wcd939x-mbhc.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2022-2023, Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/device.h>
  10. #include <linux/printk.h>
  11. #include <linux/ratelimit.h>
  12. #include <linux/kernel.h>
  13. #include <linux/gpio.h>
  14. #include <linux/delay.h>
  15. #include <linux/regmap.h>
  16. #include <linux/timer.h>
  17. #include <sound/pcm.h>
  18. #include <sound/pcm_params.h>
  19. #include <sound/soc.h>
  20. #include <sound/soc-dapm.h>
  21. #include <asoc/wcdcal-hwdep.h>
  22. #include <asoc/wcd-mbhc-v2-api.h>
  23. #include "wcd939x-registers.h"
  24. #include "internal.h"
  25. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  26. #include <linux/soc/qcom/wcd939x-i2c.h>
  27. #endif
  28. #define WCD939X_ZDET_SUPPORTED true
  29. /* Z value defined in milliohm */
  30. #define WCD939X_ZDET_VAL_32 32000
  31. #define WCD939X_ZDET_VAL_400 400000
  32. #define WCD939X_ZDET_VAL_1200 1200000
  33. #define WCD939X_ZDET_VAL_100K 100000000
  34. /* Z floating defined in ohms */
  35. #define WCD939X_ZDET_FLOATING_IMPEDANCE 0x0FFFFFFE
  36. #define WCD939X_ZDET_NUM_MEASUREMENTS 900
  37. #define WCD939X_MBHC_GET_C1(c) ((c & 0xC000) >> 14)
  38. #define WCD939X_MBHC_GET_X1(x) (x & 0x3FFF)
  39. /* Z value compared in milliOhm */
  40. #define WCD939X_MBHC_IS_SECOND_RAMP_REQUIRED(z) false
  41. #define WCD939X_MBHC_ZDET_CONST (1071 * 1024)
  42. #define WCD939X_MBHC_MOISTURE_RREF R_24_KOHM
  43. #define OHMS_TO_MILLIOHMS 1000
  44. #define FLOAT_TO_FIXED_XTALK (1UL << 16)
  45. #define MAX_XTALK_ALPHA 255
  46. #define MIN_RL_EFF_MOHMS 1
  47. #define MAX_RL_EFF_MOHMS 900000
  48. #define HD2_CODE_BASE_VALUE 0x1D
  49. #define HD2_CODE_INV_RESOLUTION 4201025
  50. #define FLOAT_TO_FIXED_LINEARIZER (1UL << 12)
  51. #define MIN_TAP_OFFSET -1023
  52. #define MAX_TAP_OFFSET 1023
  53. #define MIN_TAP 0
  54. #define MAX_TAP 1023
  55. #define RDOWN_TIMER_PERIOD_MSEC 100
  56. static struct wcd_mbhc_register
  57. wcd_mbhc_registers[WCD_MBHC_REG_FUNC_MAX] = {
  58. WCD_MBHC_REGISTER("WCD_MBHC_L_DET_EN",
  59. WCD939X_MBHC_MECH, 0x80, 7, 0),
  60. WCD_MBHC_REGISTER("WCD_MBHC_GND_DET_EN",
  61. WCD939X_MBHC_MECH, 0x40, 6, 0),
  62. WCD_MBHC_REGISTER("WCD_MBHC_MECH_DETECTION_TYPE",
  63. WCD939X_MBHC_MECH, 0x20, 5, 0),
  64. WCD_MBHC_REGISTER("WCD_MBHC_MIC_CLAMP_CTL",
  65. WCD939X_PLUG_DETECT_CTL, 0x30, 4, 0),
  66. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_DETECTION_TYPE",
  67. WCD939X_MBHC_ELECT, 0x08, 3, 0),
  68. WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_CTRL",
  69. WCD939X_MECH_DET_CURRENT, 0x1F, 0, 0),
  70. WCD_MBHC_REGISTER("WCD_MBHC_HS_L_DET_PULL_UP_COMP_CTRL",
  71. WCD939X_MBHC_MECH, 0x04, 2, 0),
  72. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PLUG_TYPE",
  73. WCD939X_MBHC_MECH, 0x10, 4, 0),
  74. WCD_MBHC_REGISTER("WCD_MBHC_GND_PLUG_TYPE",
  75. WCD939X_MBHC_MECH, 0x08, 3, 0),
  76. WCD_MBHC_REGISTER("WCD_MBHC_SW_HPH_LP_100K_TO_GND",
  77. WCD939X_MBHC_MECH, 0x01, 0, 0),
  78. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_SCHMT_ISRC",
  79. WCD939X_MBHC_ELECT, 0x06, 1, 0),
  80. WCD_MBHC_REGISTER("WCD_MBHC_FSM_EN",
  81. WCD939X_MBHC_ELECT, 0x80, 7, 0),
  82. WCD_MBHC_REGISTER("WCD_MBHC_INSREM_DBNC",
  83. WCD939X_PLUG_DETECT_CTL, 0x0F, 0, 0),
  84. WCD_MBHC_REGISTER("WCD_MBHC_BTN_DBNC",
  85. WCD939X_CTL_1, 0x03, 0, 0),
  86. WCD_MBHC_REGISTER("WCD_MBHC_HS_VREF",
  87. WCD939X_CTL_2, 0x03, 0, 0),
  88. WCD_MBHC_REGISTER("WCD_MBHC_HS_COMP_RESULT",
  89. WCD939X_MBHC_RESULT_3, 0x08, 3, 0),
  90. WCD_MBHC_REGISTER("WCD_MBHC_IN2P_CLAMP_STATE",
  91. WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
  92. WCD_MBHC_REGISTER("WCD_MBHC_MIC_SCHMT_RESULT",
  93. WCD939X_MBHC_RESULT_3, 0x20, 5, 0),
  94. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_SCHMT_RESULT",
  95. WCD939X_MBHC_RESULT_3, 0x80, 7, 0),
  96. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_SCHMT_RESULT",
  97. WCD939X_MBHC_RESULT_3, 0x40, 6, 0),
  98. WCD_MBHC_REGISTER("WCD_MBHC_OCP_FSM_EN",
  99. WCD939X_HPH_OCP_CTL, 0x10, 4, 0),
  100. WCD_MBHC_REGISTER("WCD_MBHC_BTN_RESULT",
  101. WCD939X_MBHC_RESULT_3, 0x07, 0, 0),
  102. WCD_MBHC_REGISTER("WCD_MBHC_BTN_ISRC_CTL",
  103. WCD939X_MBHC_ELECT, 0x70, 4, 0),
  104. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_RESULT",
  105. WCD939X_MBHC_RESULT_3, 0xFF, 0, 0),
  106. WCD_MBHC_REGISTER("WCD_MBHC_MICB_CTRL",
  107. WCD939X_MICB2, 0xC0, 6, 0),
  108. WCD_MBHC_REGISTER("WCD_MBHC_HPH_CNP_WG_TIME",
  109. WCD939X_CNP_WG_TIME, 0xFF, 0, 0),
  110. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_PA_EN",
  111. WCD939X_HPH, 0x40, 6, 0),
  112. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_PA_EN",
  113. WCD939X_HPH, 0x80, 7, 0),
  114. WCD_MBHC_REGISTER("WCD_MBHC_HPH_PA_EN",
  115. WCD939X_HPH, 0xC0, 6, 0),
  116. WCD_MBHC_REGISTER("WCD_MBHC_SWCH_LEVEL_REMOVE",
  117. WCD939X_MBHC_RESULT_3, 0x10, 4, 0),
  118. WCD_MBHC_REGISTER("WCD_MBHC_PULLDOWN_CTRL",
  119. 0, 0, 0, 0),
  120. WCD_MBHC_REGISTER("WCD_MBHC_ANC_DET_EN",
  121. WCD939X_CTL_BCS, 0x02, 1, 0),
  122. WCD_MBHC_REGISTER("WCD_MBHC_FSM_STATUS",
  123. WCD939X_FSM_STATUS, 0x01, 0, 0),
  124. WCD_MBHC_REGISTER("WCD_MBHC_MUX_CTL",
  125. WCD939X_CTL_2, 0x70, 4, 0),
  126. WCD_MBHC_REGISTER("WCD_MBHC_MOISTURE_STATUS",
  127. WCD939X_FSM_STATUS, 0x20, 5, 0),
  128. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_GND",
  129. WCD939X_PA_CTL2, 0x40, 6, 0),
  130. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_GND",
  131. WCD939X_PA_CTL2, 0x10, 4, 0),
  132. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_DET_EN",
  133. WCD939X_L_TEST, 0x01, 0, 0),
  134. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_DET_EN",
  135. WCD939X_R_TEST, 0x01, 0, 0),
  136. WCD_MBHC_REGISTER("WCD_MBHC_HPHL_OCP_STATUS",
  137. WCD939X_INTR_STATUS_0, 0x80, 7, 0),
  138. WCD_MBHC_REGISTER("WCD_MBHC_HPHR_OCP_STATUS",
  139. WCD939X_INTR_STATUS_0, 0x20, 5, 0),
  140. WCD_MBHC_REGISTER("WCD_MBHC_ADC_EN",
  141. WCD939X_CTL_1, 0x08, 3, 0),
  142. WCD_MBHC_REGISTER("WCD_MBHC_ADC_COMPLETE", WCD939X_FSM_STATUS,
  143. 0x40, 6, 0),
  144. WCD_MBHC_REGISTER("WCD_MBHC_ADC_TIMEOUT", WCD939X_FSM_STATUS,
  145. 0x80, 7, 0),
  146. WCD_MBHC_REGISTER("WCD_MBHC_ADC_RESULT", WCD939X_ADC_RESULT,
  147. 0xFF, 0, 0),
  148. WCD_MBHC_REGISTER("WCD_MBHC_MICB2_VOUT", WCD939X_MICB2, 0x3F, 0, 0),
  149. WCD_MBHC_REGISTER("WCD_MBHC_ADC_MODE",
  150. WCD939X_CTL_1, 0x10, 4, 0),
  151. WCD_MBHC_REGISTER("WCD_MBHC_DETECTION_DONE",
  152. WCD939X_CTL_1, 0x04, 2, 0),
  153. WCD_MBHC_REGISTER("WCD_MBHC_ELECT_ISRC_EN",
  154. WCD939X_MBHC_ZDET, 0x02, 1, 0),
  155. };
  156. static const struct wcd_mbhc_intr intr_ids = {
