf_likely(pdev)) {
  1703. stats = &pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
  1704. stats->fail_cnt[INVALID_PEER_VDEV]++;
  1705. stats->delivered_to_stack--;
  1706. }
  1707. dp_rx_nbuf_free(buf);
  1708. buf = next_buf;
  1709. num_dropped++;
  1710. }
  1711. return num_dropped;
  1712. }
  1713. #ifdef QCA_SUPPORT_WDS_EXTENDED
  1714. /**
  1715. * dp_rx_deliver_to_stack_ext() - Deliver to netdev per sta
  1716. * @soc: core txrx main context
  1717. * @vdev: vdev
  1718. * @txrx_peer: txrx peer
  1719. * @nbuf_head: skb list head
  1720. *
  1721. * Return: true if packet is delivered to netdev per STA.
  1722. */
  1723. static inline bool
  1724. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1725. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1726. {
  1727. /*
  1728. * When extended WDS is disabled, frames are sent to AP netdevice.
  1729. */
  1730. if (qdf_likely(!vdev->wds_ext_enabled))
  1731. return false;
  1732. /*
  1733. * There can be 2 cases:
  1734. * 1. Send frame to parent netdev if its not for netdev per STA
  1735. * 2. If frame is meant for netdev per STA:
  1736. * a. Send frame to appropriate netdev using registered fp.
  1737. * b. If fp is NULL, drop the frames.
  1738. */
  1739. if (!txrx_peer->wds_ext.init)
  1740. return false;
  1741. if (txrx_peer->osif_rx)
  1742. txrx_peer->osif_rx(txrx_peer->wds_ext.osif_peer, nbuf_head);
  1743. else
  1744. dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1745. return true;
  1746. }
  1747. #else
  1748. static inline bool
  1749. dp_rx_deliver_to_stack_ext(struct dp_soc *soc, struct dp_vdev *vdev,
  1750. struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf_head)
  1751. {
  1752. return false;
  1753. }
  1754. #endif
  1755. #ifdef PEER_CACHE_RX_PKTS
  1756. void dp_rx_flush_rx_cached(struct dp_peer *peer, bool drop)
  1757. {
  1758. struct dp_peer_cached_bufq *bufqi;
  1759. struct dp_rx_cached_buf *cache_buf = NULL;
  1760. ol_txrx_rx_fp data_rx = NULL;
  1761. int num_buff_elem;
  1762. QDF_STATUS status;
  1763. /*
  1764. * Flush dp cached frames only for mld peers and legacy peers, as
  1765. * link peers don't store cached frames
  1766. */
  1767. if (IS_MLO_DP_LINK_PEER(peer))
  1768. return;
  1769. if (!peer->txrx_peer) {
  1770. dp_err("txrx_peer NULL!! peer mac_addr("QDF_MAC_ADDR_FMT")",
  1771. QDF_MAC_ADDR_REF(peer->mac_addr.raw));
  1772. return;
  1773. }
  1774. if (qdf_atomic_inc_return(&peer->txrx_peer->flush_in_progress) > 1) {
  1775. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1776. return;
  1777. }
  1778. qdf_spin_lock_bh(&peer->peer_info_lock);
  1779. if (peer->state >= OL_TXRX_PEER_STATE_CONN && peer->vdev->osif_rx)
  1780. data_rx = peer->vdev->osif_rx;
  1781. else
  1782. drop = true;
  1783. qdf_spin_unlock_bh(&peer->peer_info_lock);
  1784. bufqi = &peer->txrx_peer->bufq_info;
  1785. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1786. qdf_list_remove_front(&bufqi->cached_bufq,
  1787. (qdf_list_node_t **)&cache_buf);
  1788. while (cache_buf) {
  1789. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(
  1790. cache_buf->buf);
  1791. bufqi->entries -= num_buff_elem;
  1792. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1793. if (drop) {
  1794. bufqi->dropped = dp_rx_drop_nbuf_list(peer->vdev->pdev,
  1795. cache_buf->buf);
  1796. } else {
  1797. /* Flush the cached frames to OSIF DEV */
  1798. status = data_rx(peer->vdev->osif_vdev, cache_buf->buf);
  1799. if (status != QDF_STATUS_SUCCESS)
  1800. bufqi->dropped = dp_rx_drop_nbuf_list(
  1801. peer->vdev->pdev,
  1802. cache_buf->buf);
  1803. }
  1804. qdf_mem_free(cache_buf);
  1805. cache_buf = NULL;
  1806. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1807. qdf_list_remove_front(&bufqi->cached_bufq,
  1808. (qdf_list_node_t **)&cache_buf);
  1809. }
  1810. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1811. qdf_atomic_dec(&peer->txrx_peer->flush_in_progress);
  1812. }
  1813. /**
  1814. * dp_rx_enqueue_rx() - cache rx frames
  1815. * @peer: peer
  1816. * @txrx_peer: DP txrx_peer
  1817. * @rx_buf_list: cache buffer list
  1818. *
  1819. * Return: None
  1820. */
  1821. static QDF_STATUS
  1822. dp_rx_enqueue_rx(struct dp_peer *peer,
  1823. struct dp_txrx_peer *txrx_peer,
  1824. qdf_nbuf_t rx_buf_list)
  1825. {
  1826. struct dp_rx_cached_buf *cache_buf;
  1827. struct dp_peer_cached_bufq *bufqi = &txrx_peer->bufq_info;
  1828. int num_buff_elem;
  1829. QDF_STATUS ret = QDF_STATUS_SUCCESS;
  1830. struct dp_soc *soc = txrx_peer->vdev->pdev->soc;
  1831. struct dp_peer *ta_peer = NULL;
  1832. /*
  1833. * If peer id is invalid which likely peer map has not completed,
  1834. * then need caller provide dp_peer pointer, else it's ok to use
  1835. * txrx_peer->peer_id to get dp_peer.
  1836. */
  1837. if (peer) {
  1838. if (QDF_STATUS_SUCCESS ==
  1839. dp_peer_get_ref(soc, peer, DP_MOD_ID_RX))
  1840. ta_peer = peer;
  1841. } else {
  1842. ta_peer = dp_peer_get_ref_by_id(soc, txrx_peer->peer_id,
  1843. DP_MOD_ID_RX);
  1844. }
  1845. if (!ta_peer) {
  1846. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1847. rx_buf_list);
  1848. return QDF_STATUS_E_INVAL;
  1849. }
  1850. dp_debug_rl("bufq->curr %d bufq->drops %d", bufqi->entries,
  1851. bufqi->dropped);
  1852. if (!ta_peer->valid) {
  1853. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1854. rx_buf_list);
  1855. ret = QDF_STATUS_E_INVAL;
  1856. goto fail;
  1857. }
  1858. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1859. if (bufqi->entries >= bufqi->thresh) {
  1860. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1861. rx_buf_list);
  1862. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1863. ret = QDF_STATUS_E_RESOURCES;
  1864. goto fail;
  1865. }
  1866. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1867. num_buff_elem = QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(rx_buf_list);
  1868. cache_buf = qdf_mem_malloc_atomic(sizeof(*cache_buf));
  1869. if (!cache_buf) {
  1870. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1871. "Failed to allocate buf to cache rx frames");
  1872. bufqi->dropped = dp_rx_drop_nbuf_list(txrx_peer->vdev->pdev,
  1873. rx_buf_list);
  1874. ret = QDF_STATUS_E_NOMEM;
  1875. goto fail;
  1876. }
  1877. cache_buf->buf = rx_buf_list;
  1878. qdf_spin_lock_bh(&bufqi->bufq_lock);
  1879. qdf_list_insert_back(&bufqi->cached_bufq,
  1880. &cache_buf->node);
  1881. bufqi->entries += num_buff_elem;
  1882. qdf_spin_unlock_bh(&bufqi->bufq_lock);
  1883. fail:
  1884. dp_peer_unref_delete(ta_peer, DP_MOD_ID_RX);
  1885. return ret;
  1886. }
  1887. static inline
  1888. bool dp_rx_is_peer_cache_bufq_supported(void)
  1889. {
  1890. return true;
  1891. }
  1892. #else
  1893. static inline
  1894. bool dp_rx_is_peer_cache_bufq_supported(void)
  1895. {
  1896. return false;
  1897. }
  1898. static inline QDF_STATUS
  1899. dp_rx_enqueue_rx(struct dp_peer *peer,
  1900. struct dp_txrx_peer *txrx_peer,
  1901. qdf_nbuf_t rx_buf_list)
  1902. {
  1903. return QDF_STATUS_SUCCESS;
  1904. }
  1905. #endif
  1906. #ifndef DELIVERY_TO_STACK_STATUS_CHECK
  1907. /**
  1908. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1909. * using the appropriate call back functions.
