dp_rx_defrag.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080
  1. /*
  2. * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. #include "dp_rx_buffer_pool.h"
  31. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  32. "AES-CCM",
  33. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  34. IEEE80211_WEP_MICLEN,
  35. 0,
  36. };
  37. const struct dp_rx_defrag_cipher dp_f_tkip = {
  38. "TKIP",
  39. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  40. IEEE80211_WEP_CRCLEN,
  41. IEEE80211_WEP_MICLEN,
  42. };
  43. const struct dp_rx_defrag_cipher dp_f_wep = {
  44. "WEP",
  45. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  46. IEEE80211_WEP_CRCLEN,
  47. 0,
  48. };
  49. /*
  50. * dp_rx_defrag_frames_free(): Free fragment chain
  51. * @frames: Fragment chain
  52. *
  53. * Iterates through the fragment chain and frees them
  54. * Returns: None
  55. */
  56. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  57. {
  58. qdf_nbuf_t next, frag = frames;
  59. while (frag) {
  60. next = qdf_nbuf_next(frag);
  61. qdf_nbuf_free(frag);
  62. frag = next;
  63. }
  64. }
  65. /*
  66. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  67. * @peer: Pointer to the peer data structure
  68. * @tid: Transmit ID (TID)
  69. *
  70. * Saves MPDU descriptor info and MSDU link pointer from REO
  71. * ring descriptor. The cache is created per peer, per TID
  72. *
  73. * Returns: None
  74. */
  75. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  76. {
  77. if (peer->rx_tid[tid].dst_ring_desc)
  78. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  79. peer->rx_tid[tid].dst_ring_desc = NULL;
  80. peer->rx_tid[tid].head_frag_desc = NULL;
  81. }
  82. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  83. unsigned int tid)
  84. {
  85. struct dp_soc *soc;
  86. struct dp_pdev *pdev;
  87. struct dp_srng *dp_rxdma_srng;
  88. struct rx_desc_pool *rx_desc_pool;
  89. union dp_rx_desc_list_elem_t *head = NULL;
  90. union dp_rx_desc_list_elem_t *tail = NULL;
  91. uint8_t pool_id;
  92. pdev = peer->vdev->pdev;
  93. soc = pdev->soc;
  94. if (peer->rx_tid[tid].head_frag_desc) {
  95. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  96. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  97. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  98. dp_rx_add_to_free_desc_list(&head, &tail,
  99. peer->rx_tid[tid].head_frag_desc);
  100. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  101. 1, &head, &tail);
  102. }
  103. if (peer->rx_tid[tid].dst_ring_desc) {
  104. if (dp_rx_link_desc_return(soc,
  105. peer->rx_tid[tid].dst_ring_desc,
  106. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  107. QDF_STATUS_SUCCESS)
  108. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  109. "%s: Failed to return link desc", __func__);
  110. }
  111. }
  112. /*
  113. * dp_rx_reorder_flush_frag(): Flush the frag list
  114. * @peer: Pointer to the peer data structure
  115. * @tid: Transmit ID (TID)
  116. *
  117. * Flush the per-TID frag list
  118. *
  119. * Returns: None
  120. */
  121. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  122. unsigned int tid)
  123. {
  124. dp_info_rl("Flushing TID %d", tid);
  125. if (!peer) {
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: NULL peer", __func__);
  128. return;
  129. }
  130. dp_rx_return_head_frag_desc(peer, tid);
  131. dp_rx_defrag_cleanup(peer, tid);
  132. }
  133. /*
  134. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  135. * @soc: DP SOC
  136. *
  137. * Flush fragments of all waitlisted TID's
  138. *
  139. * Returns: None
  140. */
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid *rx_reorder = NULL;
  144. struct dp_rx_tid *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid) temp_list;
  147. TAILQ_INIT(&temp_list);
  148. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  149. FL("Current time %u"), now_ms);
  150. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  151. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  152. defrag_waitlist_elem, tmp) {
  153. uint32_t tid;
  154. if (rx_reorder->defrag_timeout_ms > now_ms)
  155. break;
  156. tid = rx_reorder->tid;
  157. if (tid >= DP_MAX_TIDS) {
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  162. defrag_waitlist_elem);
  163. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  164. /* Move to temp list and clean-up later */
  165. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  166. defrag_waitlist_elem);
  167. }
  168. if (rx_reorder) {
  169. soc->rx.defrag.next_flush_ms =
  170. rx_reorder->defrag_timeout_ms;
  171. } else {
  172. soc->rx.defrag.next_flush_ms =
  173. now_ms + soc->rx.defrag.timeout_ms;
  174. }
  175. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  176. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  177. defrag_waitlist_elem, tmp) {
  178. struct dp_peer *peer, *temp_peer = NULL;
  179. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  180. TAILQ_REMOVE(&temp_list, rx_reorder,
  181. defrag_waitlist_elem);
  182. /* get address of current peer */
  183. peer =
  184. container_of(rx_reorder, struct dp_peer,
  185. rx_tid[rx_reorder->tid]);
  186. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  187. temp_peer = dp_peer_get_ref_by_id(soc, peer->peer_id,
  188. DP_MOD_ID_RX_ERR);
  189. if (temp_peer == peer) {
  190. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  191. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  192. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  193. }
  194. if (temp_peer)
  195. dp_peer_unref_delete(temp_peer, DP_MOD_ID_RX_ERR);
  196. }
  197. }
  198. /*
  199. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  200. * @peer: Pointer to the peer data structure
  201. * @tid: Transmit ID (TID)
  202. *
  203. * Appends per-tid fragments to global fragment wait list
  204. *
  205. * Returns: None
  206. */
  207. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  208. {
  209. struct dp_soc *psoc = peer->vdev->pdev->soc;
  210. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  211. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
  212. tid, peer, peer->mac_addr.raw);
  213. /* TODO: use LIST macros instead of TAIL macros */
  214. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  215. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  216. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  217. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  218. defrag_waitlist_elem);
  219. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  220. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  221. }
  222. /*
  223. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  224. * @peer: Pointer to the peer data structure
  225. * @tid: Transmit ID (TID)
  226. *
  227. * Remove fragments from waitlist
  228. *
  229. * Returns: None
  230. */
  231. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  232. {
  233. struct dp_pdev *pdev = peer->vdev->pdev;
  234. struct dp_soc *soc = pdev->soc;
  235. struct dp_rx_tid *rx_reorder;
  236. struct dp_rx_tid *tmp;
  237. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
  238. tid, peer, peer->mac_addr.raw);
  239. if (tid >= DP_MAX_TIDS) {
  240. dp_err("TID out of bounds: %d", tid);
  241. qdf_assert_always(0);
  242. }
  243. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  244. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  245. defrag_waitlist_elem, tmp) {
  246. struct dp_peer *peer_on_waitlist;
  247. /* get address of current peer */
  248. peer_on_waitlist =
  249. container_of(rx_reorder, struct dp_peer,
  250. rx_tid[rx_reorder->tid]);
  251. /* Ensure it is TID for same peer */
  252. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  253. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  254. rx_reorder, defrag_waitlist_elem);
  255. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  256. }
  257. }
  258. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  259. }
  260. /*
  261. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  262. * @peer: Pointer to the peer data structure
  263. * @tid: Transmit ID (TID)
  264. * @head_addr: Pointer to head list
  265. * @tail_addr: Pointer to tail list
  266. * @frag: Incoming fragment
  267. * @all_frag_present: Flag to indicate whether all fragments are received
  268. *
  269. * Build a per-tid, per-sequence fragment list.