  157. .mbhc_sw_intr = WCD939X_IRQ_MBHC_SW_DET,
  158. .mbhc_btn_press_intr = WCD939X_IRQ_MBHC_BUTTON_PRESS_DET,
  159. .mbhc_btn_release_intr = WCD939X_IRQ_MBHC_BUTTON_RELEASE_DET,
  160. .mbhc_hs_ins_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_LEG_DET,
  161. .mbhc_hs_rem_intr = WCD939X_IRQ_MBHC_ELECT_INS_REM_DET,
  162. .hph_left_ocp = WCD939X_IRQ_HPHL_OCP_INT,
  163. .hph_right_ocp = WCD939X_IRQ_HPHR_OCP_INT,
  164. };
  165. struct wcd939x_mbhc_zdet_param {
  166. u16 ldo_ctl;
  167. u16 noff;
  168. u16 nshift;
  169. u16 btn5;
  170. u16 btn6;
  171. u16 btn7;
  172. };
  173. static int wcd939x_mbhc_request_irq(struct snd_soc_component *component,
  174. int irq, irq_handler_t handler,
  175. const char *name, void *data)
  176. {
  177. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  178. return wcd_request_irq(&wcd939x->irq_info, irq, name, handler, data);
  179. }
  180. static void wcd939x_mbhc_irq_control(struct snd_soc_component *component,
  181. int irq, bool enable)
  182. {
  183. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  184. if (enable)
  185. wcd_enable_irq(&wcd939x->irq_info, irq);
  186. else
  187. wcd_disable_irq(&wcd939x->irq_info, irq);
  188. }
  189. static int wcd939x_mbhc_free_irq(struct snd_soc_component *component,
  190. int irq, void *data)
  191. {
  192. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  193. wcd_free_irq(&wcd939x->irq_info, irq, data);
  194. return 0;
  195. }
  196. static void wcd939x_mbhc_clk_setup(struct snd_soc_component *component,
  197. bool enable)
  198. {
  199. if (enable)
  200. snd_soc_component_update_bits(component, WCD939X_CTL_1,
  201. 0x80, 0x80);
  202. else
  203. snd_soc_component_update_bits(component, WCD939X_CTL_1,
  204. 0x80, 0x00);
  205. }
  206. static int wcd939x_mbhc_btn_to_num(struct snd_soc_component *component)
  207. {
  208. return snd_soc_component_read(component, WCD939X_MBHC_RESULT_3) & 0x7;
  209. }
  210. static void wcd939x_mbhc_mbhc_bias_control(struct snd_soc_component *component,
  211. bool enable)
  212. {
  213. if (enable)
  214. snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
  215. 0x01, 0x01);
  216. else
  217. snd_soc_component_update_bits(component, WCD939X_MBHC_ELECT,
  218. 0x01, 0x00);
  219. }
  220. static void wcd939x_mbhc_program_btn_thr(struct snd_soc_component *component,
  221. s16 *btn_low, s16 *btn_high,
  222. int num_btn, bool is_micbias)
  223. {
  224. int i;
  225. int vth;
  226. if (num_btn > WCD_MBHC_DEF_BUTTONS) {
  227. dev_err_ratelimited(component->dev, "%s: invalid number of buttons: %d\n",
  228. __func__, num_btn);
  229. return;
  230. }
  231. for (i = 0; i < num_btn; i++) {
  232. vth = ((btn_high[i] * 2) / 25) & 0x3F;
  233. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN0 + i,
  234. 0xFC, vth << 2);
  235. dev_dbg(component->dev, "%s: btn_high[%d]: %d, vth: %d\n",
  236. __func__, i, btn_high[i], vth);
  237. }
  238. }
  239. static bool wcd939x_mbhc_lock_sleep(struct wcd_mbhc *mbhc, bool lock)
  240. {
  241. struct snd_soc_component *component = mbhc->component;
  242. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  243. wcd939x->wakeup((void*)wcd939x, lock);
  244. return true;
  245. }
  246. static int wcd939x_mbhc_register_notifier(struct wcd_mbhc *mbhc,
  247. struct notifier_block *nblock,
  248. bool enable)
  249. {
  250. struct wcd939x_mbhc *wcd939x_mbhc;
  251. wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
  252. if (enable)
  253. return blocking_notifier_chain_register(&wcd939x_mbhc->notifier,
  254. nblock);
  255. else
  256. return blocking_notifier_chain_unregister(
  257. &wcd939x_mbhc->notifier, nblock);
  258. }
  259. static bool wcd939x_mbhc_micb_en_status(struct wcd_mbhc *mbhc, int micb_num)
  260. {
  261. u8 val = 0;
  262. if (micb_num == MIC_BIAS_2) {
  263. val = ((snd_soc_component_read(mbhc->component,
  264. WCD939X_MICB2) & 0xC0)
  265. >> 6);
  266. if (val == 0x01)
  267. return true;
  268. }
  269. return false;
  270. }
  271. static bool wcd939x_mbhc_hph_pa_on_status(struct snd_soc_component *component)
  272. {
  273. return (snd_soc_component_read(component, WCD939X_HPH) & 0xC0) ?
  274. true : false;
  275. }
  276. static void wcd939x_mbhc_hph_l_pull_up_control(
  277. struct snd_soc_component *component,
  278. int pull_up_cur)
  279. {
  280. /* Default pull up current to 2uA */
  281. if (pull_up_cur > HS_PULLUP_I_OFF || pull_up_cur < HS_PULLUP_I_3P0_UA ||
  282. pull_up_cur == HS_PULLUP_I_DEFAULT)
  283. pull_up_cur = HS_PULLUP_I_2P0_UA;
  284. dev_dbg(component->dev, "%s: HS pull up current:%d\n",
  285. __func__, pull_up_cur);
  286. snd_soc_component_update_bits(component,
  287. WCD939X_MECH_DET_CURRENT,
  288. 0x1F, pull_up_cur);
  289. }
  290. static int wcd939x_mbhc_request_micbias(struct snd_soc_component *component,
  291. int micb_num, int req)
  292. {
  293. int ret = 0;
  294. ret = wcd939x_micbias_control(component, micb_num, req, false);
  295. return ret;
  296. }
  297. static void wcd939x_mbhc_micb_ramp_control(struct snd_soc_component *component,
  298. bool enable)
  299. {
  300. if (enable) {
  301. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  302. 0x1C, 0x0C);
  303. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  304. 0x80, 0x80);
  305. } else {
  306. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  307. 0x80, 0x00);
  308. snd_soc_component_update_bits(component, WCD939X_MICB2_RAMP,
  309. 0x1C, 0x00);
  310. }
  311. }
  312. static struct firmware_cal *wcd939x_get_hwdep_fw_cal(struct wcd_mbhc *mbhc,
  313. enum wcd_cal_type type)
  314. {
  315. struct wcd939x_mbhc *wcd939x_mbhc;
  316. struct firmware_cal *hwdep_cal;
  317. struct snd_soc_component *component = mbhc->component;
  318. wcd939x_mbhc = container_of(mbhc, struct wcd939x_mbhc, wcd_mbhc);
  319. if (!component) {
  320. pr_err_ratelimited("%s: NULL component pointer\n", __func__);
  321. return NULL;
  322. }
  323. hwdep_cal = wcdcal_get_fw_cal(wcd939x_mbhc->fw_data, type);
  324. if (!hwdep_cal)
  325. dev_err_ratelimited(component->dev, "%s: cal not sent by %d\n",
  326. __func__, type);
  327. return hwdep_cal;
  328. }
  329. static int wcd939x_mbhc_micb_ctrl_threshold_mic(
  330. struct snd_soc_component *component,
  331. int micb_num, bool req_en)
  332. {
  333. struct wcd939x_pdata *pdata = dev_get_platdata(component->dev);
  334. int rc, micb_mv;
  335. if (micb_num != MIC_BIAS_2)
  336. return -EINVAL;
  337. /*
  338. * If device tree micbias level is already above the minimum
  339. * voltage needed to detect threshold microphone, then do
  340. * not change the micbias, just return.