  1910. * @soc: soc
  1911. * @vdev: vdev
  1912. * @txrx_peer: peer
  1913. * @nbuf_head: skb list head
  1914. *
  1915. * Return: None
  1916. */
  1917. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1918. struct dp_vdev *vdev,
  1919. struct dp_txrx_peer *txrx_peer,
  1920. qdf_nbuf_t nbuf_head)
  1921. {
  1922. if (qdf_unlikely(dp_rx_deliver_to_stack_ext(soc, vdev,
  1923. txrx_peer, nbuf_head)))
  1924. return;
  1925. /* Function pointer initialized only when FISA is enabled */
  1926. if (vdev->osif_fisa_rx)
  1927. /* on failure send it via regular path */
  1928. vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1929. else
  1930. vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1931. }
  1932. #else
  1933. /**
  1934. * dp_rx_check_delivery_to_stack() - Deliver pkts to network
  1935. * using the appropriate call back functions.
  1936. * @soc: soc
  1937. * @vdev: vdev
  1938. * @txrx_peer: txrx peer
  1939. * @nbuf_head: skb list head
  1940. *
  1941. * Check the return status of the call back function and drop
  1942. * the packets if the return status indicates a failure.
  1943. *
  1944. * Return: None
  1945. */
  1946. static void dp_rx_check_delivery_to_stack(struct dp_soc *soc,
  1947. struct dp_vdev *vdev,
  1948. struct dp_txrx_peer *txrx_peer,
  1949. qdf_nbuf_t nbuf_head)
  1950. {
  1951. int num_nbuf = 0;
  1952. QDF_STATUS ret_val = QDF_STATUS_E_FAILURE;
  1953. /* Function pointer initialized only when FISA is enabled */
  1954. if (vdev->osif_fisa_rx)
  1955. /* on failure send it via regular path */
  1956. ret_val = vdev->osif_fisa_rx(soc, vdev, nbuf_head);
  1957. else if (vdev->osif_rx)
  1958. ret_val = vdev->osif_rx(vdev->osif_vdev, nbuf_head);
  1959. if (!QDF_IS_STATUS_SUCCESS(ret_val)) {
  1960. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev, nbuf_head);
  1961. DP_STATS_INC(soc, rx.err.rejected, num_nbuf);
  1962. if (txrx_peer)
  1963. DP_PEER_STATS_FLAT_DEC(txrx_peer, to_stack.num,
  1964. num_nbuf);
  1965. }
  1966. }
  1967. #endif /* ifdef DELIVERY_TO_STACK_STATUS_CHECK */
  1968. /**
  1969. * dp_rx_validate_rx_callbacks() - validate rx callbacks
  1970. * @soc: DP soc
  1971. * @vdev: DP vdev handle
  1972. * @txrx_peer: pointer to the txrx peer object
  1973. * @nbuf_head: skb list head
  1974. *
  1975. * Return: QDF_STATUS - QDF_STATUS_SUCCESS
  1976. * QDF_STATUS_E_FAILURE
  1977. */
  1978. static inline QDF_STATUS
  1979. dp_rx_validate_rx_callbacks(struct dp_soc *soc,
  1980. struct dp_vdev *vdev,
  1981. struct dp_txrx_peer *txrx_peer,
  1982. qdf_nbuf_t nbuf_head)
  1983. {
  1984. int num_nbuf;
  1985. if (qdf_unlikely(!vdev || vdev->delete.pending)) {
  1986. num_nbuf = dp_rx_drop_nbuf_list(NULL, nbuf_head);
  1987. /*
  1988. * This is a special case where vdev is invalid,
  1989. * so we cannot know the pdev to which this packet
  1990. * belonged. Hence we update the soc rx error stats.
  1991. */
  1992. DP_STATS_INC(soc, rx.err.invalid_vdev, num_nbuf);
  1993. return QDF_STATUS_E_FAILURE;
  1994. }
  1995. /*
  1996. * highly unlikely to have a vdev without a registered rx
  1997. * callback function. if so let us free the nbuf_list.
  1998. */
  1999. if (qdf_unlikely(!vdev->osif_rx)) {
  2000. if (txrx_peer && dp_rx_is_peer_cache_bufq_supported()) {
  2001. dp_rx_enqueue_rx(NULL, txrx_peer, nbuf_head);
  2002. } else {
  2003. num_nbuf = dp_rx_drop_nbuf_list(vdev->pdev,
  2004. nbuf_head);
  2005. DP_PEER_TO_STACK_DECC(txrx_peer, num_nbuf,
  2006. vdev->pdev->enhanced_stats_en);
  2007. }
  2008. return QDF_STATUS_E_FAILURE;
  2009. }
  2010. return QDF_STATUS_SUCCESS;
  2011. }
  2012. QDF_STATUS dp_rx_deliver_to_stack(struct dp_soc *soc,
  2013. struct dp_vdev *vdev,
  2014. struct dp_txrx_peer *txrx_peer,
  2015. qdf_nbuf_t nbuf_head,
  2016. qdf_nbuf_t nbuf_tail)
  2017. {
  2018. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  2019. QDF_STATUS_SUCCESS)
  2020. return QDF_STATUS_E_FAILURE;
  2021. if (qdf_unlikely(vdev->rx_decap_type == htt_cmn_pkt_type_raw) ||
  2022. (vdev->rx_decap_type == htt_cmn_pkt_type_native_wifi)) {
  2023. vdev->osif_rsim_rx_decap(vdev->osif_vdev, &nbuf_head,
  2024. &nbuf_tail);
  2025. }
  2026. dp_rx_check_delivery_to_stack(soc, vdev, txrx_peer, nbuf_head);
  2027. return QDF_STATUS_SUCCESS;
  2028. }
  2029. #ifdef QCA_SUPPORT_EAPOL_OVER_CONTROL_PORT
  2030. QDF_STATUS dp_rx_eapol_deliver_to_stack(struct dp_soc *soc,
  2031. struct dp_vdev *vdev,
  2032. struct dp_txrx_peer *txrx_peer,
  2033. qdf_nbuf_t nbuf_head,
  2034. qdf_nbuf_t nbuf_tail)
  2035. {
  2036. if (dp_rx_validate_rx_callbacks(soc, vdev, txrx_peer, nbuf_head) !=
  2037. QDF_STATUS_SUCCESS)
  2038. return QDF_STATUS_E_FAILURE;
  2039. vdev->osif_rx_eapol(vdev->osif_vdev, nbuf_head);
  2040. return QDF_STATUS_SUCCESS;
  2041. }
  2042. #endif
  2043. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  2044. #ifdef VDEV_PEER_PROTOCOL_COUNT
  2045. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer) \
  2046. { \
  2047. qdf_nbuf_t nbuf_local; \
  2048. struct dp_txrx_peer *txrx_peer_local; \
  2049. struct dp_vdev *vdev_local = vdev_hdl; \
  2050. do { \
  2051. if (qdf_likely(!((vdev_local)->peer_protocol_count_track))) \
  2052. break; \
  2053. nbuf_local = nbuf; \
  2054. txrx_peer_local = txrx_peer; \
  2055. if (qdf_unlikely(qdf_nbuf_is_frag((nbuf_local)))) \
  2056. break; \
  2057. else if (qdf_unlikely(qdf_nbuf_is_raw_frame((nbuf_local)))) \
  2058. break; \
  2059. dp_vdev_peer_stats_update_protocol_cnt((vdev_local), \
  2060. (nbuf_local), \
  2061. (txrx_peer_local), 0, 1); \
  2062. } while (0); \
  2063. }
  2064. #else
  2065. #define dp_rx_msdu_stats_update_prot_cnts(vdev_hdl, nbuf, txrx_peer)
  2066. #endif
  2067. #ifdef FEATURE_RX_LINKSPEED_ROAM_TRIGGER
  2068. /**
  2069. * dp_rx_rates_stats_update() - update rate stats
  2070. * from rx msdu.