  270. *
  271. * Returns: Success, if inserted
  272. */
  273. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  274. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  275. uint8_t *all_frag_present)
  276. {
  277. qdf_nbuf_t next;
  278. qdf_nbuf_t prev = NULL;
  279. qdf_nbuf_t cur;
  280. uint16_t head_fragno, cur_fragno, next_fragno;
  281. uint8_t last_morefrag = 1, count = 0;
  282. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  283. uint8_t *rx_desc_info;
  284. qdf_assert(frag);
  285. qdf_assert(head_addr);
  286. qdf_assert(tail_addr);
  287. *all_frag_present = 0;
  288. rx_desc_info = qdf_nbuf_data(frag);
  289. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  290. dp_debug("cur_fragno %d\n", cur_fragno);
  291. /* If this is the first fragment */
  292. if (!(*head_addr)) {
  293. *head_addr = *tail_addr = frag;
  294. qdf_nbuf_set_next(*tail_addr, NULL);
  295. rx_tid->curr_frag_num = cur_fragno;
  296. goto insert_done;
  297. }
  298. /* In sequence fragment */
  299. if (cur_fragno > rx_tid->curr_frag_num) {
  300. qdf_nbuf_set_next(*tail_addr, frag);
  301. *tail_addr = frag;
  302. qdf_nbuf_set_next(*tail_addr, NULL);
  303. rx_tid->curr_frag_num = cur_fragno;
  304. } else {
  305. /* Out of sequence fragment */
  306. cur = *head_addr;
  307. rx_desc_info = qdf_nbuf_data(cur);
  308. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  309. if (cur_fragno == head_fragno) {
  310. qdf_nbuf_free(frag);
  311. goto insert_fail;
  312. } else if (head_fragno > cur_fragno) {
  313. qdf_nbuf_set_next(frag, cur);
  314. cur = frag;
  315. *head_addr = frag; /* head pointer to be updated */
  316. } else {
  317. while ((cur_fragno > head_fragno) && cur) {
  318. prev = cur;
  319. cur = qdf_nbuf_next(cur);
  320. if (cur) {
  321. rx_desc_info = qdf_nbuf_data(cur);
  322. head_fragno =
  323. dp_rx_frag_get_mpdu_frag_number(
  324. rx_desc_info);
  325. }
  326. }
  327. if (cur_fragno == head_fragno) {
  328. qdf_nbuf_free(frag);
  329. goto insert_fail;
  330. }
  331. qdf_nbuf_set_next(prev, frag);
  332. qdf_nbuf_set_next(frag, cur);
  333. }
  334. }
  335. next = qdf_nbuf_next(*head_addr);
  336. rx_desc_info = qdf_nbuf_data(*tail_addr);
  337. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  338. /* TODO: optimize the loop */
  339. if (!last_morefrag) {
  340. /* Check if all fragments are present */
  341. do {
  342. rx_desc_info = qdf_nbuf_data(next);
  343. next_fragno =
  344. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  345. count++;
  346. if (next_fragno != count)
  347. break;
  348. next = qdf_nbuf_next(next);
  349. } while (next);
  350. if (!next) {
  351. *all_frag_present = 1;
  352. return QDF_STATUS_SUCCESS;
  353. } else {
  354. /* revisit */
  355. }
  356. }
  357. insert_done:
  358. return QDF_STATUS_SUCCESS;
  359. insert_fail:
  360. return QDF_STATUS_E_FAILURE;
  361. }
  362. /*
  363. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  364. * @msdu: Pointer to the fragment
  365. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  366. *
  367. * decap tkip encrypted fragment
  368. *
  369. * Returns: QDF_STATUS
  370. */
  371. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  372. {
  373. uint8_t *ivp, *orig_hdr;
  374. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  375. /* start of 802.11 header info */
  376. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  377. /* TKIP header is located post 802.11 header */
  378. ivp = orig_hdr + hdrlen;
  379. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  380. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  381. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  382. return QDF_STATUS_E_DEFRAG_ERROR;
  383. }
  384. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  385. return QDF_STATUS_SUCCESS;
  386. }
  387. /*
  388. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  389. * @nbuf: Pointer to the fragment buffer
  390. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  391. *
  392. * Remove MIC information from CCMP fragment
  393. *
  394. * Returns: QDF_STATUS
  395. */
  396. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  397. {
  398. uint8_t *ivp, *orig_hdr;
  399. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  400. /* start of the 802.11 header */
  401. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  402. /* CCMP header is located after 802.11 header */
  403. ivp = orig_hdr + hdrlen;
  404. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  405. return QDF_STATUS_E_DEFRAG_ERROR;
  406. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  407. return QDF_STATUS_SUCCESS;
  408. }
  409. /*
  410. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  411. * @nbuf: Pointer to the fragment
  412. * @hdrlen: length of the header information
  413. *
  414. * decap CCMP encrypted fragment
  415. *
  416. * Returns: QDF_STATUS
  417. */
  418. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  419. {
  420. uint8_t *ivp, *origHdr;
  421. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  422. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  423. ivp = origHdr + hdrlen;
  424. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  425. return QDF_STATUS_E_DEFRAG_ERROR;
  426. /* Let's pull the header later */
  427. return QDF_STATUS_SUCCESS;
  428. }
  429. /*
  430. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  431. * @msdu: Pointer to the fragment
  432. * @hdrlen: length of the header information
  433. *
  434. * decap WEP encrypted fragment
  435. *
  436. * Returns: QDF_STATUS
  437. */
  438. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  439. {
  440. uint8_t *origHdr;
  441. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  442. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  443. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  444. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  445. return QDF_STATUS_SUCCESS;
  446. }
  447. /*
  448. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  449. * @soc: soc handle
  450. * @nbuf: Pointer to the fragment
  451. *
  452. * Calculate the header size of the received fragment
  453. *
  454. * Returns: header size (uint16_t)
  455. */
  456. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  457. {
  458. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  459. uint16_t size = sizeof(struct ieee80211_frame);
  460. uint16_t fc = 0;
  461. uint32_t to_ds, fr_ds;
  462. uint8_t frm_ctrl_valid;
  463. uint16_t frm_ctrl_field;
  464. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  465. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  466. frm_ctrl_valid =
  467. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  468. rx_tlv_hdr);
  469. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  470. if (to_ds && fr_ds)
  471. size += QDF_MAC_ADDR_SIZE;
  472. if (frm_ctrl_valid) {
  473. fc = frm_ctrl_field;
  474. /* use 1-st byte for validation */
  475. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  476. size += sizeof(uint16_t);
  477. /* use 2-nd byte for validation */
  478. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  479. size += sizeof(struct ieee80211_htc);
  480. }
  481. }
  482. return size;
  483. }
  484. /*
  485. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  486. * @wh0: Pointer to the wireless header of the fragment
  487. * @hdr: Array to hold the pseudo header
  488. *
  489. * Calculate a pseudo MIC header
  490. *
  491. * Returns: None
  492. */
  493. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  494. uint8_t hdr[])
  495. {
  496. const struct ieee80211_frame_addr4 *wh =
  497. (const struct ieee80211_frame_addr4 *)wh0;
  498. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  499. case IEEE80211_FC1_DIR_NODS:
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  501. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  502. wh->i_addr2);
  503. break;
  504. case IEEE80211_FC1_DIR_TODS:
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  506. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  507. wh->i_addr2);
  508. break;
  509. case IEEE80211_FC1_DIR_FROMDS:
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  511. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  512. wh->i_addr3);
  513. break;
  514. case IEEE80211_FC1_DIR_DSTODS:
  515. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  516. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  517. wh->i_addr4);
  518. break;
  519. }
  520. /*
  521. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  522. * it could also be set for deauth, disassoc, action, etc. for
  523. * a mgt type frame. It comes into picture for MFP.