  341. */
  342. if (pdata->micbias.micb2_mv >= WCD_MBHC_THR_HS_MICB_MV)
  343. return 0;
  344. micb_mv = req_en ? WCD_MBHC_THR_HS_MICB_MV : pdata->micbias.micb2_mv;
  345. rc = wcd939x_mbhc_micb_adjust_voltage(component, micb_mv, MIC_BIAS_2);
  346. return rc;
  347. }
  348. static inline void wcd939x_mbhc_get_result_params(struct wcd939x_priv *wcd939x,
  349. s16 *d1_a, u16 noff,
  350. int32_t *zdet)
  351. {
  352. int i;
  353. int val, val1;
  354. s16 c1;
  355. s32 x1, d1;
  356. int32_t denom;
  357. int minCode_param[] = {
  358. 3277, 1639, 820, 410, 205, 103, 52, 26
  359. };
  360. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x->mbhc;
  361. regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x20);
  362. for (i = 0; i < WCD939X_ZDET_NUM_MEASUREMENTS; i++) {
  363. regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_2, &val);
  364. if (val & 0x80)
  365. break;
  366. }
  367. val = val << 0x8;
  368. regmap_read(wcd939x->regmap, WCD939X_MBHC_RESULT_1, &val1);
  369. val |= val1;
  370. wcd939x_mbhc->rdown_prev_iter = val;
  371. regmap_update_bits(wcd939x->regmap, WCD939X_MBHC_ZDET, 0x20, 0x00);
  372. x1 = WCD939X_MBHC_GET_X1(val);
  373. c1 = WCD939X_MBHC_GET_C1(val);
  374. /* If ramp is not complete, give additional 5ms */
  375. if ((c1 < 2) && x1)
  376. usleep_range(5000, 5050);
  377. if (!c1 || !x1) {
  378. dev_dbg(wcd939x->dev,
  379. "%s: Impedance detect ramp error, c1=%d, x1=0x%x\n",
  380. __func__, c1, x1);
  381. goto ramp_down;
  382. }
  383. d1 = d1_a[c1];
  384. denom = (x1 * d1) - (1 << (14 - noff));
  385. if (denom > 0)
  386. *zdet = (WCD939X_MBHC_ZDET_CONST * 1000) / denom;
  387. else if (x1 < minCode_param[noff])
  388. *zdet = WCD939X_ZDET_FLOATING_IMPEDANCE;
  389. dev_dbg(wcd939x->dev, "%s: d1=%d, c1=%d, x1=0x%x, z_val=%d(milliOhm)\n",
  390. __func__, d1, c1, x1, *zdet);
  391. ramp_down:
  392. i = 0;
  393. wcd939x_mbhc->rdown_timer_complete = false;
  394. mod_timer(&wcd939x_mbhc->rdown_timer, jiffies + msecs_to_jiffies(RDOWN_TIMER_PERIOD_MSEC));
  395. while (x1) {
  396. regmap_read(wcd939x->regmap,
  397. WCD939X_MBHC_RESULT_1, &val);
  398. regmap_read(wcd939x->regmap,
  399. WCD939X_MBHC_RESULT_2, &val1);
  400. val = val << 0x08;
  401. val |= val1;
  402. x1 = WCD939X_MBHC_GET_X1(val);
  403. i++;
  404. if (i == WCD939X_ZDET_NUM_MEASUREMENTS)
  405. break;
  406. if (wcd939x_mbhc->rdown_timer_complete && wcd939x_mbhc->rdown_prev_iter == val)
  407. break;
  408. wcd939x_mbhc->rdown_prev_iter = val;
  409. }
  410. del_timer(&wcd939x_mbhc->rdown_timer);
  411. }
  412. static void wcd939x_mbhc_zdet_ramp(struct snd_soc_component *component,
  413. struct wcd939x_mbhc_zdet_param *zdet_param,
  414. int32_t *zl, int32_t *zr, s16 *d1_a)
  415. {
  416. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  417. int32_t zdet = 0;
  418. snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL, 0xF0,
  419. 0x80 | (zdet_param->ldo_ctl << 4));
  420. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN5, 0xFC,
  421. zdet_param->btn5);
  422. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN6, 0xFC,
  423. zdet_param->btn6);
  424. snd_soc_component_update_bits(component, WCD939X_MBHC_BTN7, 0xFC,
  425. zdet_param->btn7);
  426. snd_soc_component_update_bits(component, WCD939X_ZDET_ANA_CTL,
  427. 0x0F, zdet_param->noff);
  428. snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
  429. 0x0F, zdet_param->nshift);
  430. snd_soc_component_update_bits(component, WCD939X_ZDET_RAMP_CTL,
  431. 0x70, 0x60); /*acc1_min_63 */
  432. if (!zl)
  433. goto z_right;
  434. /* Start impedance measurement for HPH_L */
  435. regmap_update_bits(wcd939x->regmap,
  436. WCD939X_MBHC_ZDET, 0x80, 0x80);
  437. dev_dbg(wcd939x->dev, "%s: ramp for HPH_L, noff = %d\n",
  438. __func__, zdet_param->noff);
  439. wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
  440. regmap_update_bits(wcd939x->regmap,
  441. WCD939X_MBHC_ZDET, 0x80, 0x00);
  442. *zl = zdet;
  443. z_right:
  444. if (!zr)
  445. return;
  446. /* Start impedance measurement for HPH_R */
  447. regmap_update_bits(wcd939x->regmap,
  448. WCD939X_MBHC_ZDET, 0x40, 0x40);
  449. dev_dbg(wcd939x->dev, "%s: ramp for HPH_R, noff = %d\n",
  450. __func__, zdet_param->noff);
  451. wcd939x_mbhc_get_result_params(wcd939x, d1_a, zdet_param->noff, &zdet);
  452. regmap_update_bits(wcd939x->regmap,
  453. WCD939X_MBHC_ZDET, 0x40, 0x00);
  454. *zr = zdet;
  455. }
  456. static inline void wcd939x_wcd_mbhc_qfuse_cal(
  457. struct snd_soc_component *component,
  458. int32_t *z_val, int flag_l_r)
  459. {
  460. s16 q1;
  461. int q1_cal;
  462. q1 = snd_soc_component_read(component,
  463. WCD939X_EFUSE_REG_21 + flag_l_r);
  464. if (q1 & 0x80)
  465. q1_cal = (10000 - ((q1 & 0x7F) * 10));
  466. else
  467. q1_cal = (10000 + (q1 * 10));
  468. if (q1_cal > 0)
  469. *z_val = ((*z_val) * 10000) / q1_cal;
  470. }
  471. static void rdown_timer_callback(struct timer_list *timer)
  472. {
  473. struct wcd939x_mbhc *wcd939x_mbhc = container_of(timer, struct wcd939x_mbhc, rdown_timer);
  474. wcd939x_mbhc->rdown_timer_complete = true;
  475. }
  476. static void update_hd2_codes(struct regmap *regmap, u32 r_gnd_res_tot_mohms, u32 r_load_eff)
  477. {
  478. u64 hd2_delta = 0;
  479. if (!regmap)
  480. return;
  481. hd2_delta = (HD2_CODE_INV_RESOLUTION * (u64) r_gnd_res_tot_mohms +
  482. FLOAT_TO_FIXED_XTALK * (u64) ((r_gnd_res_tot_mohms + r_load_eff) / 2)) /
  483. (FLOAT_TO_FIXED_XTALK * (u64) (r_gnd_res_tot_mohms + r_load_eff));
  484. if (hd2_delta >= HD2_CODE_BASE_VALUE) {
  485. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F, 0x00);
  486. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F, 0x00);
  487. } else {
  488. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_L, 0x1F,
  489. HD2_CODE_BASE_VALUE - hd2_delta);
  490. regmap_update_bits(regmap, WCD939X_RDAC_HD2_CTL_R, 0x1F,
  491. HD2_CODE_BASE_VALUE - hd2_delta);
  492. }
  493. }
  494. static u8 get_xtalk_scale(u32 gain)
  495. {
  496. u8 i;
  497. int target, residue;
  498. if (gain == 0)
  499. return MAX_XTALK_SCALE;
  500. target = FLOAT_TO_FIXED_XTALK / ((int) gain);
  501. residue = target;
  502. for (i = 0; i <= MAX_XTALK_SCALE; i++) {
  503. residue = target - (1 << ((int)((u32) i)));
  504. if (residue < 0)
  505. return i;
  506. }
  507. return MAX_XTALK_SCALE;
  508. }
  509. static u8 get_xtalk_alpha(u32 gain, u8 scale)
  510. {
  511. u32 two_exp_scale, round_offset, alpha;
  512. if (gain == 0)
  513. return MIN_XTALK_ALPHA;
  514. two_exp_scale = 1 << ((u32) scale);
  515. round_offset = FLOAT_TO_FIXED_XTALK / 2;
  516. alpha = (((gain * two_exp_scale - FLOAT_TO_FIXED_XTALK) * 255) + round_offset)
  517. / FLOAT_TO_FIXED_XTALK;
  518. return (alpha <= MAX_XTALK_ALPHA) ? ((u8) alpha) : MAX_XTALK_ALPHA;
  519. }
  520. static u32 get_v_common_gnd_factor(u32 r_gnd_res_tot_mohms, u32 r_load_eff_mohms,
  521. u32 r_aud_res_tot_mohms)
  522. {
  523. /* Proof 1: The numerator does not overflow.
  524. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms =
  525. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms +
  526. * r_gnd_par_route2_mohms
  527. *
  528. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route{1,2}_mohms are all less
  529. * than MAX_USBCSS_HS_IMPEDANCE_MOHMS
  530. * -->
  531. * FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms <=
  532. * FLOAT_TO_FIXED_XTALK * 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  533. * (1 << 16) * 4 * 20,000 = 65,536 * 80,000 = 3,932,160,000 <= 2^32 - 1 =
  534. * 4,294,967,295 = U32_MAX
  535. *
  536. * Proof 2: The denominator is greater than 0.
  537. * r_load_eff_mohms >= MIN_RL_EFF_MOHMS = 1 > 0
  538. * -->
  539. * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms > 0
  540. *
  541. * Proof 3: The deonominator does not overflow.
  542. * r_load_eff_mohms <= MAX_RL_EFF_MOHMS
  543. * r_aud_res_tot_mohms and r_gnd_res_tot_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS
  544. * -->
  545. * r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms <=
  546. * MAX_RL_EFF_MOHMS + 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 900,000 + 2 * 20,000 = 940,000
  547. * <= U32_MAX = 2^32 - 1 = 4,294,967,295
  548. */
  549. return FLOAT_TO_FIXED_XTALK * r_gnd_res_tot_mohms /
  550. (r_load_eff_mohms + r_aud_res_tot_mohms + r_gnd_res_tot_mohms);
  551. }
  552. static u32 get_v_feedback_tap_factor_digital(u32 r_gnd_int_fet_mohms, u32 r_gnd_par_route1_mohms,
  553. u32 r_load_eff_mohms, u32 r_gnd_res_tot_mohms,
  554. u32 r_aud_res_tot_mohms)
  555. {
  556. /* Proof 4: The numerator does not overflow.
  557. * r_gnd_int_fet_mohms and r_gnd_par_route1_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS
  558. * -->
  559. * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) <=
  560. * FLOAT_TO_FIXED_XTALK * 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  561. * (1 << 16) * 2 * 20,000 = 65,536 * 40,000 = 2,621,440,000 <= 2^32 - 1 =
  562. * 4,294,967,295 = U32_MAX
  563. *
  564. * The denominator is greater than 0: See Proof 2
  565. * The deonominator does not overflow: See Proof 3
  566. */
  567. return FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_par_route1_mohms) /
  568. (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms);
  569. }
  570. static u32 get_v_feedback_tap_factor_analog(u32 r_gnd_par_route2_mohms, u32 r_load_eff_mohms,
  571. u32 r_gnd_res_tot_mohms, u32 r_aud_res_tot_mohms)
  572. {
  573. /* Proof 5: The numerator does not overflow.