  2071. * @soc: datapath soc handle
  2072. * @nbuf: received msdu buffer
  2073. * @rx_tlv_hdr: rx tlv header
  2074. * @txrx_peer: datapath txrx_peer handle
  2075. * @sgi: Short Guard Interval
  2076. * @mcs: Modulation and Coding Set
  2077. * @nss: Number of Spatial Streams
  2078. * @bw: BandWidth
  2079. * @pkt_type: Corresponds to preamble
  2080. * @link_id: Link Id on which packet is received
  2081. *
  2082. * To be precisely record rates, following factors are considered:
  2083. * Exclude specific frames, ARP, DHCP, ssdp, etc.
  2084. * Make sure to affect rx throughput as least as possible.
  2085. *
  2086. * Return: void
  2087. */
  2088. static void
  2089. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2090. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  2091. uint32_t sgi, uint32_t mcs,
  2092. uint32_t nss, uint32_t bw, uint32_t pkt_type,
  2093. uint8_t link_id)
  2094. {
  2095. uint32_t rix;
  2096. uint16_t ratecode;
  2097. uint32_t avg_rx_rate;
  2098. uint32_t ratekbps;
  2099. enum cdp_punctured_modes punc_mode = NO_PUNCTURE;
  2100. if (soc->high_throughput ||
  2101. dp_rx_data_is_specific(soc->hal_soc, rx_tlv_hdr, nbuf)) {
  2102. return;
  2103. }
  2104. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.rx_rate, mcs, link_id);
  2105. /* In 11b mode, the nss we get from tlv is 0, invalid and should be 1 */
  2106. if (qdf_unlikely(pkt_type == DOT11_B))
  2107. nss = 1;
  2108. /* here pkt_type corresponds to preamble */
  2109. ratekbps = dp_getrateindex(sgi,
  2110. mcs,
  2111. nss - 1,
  2112. pkt_type,
  2113. bw,
  2114. punc_mode,
  2115. &rix,
  2116. &ratecode);
  2117. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.last_rx_rate, ratekbps, link_id);
  2118. avg_rx_rate =
  2119. dp_ath_rate_lpf(
  2120. txrx_peer->stats[link_id].extd_stats.rx.avg_rx_rate,
  2121. ratekbps);
  2122. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.avg_rx_rate, avg_rx_rate, link_id);
  2123. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.nss_info, nss, link_id);
  2124. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.mcs_info, mcs, link_id);
  2125. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.bw_info, bw, link_id);
  2126. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.gi_info, sgi, link_id);
  2127. DP_PEER_EXTD_STATS_UPD(txrx_peer, rx.preamble_info, pkt_type, link_id);
  2128. }
  2129. #else
  2130. static inline void
  2131. dp_rx_rates_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2132. uint8_t *rx_tlv_hdr, struct dp_txrx_peer *txrx_peer,
  2133. uint32_t sgi, uint32_t mcs,
  2134. uint32_t nss, uint32_t bw, uint32_t pkt_type,
  2135. uint8_t link_id)
  2136. {
  2137. }
  2138. #endif /* FEATURE_RX_LINKSPEED_ROAM_TRIGGER */
  2139. #ifndef QCA_ENHANCED_STATS_SUPPORT
  2140. /**
  2141. * dp_rx_msdu_extd_stats_update(): Update Rx extended path stats for peer
  2142. *
  2143. * @soc: datapath soc handle
  2144. * @nbuf: received msdu buffer
  2145. * @rx_tlv_hdr: rx tlv header
  2146. * @txrx_peer: datapath txrx_peer handle
  2147. * @link_id: link id on which the packet is received
  2148. *
  2149. * Return: void
  2150. */
  2151. static inline
  2152. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2153. uint8_t *rx_tlv_hdr,
  2154. struct dp_txrx_peer *txrx_peer,
  2155. uint8_t link_id)
  2156. {
  2157. bool is_ampdu;
  2158. uint32_t sgi, mcs, tid, nss, bw, reception_type, pkt_type;
  2159. uint8_t dst_mcs_idx;
  2160. /*
  2161. * TODO - For KIWI this field is present in ring_desc
  2162. * Try to use ring desc instead of tlv.
  2163. */
  2164. is_ampdu = hal_rx_mpdu_info_ampdu_flag_get(soc->hal_soc, rx_tlv_hdr);
  2165. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.ampdu_cnt, 1, is_ampdu, link_id);
  2166. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.non_ampdu_cnt, 1, !(is_ampdu),
  2167. link_id);
  2168. sgi = hal_rx_tlv_sgi_get(soc->hal_soc, rx_tlv_hdr);
  2169. mcs = hal_rx_tlv_rate_mcs_get(soc->hal_soc, rx_tlv_hdr);
  2170. tid = qdf_nbuf_get_tid_val(nbuf);
  2171. bw = hal_rx_tlv_bw_get(soc->hal_soc, rx_tlv_hdr);
  2172. reception_type = hal_rx_msdu_start_reception_type_get(soc->hal_soc,
  2173. rx_tlv_hdr);
  2174. nss = hal_rx_msdu_start_nss_get(soc->hal_soc, rx_tlv_hdr);
  2175. pkt_type = hal_rx_tlv_get_pkt_type(soc->hal_soc, rx_tlv_hdr);
  2176. /* do HW to SW pkt type conversion */
  2177. pkt_type = (pkt_type >= HAL_DOT11_MAX ? DOT11_MAX :
  2178. hal_2_dp_pkt_type_map[pkt_type]);
  2179. /*
  2180. * The MCS index does not start with 0 when NSS>1 in HT mode.