  524. */
  525. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  526. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  527. IEEE80211_FC1_DIR_DSTODS) {
  528. const struct ieee80211_qosframe_addr4 *qwh =
  529. (const struct ieee80211_qosframe_addr4 *)wh;
  530. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  531. } else {
  532. const struct ieee80211_qosframe *qwh =
  533. (const struct ieee80211_qosframe *)wh;
  534. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  535. }
  536. } else {
  537. hdr[12] = 0;
  538. }
  539. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  540. }
  541. /*
  542. * dp_rx_defrag_mic(): Calculate MIC header
  543. * @key: Pointer to the key
  544. * @wbuf: fragment buffer
  545. * @off: Offset
  546. * @data_len: Data length
  547. * @mic: Array to hold MIC
  548. *
  549. * Calculate a pseudo MIC header
  550. *
  551. * Returns: QDF_STATUS
  552. */
  553. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  554. uint16_t off, uint16_t data_len, uint8_t mic[])
  555. {
  556. uint8_t hdr[16] = { 0, };
  557. uint32_t l, r;
  558. const uint8_t *data;
  559. uint32_t space;
  560. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  561. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  562. + rx_desc_len), hdr);
  563. l = dp_rx_get_le32(key);
  564. r = dp_rx_get_le32(key + 4);
  565. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  566. l ^= dp_rx_get_le32(hdr);
  567. dp_rx_michael_block(l, r);
  568. l ^= dp_rx_get_le32(&hdr[4]);
  569. dp_rx_michael_block(l, r);
  570. l ^= dp_rx_get_le32(&hdr[8]);
  571. dp_rx_michael_block(l, r);
  572. l ^= dp_rx_get_le32(&hdr[12]);
  573. dp_rx_michael_block(l, r);
  574. /* first buffer has special handling */
  575. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  576. space = qdf_nbuf_len(wbuf) - off;
  577. for (;; ) {
  578. if (space > data_len)
  579. space = data_len;
  580. /* collect 32-bit blocks from current buffer */
  581. while (space >= sizeof(uint32_t)) {
  582. l ^= dp_rx_get_le32(data);
  583. dp_rx_michael_block(l, r);
  584. data += sizeof(uint32_t);
  585. space -= sizeof(uint32_t);
  586. data_len -= sizeof(uint32_t);
  587. }
  588. if (data_len < sizeof(uint32_t))
  589. break;
  590. wbuf = qdf_nbuf_next(wbuf);
  591. if (!wbuf)
  592. return QDF_STATUS_E_DEFRAG_ERROR;
  593. if (space != 0) {
  594. const uint8_t *data_next;
  595. /*
  596. * Block straddles buffers, split references.
  597. */
  598. data_next =
  599. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  600. if ((qdf_nbuf_len(wbuf)) <
  601. sizeof(uint32_t) - space) {
  602. return QDF_STATUS_E_DEFRAG_ERROR;
  603. }
  604. switch (space) {
  605. case 1:
  606. l ^= dp_rx_get_le32_split(data[0],
  607. data_next[0], data_next[1],
  608. data_next[2]);
  609. data = data_next + 3;
  610. space = (qdf_nbuf_len(wbuf) - off) - 3;
  611. break;
  612. case 2:
  613. l ^= dp_rx_get_le32_split(data[0], data[1],
  614. data_next[0], data_next[1]);
  615. data = data_next + 2;
  616. space = (qdf_nbuf_len(wbuf) - off) - 2;
  617. break;
  618. case 3:
  619. l ^= dp_rx_get_le32_split(data[0], data[1],
  620. data[2], data_next[0]);
  621. data = data_next + 1;
  622. space = (qdf_nbuf_len(wbuf) - off) - 1;
  623. break;
  624. }
  625. dp_rx_michael_block(l, r);
  626. data_len -= sizeof(uint32_t);
  627. } else {
  628. /*
  629. * Setup for next buffer.
  630. */
  631. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  632. space = qdf_nbuf_len(wbuf) - off;
  633. }
  634. }
  635. /* Last block and padding (0x5a, 4..7 x 0) */
  636. switch (data_len) {
  637. case 0:
  638. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  639. break;
  640. case 1:
  641. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  642. break;
  643. case 2:
  644. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  645. break;
  646. case 3:
  647. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  648. break;
  649. }
  650. dp_rx_michael_block(l, r);
  651. dp_rx_michael_block(l, r);
  652. dp_rx_put_le32(mic, l);
  653. dp_rx_put_le32(mic + 4, r);
  654. return QDF_STATUS_SUCCESS;
  655. }
  656. /*
  657. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  658. * @key: Pointer to the key
  659. * @msdu: fragment buffer
  660. * @hdrlen: Length of the header information
  661. *
  662. * Remove MIC information from the TKIP frame
  663. *
  664. * Returns: QDF_STATUS
  665. */
  666. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  667. qdf_nbuf_t msdu, uint16_t hdrlen)
  668. {
  669. QDF_STATUS status;
  670. uint32_t pktlen = 0;
  671. uint8_t mic[IEEE80211_WEP_MICLEN];
  672. uint8_t mic0[IEEE80211_WEP_MICLEN];
  673. qdf_nbuf_t prev = NULL, next;
  674. next = msdu;
  675. while (next) {
  676. pktlen += (qdf_nbuf_len(next) - hdrlen);
  677. prev = next;
  678. dp_debug("%s pktlen %u", __func__,
  679. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  680. next = qdf_nbuf_next(next);
  681. }
  682. if (!prev) {
  683. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  684. "%s Defrag chaining failed !\n", __func__);
  685. return QDF_STATUS_E_DEFRAG_ERROR;
  686. }
  687. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  688. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  689. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  690. pktlen -= dp_f_tkip.ic_miclen;
  691. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  692. pktlen, mic);
  693. if (QDF_IS_STATUS_ERROR(status))
  694. return status;
  695. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  696. return QDF_STATUS_E_DEFRAG_ERROR;
  697. return QDF_STATUS_SUCCESS;
  698. }
  699. /*
  700. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  701. * @nbuf: buffer pointer
  702. * @hdrsize: size of the header to be pulled
  703. *
  704. * Pull the RXTLV & the 802.11 headers
  705. *
  706. * Returns: None
  707. */
  708. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  709. {
  710. struct rx_pkt_tlvs *rx_pkt_tlv =
  711. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  712. struct rx_mpdu_info *rx_mpdu_info_details =
  713. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  714. dp_debug("pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  715. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  716. rx_mpdu_info_details->pn_95_64,
  717. rx_mpdu_info_details->pn_127_96);
  718. qdf_nbuf_pull_head(nbuf, RX_PKT_TLVS_LEN + hdrsize);
  719. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  720. "%s: final pktlen %d .11len %d",
  721. __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  722. }
  723. /*
  724. * dp_rx_defrag_pn_check(): Check the PN of current fragmented with prev PN
  725. * @msdu: msdu to get the current PN
  726. * @cur_pn128: PN extracted from current msdu
  727. * @prev_pn128: Prev PN
  728. *
  729. * Returns: 0 on success, non zero on failure
  730. */
  731. static int dp_rx_defrag_pn_check(qdf_nbuf_t msdu,
  732. uint64_t *cur_pn128, uint64_t *prev_pn128)
  733. {
  734. struct rx_pkt_tlvs *rx_pkt_tlv =
  735. (struct rx_pkt_tlvs *)qdf_nbuf_data(msdu);
  736. struct rx_mpdu_info *rx_mpdu_info_details =
  737. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  738. int out_of_order = 0;
  739. cur_pn128[0] = rx_mpdu_info_details->pn_31_0;
  740. cur_pn128[0] |=
  741. ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  742. cur_pn128[1] = rx_mpdu_info_details->pn_95_64;
  743. cur_pn128[1] |=
  744. ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  745. if (cur_pn128[1] == prev_pn128[1])