  574. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms =
  575. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms +
  576. * r_gnd_par_route2_mohms
  577. *
  578. * r_gnd_res_tot_mohms - r_gnd_par_route2_mohms =
  579. * r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_route1_mohms
  580. *
  581. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms
  582. * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  583. * -->
  584. * FLOAT_TO_FIXED_XTALK * (r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms +
  585. * r_gnd_par_route1_mohms)
  586. * <= FLOAT_TO_FIXED_XTALK * 3 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  587. * (1 << 16) * 3 * 20,000 = 65,536 * 60,000 = 3,932,160,000 <= 2^32 - 1 =
  588. * 4,294,967,295 = U32_MAX
  589. *
  590. * The denominator is greater than 0: See Proof 2
  591. * The deonominator does not overflow: See Proof 3
  592. */
  593. return FLOAT_TO_FIXED_XTALK * (r_gnd_res_tot_mohms - r_gnd_par_route2_mohms) /
  594. (r_load_eff_mohms + r_gnd_res_tot_mohms + r_aud_res_tot_mohms);
  595. }
  596. static u32 get_xtalk_gain(u32 v_common_gnd_factor, u32 v_feedback_tap_factor)
  597. {
  598. return v_common_gnd_factor - v_feedback_tap_factor;
  599. }
  600. static void update_xtalk_scale_and_alpha(struct wcd939x_pdata *pdata, struct regmap *regmap)
  601. {
  602. u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_common_gnd_factor = 0;
  603. u32 v_feedback_tap_factor = 0, xtalk_gain = 0;
  604. if (!pdata || pdata->usbcss_hs.xtalk_config == XTALK_NONE)
  605. return;
  606. /* Orientation-dependent ground impedance parameters */
  607. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  608. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  609. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms;
  610. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  611. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  612. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms;
  613. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  614. } else {
  615. pdata->usbcss_hs.scale_l = MAX_XTALK_SCALE;
  616. pdata->usbcss_hs.alpha_l = MIN_XTALK_ALPHA;
  617. pdata->usbcss_hs.scale_r = MAX_XTALK_SCALE;
  618. pdata->usbcss_hs.alpha_r = MIN_XTALK_ALPHA;
  619. return;
  620. }
  621. #endif
  622. /* Recall assumptions about L and R channel impedance parameters being equivalent */
  623. /* Xtalk gain calculation */
  624. v_common_gnd_factor = get_v_common_gnd_factor(r_gnd_res_tot_mohms,
  625. pdata->usbcss_hs.r_load_eff_l_mohms,
  626. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  627. if (pdata->usbcss_hs.xtalk_config == XTALK_ANALOG) {
  628. v_feedback_tap_factor = get_v_feedback_tap_factor_analog(
  629. pdata->usbcss_hs.r_gnd_par_route2_mohms,
  630. pdata->usbcss_hs.r_load_eff_l_mohms,
  631. r_gnd_res_tot_mohms,
  632. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  633. /* Update HD2 codes for analog xtalk */
  634. update_hd2_codes(regmap, r_gnd_res_tot_mohms, pdata->usbcss_hs.r_load_eff_l_mohms);
  635. } else {
  636. v_feedback_tap_factor = get_v_feedback_tap_factor_digital(
  637. r_gnd_int_fet_mohms,
  638. pdata->usbcss_hs.r_gnd_par_route1_mohms,
  639. pdata->usbcss_hs.r_load_eff_l_mohms,
  640. r_gnd_res_tot_mohms,
  641. pdata->usbcss_hs.r_aud_res_tot_l_mohms);
  642. }
  643. xtalk_gain = get_xtalk_gain(v_common_gnd_factor, v_feedback_tap_factor);
  644. /* Store scale and alpha values */
  645. pdata->usbcss_hs.scale_l = get_xtalk_scale(xtalk_gain);
  646. pdata->usbcss_hs.alpha_l = get_xtalk_alpha(xtalk_gain, pdata->usbcss_hs.scale_l);
  647. pdata->usbcss_hs.scale_r = pdata->usbcss_hs.scale_l;
  648. pdata->usbcss_hs.alpha_r = pdata->usbcss_hs.alpha_l;
  649. }
  650. static void update_ext_fet_res(struct wcd939x_pdata *pdata, u32 r_gnd_ext_fet_mohms)
  651. {
  652. if (!pdata)
  653. return;
  654. pdata->usbcss_hs.r_gnd_ext_fet_mohms = (r_gnd_ext_fet_mohms > MAX_USBCSS_HS_IMPEDANCE_MOHMS)
  655. ? MAX_USBCSS_HS_IMPEDANCE_MOHMS
  656. : r_gnd_ext_fet_mohms;
  657. pdata->usbcss_hs.r_aud_ext_fet_l_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms;
  658. pdata->usbcss_hs.r_aud_ext_fet_r_mohms = pdata->usbcss_hs.r_gnd_ext_fet_mohms;
  659. pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms = get_r_gnd_res_tot_mohms(
  660. pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms,
  661. pdata->usbcss_hs.r_gnd_ext_fet_mohms,
  662. pdata->usbcss_hs.r_gnd_par_tot_mohms);
  663. pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms = get_r_gnd_res_tot_mohms(
  664. pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms,
  665. pdata->usbcss_hs.r_gnd_ext_fet_mohms,
  666. pdata->usbcss_hs.r_gnd_par_tot_mohms);
  667. pdata->usbcss_hs.r_aud_res_tot_l_mohms = get_r_aud_res_tot_mohms(
  668. pdata->usbcss_hs.r_aud_int_fet_l_mohms,
  669. pdata->usbcss_hs.r_aud_ext_fet_l_mohms);
  670. pdata->usbcss_hs.r_aud_res_tot_r_mohms = get_r_aud_res_tot_mohms(
  671. pdata->usbcss_hs.r_aud_int_fet_r_mohms,
  672. pdata->usbcss_hs.r_aud_ext_fet_r_mohms);
  673. }
  674. static void get_linearizer_taps(struct wcd939x_pdata *pdata, u32 *aud_tap, u32 *gnd_tap)
  675. {
  676. u32 r_gnd_res_tot_mohms = 0, r_gnd_int_fet_mohms = 0, v_aud1 = 0, v_aud2 = 0;
  677. u32 v_gnd_denom = 0, v_gnd1 = 0, v_gnd2 = 0, aud_denom = 0, gnd_denom = 0;
  678. if (!pdata)
  679. goto err_data;
  680. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  681. /* Orientation-dependent ground impedance parameters */
  682. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  683. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu2_res_tot_mohms;
  684. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  685. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  686. r_gnd_res_tot_mohms = pdata->usbcss_hs.r_gnd_sbu1_res_tot_mohms;
  687. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  688. } else {
  689. goto err_data;
  690. }
  691. #endif
  692. /* Proof 6: Neither aud_denom nor gnd_denom is 0 and neither overflows.
  693. * MIN_K_TIMES_100 = -50 <= MAX_K_TIMES_100 <= 10,000 = k_aud_times_100
  694. * -->
  695. * 0 < 410 = 0.1 * 4,096 = 0.1 * FLOAT_TO_FIXED_LINEARIZER < {aud,gnd}_denom <
  696. * 101 * FLOAT_TO_FIXED_LINEARIZER =
  697. * 101 * (1 << 12) < 413,696 <= 4,294,967,295 = U32_MAX
  698. */
  699. aud_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER +
  700. (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_aud_times_100 / 100));
  701. gnd_denom = (u32) (FLOAT_TO_FIXED_LINEARIZER +
  702. (FLOAT_TO_FIXED_LINEARIZER * pdata->usbcss_hs.k_gnd_times_100 / 100));
  703. /* Proof 7: v_aud2 does not overflow.
  704. * MIN_RL_EFF_MOHMS = 1 = <= pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS =
  705. * 900,000
  706. *
  707. * pdata->usbcss_hs.r_gnd_par_tot_mohms = r_gnd_par_route1_mohms + r_gnd_par_route2_mohms
  708. * <= 2 * MAX_USBCSS_HS_IMPEDANCE_MOHMS = 4,0000
  709. *
  710. * r_gnd_int_fet_mohms, pdata->usbcss_hs.r_gnd_ext_fet_mohms, r_gnd_par_route1_mohms,
  711. * r_gnd_par_route2_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  712. * -->
  713. * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  714. * 900,000 + 4 * 20,000 = 980,000 <= 4,294,967,295 = U32_MAX
  715. */
  716. v_aud2 = pdata->usbcss_hs.r_load_eff_l_mohms - pdata->usbcss_hs.r3 + r_gnd_int_fet_mohms +
  717. pdata->usbcss_hs.r_gnd_ext_fet_mohms + pdata->usbcss_hs.r_gnd_par_tot_mohms;
  718. /* Proof 8: v_aud1 does not overflow.
  719. * pdata->usbcss_hs.r_aud_ext_fet_l_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  720. * From Proof 7,
  721. * 1 <= v_aud2 <= MAX_RL_EFF_MOHMS + 4 * MAX_USBCSS_HS_IMPEDANCE_MOHMS <= S32_MAX
  722. * -->
  723. * 1 <= v_aud1 <= MAX_RL_EFF_MOHMS + 5 * MAX_USBCSS_HS_IMPEDANCE_MOHMS =
  724. * 900,000 + 5 * 20,000 = 1,000,000 <= 2,147,483,647 = S32_MAX
  725. */
  726. v_aud1 = v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms;
  727. /* Proof 9: The numerator of v_aud1 does not overflow.
  728. * From Proof 8, v_aud1 was less than or equal to 1,000,000
  729. * Thus, the new v_aud1 numerator is less than or equal to
  730. * FLOAT_TO_FIXED_LINEARIZER * 1,000,000 =
  731. * 4,096 * 1,000,000 = 4,096,000,000 <= 4,294,967,295 = U32_MAX
  732. *
  733. * Proof 10: The denominator of v_aud1 is not 0.
  734. * From Proof 8, v_aud1 was greater than or equal to 1 > 0
  735. *
  736. * Proof 11: The denominator does not overflow.
  737. * From Proof 8, v_aud1 was less than or equal to 1,000,000
  738. * Thus, the new v_aud1 denominator is less than or equal to
  739. * 1,000,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms = 1,000,000 + 20,000 = 1,020,000 <=
  740. * 4,294,967,295 = U32_MAX
  741. */
  742. v_aud1 = FLOAT_TO_FIXED_LINEARIZER * v_aud1 /
  743. (v_aud1 + pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  744. /* Proof 12: The numerator of v_aud2 does not overflow.
  745. * From Proof 7, v_aud2 was less than or equal to 980,000
  746. * Thus, the new v_aud2 numerator is less than or equal to
  747. * FLOAT_TO_FIXED_LINEARIZER * 980,000 =
  748. * 4,096 * 980,000 = 4,014,080,000 <= 4,294,967,295 = U32_MAX
  749. *
  750. * Proof 13: The denominator of v_aud2 is not 0.
  751. * From Proof 7, v_aud2 was greater than or equal to 1 > 0
  752. *
  753. * Proof 14: The denominator does not overflow.
  754. * From Proof 7, v_aud2 was less than or equal to 980,000
  755. * Thus, the new v_aud2 denominator is less than or equal to
  756. * 980,000 + pdata->usbcss_hs.r_aud_int_fet_l_mohms pdata->usbcss_hs.r_aud_int_fet_l_mohms =
  757. * 980,000 + 20,000 + + 20,000 = 1,020,000 <= 4,294,967,295 = U32_MAX
  758. */
  759. v_aud2 = FLOAT_TO_FIXED_LINEARIZER * v_aud2 /
  760. (v_aud2 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms +
  761. pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  762. /* Proof 15: The numerator of aud_tap does not overflow.