  2181. * MCS params for optional 20/40MHz, NSS=1~3, EQM(NSS>1):
  2182. * ------------------------------------------------------
  2183. * NSS | 1 | 2 | 3 | 4
  2184. * ------------------------------------------------------
  2185. * MCS index: HT20 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  2186. * ------------------------------------------------------
  2187. * MCS index: HT40 | 0 ~ 7 | 8 ~ 15 | 16 ~ 23 | 24 ~ 31
  2188. * ------------------------------------------------------
  2189. * Currently, the MAX_NSS=2. If NSS>2, MCS index = 8 * (NSS-1)
  2190. */
  2191. if ((pkt_type == DOT11_N) && (nss == 2))
  2192. mcs += 8;
  2193. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[mcs], 1,
  2194. ((mcs < MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)),
  2195. link_id);
  2196. DP_PEER_EXTD_STATS_INCC(txrx_peer, rx.rx_mpdu_cnt[MAX_MCS - 1], 1,
  2197. ((mcs >= MAX_MCS) && QDF_NBUF_CB_RX_CHFRAG_START(nbuf)),
  2198. link_id);
  2199. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.bw[bw], 1, link_id);
  2200. /*
  2201. * only if nss > 0 and pkt_type is 11N/AC/AX,
  2202. * then increase index [nss - 1] in array counter.
  2203. */
  2204. if (nss > 0 && CDP_IS_PKT_TYPE_SUPPORT_NSS(pkt_type))
  2205. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.nss[nss - 1], 1, link_id);
  2206. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.sgi_count[sgi], 1, link_id);
  2207. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.mic_err, 1,
  2208. hal_rx_tlv_mic_err_get(soc->hal_soc,
  2209. rx_tlv_hdr), link_id);
  2210. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.err.decrypt_err, 1,
  2211. hal_rx_tlv_decrypt_err_get(soc->hal_soc,
  2212. rx_tlv_hdr), link_id);
  2213. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.wme_ac_type[TID_TO_WME_AC(tid)], 1,
  2214. link_id);
  2215. DP_PEER_EXTD_STATS_INC(txrx_peer, rx.reception_type[reception_type], 1,
  2216. link_id);
  2217. dst_mcs_idx = dp_get_mcs_array_index_by_pkt_type_mcs(pkt_type, mcs);
  2218. if (MCS_INVALID_ARRAY_INDEX != dst_mcs_idx)
  2219. DP_PEER_EXTD_STATS_INC(txrx_peer,
  2220. rx.pkt_type[pkt_type].mcs_count[dst_mcs_idx],
  2221. 1, link_id);
  2222. dp_rx_rates_stats_update(soc, nbuf, rx_tlv_hdr, txrx_peer,
  2223. sgi, mcs, nss, bw, pkt_type, link_id);
  2224. }
  2225. #else
  2226. static inline
  2227. void dp_rx_msdu_extd_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2228. uint8_t *rx_tlv_hdr,
  2229. struct dp_txrx_peer *txrx_peer,
  2230. uint8_t link_id)
  2231. {
  2232. }
  2233. #endif
  2234. #if defined(DP_PKT_STATS_PER_LMAC) && defined(WLAN_FEATURE_11BE_MLO)
  2235. static inline void
  2236. dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
  2237. qdf_nbuf_t nbuf, uint8_t link_id)
  2238. {
  2239. uint8_t lmac_id = qdf_nbuf_get_lmac_id(nbuf);
  2240. if (qdf_unlikely(lmac_id >= CDP_MAX_LMACS)) {
  2241. dp_err_rl("Invalid lmac_id: %u vdev_id: %u",
  2242. lmac_id, QDF_NBUF_CB_RX_VDEV_ID(nbuf));
  2243. if (qdf_likely(txrx_peer))
  2244. dp_err_rl("peer_id: %u", txrx_peer->peer_id);
  2245. return;
  2246. }
  2247. /* only count stats per lmac for MLO connection*/
  2248. DP_PEER_PER_PKT_STATS_INCC_PKT(txrx_peer, rx.rx_lmac[lmac_id], 1,
  2249. QDF_NBUF_CB_RX_PKT_LEN(nbuf),
  2250. txrx_peer->is_mld_peer, link_id);
  2251. }
  2252. #else
  2253. static inline void
  2254. dp_peer_update_rx_pkt_per_lmac(struct dp_txrx_peer *txrx_peer,
  2255. qdf_nbuf_t nbuf, uint8_t link_id)
  2256. {
  2257. }
  2258. #endif
  2259. void dp_rx_msdu_stats_update(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2260. uint8_t *rx_tlv_hdr,
  2261. struct dp_txrx_peer *txrx_peer,
  2262. uint8_t ring_id,
  2263. struct cdp_tid_rx_stats *tid_stats,
  2264. uint8_t link_id)
  2265. {
  2266. bool is_not_amsdu;
  2267. struct dp_vdev *vdev = txrx_peer->vdev;
  2268. uint8_t enh_flag;
  2269. qdf_ether_header_t *eh;
  2270. uint16_t msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2271. dp_rx_msdu_stats_update_prot_cnts(vdev, nbuf, txrx_peer);
  2272. is_not_amsdu = qdf_nbuf_is_rx_chfrag_start(nbuf) &
  2273. qdf_nbuf_is_rx_chfrag_end(nbuf);
  2274. DP_PEER_PER_PKT_STATS_INC_PKT(txrx_peer, rx.rcvd_reo[ring_id], 1,
  2275. msdu_len, link_id);
  2276. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.non_amsdu_cnt, 1,
  2277. is_not_amsdu, link_id);
  2278. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.amsdu_cnt, 1,
  2279. !is_not_amsdu, link_id);
  2280. DP_PEER_PER_PKT_STATS_INCC(txrx_peer, rx.rx_retries, 1,
  2281. qdf_nbuf_is_rx_retry_flag(nbuf), link_id);
  2282. dp_peer_update_rx_pkt_per_lmac(txrx_peer, nbuf, link_id);
  2283. tid_stats->msdu_cnt++;
  2284. enh_flag = vdev->pdev->enhanced_stats_en;
  2285. if (qdf_unlikely(qdf_nbuf_is_da_mcbc(nbuf) &&
  2286. (vdev->rx_decap_type == htt_cmn_pkt_type_ethernet))) {
  2287. eh = (qdf_ether_header_t *)qdf_nbuf_data(nbuf);
  2288. DP_PEER_MC_INCC_PKT(txrx_peer, 1, msdu_len, enh_flag, link_id);
  2289. tid_stats->mcast_msdu_cnt++;
  2290. if (QDF_IS_ADDR_BROADCAST(eh->ether_dhost)) {
  2291. DP_PEER_BC_INCC_PKT(txrx_peer, 1, msdu_len,
  2292. enh_flag, link_id);
  2293. tid_stats->bcast_msdu_cnt++;
  2294. }
  2295. } else {
  2296. DP_PEER_UC_INCC_PKT(txrx_peer, 1, msdu_len,
  2297. enh_flag, link_id);
  2298. }
  2299. txrx_peer->stats[link_id].per_pkt_stats.rx.last_rx_ts =
  2300. qdf_system_ticks();
  2301. dp_rx_msdu_extd_stats_update(soc, nbuf, rx_tlv_hdr,
  2302. txrx_peer, link_id);
  2303. }
  2304. #ifndef WDS_VENDOR_EXTENSION
  2305. int dp_wds_rx_policy_check(uint8_t *rx_tlv_hdr,
  2306. struct dp_vdev *vdev,
  2307. struct dp_txrx_peer *txrx_peer)
  2308. {
  2309. return 1;
  2310. }
  2311. #endif
  2312. #ifdef DP_RX_PKT_NO_PEER_DELIVER
  2313. #ifdef DP_RX_UDP_OVER_PEER_ROAM
  2314. /**
  2315. * dp_rx_is_udp_allowed_over_roam_peer() - check if udp data received
  2316. * during roaming
  2317. * @vdev: dp_vdev pointer
  2318. * @rx_tlv_hdr: rx tlv header
  2319. * @nbuf: pkt skb pointer
  2320. *
  2321. * This function will check if rx udp data is received from authorised
  2322. * roamed peer before peer map indication is received from FW after
  2323. * roaming. This is needed for VoIP scenarios in which packet loss
  2324. * expected during roaming is minimal.