  746. out_of_order = (cur_pn128[0] <= prev_pn128[0]);
  747. else
  748. out_of_order = (cur_pn128[1] < prev_pn128[1]);
  749. return out_of_order;
  750. }
  751. /*
  752. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  753. * @peer: Pointer to the peer
  754. * @head: Pointer to list of fragments
  755. * @hdrsize: Size of the header to be pulled
  756. *
  757. * Construct a nbuf fraglist
  758. *
  759. * Returns: None
  760. */
  761. static int
  762. dp_rx_construct_fraglist(struct dp_peer *peer, int tid, qdf_nbuf_t head,
  763. uint16_t hdrsize)
  764. {
  765. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  766. qdf_nbuf_t rx_nbuf = msdu;
  767. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  768. uint32_t len = 0;
  769. uint64_t cur_pn128[2] = {0, 0}, prev_pn128[2];
  770. int out_of_order = 0;
  771. int index;
  772. int needs_pn_check = 0;
  773. prev_pn128[0] = rx_tid->pn128[0];
  774. prev_pn128[1] = rx_tid->pn128[1];
  775. index = hal_rx_msdu_is_wlan_mcast(msdu) ? dp_sec_mcast : dp_sec_ucast;
  776. if (qdf_likely(peer->security[index].sec_type != cdp_sec_type_none))
  777. needs_pn_check = 1;
  778. while (msdu) {
  779. if (qdf_likely(needs_pn_check))
  780. out_of_order = dp_rx_defrag_pn_check(msdu,
  781. &cur_pn128[0],
  782. &prev_pn128[0]);
  783. if (qdf_unlikely(out_of_order)) {
  784. dp_info_rl("cur_pn128[0] 0x%llx cur_pn128[1] 0x%llx prev_pn128[0] 0x%llx prev_pn128[1] 0x%llx",
  785. cur_pn128[0], cur_pn128[1],
  786. prev_pn128[0], prev_pn128[1]);
  787. return QDF_STATUS_E_FAILURE;
  788. }
  789. prev_pn128[0] = cur_pn128[0];
  790. prev_pn128[1] = cur_pn128[1];
  791. dp_rx_frag_pull_hdr(msdu, hdrsize);
  792. len += qdf_nbuf_len(msdu);
  793. msdu = qdf_nbuf_next(msdu);
  794. }
  795. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  796. qdf_nbuf_set_next(head, NULL);
  797. qdf_nbuf_set_is_frag(head, 1);
  798. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  799. "%s: head len %d ext len %d data len %d ",
  800. __func__,
  801. (uint32_t)qdf_nbuf_len(head),
  802. (uint32_t)qdf_nbuf_len(rx_nbuf),
  803. (uint32_t)(head->data_len));
  804. return QDF_STATUS_SUCCESS;
  805. }
  806. /**
  807. * dp_rx_defrag_err() - rx err handler
  808. * @pdev: handle to pdev object
  809. * @vdev_id: vdev id
  810. * @peer_mac_addr: peer mac address
  811. * @tid: TID
  812. * @tsf32: TSF
  813. * @err_type: error type
  814. * @rx_frame: rx frame
  815. * @pn: PN Number
  816. * @key_id: key id
  817. *
  818. * This function handles rx error and send MIC error notification
  819. *
  820. * Return: None
  821. */
  822. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  823. {
  824. struct ol_if_ops *tops = NULL;
  825. struct dp_pdev *pdev = vdev->pdev;
  826. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  827. uint8_t *orig_hdr;
  828. struct ieee80211_frame *wh;
  829. struct cdp_rx_mic_err_info mic_failure_info;
  830. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  831. wh = (struct ieee80211_frame *)orig_hdr;
  832. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  833. (struct qdf_mac_addr *)&wh->i_addr1);
  834. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  835. (struct qdf_mac_addr *)&wh->i_addr2);
  836. mic_failure_info.key_id = 0;
  837. mic_failure_info.multicast =
  838. IEEE80211_IS_MULTICAST(wh->i_addr1);
  839. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  840. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  841. mic_failure_info.data = (uint8_t *)wh;
  842. mic_failure_info.vdev_id = vdev->vdev_id;
  843. tops = pdev->soc->cdp_soc.ol_ops;
  844. if (tops->rx_mic_error)
  845. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  846. &mic_failure_info);
  847. }
  848. /*
  849. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  850. * @soc: dp soc handle
  851. * @nbuf: Pointer to the fragment buffer
  852. * @hdrsize: Size of headers
  853. *
  854. * Transcap the fragment from 802.11 to 802.3
  855. *
  856. * Returns: None
  857. */
  858. static void
  859. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc, struct dp_peer *peer, int tid,
  860. qdf_nbuf_t nbuf, uint16_t hdrsize)
  861. {
  862. struct llc_snap_hdr_t *llchdr;
  863. struct ethernet_hdr_t *eth_hdr;
  864. uint8_t ether_type[2];
  865. uint16_t fc = 0;
  866. union dp_align_mac_addr mac_addr;
  867. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  868. struct rx_pkt_tlvs *rx_pkt_tlv =
  869. (struct rx_pkt_tlvs *)qdf_nbuf_data(nbuf);
  870. struct rx_mpdu_info *rx_mpdu_info_details =
  871. &rx_pkt_tlv->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  872. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  873. dp_debug("head_nbuf pn_31_0 0x%x pn_63_32 0x%x pn_95_64 0x%x pn_127_96 0x%x\n",
  874. rx_mpdu_info_details->pn_31_0, rx_mpdu_info_details->pn_63_32,
  875. rx_mpdu_info_details->pn_95_64,
  876. rx_mpdu_info_details->pn_127_96);
  877. rx_tid->pn128[0] = rx_mpdu_info_details->pn_31_0;
  878. rx_tid->pn128[0] |= ((uint64_t)rx_mpdu_info_details->pn_63_32 << 32);
  879. rx_tid->pn128[1] = rx_mpdu_info_details->pn_95_64;
  880. rx_tid->pn128[1] |= ((uint64_t)rx_mpdu_info_details->pn_127_96 << 32);
  881. if (!rx_desc_info) {
  882. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  883. "%s: Memory alloc failed ! ", __func__);
  884. QDF_ASSERT(0);
  885. return;
  886. }
  887. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  888. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  889. RX_PKT_TLVS_LEN + hdrsize);
  890. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  891. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  892. sizeof(struct llc_snap_hdr_t) -
  893. sizeof(struct ethernet_hdr_t)));
  894. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  895. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  896. rx_desc_info))
  897. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  898. dp_debug("%s: frame control type: 0x%x", __func__, fc);
  899. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  900. case IEEE80211_FC1_DIR_NODS:
  901. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  902. &mac_addr.raw[0]);
  903. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  904. QDF_MAC_ADDR_SIZE);
  905. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  906. &mac_addr.raw[0]);
  907. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  908. QDF_MAC_ADDR_SIZE);
  909. break;
  910. case IEEE80211_FC1_DIR_TODS:
  911. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  912. &mac_addr.raw[0]);
  913. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  914. QDF_MAC_ADDR_SIZE);
  915. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  916. &mac_addr.raw[0]);
  917. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  918. QDF_MAC_ADDR_SIZE);
  919. break;
  920. case IEEE80211_FC1_DIR_FROMDS:
  921. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  922. &mac_addr.raw[0]);
  923. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  924. QDF_MAC_ADDR_SIZE);
  925. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  926. &mac_addr.raw[0]);
  927. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  928. QDF_MAC_ADDR_SIZE);
  929. break;
  930. case IEEE80211_FC1_DIR_DSTODS:
  931. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  932. &mac_addr.raw[0]);
  933. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  934. QDF_MAC_ADDR_SIZE);
  935. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  936. &mac_addr.raw[0]);
  937. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  938. QDF_MAC_ADDR_SIZE);
  939. break;