  763. * Looking at the formula for v_aud1 from Proofs 9 to 11, the greatest value of v_aud1 is
  764. * FLOAT_TO_FIXED_LINEARIZER = 4,096
  765. * Looking at the formula for v_aud2 from Proofs 12 to 14, the greatest value of v_aud2 is
  766. * FLOAT_TO_FIXED_LINEARIZER = 4,096
  767. * From Proof 6, aud_denom <= 413,696
  768. * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 =
  769. * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX
  770. *
  771. * Proof 16: The denominator of aud_tap is not 0.
  772. * From Proof 6, aud_denom > 410 > 0
  773. *
  774. * Proof 17: The denominator of aud_tap does not overflow
  775. * From Proof 6, aud_denom <= 413,696 <= 4,294,967,295 = U32_MAX
  776. *
  777. * Proof 18: The result of aud_tap does not overflow.
  778. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410
  779. * Thus, the divsion will be at most 1,009,519.
  780. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023
  781. * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX
  782. * Note: aud_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023
  783. */
  784. *aud_tap = (u32) ((s32) ((1000 * v_aud1 + 10 * pdata->usbcss_hs.k_aud_times_100 * v_aud2
  785. + aud_denom / 2) / aud_denom) + pdata->usbcss_hs.aud_tap_offset);
  786. if (*aud_tap > MAX_TAP)
  787. *aud_tap = MAX_TAP;
  788. else if (*aud_tap < MIN_TAP)
  789. *aud_tap = MIN_TAP;
  790. /* Proof 19: v_gnd_denom does not overflow.
  791. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms
  792. *
  793. * r_gnd_int_fet_mohms, r_gnd_ext_fet_mohms, r_gnd_par_tot_mohms,
  794. * pdata->usbcss_hs.r_aud_ext_fet_l_mohms, pdata->usbcss_hs.r_aud_int_fet_l_mohms are all
  795. * <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  796. *
  797. * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000
  798. *
  799. * --> v_gnd_denom <= 3 * 20,000 + 900,000 + 2 * 20,000 = 60,000 + 900,000 + 40,000 =
  800. * 1,000,000 <= 4,294,967,295 = U32_MAX
  801. *
  802. * Proof 20: v_gnd_denom is not 0.
  803. * pdata->usbcss_hs.r_load_eff_l_mohms >= MIN_RL_EFF_MOHMS = 1
  804. * --> v_gnd_denom >= 1 > 0
  805. */
  806. v_gnd_denom = (r_gnd_res_tot_mohms + pdata->usbcss_hs.r_load_eff_l_mohms -
  807. pdata->usbcss_hs.r3 + pdata->usbcss_hs.r_aud_ext_fet_l_mohms +
  808. pdata->usbcss_hs.r_aud_int_fet_l_mohms);
  809. /* Proof 21: v_gnd1 numerator does not overflow.
  810. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  811. * --> v_gnd1 numerator <= 4,096 * 20,000 = 81,920,000 <= 4,294,967,295 = U32_MAX
  812. *
  813. * v_gnd1 denominator is not 0: See Proof 20
  814. * v_gnd1 denominator does not overflow: See Proof 19
  815. */
  816. v_gnd1 = FLOAT_TO_FIXED_LINEARIZER * r_gnd_int_fet_mohms / v_gnd_denom;
  817. /* Proof 22: v_gnd2 numerator does not overflow.
  818. * r_gnd_int_fet_mohms <= MAX_USBCSS_HS_IMPEDANCE_MOHMS = 20,000
  819. * pdata->usbcss_hs.r_load_eff_l_mohms <= MAX_RL_EFF_MOHMS = 900,000
  820. * --> v_gnd2 numerator <= 4,096 * (20,000 + 900,000) = 4,096 * 920,000 = 3,768,320,000
  821. * <= 4,294,967,295 = U32_MAX
  822. *
  823. * v_gnd2 denominator is not 0: See Proof 20
  824. * v_gnd2 denominator does not overflow: See Proof 19
  825. */
  826. v_gnd2 = FLOAT_TO_FIXED_LINEARIZER * (r_gnd_int_fet_mohms +
  827. pdata->usbcss_hs.r_gnd_ext_fet_mohms) / v_gnd_denom;
  828. /* Proof 23: The numerator of gnd_tap does not overflow.
  829. * Looking at the formula for v_gnd1 from Proof 21, and considering that
  830. * r_gnd_res_tot_mohms = r_gnd_int_fet_mohms + r_gnd_ext_fet_mohms + r_gnd_par_tot_mohms,
  831. * the greatest value of v_gnd1 is FLOAT_TO_FIXED_LINEARIZER = 4,096.
  832. * Looking at the formula for v_aud2 from Proof 22 and again at the definintion of
  833. * r_gnd_res_tot_mohms, the greatest value of v_gnd2 is FLOAT_TO_FIXED_LINEARIZER = 4,096
  834. * From Proof 6, gnd_denom <= 413,696
  835. * Thus, the numerator <= 1,000 * 4,096 + 10 * 10,000 * 4,096 + 413,696 / 2 =
  836. * 4,096,000 + 409,600,000 + 206,848 = 413,902,848 <= 4,294,967,295 = U32_MAX
  837. *
  838. * Proof 24: The denominator of gnd_tap is not 0.
  839. * From Proof 6, gnd_denom > 410 > 0
  840. *
  841. * Proof 25: The denominator of gnd_tap does not overflow
  842. * From Proof 6, gnd_denom <= 413,696 <= 4,294,967,295 = U32_MAX
  843. *
  844. * Proof 26: The result of aud_tap does not overflow.
  845. * From Proof 15, the numerator <= 413,902,848 and from Proof 16, the denominator > 410
  846. * Thus, the divsion will be at most 1,009,519.
  847. * pdata->usbcss_hs.aud_tap_offset <= MAX_TAP_OFFSET = 1,023
  848. * The sum will thus be bounded by 1,009,519 + 1,023 = 1,010,542 <= 2,147,483,647 = S32_MAX
  849. * Note: gnd_tap won't underflow either since pdata->usbcss_hs.aud_tap_offset >= -1,023
  850. */
  851. *gnd_tap = (u32) ((s32) ((1000 * v_gnd1 + 10 * pdata->usbcss_hs.k_gnd_times_100 * v_gnd2
  852. + gnd_denom / 2) / gnd_denom) + pdata->usbcss_hs.gnd_tap_offset);
  853. if (*gnd_tap > MAX_TAP)
  854. *gnd_tap = MAX_TAP;
  855. else if (*gnd_tap < MIN_TAP)
  856. *gnd_tap = MIN_TAP;
  857. return;
  858. err_data:
  859. *aud_tap = 0;
  860. *gnd_tap = 0;
  861. }
  862. static void wcd939x_wcd_mbhc_calc_impedance(struct wcd_mbhc *mbhc, uint32_t *zl, uint32_t *zr)
  863. {
  864. struct snd_soc_component *component = mbhc->component;
  865. struct wcd939x_priv *wcd939x = dev_get_drvdata(component->dev);
  866. struct wcd939x_pdata *pdata = dev_get_platdata(wcd939x->dev);
  867. s16 reg0, reg1, reg2, reg3, reg4;
  868. uint32_t zdiff_val = 0, r_gnd_int_fet_mohms = 0, rl_eff_mohms = 0, r_gnd_ext_fet_mohms = 0;
  869. uint32_t aud_tap = 0, gnd_tap = 0;
  870. uint32_t *zdiff = &zdiff_val;
  871. int32_t z1L, z1R, z1Ls, z1Diff;
  872. int zMono, z_diff1, z_diff2;
  873. bool is_fsm_disable = false;
  874. struct wcd939x_mbhc_zdet_param zdet_param = {4, 0, 6, 0x18, 0x60, 0x78};
  875. struct wcd939x_mbhc_zdet_param *zdet_param_ptr = &zdet_param;
  876. s16 d1[] = {0, 30, 30, 6};
  877. WCD_MBHC_RSC_ASSERT_LOCKED(mbhc);
  878. /* Turn on RX supplies */
  879. if (wcd939x->version == WCD939X_VERSION_2_0) {
  880. /* Start up Buck/Flyback, Enable RX bias, Use MBHC RCO for MBHC Zdet, Enable Vneg */
  881. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x4C, 0x4C);
  882. /* Wait 100us for settling */
  883. usleep_range(100, 110);
  884. /* Enable VNEGDAC_LDO */
  885. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x10, 0x10);
  886. /* Wait 100us for settling */
  887. usleep_range(100, 110);
  888. /* Keep PA left/right channels disabled */
  889. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x01, 0x01);
  890. /* Enable VPOS */
  891. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x20);
  892. /* Wait 500us for settling */
  893. usleep_range(500, 510);
  894. }
  895. /* Store register values */
  896. reg0 = snd_soc_component_read(component, WCD939X_MBHC_BTN5);
  897. reg1 = snd_soc_component_read(component, WCD939X_MBHC_BTN6);
  898. reg2 = snd_soc_component_read(component, WCD939X_MBHC_BTN7);
  899. reg3 = snd_soc_component_read(component, WCD939X_CTL_CLK);
  900. reg4 = snd_soc_component_read(component, WCD939X_ZDET_ANA_CTL);
  901. /* Disable the detection FSM */
  902. if (snd_soc_component_read(component, WCD939X_MBHC_ELECT) & 0x80) {
  903. is_fsm_disable = true;
  904. regmap_update_bits(wcd939x->regmap,
  905. WCD939X_MBHC_ELECT, 0x80, 0x00);
  906. }
  907. /* For NO-jack, disable L_DET_EN before Z-det measurements */
  908. if (mbhc->hphl_swh)
  909. regmap_update_bits(wcd939x->regmap,
  910. WCD939X_MBHC_MECH, 0x80, 0x00);
  911. /* Turn off 100k pull down on HPHL */
  912. regmap_update_bits(wcd939x->regmap,
  913. WCD939X_MBHC_MECH, 0x01, 0x00);
  914. /* Disable surge protection before impedance detection.
  915. * This is done to give correct value for high impedance.