  2325. *
  2326. * Return: bool
  2327. */
  2328. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2329. uint8_t *rx_tlv_hdr,
  2330. qdf_nbuf_t nbuf)
  2331. {
  2332. char *hdr_desc;
  2333. struct ieee80211_frame *wh = NULL;
  2334. hdr_desc = hal_rx_desc_get_80211_hdr(vdev->pdev->soc->hal_soc,
  2335. rx_tlv_hdr);
  2336. wh = (struct ieee80211_frame *)hdr_desc;
  2337. if (vdev->roaming_peer_status ==
  2338. WLAN_ROAM_PEER_AUTH_STATUS_AUTHENTICATED &&
  2339. !qdf_mem_cmp(vdev->roaming_peer_mac.raw, wh->i_addr2,
  2340. QDF_MAC_ADDR_SIZE) && (qdf_nbuf_is_ipv4_udp_pkt(nbuf) ||
  2341. qdf_nbuf_is_ipv6_udp_pkt(nbuf)))
  2342. return true;
  2343. return false;
  2344. }
  2345. #else
  2346. static bool dp_rx_is_udp_allowed_over_roam_peer(struct dp_vdev *vdev,
  2347. uint8_t *rx_tlv_hdr,
  2348. qdf_nbuf_t nbuf)
  2349. {
  2350. return false;
  2351. }
  2352. #endif
  2353. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2354. {
  2355. uint16_t peer_id;
  2356. uint8_t vdev_id;
  2357. struct dp_vdev *vdev = NULL;
  2358. uint32_t l2_hdr_offset = 0;
  2359. uint16_t msdu_len = 0;
  2360. uint32_t pkt_len = 0;
  2361. uint8_t *rx_tlv_hdr;
  2362. uint32_t frame_mask = FRAME_MASK_IPV4_ARP | FRAME_MASK_IPV4_DHCP |
  2363. FRAME_MASK_IPV4_EAPOL | FRAME_MASK_IPV6_DHCP;
  2364. bool is_special_frame = false;
  2365. struct dp_peer *peer = NULL;
  2366. peer_id = QDF_NBUF_CB_RX_PEER_ID(nbuf);
  2367. if (peer_id > soc->max_peer_id)
  2368. goto deliver_fail;
  2369. vdev_id = QDF_NBUF_CB_RX_VDEV_ID(nbuf);
  2370. vdev = dp_vdev_get_ref_by_id(soc, vdev_id, DP_MOD_ID_RX);
  2371. if (!vdev || vdev->delete.pending)
  2372. goto deliver_fail;
  2373. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf)))
  2374. goto deliver_fail;
  2375. rx_tlv_hdr = qdf_nbuf_data(nbuf);
  2376. l2_hdr_offset =
  2377. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2378. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2379. pkt_len = msdu_len + l2_hdr_offset + soc->rx_pkt_tlv_size;
  2380. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2381. qdf_nbuf_set_pktlen(nbuf, pkt_len);
  2382. qdf_nbuf_pull_head(nbuf, soc->rx_pkt_tlv_size + l2_hdr_offset);
  2383. is_special_frame = dp_rx_is_special_frame(nbuf, frame_mask);
  2384. if (qdf_likely(vdev->osif_rx)) {
  2385. if (is_special_frame ||
  2386. dp_rx_is_udp_allowed_over_roam_peer(vdev, rx_tlv_hdr,
  2387. nbuf)) {
  2388. qdf_nbuf_set_exc_frame(nbuf, 1);
  2389. if (QDF_STATUS_SUCCESS !=
  2390. vdev->osif_rx(vdev->osif_vdev, nbuf))
  2391. goto deliver_fail;
  2392. DP_STATS_INC(soc, rx.err.pkt_delivered_no_peer, 1);
  2393. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2394. return;
  2395. }
  2396. } else if (is_special_frame) {
  2397. /*
  2398. * If MLO connection, txrx_peer for link peer does not exist,
  2399. * try to store these RX packets to txrx_peer's bufq of MLD
  2400. * peer until vdev->osif_rx is registered from CP and flush
  2401. * them to stack.
  2402. */
  2403. peer = dp_peer_get_tgt_peer_by_id(soc, peer_id,
  2404. DP_MOD_ID_RX);
  2405. if (!peer)
  2406. goto deliver_fail;
  2407. /* only check for MLO connection */
  2408. if (IS_MLO_DP_MLD_PEER(peer) && peer->txrx_peer &&
  2409. dp_rx_is_peer_cache_bufq_supported()) {
  2410. qdf_nbuf_set_exc_frame(nbuf, 1);
  2411. if (QDF_STATUS_SUCCESS ==
  2412. dp_rx_enqueue_rx(peer, peer->txrx_peer, nbuf)) {
  2413. DP_STATS_INC(soc,
  2414. rx.err.pkt_delivered_no_peer,
  2415. 1);
  2416. } else {
  2417. DP_STATS_INC(soc,
  2418. rx.err.rx_invalid_peer.num,
  2419. 1);
  2420. }
  2421. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2422. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2423. return;
  2424. }
  2425. dp_peer_unref_delete(peer, DP_MOD_ID_RX);
  2426. }
  2427. deliver_fail:
  2428. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2429. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2430. dp_rx_nbuf_free(nbuf);
  2431. if (vdev)
  2432. dp_vdev_unref_delete(soc, vdev, DP_MOD_ID_RX);
  2433. }
  2434. #else
  2435. void dp_rx_deliver_to_stack_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2436. {
  2437. DP_STATS_INC_PKT(soc, rx.err.rx_invalid_peer, 1,
  2438. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2439. dp_rx_nbuf_free(nbuf);
  2440. }
  2441. #endif
  2442. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2443. #ifdef WLAN_SUPPORT_RX_FISA
  2444. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2445. {
  2446. QDF_NBUF_CB_RX_PACKET_L3_HDR_PAD(nbuf) = l3_padding;
  2447. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2448. }
  2449. #else
  2450. void dp_rx_skip_tlvs(struct dp_soc *soc, qdf_nbuf_t nbuf, uint32_t l3_padding)
  2451. {
  2452. qdf_nbuf_pull_head(nbuf, l3_padding + soc->rx_pkt_tlv_size);
  2453. }
  2454. #endif
  2455. #ifndef QCA_HOST_MODE_WIFI_DISABLED
  2456. #ifdef DP_RX_DROP_RAW_FRM
  2457. bool dp_rx_is_raw_frame_dropped(qdf_nbuf_t nbuf)
  2458. {
  2459. if (qdf_nbuf_is_raw_frame(nbuf)) {
  2460. dp_rx_nbuf_free(nbuf);
  2461. return true;
  2462. }
  2463. return false;
  2464. }
  2465. #endif
  2466. #ifdef WLAN_DP_FEATURE_SW_LATENCY_MGR
  2467. void dp_rx_update_stats(struct dp_soc *soc, qdf_nbuf_t nbuf)
  2468. {
  2469. DP_STATS_INC_PKT(soc, rx.ingress, 1,
  2470. QDF_NBUF_CB_RX_PKT_LEN(nbuf));
  2471. }
  2472. #endif
  2473. #ifdef WLAN_FEATURE_PKT_CAPTURE_V2
  2474. void dp_rx_deliver_to_pkt_capture(struct dp_soc *soc, struct dp_pdev *pdev,
  2475. uint16_t peer_id, uint32_t is_offload,
  2476. qdf_nbuf_t netbuf)
  2477. {
  2478. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2479. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA, soc, netbuf,
  2480. peer_id, is_offload, pdev->pdev_id);
  2481. }