  940. default:
  941. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  942. "%s: Unknown frame control type: 0x%x", __func__, fc);
  943. }
  944. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  945. sizeof(ether_type));
  946. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  947. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  948. qdf_mem_free(rx_desc_info);
  949. }
  950. #ifdef RX_DEFRAG_DO_NOT_REINJECT
  951. /*
  952. * dp_rx_defrag_deliver(): Deliver defrag packet to stack
  953. * @peer: Pointer to the peer
  954. * @tid: Transmit Identifier
  955. * @head: Nbuf to be delivered
  956. *
  957. * Returns: None
  958. */
  959. static inline void dp_rx_defrag_deliver(struct dp_peer *peer,
  960. unsigned int tid,
  961. qdf_nbuf_t head)
  962. {
  963. struct dp_vdev *vdev = peer->vdev;
  964. struct dp_soc *soc = vdev->pdev->soc;
  965. qdf_nbuf_t deliver_list_head = NULL;
  966. qdf_nbuf_t deliver_list_tail = NULL;
  967. uint8_t *rx_tlv_hdr;
  968. rx_tlv_hdr = qdf_nbuf_data(head);
  969. QDF_NBUF_CB_RX_VDEV_ID(head) = vdev->vdev_id;
  970. qdf_nbuf_set_tid_val(head, tid);
  971. qdf_nbuf_pull_head(head, RX_PKT_TLVS_LEN);
  972. DP_RX_LIST_APPEND(deliver_list_head, deliver_list_tail,
  973. head);
  974. dp_rx_deliver_to_stack(soc, vdev, peer, deliver_list_head,
  975. deliver_list_tail);
  976. }
  977. /*
  978. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  979. * @peer: Pointer to the peer
  980. * @tid: Transmit Identifier
  981. * @head: Buffer to be reinjected back
  982. *
  983. * Reinject the fragment chain back into REO
  984. *
  985. * Returns: QDF_STATUS
  986. */
  987. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  988. unsigned int tid, qdf_nbuf_t head)
  989. {
  990. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  991. rx_reorder_array_elem = peer->rx_tid[tid].array;
  992. dp_rx_defrag_deliver(peer, tid, head);
  993. rx_reorder_array_elem->head = NULL;
  994. rx_reorder_array_elem->tail = NULL;
  995. dp_rx_return_head_frag_desc(peer, tid);
  996. return QDF_STATUS_SUCCESS;
  997. }
  998. #else
  999. #ifdef WLAN_FEATURE_DP_RX_RING_HISTORY
  1000. /**
  1001. * dp_rx_reinject_ring_record_entry() - Record reinject ring history
  1002. * @soc: Datapath soc structure
  1003. * @paddr: paddr of the buffer reinjected to SW2REO ring
  1004. * @sw_cookie: SW cookie of the buffer reinjected to SW2REO ring
  1005. * @rbm: Return buffer manager of the buffer reinjected to SW2REO ring
  1006. *
  1007. * Returns: None
  1008. */
  1009. static inline void
  1010. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1011. uint32_t sw_cookie, uint8_t rbm)
  1012. {
  1013. struct dp_buf_info_record *record;
  1014. uint32_t idx;
  1015. if (qdf_unlikely(soc->rx_reinject_ring_history))
  1016. return;
  1017. idx = dp_history_get_next_index(&soc->rx_reinject_ring_history->index,
  1018. DP_RX_REINJECT_HIST_MAX);
  1019. /* No NULL check needed for record since its an array */
  1020. record = &soc->rx_reinject_ring_history->entry[idx];
  1021. record->timestamp = qdf_get_log_timestamp();
  1022. record->hbi.paddr = paddr;
  1023. record->hbi.sw_cookie = sw_cookie;
  1024. record->hbi.rbm = rbm;
  1025. }
  1026. #else
  1027. static inline void
  1028. dp_rx_reinject_ring_record_entry(struct dp_soc *soc, uint64_t paddr,
  1029. uint32_t sw_cookie, uint8_t rbm)
  1030. {
  1031. }
  1032. #endif
  1033. /*
  1034. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  1035. * @peer: Pointer to the peer
  1036. * @tid: Transmit Identifier
  1037. * @head: Buffer to be reinjected back
  1038. *
  1039. * Reinject the fragment chain back into REO
  1040. *
  1041. * Returns: QDF_STATUS
  1042. */
  1043. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  1044. unsigned int tid, qdf_nbuf_t head)
  1045. {
  1046. struct dp_pdev *pdev = peer->vdev->pdev;
  1047. struct dp_soc *soc = pdev->soc;
  1048. struct hal_buf_info buf_info;
  1049. void *link_desc_va;
  1050. void *msdu0, *msdu_desc_info;
  1051. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  1052. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  1053. qdf_dma_addr_t paddr;
  1054. uint32_t nbuf_len, seq_no, dst_ind;
  1055. uint32_t *mpdu_wrd;
  1056. uint32_t ret, cookie;
  1057. hal_ring_desc_t dst_ring_desc =
  1058. peer->rx_tid[tid].dst_ring_desc;
  1059. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  1060. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  1061. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1062. peer->rx_tid[tid].array;
  1063. qdf_nbuf_t nbuf_head;
  1064. struct rx_desc_pool *rx_desc_pool = NULL;
  1065. void *buf_addr_info = HAL_RX_REO_BUF_ADDR_INFO_GET(dst_ring_desc);
  1066. /* do duplicate link desc address check */
  1067. dp_rx_link_desc_refill_duplicate_check(
  1068. soc,
  1069. &soc->last_op_info.reo_reinject_link_desc,
  1070. buf_addr_info);
  1071. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  1072. if (qdf_unlikely(!nbuf_head)) {
  1073. dp_err_rl("IPA RX REO reinject failed");
  1074. return QDF_STATUS_E_FAILURE;
  1075. }
  1076. /* update new allocated skb in case IPA is enabled */
  1077. if (nbuf_head != head) {
  1078. head = nbuf_head;
  1079. rx_desc->nbuf = head;
  1080. rx_reorder_array_elem->head = head;
  1081. }
  1082. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  1083. if (!ent_ring_desc) {
  1084. dp_err_rl("HAL src ring next entry NULL");
  1085. return QDF_STATUS_E_FAILURE;
  1086. }
  1087. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  1088. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  1089. qdf_assert_always(link_desc_va);
  1090. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  1091. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  1092. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  1093. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  1094. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  1095. /* msdu reconfig */
  1096. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  1097. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  1098. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  1099. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1100. FIRST_MSDU_IN_MPDU_FLAG, 1);
  1101. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1102. LAST_MSDU_IN_MPDU_FLAG, 1);
  1103. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1104. MSDU_CONTINUATION, 0x0);
  1105. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1106. REO_DESTINATION_INDICATION, dst_ind);
  1107. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1108. MSDU_LENGTH, nbuf_len);
  1109. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1110. SA_IS_VALID, 1);
  1111. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  1112. DA_IS_VALID, 1);
  1113. /* change RX TLV's */
  1114. hal_rx_msdu_start_msdu_len_set(
  1115. qdf_nbuf_data(head), nbuf_len);
  1116. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  1117. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  1118. /* map the nbuf before reinject it into HW */
  1119. ret = qdf_nbuf_map_nbytes_single(soc->osdev, head,
  1120. QDF_DMA_FROM_DEVICE,
  1121. rx_desc_pool->buf_size);
  1122. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  1123. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1124. "%s: nbuf map failed !", __func__);
  1125. return QDF_STATUS_E_FAILURE;
  1126. }
  1127. /*
  1128. * As part of rx frag handler bufffer was unmapped and rx desc
  1129. * unmapped is set to 1. So again for defrag reinject frame reset
  1130. * it back to 0.