  916. */
  917. regmap_update_bits(wcd939x->regmap,
  918. WCD939X_HPHLR_SURGE_EN, 0xC0, 0x00);
  919. /* 1ms delay needed after disable surge protection */
  920. usleep_range(1000, 1010);
  921. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  922. /* Disable sense switch and MIC for USB-C analog platforms */
  923. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  924. wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_DISABLE);
  925. wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_DISABLE);
  926. }
  927. #endif
  928. /* L-channel impedance */
  929. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1L, NULL, d1);
  930. if ((z1L == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1L > WCD939X_ZDET_VAL_100K)) {
  931. *zl = WCD939X_ZDET_FLOATING_IMPEDANCE;
  932. } else {
  933. *zl = z1L;
  934. wcd939x_wcd_mbhc_qfuse_cal(component, zl, 0);
  935. }
  936. /* Differential measurement for USB-C analog platforms */
  937. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  938. dev_dbg(component->dev, "%s: effective impedance on HPH_L = %d(mohms)\n",
  939. __func__, *zl);
  940. goto diff_impedance;
  941. }
  942. dev_dbg(component->dev, "%s: impedance on HPH_L = %d(mohms)\n",
  943. __func__, *zl);
  944. /* R-channel impedance */
  945. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, NULL, &z1R, d1);
  946. if ((z1R == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1R > WCD939X_ZDET_VAL_100K)) {
  947. *zr = WCD939X_ZDET_FLOATING_IMPEDANCE;
  948. } else {
  949. *zr = z1R;
  950. wcd939x_wcd_mbhc_qfuse_cal(component, zr, 4);
  951. }
  952. dev_dbg(component->dev, "%s: impedance on HPH_R = %d(mohms)\n",
  953. __func__, *zr);
  954. /* Convert from mohms to ohms (rounded) */
  955. *zl = (*zl + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  956. *zr = (*zr + OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  957. goto mono_stereo_detection;
  958. diff_impedance:
  959. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  960. /* Disable AGND switch */
  961. wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_DISABLE);
  962. #endif
  963. /* Enable HPHR NCLAMP */
  964. regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x08);
  965. /* Diffrential impedance */
  966. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Diff, NULL, d1);
  967. if ((z1Diff == WCD939X_ZDET_FLOATING_IMPEDANCE) || (z1Diff > WCD939X_ZDET_VAL_100K)) {
  968. *zdiff = WCD939X_ZDET_FLOATING_IMPEDANCE;
  969. } else {
  970. *zdiff = z1Diff;
  971. wcd939x_wcd_mbhc_qfuse_cal(component, zdiff, 0);
  972. }
  973. dev_dbg(component->dev, "%s: effective impedance on HPH_diff after calib = %d(mohms)\n",
  974. __func__, *zdiff);
  975. /* Disable HPHR NCLAMP */
  976. regmap_update_bits(wcd939x->regmap, WCD939X_HPHLR_SURGE_MISC1, 0x08, 0x00);
  977. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  978. /* Enable AGND switch */
  979. wcd_usbss_set_switch_settings_enable(AGND_SWITCHES, USBSS_SWITCH_ENABLE);
  980. /* Get ground internal resistance based on orientation */
  981. if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU2_ORIENTATION_A) {
  982. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu2_int_fet_mohms;
  983. } else if (wcd_usbss_get_sbu_switch_orientation() == GND_SBU1_ORIENTATION_B) {
  984. r_gnd_int_fet_mohms = pdata->usbcss_hs.r_gnd_sbu1_int_fet_mohms;
  985. } else {
  986. *zl = 0;
  987. *zr = 0;
  988. dev_dbg(component->dev, "%s: Invalid SBU switch orientation\n", __func__);
  989. goto zdet_complete;
  990. }
  991. #endif
  992. /* Compute external fet and effective load impedance */
  993. r_gnd_ext_fet_mohms = *zl - *zdiff / 2 + pdata->usbcss_hs.r_surge_mohms / 2 -
  994. pdata->usbcss_hs.r_gnd_par_tot_mohms - r_gnd_int_fet_mohms;
  995. rl_eff_mohms = *zdiff / 2 - pdata->usbcss_hs.r_aud_int_fet_r_mohms -
  996. pdata->usbcss_hs.r_gnd_ext_fet_mohms - pdata->usbcss_hs.r_surge_mohms / 2 -
  997. pdata->usbcss_hs.r_gnd_par_tot_mohms;
  998. /* Store values */
  999. *zl = (rl_eff_mohms - pdata->usbcss_hs.r_conn_par_load_pos_mohms - pdata->usbcss_hs.r3 +
  1000. OHMS_TO_MILLIOHMS / 2) / OHMS_TO_MILLIOHMS;
  1001. *zr = *zl;
  1002. /* Update USBC-SS HS params */
  1003. if (rl_eff_mohms > MAX_RL_EFF_MOHMS)
  1004. rl_eff_mohms = MAX_RL_EFF_MOHMS;
  1005. else if (rl_eff_mohms == 0)
  1006. rl_eff_mohms = MIN_RL_EFF_MOHMS;
  1007. pdata->usbcss_hs.r_load_eff_l_mohms = rl_eff_mohms;
  1008. pdata->usbcss_hs.r_load_eff_r_mohms = rl_eff_mohms;
  1009. update_ext_fet_res(pdata, r_gnd_ext_fet_mohms);
  1010. update_xtalk_scale_and_alpha(pdata, wcd939x->regmap);
  1011. dev_dbg(component->dev, "%s: Xtalk scale is 0x%x and alpha is 0x%x\n",
  1012. __func__, pdata->usbcss_hs.scale_l, pdata->usbcss_hs.alpha_l);
  1013. get_linearizer_taps(pdata, &aud_tap, &gnd_tap);
  1014. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1015. wcd_usbss_set_linearizer_sw_tap(aud_tap, gnd_tap);
  1016. #endif
  1017. dev_dbg(component->dev, "%s: Linearizer aud_tap is 0x%x and gnd_tap is 0x%x\n",
  1018. __func__, aud_tap, gnd_tap);
  1019. mono_stereo_detection:
  1020. /* Mono/stereo detection */
  1021. if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) && (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE)) {
  1022. dev_dbg(component->dev,
  1023. "%s: plug type is invalid or extension cable\n",
  1024. __func__);
  1025. goto zdet_complete;
  1026. }
  1027. if ((*zl == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
  1028. (*zr == WCD939X_ZDET_FLOATING_IMPEDANCE) ||
  1029. ((*zl < WCD_MONO_HS_MIN_THR) && (*zr > WCD_MONO_HS_MIN_THR)) ||
  1030. ((*zl > WCD_MONO_HS_MIN_THR) && (*zr < WCD_MONO_HS_MIN_THR))) {
  1031. dev_dbg(component->dev,
  1032. "%s: Mono plug type with one ch floating or shorted to GND\n",
  1033. __func__);
  1034. mbhc->hph_type = WCD_MBHC_HPH_MONO;
  1035. goto zdet_complete;
  1036. }
  1037. snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x02);
  1038. snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x01);
  1039. wcd939x_mbhc_zdet_ramp(component, zdet_param_ptr, &z1Ls, NULL, d1);
  1040. snd_soc_component_update_bits(component, WCD939X_PA_CTL2, 0x40, 0x00);
  1041. snd_soc_component_update_bits(component, WCD939X_R_ATEST, 0x02, 0x00);
  1042. z1Ls /= 1000;
  1043. wcd939x_wcd_mbhc_qfuse_cal(component, &z1Ls, 0);
  1044. /* Parallel of left Z and 9 ohm pull down resistor */
  1045. zMono = ((*zl) * 9) / ((*zl) + 9);
  1046. z_diff1 = (z1Ls > zMono) ? (z1Ls - zMono) : (zMono - z1Ls);
  1047. z_diff2 = ((*zl) > z1Ls) ? ((*zl) - z1Ls) : (z1Ls - (*zl));
  1048. if ((z_diff1 * (*zl + z1Ls)) > (z_diff2 * (z1Ls + zMono))) {
  1049. dev_dbg(component->dev, "%s: stereo plug type detected\n",
  1050. __func__);
  1051. mbhc->hph_type = WCD_MBHC_HPH_STEREO;
  1052. } else {
  1053. dev_dbg(component->dev, "%s: MONO plug type detected\n",
  1054. __func__);
  1055. mbhc->hph_type = WCD_MBHC_HPH_MONO;
  1056. }
  1057. zdet_complete:
  1058. #if IS_ENABLED(CONFIG_QCOM_WCD_USBSS_I2C)
  1059. /* Enable sense switch and MIC for USB-C analog platforms */
  1060. if (mbhc->mbhc_cfg->enable_usbc_analog) {
  1061. wcd_usbss_set_switch_settings_enable(SENSE_SWITCHES, USBSS_SWITCH_ENABLE);
  1062. wcd_usbss_set_switch_settings_enable(MIC_SWITCHES, USBSS_SWITCH_ENABLE);
  1063. }
  1064. #endif
  1065. /* Enable surge protection again after impedance detection */
  1066. regmap_update_bits(wcd939x->regmap,
  1067. WCD939X_HPHLR_SURGE_EN, 0xC0, 0xC0);
  1068. snd_soc_component_write(component, WCD939X_MBHC_BTN5, reg0);
  1069. snd_soc_component_write(component, WCD939X_MBHC_BTN6, reg1);
  1070. snd_soc_component_write(component, WCD939X_MBHC_BTN7, reg2);
  1071. /* Turn on 100k pull down on HPHL */
  1072. regmap_update_bits(wcd939x->regmap,
  1073. WCD939X_MBHC_MECH, 0x01, 0x01);
  1074. /* For NO-jack, re-enable L_DET_EN after Z-det measurements */
  1075. if (mbhc->hphl_swh)
  1076. regmap_update_bits(wcd939x->regmap,
  1077. WCD939X_MBHC_MECH, 0x80, 0x80);
  1078. snd_soc_component_write(component, WCD939X_ZDET_ANA_CTL, reg4);
  1079. snd_soc_component_write(component, WCD939X_CTL_CLK, reg3);
  1080. if (is_fsm_disable)
  1081. regmap_update_bits(wcd939x->regmap,
  1082. WCD939X_MBHC_ELECT, 0x80, 0x80);
  1083. /* Turn off RX supplies */
  1084. if (wcd939x->version == WCD939X_VERSION_2_0) {
  1085. /* Set VPOS to be controlled by RX */
  1086. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x20, 0x00);