  2482. void dp_rx_deliver_to_pkt_capture_no_peer(struct dp_soc *soc, qdf_nbuf_t nbuf,
  2483. uint32_t is_offload)
  2484. {
  2485. if (wlan_cfg_get_pkt_capture_mode(soc->wlan_cfg_ctx))
  2486. dp_wdi_event_handler(WDI_EVENT_PKT_CAPTURE_RX_DATA_NO_PEER,
  2487. soc, nbuf, HTT_INVALID_VDEV,
  2488. is_offload, 0);
  2489. }
  2490. #endif
  2491. #endif /* QCA_HOST_MODE_WIFI_DISABLED */
  2492. QDF_STATUS dp_rx_vdev_detach(struct dp_vdev *vdev)
  2493. {
  2494. QDF_STATUS ret;
  2495. if (vdev->osif_rx_flush) {
  2496. ret = vdev->osif_rx_flush(vdev->osif_vdev, vdev->vdev_id);
  2497. if (!QDF_IS_STATUS_SUCCESS(ret)) {
  2498. dp_err("Failed to flush rx pkts for vdev %d\n",
  2499. vdev->vdev_id);
  2500. return ret;
  2501. }
  2502. }
  2503. return QDF_STATUS_SUCCESS;
  2504. }
  2505. static QDF_STATUS
  2506. dp_pdev_nbuf_alloc_and_map(struct dp_soc *dp_soc,
  2507. struct dp_rx_nbuf_frag_info *nbuf_frag_info_t,
  2508. struct dp_pdev *dp_pdev,
  2509. struct rx_desc_pool *rx_desc_pool)
  2510. {
  2511. QDF_STATUS ret = QDF_STATUS_E_FAILURE;
  2512. (nbuf_frag_info_t->virt_addr).nbuf =
  2513. qdf_nbuf_alloc(dp_soc->osdev, rx_desc_pool->buf_size,
  2514. RX_BUFFER_RESERVATION,
  2515. rx_desc_pool->buf_alignment, FALSE);
  2516. if (!((nbuf_frag_info_t->virt_addr).nbuf)) {
  2517. dp_err("nbuf alloc failed");
  2518. DP_STATS_INC(dp_pdev, replenish.nbuf_alloc_fail, 1);
  2519. return ret;
  2520. }
  2521. ret = qdf_nbuf_map_nbytes_single(dp_soc->osdev,
  2522. (nbuf_frag_info_t->virt_addr).nbuf,
  2523. QDF_DMA_FROM_DEVICE,
  2524. rx_desc_pool->buf_size);
  2525. if (qdf_unlikely(QDF_IS_STATUS_ERROR(ret))) {
  2526. qdf_nbuf_free((nbuf_frag_info_t->virt_addr).nbuf);
  2527. dp_err("nbuf map failed");
  2528. DP_STATS_INC(dp_pdev, replenish.map_err, 1);
  2529. return ret;
  2530. }
  2531. nbuf_frag_info_t->paddr =
  2532. qdf_nbuf_get_frag_paddr((nbuf_frag_info_t->virt_addr).nbuf, 0);
  2533. ret = dp_check_paddr(dp_soc, &((nbuf_frag_info_t->virt_addr).nbuf),
  2534. &nbuf_frag_info_t->paddr,
  2535. rx_desc_pool);
  2536. if (ret == QDF_STATUS_E_FAILURE) {
  2537. dp_err("nbuf check x86 failed");
  2538. DP_STATS_INC(dp_pdev, replenish.x86_fail, 1);
  2539. return ret;
  2540. }
  2541. return QDF_STATUS_SUCCESS;
  2542. }
  2543. QDF_STATUS
  2544. dp_pdev_rx_buffers_attach(struct dp_soc *dp_soc, uint32_t mac_id,
  2545. struct dp_srng *dp_rxdma_srng,
  2546. struct rx_desc_pool *rx_desc_pool,
  2547. uint32_t num_req_buffers)
  2548. {
  2549. struct dp_pdev *dp_pdev = dp_get_pdev_for_lmac_id(dp_soc, mac_id);
  2550. hal_ring_handle_t rxdma_srng = dp_rxdma_srng->hal_srng;
  2551. union dp_rx_desc_list_elem_t *next;
  2552. void *rxdma_ring_entry;
  2553. qdf_dma_addr_t paddr;
  2554. struct dp_rx_nbuf_frag_info *nf_info;
  2555. uint32_t nr_descs, nr_nbuf = 0, nr_nbuf_total = 0;
  2556. uint32_t buffer_index, nbuf_ptrs_per_page;
  2557. qdf_nbuf_t nbuf;
  2558. QDF_STATUS ret;
  2559. int page_idx, total_pages;
  2560. union dp_rx_desc_list_elem_t *desc_list = NULL;
  2561. union dp_rx_desc_list_elem_t *tail = NULL;
  2562. int sync_hw_ptr = 1;
  2563. uint32_t num_entries_avail;
  2564. if (qdf_unlikely(!dp_pdev)) {
  2565. dp_rx_err("%pK: pdev is null for mac_id = %d",
  2566. dp_soc, mac_id);
  2567. return QDF_STATUS_E_FAILURE;
  2568. }
  2569. if (qdf_unlikely(!rxdma_srng)) {
  2570. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2571. return QDF_STATUS_E_FAILURE;
  2572. }
  2573. dp_debug("requested %u RX buffers for driver attach", num_req_buffers);
  2574. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2575. num_entries_avail = hal_srng_src_num_avail(dp_soc->hal_soc,
  2576. rxdma_srng,
  2577. sync_hw_ptr);
  2578. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2579. if (!num_entries_avail) {
  2580. dp_err("Num of available entries is zero, nothing to do");
  2581. return QDF_STATUS_E_NOMEM;
  2582. }
  2583. if (num_entries_avail < num_req_buffers)
  2584. num_req_buffers = num_entries_avail;
  2585. nr_descs = dp_rx_get_free_desc_list(dp_soc, mac_id, rx_desc_pool,
  2586. num_req_buffers, &desc_list, &tail);
  2587. if (!nr_descs) {
  2588. dp_err("no free rx_descs in freelist");
  2589. DP_STATS_INC(dp_pdev, err.desc_alloc_fail, num_req_buffers);
  2590. return QDF_STATUS_E_NOMEM;
  2591. }
  2592. dp_debug("got %u RX descs for driver attach", nr_descs);
  2593. /*
  2594. * Try to allocate pointers to the nbuf one page at a time.
  2595. * Take pointers that can fit in one page of memory and
  2596. * iterate through the total descriptors that need to be
  2597. * allocated in order of pages. Reuse the pointers that
  2598. * have been allocated to fit in one page across each
  2599. * iteration to index into the nbuf.
  2600. */
  2601. total_pages = (nr_descs * sizeof(*nf_info)) / DP_BLOCKMEM_SIZE;
  2602. /*
  2603. * Add an extra page to store the remainder if any
  2604. */
  2605. if ((nr_descs * sizeof(*nf_info)) % DP_BLOCKMEM_SIZE)
  2606. total_pages++;
  2607. nf_info = qdf_mem_malloc(DP_BLOCKMEM_SIZE);
  2608. if (!nf_info) {
  2609. dp_err("failed to allocate nbuf array");
  2610. DP_STATS_INC(dp_pdev, replenish.rxdma_err, num_req_buffers);
  2611. QDF_BUG(0);
  2612. return QDF_STATUS_E_NOMEM;
  2613. }
  2614. nbuf_ptrs_per_page = DP_BLOCKMEM_SIZE / sizeof(*nf_info);
  2615. for (page_idx = 0; page_idx < total_pages; page_idx++) {
  2616. qdf_mem_zero(nf_info, DP_BLOCKMEM_SIZE);
  2617. for (nr_nbuf = 0; nr_nbuf < nbuf_ptrs_per_page; nr_nbuf++) {
  2618. /*
  2619. * The last page of buffer pointers may not be required
  2620. * completely based on the number of descriptors. Below
  2621. * check will ensure we are allocating only the
  2622. * required number of descriptors.