  1131. */
  1132. rx_desc->unmapped = 0;
  1133. dp_ipa_handle_rx_buf_smmu_mapping(soc, head,
  1134. rx_desc_pool->buf_size,
  1135. true);
  1136. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  1137. ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
  1138. if (ret == QDF_STATUS_E_FAILURE) {
  1139. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1140. "%s: x86 check failed !", __func__);
  1141. return QDF_STATUS_E_FAILURE;
  1142. }
  1143. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
  1144. /* Lets fill entrance ring now !!! */
  1145. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  1146. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1147. "HAL RING Access For REO entrance SRNG Failed: %pK",
  1148. hal_srng);
  1149. return QDF_STATUS_E_FAILURE;
  1150. }
  1151. dp_rx_reinject_ring_record_entry(soc, paddr, cookie, DP_DEFRAG_RBM);
  1152. paddr = (uint64_t)buf_info.paddr;
  1153. /* buf addr */
  1154. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  1155. buf_info.sw_cookie,
  1156. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  1157. /* mpdu desc info */
  1158. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  1159. ent_ring_desc);
  1160. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  1161. dst_ring_desc);
  1162. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  1163. sizeof(struct rx_mpdu_desc_info));
  1164. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  1165. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  1166. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  1167. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1168. MSDU_COUNT, 0x1);
  1169. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1170. MPDU_SEQUENCE_NUMBER, seq_no);
  1171. /* unset frag bit */
  1172. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1173. FRAGMENT_FLAG, 0x0);
  1174. /* set sa/da valid bits */
  1175. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1176. SA_IS_VALID, 0x1);
  1177. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1178. DA_IS_VALID, 0x1);
  1179. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1180. RAW_MPDU, 0x0);
  1181. /* qdesc addr */
  1182. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1183. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1184. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1185. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1186. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1187. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1188. REO_DESTINATION_INDICATION, dst_ind);
  1189. hal_srng_access_end(soc->hal_soc, hal_srng);
  1190. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1191. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1192. "%s: reinjection done !", __func__);
  1193. return QDF_STATUS_SUCCESS;
  1194. }
  1195. #endif
  1196. /*
  1197. * dp_rx_defrag(): Defragment the fragment chain
  1198. * @peer: Pointer to the peer
  1199. * @tid: Transmit Identifier
  1200. * @frag_list_head: Pointer to head list
  1201. * @frag_list_tail: Pointer to tail list
  1202. *
  1203. * Defragment the fragment chain
  1204. *
  1205. * Returns: QDF_STATUS
  1206. */
  1207. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1208. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1209. {
  1210. qdf_nbuf_t tmp_next, prev;
  1211. qdf_nbuf_t cur = frag_list_head, msdu;
  1212. uint32_t index, tkip_demic = 0;
  1213. uint16_t hdr_space;
  1214. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1215. struct dp_vdev *vdev = peer->vdev;
  1216. struct dp_soc *soc = vdev->pdev->soc;
  1217. uint8_t status = 0;
  1218. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1219. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1220. dp_sec_mcast : dp_sec_ucast;
  1221. /* Remove FCS from all fragments */
  1222. while (cur) {
  1223. tmp_next = qdf_nbuf_next(cur);
  1224. qdf_nbuf_set_next(cur, NULL);
  1225. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1226. prev = cur;
  1227. qdf_nbuf_set_next(cur, tmp_next);
  1228. cur = tmp_next;
  1229. }
  1230. cur = frag_list_head;
  1231. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1232. "%s: index %d Security type: %d", __func__,
  1233. index, peer->security[index].sec_type);
  1234. switch (peer->security[index].sec_type) {
  1235. case cdp_sec_type_tkip:
  1236. tkip_demic = 1;
  1237. case cdp_sec_type_tkip_nomic:
  1238. while (cur) {
  1239. tmp_next = qdf_nbuf_next(cur);
  1240. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1241. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1242. QDF_TRACE_LEVEL_ERROR,
  1243. "dp_rx_defrag: TKIP decap failed");
  1244. return QDF_STATUS_E_DEFRAG_ERROR;
  1245. }
  1246. cur = tmp_next;
  1247. }
  1248. /* If success, increment header to be stripped later */
  1249. hdr_space += dp_f_tkip.ic_header;
  1250. break;
  1251. case cdp_sec_type_aes_ccmp:
  1252. while (cur) {
  1253. tmp_next = qdf_nbuf_next(cur);
  1254. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1255. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1256. QDF_TRACE_LEVEL_ERROR,
  1257. "dp_rx_defrag: CCMP demic failed");
  1258. return QDF_STATUS_E_DEFRAG_ERROR;
  1259. }
  1260. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1261. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1262. QDF_TRACE_LEVEL_ERROR,
  1263. "dp_rx_defrag: CCMP decap failed");
  1264. return QDF_STATUS_E_DEFRAG_ERROR;
  1265. }
  1266. cur = tmp_next;
  1267. }
  1268. /* If success, increment header to be stripped later */
  1269. hdr_space += dp_f_ccmp.ic_header;
  1270. break;
  1271. case cdp_sec_type_wep40:
  1272. case cdp_sec_type_wep104:
  1273. case cdp_sec_type_wep128:
  1274. while (cur) {
  1275. tmp_next = qdf_nbuf_next(cur);
  1276. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1277. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1278. QDF_TRACE_LEVEL_ERROR,
  1279. "dp_rx_defrag: WEP decap failed");
  1280. return QDF_STATUS_E_DEFRAG_ERROR;
  1281. }
  1282. cur = tmp_next;
  1283. }
  1284. /* If success, increment header to be stripped later */
  1285. hdr_space += dp_f_wep.ic_header;
  1286. break;
  1287. default:
  1288. break;
  1289. }
  1290. if (tkip_demic) {
  1291. msdu = frag_list_head;
  1292. qdf_mem_copy(key,
  1293. &peer->security[index].michael_key[0],
  1294. IEEE80211_WEP_MICLEN);
  1295. status = dp_rx_defrag_tkip_demic(key, msdu,
  1296. RX_PKT_TLVS_LEN +
  1297. hdr_space);
  1298. if (status) {
  1299. dp_rx_defrag_err(vdev, frag_list_head);
  1300. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1301. QDF_TRACE_LEVEL_ERROR,
  1302. "%s: TKIP demic failed status %d",
  1303. __func__, status);
  1304. return QDF_STATUS_E_DEFRAG_ERROR;
  1305. }
  1306. }
  1307. /* Convert the header to 802.3 header */
  1308. dp_rx_defrag_nwifi_to_8023(soc, peer, tid, frag_list_head, hdr_space);
  1309. if (dp_rx_construct_fraglist(peer, tid, frag_list_head, hdr_space))
  1310. return QDF_STATUS_E_DEFRAG_ERROR;
  1311. return QDF_STATUS_SUCCESS;
  1312. }
  1313. /*
  1314. * dp_rx_defrag_cleanup(): Clean up activities
  1315. * @peer: Pointer to the peer
  1316. * @tid: Transmit Identifier
  1317. *
  1318. * Returns: None
  1319. */
  1320. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1321. {
  1322. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1323. peer->rx_tid[tid].array;
  1324. if (rx_reorder_array_elem) {
  1325. /* Free up nbufs */
  1326. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1327. rx_reorder_array_elem->head = NULL;
  1328. rx_reorder_array_elem->tail = NULL;
  1329. } else {
  1330. dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
  1331. peer, tid, peer->mac_addr.raw);
  1332. }
  1333. /* Free up saved ring descriptors */
  1334. dp_rx_clear_saved_desc_info(peer, tid);
  1335. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1336. peer->rx_tid[tid].curr_frag_num = 0;
  1337. peer->rx_tid[tid].curr_seq_num = 0;
  1338. }
  1339. /*
  1340. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1341. * @ring_desc: Pointer to the dst ring descriptor
  1342. * @peer: Pointer to the peer
  1343. * @tid: Transmit Identifier
  1344. *
  1345. * Returns: None
  1346. */
  1347. static QDF_STATUS
  1348. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1349. struct dp_rx_desc *rx_desc,
  1350. struct dp_peer *peer,
  1351. unsigned int tid)
  1352. {
  1353. void *dst_ring_desc = qdf_mem_malloc(
  1354. sizeof(struct reo_destination_ring));
  1355. if (!dst_ring_desc) {
  1356. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1357. "%s: Memory alloc failed !", __func__);
  1358. QDF_ASSERT(0);
  1359. return QDF_STATUS_E_NOMEM;
  1360. }
  1361. qdf_mem_copy(dst_ring_desc, ring_desc,
  1362. sizeof(struct reo_destination_ring));
  1363. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1364. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1365. return QDF_STATUS_SUCCESS;
  1366. }
  1367. /*
  1368. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1369. * @soc: Pointer to the SOC data structure
  1370. * @ring_desc: Pointer to the ring descriptor
  1371. * @mpdu_desc_info: MPDU descriptor info
  1372. * @tid: Traffic Identifier
  1373. * @rx_desc: Pointer to rx descriptor
  1374. * @rx_bfs: Number of bfs consumed
  1375. *
  1376. * Returns: QDF_STATUS
  1377. */
  1378. static QDF_STATUS
  1379. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1380. hal_ring_desc_t ring_desc,
  1381. union dp_rx_desc_list_elem_t **head,
  1382. union dp_rx_desc_list_elem_t **tail,
  1383. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1384. unsigned int tid, struct dp_rx_desc *rx_desc,
  1385. uint32_t *rx_bfs)
  1386. {
  1387. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1388. struct dp_pdev *pdev;
  1389. struct dp_peer *peer = NULL;
  1390. uint16_t peer_id;
  1391. uint8_t fragno, more_frag, all_frag_present = 0;
  1392. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1393. QDF_STATUS status;
  1394. struct dp_rx_tid *rx_tid;
  1395. uint8_t mpdu_sequence_control_valid;
  1396. uint8_t mpdu_frame_control_valid;
  1397. qdf_nbuf_t frag = rx_desc->nbuf;
  1398. uint32_t msdu_len;
  1399. if (qdf_nbuf_len(frag) > 0) {
  1400. dp_info("Dropping unexpected packet with skb_len: %d,"
  1401. "data len: %d, cookie: %d",
  1402. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1403. rx_desc->cookie);
  1404. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1405. goto discard_frag;
  1406. }
  1407. if (dp_rx_buffer_pool_refill(soc, frag, rx_desc->pool_id)) {
  1408. /* fragment queued back to the pool, free the link desc */
  1409. goto err_free_desc;
  1410. }
  1411. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1412. qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
  1413. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1414. /* Check if the packet is from a valid peer */
  1415. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1416. mpdu_desc_info->peer_meta_data);
  1417. peer = dp_peer_get_ref_by_id(soc, peer_id, DP_MOD_ID_RX_ERR);
  1418. if (!peer) {
  1419. /* We should not receive anything from unknown peer
  1420. * however, that might happen while we are in the monitor mode.