  1087. /* Wait 500us for settling */
  1088. usleep_range(500, 510);
  1089. /* Set PA Left/Right channels and VNEGDAC_LDO to be controlled by RX */
  1090. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x11, 0x00);
  1091. /* Wait 100us for settling */
  1092. usleep_range(100, 110);
  1093. /* Set Vneg mode and enable to be controlled by RX */
  1094. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x06, 0x00);
  1095. /* Wait 100us for settling */
  1096. usleep_range(100, 110);
  1097. /* Set RX bias to be controlled by RX and set Buck/Flyback back to SWR Rx clock */
  1098. regmap_update_bits(wcd939x->regmap, WCD939X_ZDET_VNEG_CTL, 0x48, 0x00);
  1099. }
  1100. }
  1101. static void wcd939x_mbhc_gnd_det_ctrl(struct snd_soc_component *component,
  1102. bool enable)
  1103. {
  1104. if (enable) {
  1105. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1106. 0x02, 0x02);
  1107. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1108. 0x40, 0x40);
  1109. } else {
  1110. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1111. 0x40, 0x00);
  1112. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1113. 0x02, 0x00);
  1114. }
  1115. }
  1116. static void wcd939x_mbhc_hph_pull_down_ctrl(struct snd_soc_component *component,
  1117. bool enable)
  1118. {
  1119. if (enable) {
  1120. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1121. 0x40, 0x40);
  1122. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1123. 0x10, 0x10);
  1124. } else {
  1125. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1126. 0x40, 0x00);
  1127. snd_soc_component_update_bits(component, WCD939X_PA_CTL2,
  1128. 0x10, 0x00);
  1129. }
  1130. }
  1131. static void wcd939x_mbhc_moisture_config(struct wcd_mbhc *mbhc)
  1132. {
  1133. struct snd_soc_component *component = mbhc->component;
  1134. if ((mbhc->moist_rref == R_OFF) ||
  1135. (mbhc->mbhc_cfg->enable_usbc_analog)) {
  1136. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1137. 0x0C, R_OFF << 2);
  1138. return;
  1139. }
  1140. /* Do not enable moisture detection if jack type is NC */
  1141. if (!mbhc->hphl_swh) {
  1142. dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
  1143. __func__);
  1144. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1145. 0x0C, R_OFF << 2);
  1146. return;
  1147. }
  1148. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1149. 0x0C, mbhc->moist_rref << 2);
  1150. }
  1151. static void wcd939x_mbhc_moisture_detect_en(struct wcd_mbhc *mbhc, bool enable)
  1152. {
  1153. struct snd_soc_component *component = mbhc->component;
  1154. if (enable)
  1155. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1156. 0x0C, mbhc->moist_rref << 2);
  1157. else
  1158. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1159. 0x0C, R_OFF << 2);
  1160. }
  1161. static bool wcd939x_mbhc_get_moisture_status(struct wcd_mbhc *mbhc)
  1162. {
  1163. struct snd_soc_component *component = mbhc->component;
  1164. bool ret = false;
  1165. if ((mbhc->moist_rref == R_OFF) ||
  1166. (mbhc->mbhc_cfg->enable_usbc_analog)) {
  1167. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1168. 0x0C, R_OFF << 2);
  1169. goto done;
  1170. }
  1171. /* Do not enable moisture detection if jack type is NC */
  1172. if (!mbhc->hphl_swh) {
  1173. dev_dbg(component->dev, "%s: disable moisture detection for NC\n",
  1174. __func__);
  1175. snd_soc_component_update_bits(component, WCD939X_CTL_2,
  1176. 0x0C, R_OFF << 2);
  1177. goto done;
  1178. }
  1179. /*
  1180. * If moisture_en is already enabled, then skip to plug type
  1181. * detection.
  1182. */
  1183. if ((snd_soc_component_read(component, WCD939X_CTL_2) & 0x0C))
  1184. goto done;
  1185. wcd939x_mbhc_moisture_detect_en(mbhc, true);
  1186. /* Read moisture comparator status */
  1187. ret = ((snd_soc_component_read(component, WCD939X_FSM_STATUS)
  1188. & 0x20) ? 0 : 1);
  1189. done:
  1190. return ret;
  1191. }
  1192. static void wcd939x_mbhc_moisture_polling_ctrl(struct wcd_mbhc *mbhc,
  1193. bool enable)
  1194. {
  1195. struct snd_soc_component *component = mbhc->component;
  1196. snd_soc_component_update_bits(component,
  1197. WCD939X_MOISTURE_DET_POLLING_CTRL,
  1198. 0x04, (enable << 2));
  1199. }
  1200. static void wcd939x_mbhc_bcs_enable(struct wcd_mbhc *mbhc,
  1201. bool bcs_enable)
  1202. {
  1203. if (bcs_enable)
  1204. wcd939x_disable_bcs_before_slow_insert(mbhc->component, false);
  1205. else
  1206. wcd939x_disable_bcs_before_slow_insert(mbhc->component, true);
  1207. }
  1208. static void wcd939x_surge_reset_routine(struct wcd_mbhc *mbhc)
  1209. {
  1210. struct wcd939x_priv *wcd939x = snd_soc_component_get_drvdata(mbhc->component);
  1211. regcache_mark_dirty(wcd939x->regmap);
  1212. regcache_sync(wcd939x->regmap);
  1213. }
  1214. static void wcd939x_mbhc_zdet_leakage_resistance(struct wcd_mbhc *mbhc,
  1215. bool enable)
  1216. {
  1217. if (enable)
  1218. snd_soc_component_update_bits(mbhc->component, WCD939X_ZDET_BIAS_CTL,
  1219. 0x80, 0x80); /* disable 1M pull-up */
  1220. else
  1221. snd_soc_component_update_bits(mbhc->component, WCD939X_ZDET_BIAS_CTL,
  1222. 0x80, 0x00); /* enable 1M pull-up */
  1223. }
  1224. static const struct wcd_mbhc_cb mbhc_cb = {
  1225. .request_irq = wcd939x_mbhc_request_irq,
  1226. .irq_control = wcd939x_mbhc_irq_control,
  1227. .free_irq = wcd939x_mbhc_free_irq,
  1228. .clk_setup = wcd939x_mbhc_clk_setup,
  1229. .map_btn_code_to_num = wcd939x_mbhc_btn_to_num,
  1230. .mbhc_bias = wcd939x_mbhc_mbhc_bias_control,
  1231. .set_btn_thr = wcd939x_mbhc_program_btn_thr,
  1232. .lock_sleep = wcd939x_mbhc_lock_sleep,
  1233. .register_notifier = wcd939x_mbhc_register_notifier,
  1234. .micbias_enable_status = wcd939x_mbhc_micb_en_status,
  1235. .hph_pa_on_status = wcd939x_mbhc_hph_pa_on_status,
  1236. .hph_pull_up_control_v2 = wcd939x_mbhc_hph_l_pull_up_control,
  1237. .mbhc_micbias_control = wcd939x_mbhc_request_micbias,
  1238. .mbhc_micb_ramp_control = wcd939x_mbhc_micb_ramp_control,
  1239. .get_hwdep_fw_cal = wcd939x_get_hwdep_fw_cal,
  1240. .mbhc_micb_ctrl_thr_mic = wcd939x_mbhc_micb_ctrl_threshold_mic,
  1241. .compute_impedance = wcd939x_wcd_mbhc_calc_impedance,
  1242. .mbhc_gnd_det_ctrl = wcd939x_mbhc_gnd_det_ctrl,
  1243. .hph_pull_down_ctrl = wcd939x_mbhc_hph_pull_down_ctrl,
  1244. .mbhc_moisture_config = wcd939x_mbhc_moisture_config,
  1245. .mbhc_get_moisture_status = wcd939x_mbhc_get_moisture_status,
  1246. .mbhc_moisture_polling_ctrl = wcd939x_mbhc_moisture_polling_ctrl,
  1247. .mbhc_moisture_detect_en = wcd939x_mbhc_moisture_detect_en,
  1248. .bcs_enable = wcd939x_mbhc_bcs_enable,
  1249. .surge_reset_routine = wcd939x_surge_reset_routine,
  1250. .zdet_leakage_resistance = wcd939x_mbhc_zdet_leakage_resistance,
  1251. };
  1252. static int wcd939x_get_hph_type(struct snd_kcontrol *kcontrol,
  1253. struct snd_ctl_elem_value *ucontrol)
  1254. {
  1255. struct snd_soc_component *component =
  1256. snd_soc_kcontrol_component(kcontrol);
  1257. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
  1258. struct wcd_mbhc *mbhc;
  1259. if (!wcd939x_mbhc) {
  1260. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1261. return -EINVAL;
  1262. }
  1263. mbhc = &wcd939x_mbhc->wcd_mbhc;
  1264. ucontrol->value.integer.value[0] = (u32) mbhc->hph_type;
  1265. dev_dbg(component->dev, "%s: hph_type = %u\n", __func__, mbhc->hph_type);
  1266. return 0;
  1267. }
  1268. static int wcd939x_hph_impedance_get(struct snd_kcontrol *kcontrol,
  1269. struct snd_ctl_elem_value *ucontrol)
  1270. {
  1271. uint32_t zl, zr;
  1272. bool hphr;
  1273. struct soc_multi_mixer_control *mc;
  1274. struct snd_soc_component *component =
  1275. snd_soc_kcontrol_component(kcontrol);
  1276. struct wcd939x_mbhc *wcd939x_mbhc = wcd939x_soc_get_mbhc(component);
  1277. if (!wcd939x_mbhc) {
  1278. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1279. return -EINVAL;
  1280. }
  1281. mc = (struct soc_multi_mixer_control *)(kcontrol->private_value);
  1282. hphr = mc->shift;
  1283. wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, &zl, &zr);
  1284. dev_dbg(component->dev, "%s: zl=%u(ohms), zr=%u(ohms)\n", __func__, zl, zr);
  1285. ucontrol->value.integer.value[0] = hphr ? zr : zl;
  1286. return 0;
  1287. }
  1288. static const struct snd_kcontrol_new hph_type_detect_controls[] = {
  1289. SOC_SINGLE_EXT("HPH Type", 0, 0, UINT_MAX, 0,
  1290. wcd939x_get_hph_type, NULL),