  2623. */
  2624. if (nr_nbuf_total >= nr_descs)
  2625. break;
  2626. /* Flag is set while pdev rx_desc_pool initialization */
  2627. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2628. ret = dp_pdev_frag_alloc_and_map(dp_soc,
  2629. &nf_info[nr_nbuf], dp_pdev,
  2630. rx_desc_pool);
  2631. else
  2632. ret = dp_pdev_nbuf_alloc_and_map(dp_soc,
  2633. &nf_info[nr_nbuf], dp_pdev,
  2634. rx_desc_pool);
  2635. if (QDF_IS_STATUS_ERROR(ret))
  2636. break;
  2637. nr_nbuf_total++;
  2638. }
  2639. hal_srng_access_start(dp_soc->hal_soc, rxdma_srng);
  2640. for (buffer_index = 0; buffer_index < nr_nbuf; buffer_index++) {
  2641. rxdma_ring_entry =
  2642. hal_srng_src_get_next(dp_soc->hal_soc,
  2643. rxdma_srng);
  2644. qdf_assert_always(rxdma_ring_entry);
  2645. next = desc_list->next;
  2646. paddr = nf_info[buffer_index].paddr;
  2647. nbuf = nf_info[buffer_index].virt_addr.nbuf;
  2648. /* Flag is set while pdev rx_desc_pool initialization */
  2649. if (qdf_unlikely(rx_desc_pool->rx_mon_dest_frag_enable))
  2650. dp_rx_desc_frag_prep(&desc_list->rx_desc,
  2651. &nf_info[buffer_index]);
  2652. else
  2653. dp_rx_desc_prep(&desc_list->rx_desc,
  2654. &nf_info[buffer_index]);
  2655. desc_list->rx_desc.in_use = 1;
  2656. dp_rx_desc_alloc_dbg_info(&desc_list->rx_desc);
  2657. dp_rx_desc_update_dbg_info(&desc_list->rx_desc,
  2658. __func__,
  2659. RX_DESC_REPLENISHED);
  2660. hal_rxdma_buff_addr_info_set(dp_soc->hal_soc ,rxdma_ring_entry, paddr,
  2661. desc_list->rx_desc.cookie,
  2662. rx_desc_pool->owner);
  2663. dp_ipa_handle_rx_buf_smmu_mapping(
  2664. dp_soc, nbuf,
  2665. rx_desc_pool->buf_size, true,
  2666. __func__, __LINE__);
  2667. dp_audio_smmu_map(dp_soc->osdev,
  2668. qdf_mem_paddr_from_dmaaddr(dp_soc->osdev,
  2669. QDF_NBUF_CB_PADDR(nbuf)),
  2670. QDF_NBUF_CB_PADDR(nbuf),
  2671. rx_desc_pool->buf_size);
  2672. desc_list = next;
  2673. }
  2674. dp_rx_refill_ring_record_entry(dp_soc, dp_pdev->lmac_id,
  2675. rxdma_srng, nr_nbuf, nr_nbuf);
  2676. hal_srng_access_end(dp_soc->hal_soc, rxdma_srng);
  2677. }
  2678. dp_info("filled %u RX buffers for driver attach", nr_nbuf_total);
  2679. qdf_mem_free(nf_info);
  2680. if (!nr_nbuf_total) {
  2681. dp_err("No nbuf's allocated");
  2682. QDF_BUG(0);
  2683. return QDF_STATUS_E_RESOURCES;
  2684. }
  2685. /* No need to count the number of bytes received during replenish.
  2686. * Therefore set replenish.pkts.bytes as 0.
  2687. */
  2688. DP_STATS_INC_PKT(dp_pdev, replenish.pkts, nr_nbuf, 0);
  2689. return QDF_STATUS_SUCCESS;
  2690. }
  2691. qdf_export_symbol(dp_pdev_rx_buffers_attach);
  2692. #ifdef DP_RX_MON_MEM_FRAG
  2693. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2694. bool is_mon_dest_desc)
  2695. {
  2696. rx_desc_pool->rx_mon_dest_frag_enable = is_mon_dest_desc;
  2697. if (is_mon_dest_desc)
  2698. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is enabled");
  2699. }
  2700. #else
  2701. void dp_rx_enable_mon_dest_frag(struct rx_desc_pool *rx_desc_pool,
  2702. bool is_mon_dest_desc)
  2703. {
  2704. rx_desc_pool->rx_mon_dest_frag_enable = false;
  2705. if (is_mon_dest_desc)
  2706. dp_alert("Feature DP_RX_MON_MEM_FRAG for mon_dest is disabled");
  2707. }
  2708. #endif
  2709. qdf_export_symbol(dp_rx_enable_mon_dest_frag);
  2710. QDF_STATUS
  2711. dp_rx_pdev_desc_pool_alloc(struct dp_pdev *pdev)
  2712. {
  2713. struct dp_soc *soc = pdev->soc;
  2714. uint32_t rxdma_entries;
  2715. uint32_t rx_sw_desc_num;
  2716. struct dp_srng *dp_rxdma_srng;
  2717. struct rx_desc_pool *rx_desc_pool;
  2718. uint32_t status = QDF_STATUS_SUCCESS;
  2719. int mac_for_pdev;
  2720. mac_for_pdev = pdev->lmac_id;
  2721. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2722. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2723. soc, mac_for_pdev);
  2724. return status;
  2725. }
  2726. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2727. rxdma_entries = dp_rxdma_srng->num_entries;
  2728. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2729. rx_sw_desc_num = wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2730. rx_desc_pool->desc_type = DP_RX_DESC_BUF_TYPE;
  2731. status = dp_rx_desc_pool_alloc(soc,
  2732. rx_sw_desc_num,
  2733. rx_desc_pool);
  2734. if (status != QDF_STATUS_SUCCESS)
  2735. return status;
  2736. return status;
  2737. }
  2738. void dp_rx_pdev_desc_pool_free(struct dp_pdev *pdev)
  2739. {
  2740. int mac_for_pdev = pdev->lmac_id;
  2741. struct dp_soc *soc = pdev->soc;
  2742. struct rx_desc_pool *rx_desc_pool;
  2743. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2744. dp_rx_desc_pool_free(soc, rx_desc_pool);
  2745. }
  2746. QDF_STATUS dp_rx_pdev_desc_pool_init(struct dp_pdev *pdev)
  2747. {
  2748. int mac_for_pdev = pdev->lmac_id;
  2749. struct dp_soc *soc = pdev->soc;
  2750. uint32_t rxdma_entries;
  2751. uint32_t rx_sw_desc_num;
  2752. struct dp_srng *dp_rxdma_srng;
  2753. struct rx_desc_pool *rx_desc_pool;
  2754. uint32_t target_type = hal_get_target_type(soc->hal_soc);
  2755. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2756. if (wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx)) {
  2757. /*
  2758. * If NSS is enabled, rx_desc_pool is already filled.
  2759. * Hence, just disable desc_pool frag flag.