  1421. * We don't need to handle that here
  1422. */
  1423. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1424. peer_id);
  1425. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1426. goto discard_frag;
  1427. }
  1428. if (tid >= DP_MAX_TIDS) {
  1429. dp_info("TID out of bounds: %d", tid);
  1430. qdf_assert_always(0);
  1431. goto discard_frag;
  1432. }
  1433. pdev = peer->vdev->pdev;
  1434. rx_tid = &peer->rx_tid[tid];
  1435. mpdu_sequence_control_valid =
  1436. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1437. rx_desc->rx_buf_start);
  1438. /* Invalid MPDU sequence control field, MPDU is of no use */
  1439. if (!mpdu_sequence_control_valid) {
  1440. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1441. "Invalid MPDU seq control field, dropping MPDU");
  1442. qdf_assert(0);
  1443. goto discard_frag;
  1444. }
  1445. mpdu_frame_control_valid =
  1446. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1447. rx_desc->rx_buf_start);
  1448. /* Invalid frame control field */
  1449. if (!mpdu_frame_control_valid) {
  1450. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1451. "Invalid frame control field, dropping MPDU");
  1452. qdf_assert(0);
  1453. goto discard_frag;
  1454. }
  1455. /* Current mpdu sequence */
  1456. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1457. /* HW does not populate the fragment number as of now
  1458. * need to get from the 802.11 header
  1459. */
  1460. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1461. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1462. if (!rx_reorder_array_elem) {
  1463. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1464. "Rcvd Fragmented pkt before peer_tid is setup");
  1465. goto discard_frag;
  1466. }
  1467. /*
  1468. * !more_frag: no more fragments to be delivered
  1469. * !frag_no: packet is not fragmented
  1470. * !rx_reorder_array_elem->head: no saved fragments so far
  1471. */
  1472. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1473. /* We should not get into this situation here.
  1474. * It means an unfragmented packet with fragment flag
  1475. * is delivered over the REO exception ring.
  1476. * Typically it follows normal rx path.
  1477. */
  1478. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1479. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1480. qdf_assert(0);
  1481. goto discard_frag;
  1482. }
  1483. /* Check if the fragment is for the same sequence or a different one */
  1484. dp_debug("rx_tid %d", tid);
  1485. if (rx_reorder_array_elem->head) {
  1486. dp_debug("rxseq %d\n", rxseq);
  1487. if (rxseq != rx_tid->curr_seq_num) {
  1488. dp_debug("mismatch cur_seq %d rxseq %d\n",
  1489. rx_tid->curr_seq_num, rxseq);
  1490. /* Drop stored fragments if out of sequence
  1491. * fragment is received
  1492. */
  1493. dp_rx_reorder_flush_frag(peer, tid);
  1494. DP_STATS_INC(soc, rx.rx_frag_oor, 1);
  1495. dp_debug("cur rxseq %d\n", rxseq);
  1496. /*
  1497. * The sequence number for this fragment becomes the
  1498. * new sequence number to be processed
  1499. */
  1500. rx_tid->curr_seq_num = rxseq;
  1501. }
  1502. } else {
  1503. dp_debug("cur rxseq %d\n", rxseq);
  1504. /* Start of a new sequence */
  1505. dp_rx_defrag_cleanup(peer, tid);
  1506. rx_tid->curr_seq_num = rxseq;
  1507. /* store PN number also */
  1508. }
  1509. /*
  1510. * If the earlier sequence was dropped, this will be the fresh start.
  1511. * Else, continue with next fragment in a given sequence
  1512. */
  1513. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1514. &rx_reorder_array_elem->tail, frag,
  1515. &all_frag_present);
  1516. /*
  1517. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1518. * packet sequence has more than 6 MSDUs for some reason, we will
  1519. * have to use the next MSDU link descriptor and chain them together
  1520. * before reinjection
  1521. */
  1522. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1523. (rx_reorder_array_elem->head == frag)) {
  1524. qdf_assert_always(ring_desc);
  1525. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1526. rx_desc, peer, tid);
  1527. if (status != QDF_STATUS_SUCCESS) {
  1528. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1529. "%s: Unable to store ring desc !", __func__);
  1530. goto discard_frag;
  1531. }
  1532. } else {
  1533. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1534. (*rx_bfs)++;
  1535. /* Return the non-head link desc */
  1536. if (ring_desc &&
  1537. dp_rx_link_desc_return(soc, ring_desc,
  1538. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1539. QDF_STATUS_SUCCESS)
  1540. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1541. "%s: Failed to return link desc", __func__);
  1542. }
  1543. if (pdev->soc->rx.flags.defrag_timeout_check)
  1544. dp_rx_defrag_waitlist_remove(peer, tid);
  1545. /* Yet to receive more fragments for this sequence number */
  1546. if (!all_frag_present) {
  1547. uint32_t now_ms =
  1548. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1549. peer->rx_tid[tid].defrag_timeout_ms =
  1550. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1551. dp_rx_defrag_waitlist_add(peer, tid);
  1552. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1553. return QDF_STATUS_SUCCESS;
  1554. }
  1555. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1556. "All fragments received for sequence: %d", rxseq);
  1557. /* Process the fragments */
  1558. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1559. rx_reorder_array_elem->tail);
  1560. if (QDF_IS_STATUS_ERROR(status)) {
  1561. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1562. "Fragment processing failed");
  1563. dp_rx_add_to_free_desc_list(head, tail,
  1564. peer->rx_tid[tid].head_frag_desc);
  1565. (*rx_bfs)++;
  1566. if (dp_rx_link_desc_return(soc,
  1567. peer->rx_tid[tid].dst_ring_desc,
  1568. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1569. QDF_STATUS_SUCCESS)
  1570. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1571. "%s: Failed to return link desc",
  1572. __func__);
  1573. dp_rx_defrag_cleanup(peer, tid);
  1574. goto end;
  1575. }
  1576. /* Re-inject the fragments back to REO for further processing */
  1577. status = dp_rx_defrag_reo_reinject(peer, tid,
  1578. rx_reorder_array_elem->head);
  1579. if (QDF_IS_STATUS_SUCCESS(status)) {
  1580. rx_reorder_array_elem->head = NULL;
  1581. rx_reorder_array_elem->tail = NULL;
  1582. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1583. "Fragmented sequence successfully reinjected");
  1584. } else {
  1585. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1586. "Fragmented sequence reinjection failed");
  1587. dp_rx_return_head_frag_desc(peer, tid);
  1588. }
  1589. dp_rx_defrag_cleanup(peer, tid);
  1590. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1591. return QDF_STATUS_SUCCESS;
  1592. discard_frag:
  1593. qdf_nbuf_free(frag);
  1594. err_free_desc:
  1595. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1596. if (dp_rx_link_desc_return(soc, ring_desc,
  1597. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1598. QDF_STATUS_SUCCESS)
  1599. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1600. "%s: Failed to return link desc", __func__);
  1601. (*rx_bfs)++;
  1602. end:
  1603. if (peer)
  1604. dp_peer_unref_delete(peer, DP_MOD_ID_RX_ERR);
  1605. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1606. return QDF_STATUS_E_DEFRAG_ERROR;
  1607. }
  1608. /**
  1609. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1610. *
  1611. * @soc: core txrx main context
  1612. * @ring_desc: opaque pointer to the REO error ring descriptor
  1613. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1614. * @head: head of the local descriptor free-list
  1615. * @tail: tail of the local descriptor free-list
  1616. * @quota: No. of units (packets) that can be serviced in one shot.