  1291. };
  1292. static const struct snd_kcontrol_new impedance_detect_controls[] = {
  1293. SOC_SINGLE_EXT("HPHL Impedance", 0, 0, UINT_MAX, 0,
  1294. wcd939x_hph_impedance_get, NULL),
  1295. SOC_SINGLE_EXT("HPHR Impedance", 0, 1, UINT_MAX, 0,
  1296. wcd939x_hph_impedance_get, NULL),
  1297. };
  1298. /*
  1299. * wcd939x_mbhc_get_impedance: get impedance of headphone
  1300. * left and right channels
  1301. * @wcd939x_mbhc: handle to struct wcd939x_mbhc *
  1302. * @zl: handle to left-ch impedance
  1303. * @zr: handle to right-ch impedance
  1304. * return 0 for success or error code in case of failure
  1305. */
  1306. int wcd939x_mbhc_get_impedance(struct wcd939x_mbhc *wcd939x_mbhc,
  1307. uint32_t *zl, uint32_t *zr)
  1308. {
  1309. if (!wcd939x_mbhc) {
  1310. pr_err_ratelimited("%s: mbhc not initialized!\n", __func__);
  1311. return -EINVAL;
  1312. }
  1313. if (!zl || !zr) {
  1314. pr_err_ratelimited("%s: zl or zr null!\n", __func__);
  1315. return -EINVAL;
  1316. }
  1317. return wcd_mbhc_get_impedance(&wcd939x_mbhc->wcd_mbhc, zl, zr);
  1318. }
  1319. EXPORT_SYMBOL(wcd939x_mbhc_get_impedance);
  1320. /*
  1321. * wcd939x_mbhc_hs_detect: starts mbhc insertion/removal functionality
  1322. * @codec: handle to snd_soc_component *
  1323. * @mbhc_cfg: handle to mbhc configuration structure
  1324. * return 0 if mbhc_start is success or error code in case of failure
  1325. */
  1326. int wcd939x_mbhc_hs_detect(struct snd_soc_component *component,
  1327. struct wcd_mbhc_config *mbhc_cfg)
  1328. {
  1329. struct wcd939x_priv *wcd939x = NULL;
  1330. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1331. if (!component) {
  1332. pr_err_ratelimited("%s: component is NULL\n", __func__);
  1333. return -EINVAL;
  1334. }
  1335. wcd939x = snd_soc_component_get_drvdata(component);
  1336. if (!wcd939x) {
  1337. pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
  1338. return -EINVAL;
  1339. }
  1340. wcd939x_mbhc = wcd939x->mbhc;
  1341. if (!wcd939x_mbhc) {
  1342. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1343. return -EINVAL;
  1344. }
  1345. return wcd_mbhc_start(&wcd939x_mbhc->wcd_mbhc, mbhc_cfg);
  1346. }
  1347. EXPORT_SYMBOL(wcd939x_mbhc_hs_detect);
  1348. /*
  1349. * wcd939x_mbhc_hs_detect_exit: stop mbhc insertion/removal functionality
  1350. * @component: handle to snd_soc_component *
  1351. */
  1352. void wcd939x_mbhc_hs_detect_exit(struct snd_soc_component *component)
  1353. {
  1354. struct wcd939x_priv *wcd939x = NULL;
  1355. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1356. if (!component) {
  1357. pr_err_ratelimited("%s: component is NULL\n", __func__);
  1358. return;
  1359. }
  1360. wcd939x = snd_soc_component_get_drvdata(component);
  1361. if (!wcd939x) {
  1362. pr_err_ratelimited("%s: wcd939x is NULL\n", __func__);
  1363. return;
  1364. }
  1365. wcd939x_mbhc = wcd939x->mbhc;
  1366. if (!wcd939x_mbhc) {
  1367. dev_err_ratelimited(component->dev, "%s: mbhc not initialized!\n", __func__);
  1368. return;
  1369. }
  1370. wcd_mbhc_stop(&wcd939x_mbhc->wcd_mbhc);
  1371. }
  1372. EXPORT_SYMBOL(wcd939x_mbhc_hs_detect_exit);
  1373. /*
  1374. * wcd939x_mbhc_ssr_down: stop mbhc during
  1375. * wcd939x subsystem restart
  1376. * mbhc: pointer to wcd937x_mbhc structure
  1377. * component: handle to snd_soc_component *
  1378. */
  1379. void wcd939x_mbhc_ssr_down(struct wcd939x_mbhc *mbhc,
  1380. struct snd_soc_component *component)
  1381. {
  1382. struct wcd_mbhc *wcd_mbhc = NULL;
  1383. if (!mbhc || !component)
  1384. return;
  1385. wcd_mbhc = &mbhc->wcd_mbhc;
  1386. if (!wcd_mbhc) {
  1387. dev_err_ratelimited(component->dev, "%s: wcd_mbhc is NULL\n", __func__);
  1388. return;
  1389. }
  1390. wcd939x_mbhc_hs_detect_exit(component);
  1391. wcd_mbhc_deinit(wcd_mbhc);
  1392. }
  1393. EXPORT_SYMBOL(wcd939x_mbhc_ssr_down);
  1394. /*
  1395. * wcd939x_mbhc_post_ssr_init: initialize mbhc for
  1396. * wcd939x post subsystem restart
  1397. * @mbhc: poniter to wcd939x_mbhc structure
  1398. * @component: handle to snd_soc_component *
  1399. *
  1400. * return 0 if mbhc_init is success or error code in case of failure
  1401. */
  1402. int wcd939x_mbhc_post_ssr_init(struct wcd939x_mbhc *mbhc,
  1403. struct snd_soc_component *component)
  1404. {
  1405. int ret = 0;
  1406. struct wcd_mbhc *wcd_mbhc = NULL;
  1407. if (!mbhc || !component)
  1408. return -EINVAL;
  1409. wcd_mbhc = &mbhc->wcd_mbhc;
  1410. if (wcd_mbhc == NULL) {
  1411. pr_err("%s: wcd_mbhc is NULL\n", __func__);
  1412. return -EINVAL;
  1413. }
  1414. /* Reset detection type to insertion after SSR recovery */
  1415. snd_soc_component_update_bits(component, WCD939X_MBHC_MECH,
  1416. 0x20, 0x20);
  1417. ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb, &intr_ids,
  1418. wcd_mbhc_registers, WCD939X_ZDET_SUPPORTED);
  1419. if (ret) {
  1420. dev_err(component->dev, "%s: mbhc initialization failed\n",
  1421. __func__);
  1422. goto done;
  1423. }
  1424. done:
  1425. return ret;
  1426. }
  1427. EXPORT_SYMBOL(wcd939x_mbhc_post_ssr_init);
  1428. /*
  1429. * wcd939x_mbhc_init: initialize mbhc for wcd939x
  1430. * @mbhc: poniter to wcd939x_mbhc struct pointer to store the configs
  1431. * @codec: handle to snd_soc_component *
  1432. * @fw_data: handle to firmware data
  1433. *
  1434. * return 0 if mbhc_init is success or error code in case of failure
  1435. */
  1436. int wcd939x_mbhc_init(struct wcd939x_mbhc **mbhc,
  1437. struct snd_soc_component *component,
  1438. struct fw_info *fw_data)
  1439. {
  1440. struct wcd939x_mbhc *wcd939x_mbhc = NULL;
  1441. struct wcd_mbhc *wcd_mbhc = NULL;
  1442. int ret = 0;
  1443. struct wcd939x_pdata *pdata;
  1444. if (!component) {
  1445. pr_err("%s: component is NULL\n", __func__);
  1446. return -EINVAL;
  1447. }
  1448. wcd939x_mbhc = devm_kzalloc(component->dev, sizeof(struct wcd939x_mbhc),
  1449. GFP_KERNEL);
  1450. if (!wcd939x_mbhc)
  1451. return -ENOMEM;
  1452. wcd939x_mbhc->fw_data = fw_data;
  1453. BLOCKING_INIT_NOTIFIER_HEAD(&wcd939x_mbhc->notifier);
  1454. wcd_mbhc = &wcd939x_mbhc->wcd_mbhc;
  1455. if (wcd_mbhc == NULL) {
  1456. pr_err("%s: wcd_mbhc is NULL\n", __func__);
  1457. ret = -EINVAL;
  1458. goto err;
  1459. }
  1460. /* Setting default mbhc detection logic to ADC */
  1461. wcd_mbhc->mbhc_detection_logic = WCD_DETECTION_ADC;
  1462. /* Down ramp timer set-up */
  1463. timer_setup(&wcd939x_mbhc->rdown_timer, rdown_timer_callback, 0);
  1464. wcd939x_mbhc->rdown_prev_iter = 0;
  1465. wcd939x_mbhc->rdown_timer_complete = false;
  1466. pdata = dev_get_platdata(component->dev);
  1467. if (!pdata) {
  1468. dev_err(component->dev, "%s: pdata pointer is NULL\n",
  1469. __func__);
  1470. ret = -EINVAL;
  1471. goto err;
  1472. }
  1473. wcd_mbhc->micb_mv = pdata->micbias.micb2_mv;
  1474. ret = wcd_mbhc_init(wcd_mbhc, component, &mbhc_cb,
  1475. &intr_ids, wcd_mbhc_registers,
  1476. WCD939X_ZDET_SUPPORTED);
  1477. if (ret) {
  1478. dev_err(component->dev, "%s: mbhc initialization failed\n",
  1479. __func__);
  1480. goto err;
  1481. }
  1482. (*mbhc) = wcd939x_mbhc;
  1483. snd_soc_add_component_controls(component, impedance_detect_controls,
  1484. ARRAY_SIZE(impedance_detect_controls));
  1485. snd_soc_add_component_controls(component, hph_type_detect_controls,
  1486. ARRAY_SIZE(hph_type_detect_controls));
  1487. return 0;
  1488. err:
  1489. if (wcd939x_mbhc)
  1490. del_timer(&wcd939x_mbhc->rdown_timer);
  1491. devm_kfree(component->dev, wcd939x_mbhc);
  1492. return ret;
  1493. }
  1494. EXPORT_SYMBOL(wcd939x_mbhc_init);
  1495. /*
  1496. * wcd939x_mbhc_deinit: deinitialize mbhc for wcd939x
  1497. * @codec: handle to snd_soc_component *
  1498. */
  1499. void wcd939x_mbhc_deinit(struct snd_soc_component *component)
  1500. {
  1501. struct wcd939x_priv *wcd939x;
  1502. struct wcd939x_mbhc *wcd939x_mbhc;
  1503. if (!component) {
  1504. pr_err("%s: component is NULL\n", __func__);
  1505. return;
  1506. }
  1507. wcd939x = snd_soc_component_get_drvdata(component);
  1508. if (!wcd939x) {
  1509. pr_err("%s: wcd939x is NULL\n", __func__);
  1510. return;
  1511. }
  1512. wcd939x_mbhc = wcd939x->mbhc;
  1513. if (wcd939x_mbhc) {
  1514. del_timer(&wcd939x_mbhc->rdown_timer);
  1515. wcd_mbhc_deinit(&wcd939x_mbhc->wcd_mbhc);
  1516. devm_kfree(component->dev, wcd939x_mbhc);
  1517. }
  1518. }
  1519. EXPORT_SYMBOL(wcd939x_mbhc_deinit);