  2760. */
  2761. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2762. dp_rx_info("%pK: nss-wifi<4> skip Rx refil %d",
  2763. soc, mac_for_pdev);
  2764. return QDF_STATUS_SUCCESS;
  2765. }
  2766. if (dp_rx_desc_pool_is_allocated(rx_desc_pool) == QDF_STATUS_E_NOMEM)
  2767. return QDF_STATUS_E_NOMEM;
  2768. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2769. rxdma_entries = dp_rxdma_srng->num_entries;
  2770. soc->process_rx_status = CONFIG_PROCESS_RX_STATUS;
  2771. rx_sw_desc_num =
  2772. wlan_cfg_get_dp_soc_rx_sw_desc_num(soc->wlan_cfg_ctx);
  2773. rx_desc_pool->owner = dp_rx_get_rx_bm_id(soc);
  2774. rx_desc_pool->buf_size = RX_DATA_BUFFER_SIZE;
  2775. rx_desc_pool->buf_alignment = RX_DATA_BUFFER_ALIGNMENT;
  2776. /* Disable monitor dest processing via frag */
  2777. if (target_type == TARGET_TYPE_QCN9160)
  2778. dp_rx_enable_mon_dest_frag(rx_desc_pool, true);
  2779. else
  2780. dp_rx_enable_mon_dest_frag(rx_desc_pool, false);
  2781. dp_rx_desc_pool_init(soc, mac_for_pdev,
  2782. rx_sw_desc_num, rx_desc_pool);
  2783. return QDF_STATUS_SUCCESS;
  2784. }
  2785. void dp_rx_pdev_desc_pool_deinit(struct dp_pdev *pdev)
  2786. {
  2787. int mac_for_pdev = pdev->lmac_id;
  2788. struct dp_soc *soc = pdev->soc;
  2789. struct rx_desc_pool *rx_desc_pool;
  2790. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2791. dp_rx_desc_pool_deinit(soc, rx_desc_pool, mac_for_pdev);
  2792. }
  2793. QDF_STATUS
  2794. dp_rx_pdev_buffers_alloc(struct dp_pdev *pdev)
  2795. {
  2796. int mac_for_pdev = pdev->lmac_id;
  2797. struct dp_soc *soc = pdev->soc;
  2798. struct dp_srng *dp_rxdma_srng;
  2799. struct rx_desc_pool *rx_desc_pool;
  2800. uint32_t rxdma_entries;
  2801. uint32_t target_type = hal_get_target_type(soc->hal_soc);
  2802. dp_rxdma_srng = &soc->rx_refill_buf_ring[mac_for_pdev];
  2803. rxdma_entries = dp_rxdma_srng->num_entries;
  2804. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2805. /* Initialize RX buffer pool which will be
  2806. * used during low memory conditions
  2807. */
  2808. dp_rx_buffer_pool_init(soc, mac_for_pdev);
  2809. if (target_type == TARGET_TYPE_QCN9160)
  2810. return dp_pdev_rx_buffers_attach(soc, mac_for_pdev,
  2811. dp_rxdma_srng,
  2812. rx_desc_pool,
  2813. rxdma_entries - 1);
  2814. else
  2815. return dp_pdev_rx_buffers_attach_simple(soc, mac_for_pdev,
  2816. dp_rxdma_srng,
  2817. rx_desc_pool,
  2818. rxdma_entries - 1);
  2819. }
  2820. void
  2821. dp_rx_pdev_buffers_free(struct dp_pdev *pdev)
  2822. {
  2823. int mac_for_pdev = pdev->lmac_id;
  2824. struct dp_soc *soc = pdev->soc;
  2825. struct rx_desc_pool *rx_desc_pool;
  2826. uint32_t target_type = hal_get_target_type(soc->hal_soc);
  2827. rx_desc_pool = &soc->rx_desc_buf[mac_for_pdev];
  2828. if (target_type == TARGET_TYPE_QCN9160)
  2829. dp_rx_desc_frag_free(soc, rx_desc_pool);
  2830. else
  2831. dp_rx_desc_nbuf_free(soc, rx_desc_pool, false);
  2832. dp_rx_buffer_pool_deinit(soc, mac_for_pdev);
  2833. }
  2834. #ifdef DP_RX_SPECIAL_FRAME_NEED
  2835. bool dp_rx_deliver_special_frame(struct dp_soc *soc,
  2836. struct dp_txrx_peer *txrx_peer,
  2837. qdf_nbuf_t nbuf, uint32_t frame_mask,
  2838. uint8_t *rx_tlv_hdr)
  2839. {
  2840. uint32_t l2_hdr_offset = 0;
  2841. uint16_t msdu_len = 0;
  2842. uint32_t skip_len;
  2843. l2_hdr_offset =
  2844. hal_rx_msdu_end_l3_hdr_padding_get(soc->hal_soc, rx_tlv_hdr);
  2845. if (qdf_unlikely(qdf_nbuf_is_frag(nbuf))) {
  2846. skip_len = l2_hdr_offset;
  2847. } else {
  2848. msdu_len = QDF_NBUF_CB_RX_PKT_LEN(nbuf);
  2849. skip_len = l2_hdr_offset + soc->rx_pkt_tlv_size;
  2850. qdf_nbuf_set_pktlen(nbuf, msdu_len + skip_len);
  2851. }
  2852. QDF_NBUF_CB_RX_NUM_ELEMENTS_IN_LIST(nbuf) = 1;
  2853. dp_rx_set_hdr_pad(nbuf, l2_hdr_offset);
  2854. qdf_nbuf_pull_head(nbuf, skip_len);
  2855. if (txrx_peer->vdev) {
  2856. dp_rx_send_pktlog(soc, txrx_peer->vdev->pdev, nbuf,
  2857. QDF_TX_RX_STATUS_OK);
  2858. }
  2859. if (dp_rx_is_special_frame(nbuf, frame_mask)) {
  2860. dp_info("special frame, mpdu sn 0x%x",
  2861. hal_rx_get_rx_sequence(soc->hal_soc, rx_tlv_hdr));
  2862. qdf_nbuf_set_exc_frame(nbuf, 1);
  2863. dp_rx_deliver_to_stack(soc, txrx_peer->vdev, txrx_peer,
  2864. nbuf, NULL);
  2865. return true;
  2866. }
  2867. return false;
  2868. }
  2869. #endif
  2870. #ifdef QCA_MULTIPASS_SUPPORT
  2871. bool dp_rx_multipass_process(struct dp_txrx_peer *txrx_peer, qdf_nbuf_t nbuf,
  2872. uint8_t tid)
  2873. {
  2874. struct vlan_ethhdr *vethhdrp;
  2875. if (qdf_unlikely(!txrx_peer->vlan_id))
  2876. return true;
  2877. vethhdrp = (struct vlan_ethhdr *)qdf_nbuf_data(nbuf);
  2878. /*
  2879. * h_vlan_proto & h_vlan_TCI should be 0x8100 & zero respectively
  2880. * as it is expected to be padded by 0
  2881. * return false if frame doesn't have above tag so that caller will
  2882. * drop the frame.
  2883. */
  2884. if (qdf_unlikely(vethhdrp->h_vlan_proto != htons(QDF_ETH_TYPE_8021Q)) ||
  2885. qdf_unlikely(vethhdrp->h_vlan_TCI != 0))
  2886. return false;
  2887. vethhdrp->h_vlan_TCI = htons(((tid & 0x7) << VLAN_PRIO_SHIFT) |
  2888. (txrx_peer->vlan_id & VLAN_VID_MASK));
  2889. if (vethhdrp->h_vlan_encapsulated_proto == htons(ETHERTYPE_PAE))
  2890. dp_tx_remove_vlan_tag(txrx_peer->vdev, nbuf);
  2891. return true;
  2892. }
  2893. #endif /* QCA_MULTIPASS_SUPPORT */