  1617. *
  1618. * This function implements RX 802.11 fragmentation handling
  1619. * The handling is mostly same as legacy fragmentation handling.
  1620. * If required, this function can re-inject the frames back to
  1621. * REO ring (with proper setting to by-pass fragmentation check
  1622. * but use duplicate detection / re-ordering and routing these frames
  1623. * to a different core.
  1624. *
  1625. * Return: uint32_t: No. of elements processed
  1626. */
  1627. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1628. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1629. struct dp_rx_desc *rx_desc,
  1630. uint8_t *mac_id,
  1631. uint32_t quota)
  1632. {
  1633. uint32_t rx_bufs_used = 0;
  1634. qdf_nbuf_t msdu = NULL;
  1635. uint32_t tid;
  1636. uint32_t rx_bfs = 0;
  1637. struct dp_pdev *pdev;
  1638. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1639. struct rx_desc_pool *rx_desc_pool;
  1640. qdf_assert(soc);
  1641. qdf_assert(mpdu_desc_info);
  1642. qdf_assert(rx_desc);
  1643. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1644. mpdu_desc_info->msdu_count);
  1645. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1646. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1647. "Not sufficient MSDUs to process");
  1648. return rx_bufs_used;
  1649. }
  1650. /* all buffers in MSDU link belong to same pdev */
  1651. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1652. if (!pdev) {
  1653. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1654. "pdev is null for pool_id = %d", rx_desc->pool_id);
  1655. return rx_bufs_used;
  1656. }
  1657. *mac_id = rx_desc->pool_id;
  1658. msdu = rx_desc->nbuf;
  1659. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1660. if (rx_desc->unmapped)
  1661. return rx_bufs_used;
  1662. dp_ipa_handle_rx_buf_smmu_mapping(soc, rx_desc->nbuf,
  1663. rx_desc_pool->buf_size,
  1664. false);
  1665. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1666. QDF_DMA_FROM_DEVICE,
  1667. rx_desc_pool->buf_size);
  1668. rx_desc->unmapped = 1;
  1669. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1670. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1671. /* Process fragment-by-fragment */
  1672. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1673. &pdev->free_list_head,
  1674. &pdev->free_list_tail,
  1675. mpdu_desc_info,
  1676. tid, rx_desc, &rx_bfs);
  1677. if (rx_bfs)
  1678. rx_bufs_used += rx_bfs;
  1679. if (!QDF_IS_STATUS_SUCCESS(status))
  1680. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1681. mpdu_desc_info->mpdu_seq,
  1682. mpdu_desc_info->msdu_count,
  1683. mpdu_desc_info->mpdu_flags);
  1684. return rx_bufs_used;
  1685. }
  1686. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1687. struct dp_peer *peer, uint16_t tid,
  1688. uint16_t rxseq, qdf_nbuf_t nbuf)
  1689. {
  1690. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1691. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1692. uint8_t all_frag_present;
  1693. uint32_t msdu_len;
  1694. QDF_STATUS status;
  1695. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1696. /*
  1697. * HW may fill in unexpected peer_id in RX PKT TLV,
  1698. * if this peer_id related peer is valid by coincidence,
  1699. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1700. * self peer), then invalid access to rx_reorder_array_elem happened.
  1701. */
  1702. if (!rx_reorder_array_elem) {
  1703. dp_verbose_debug(
  1704. "peer id:%d mac: %pM drop rx frame!",
  1705. peer->peer_id,
  1706. peer->mac_addr.raw);
  1707. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1708. qdf_nbuf_free(nbuf);
  1709. goto fail;
  1710. }
  1711. if (rx_reorder_array_elem->head &&
  1712. rxseq != rx_tid->curr_seq_num) {
  1713. /* Drop stored fragments if out of sequence
  1714. * fragment is received
  1715. */
  1716. dp_rx_reorder_flush_frag(peer, tid);
  1717. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1718. "%s: No list found for TID %d Seq# %d",
  1719. __func__, tid, rxseq);
  1720. qdf_nbuf_free(nbuf);
  1721. goto fail;
  1722. }
  1723. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1724. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1725. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1726. &rx_reorder_array_elem->head,
  1727. &rx_reorder_array_elem->tail, nbuf,
  1728. &all_frag_present);
  1729. if (QDF_IS_STATUS_ERROR(status)) {
  1730. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1731. "%s Fragment insert failed", __func__);
  1732. goto fail;
  1733. }
  1734. if (soc->rx.flags.defrag_timeout_check)
  1735. dp_rx_defrag_waitlist_remove(peer, tid);
  1736. if (!all_frag_present) {
  1737. uint32_t now_ms =
  1738. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1739. peer->rx_tid[tid].defrag_timeout_ms =
  1740. now_ms + soc->rx.defrag.timeout_ms;
  1741. dp_rx_defrag_waitlist_add(peer, tid);
  1742. return QDF_STATUS_SUCCESS;
  1743. }
  1744. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1745. rx_reorder_array_elem->tail);
  1746. if (QDF_IS_STATUS_ERROR(status)) {
  1747. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1748. "%s Fragment processing failed", __func__);
  1749. dp_rx_return_head_frag_desc(peer, tid);
  1750. dp_rx_defrag_cleanup(peer, tid);
  1751. goto fail;
  1752. }
  1753. /* Re-inject the fragments back to REO for further processing */
  1754. status = dp_rx_defrag_reo_reinject(peer, tid,
  1755. rx_reorder_array_elem->head);
  1756. if (QDF_IS_STATUS_SUCCESS(status)) {
  1757. rx_reorder_array_elem->head = NULL;
  1758. rx_reorder_array_elem->tail = NULL;
  1759. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1760. "%s: Frag seq successfully reinjected",
  1761. __func__);
  1762. } else {
  1763. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1764. "%s: Frag seq reinjection failed", __func__);
  1765. dp_rx_return_head_frag_desc(peer, tid);
  1766. }
  1767. dp_rx_defrag_cleanup(peer, tid);
  1768. return QDF_STATUS_SUCCESS;
  1769. fail:
  1770. return QDF_STATUS_E_DEFRAG_ERROR;
  1771. }