ce_diag.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. * Copyright (c) 2015-2016 The Linux Foundation. All rights reserved.
  3. *
  4. * Previously licensed under the ISC license by Qualcomm Atheros, Inc.
  5. *
  6. *
  7. * Permission to use, copy, modify, and/or distribute this software for
  8. * any purpose with or without fee is hereby granted, provided that the
  9. * above copyright notice and this permission notice appear in all
  10. * copies.
  11. *
  12. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  13. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  14. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  15. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  16. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  17. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  18. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  19. * PERFORMANCE OF THIS SOFTWARE.
  20. */
  21. /*
  22. * This file was originally distributed by Qualcomm Atheros, Inc.
  23. * under proprietary terms before Copyright ownership was assigned
  24. * to the Linux Foundation.
  25. */
  26. #include "targcfg.h"
  27. #include "qdf_lock.h"
  28. #include "qdf_status.h"
  29. #include "qdf_status.h"
  30. #include <qdf_atomic.h> /* qdf_atomic_read */
  31. #include <targaddrs.h>
  32. #include "hif_io32.h"
  33. #include <hif.h>
  34. #include "regtable.h"
  35. #include <a_debug.h>
  36. #include "hif_main.h"
  37. #include "ce_api.h"
  38. #include "qdf_trace.h"
  39. #ifdef CONFIG_CNSS
  40. #include <net/cnss.h>
  41. #endif
  42. #include "hif_debug.h"
  43. void
  44. hif_ce_dump_target_memory(struct hif_softc *scn, void *ramdump_base,
  45. uint32_t address, uint32_t size)
  46. {
  47. uint32_t loc = address;
  48. uint32_t val = 0;
  49. uint32_t j = 0;
  50. u8 *temp = ramdump_base;
  51. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  52. return;
  53. while (j < size) {
  54. val = hif_read32_mb(scn->mem + loc + j);
  55. qdf_mem_copy(temp, &val, 4);
  56. j += 4;
  57. temp += 4;
  58. }
  59. Q_TARGET_ACCESS_END(scn);
  60. }
  61. /*
  62. * TBDXXX: Should be a function call specific to each Target-type.
  63. * This convoluted macro converts from Target CPU Virtual Address
  64. * Space to CE Address Space. As part of this process, we
  65. * conservatively fetch the current PCIE_BAR. MOST of the time,
  66. * this should match the upper bits of PCI space for this device;
  67. * but that's not guaranteed.
  68. */
  69. #ifdef QCA_WIFI_3_0
  70. #define TARG_CPU_SPACE_TO_CE_SPACE(pci_addr, addr) \
  71. (scn->mem_pa + addr)
  72. #else
  73. #define TARG_CPU_SPACE_TO_CE_SPACE(pci_addr, addr) \
  74. (((hif_read32_mb((pci_addr) + \
  75. (SOC_CORE_BASE_ADDRESS|CORE_CTRL_ADDRESS)) & 0x7ff) << 21) \
  76. | 0x100000 | ((addr) & 0xfffff))
  77. #endif
  78. #define TARG_CPU_SPACE_TO_CE_SPACE_IPQ4019(pci_addr, addr) \
  79. (hif_read32_mb((pci_addr)+(WIFICMN_PCIE_BAR_REG_ADDRESS)) \
  80. | ((addr) & 0xfffff))
  81. #define TARG_CPU_SPACE_TO_CE_SPACE_AR900B(pci_addr, addr) \
  82. (hif_read32_mb((pci_addr)+(WIFICMN_PCIE_BAR_REG_ADDRESS)) \
  83. | 0x100000 | ((addr) & 0xfffff))
  84. #define SRAM_BASE_ADDRESS 0xc0000
  85. #define SRAM_END_ADDRESS 0x100000
  86. #define WIFI0_IPQ4019_BAR 0xa000000
  87. #define WIFI1_IPQ4019_BAR 0xa800000
  88. /* Wait up to this many Ms for a Diagnostic Access CE operation to complete */
  89. #define DIAG_ACCESS_CE_TIMEOUT_MS 10
  90. /**
  91. * get_ce_phy_addr() - get the physical address of an soc virtual address
  92. * @sc: hif context
  93. * @address: soc virtual address
  94. * @target_type: target type being used.
  95. *
  96. * Return: soc physical address
  97. */
  98. qdf_dma_addr_t get_ce_phy_addr(struct hif_softc *sc, uint32_t address,
  99. unsigned int target_type)
  100. {
  101. qdf_dma_addr_t ce_phy_addr;
  102. struct hif_softc *scn = sc;
  103. unsigned int region = address & 0xfffff;
  104. unsigned int bar = address & 0xfff00000;
  105. unsigned int sramregion = 0;
  106. if ((target_type == TARGET_TYPE_IPQ4019) &&
  107. (region >= SRAM_BASE_ADDRESS && region <= SRAM_END_ADDRESS)
  108. && (bar == WIFI0_IPQ4019_BAR ||
  109. bar == WIFI1_IPQ4019_BAR || bar == 0)) {
  110. sramregion = 1;
  111. }
  112. if ((target_type == TARGET_TYPE_IPQ4019) && sramregion == 1) {
  113. ce_phy_addr =
  114. TARG_CPU_SPACE_TO_CE_SPACE_IPQ4019(sc->mem, address);
  115. } else if ((target_type == TARGET_TYPE_AR900B) ||
  116. (target_type == TARGET_TYPE_QCA9984) ||
  117. (target_type == TARGET_TYPE_IPQ4019) ||
  118. (target_type == TARGET_TYPE_QCA9888)) {
  119. ce_phy_addr =
  120. TARG_CPU_SPACE_TO_CE_SPACE_AR900B(sc->mem, address);
  121. } else {
  122. ce_phy_addr =
  123. TARG_CPU_SPACE_TO_CE_SPACE(sc->mem, address);
  124. }
  125. return ce_phy_addr;
  126. }
  127. /*
  128. * Diagnostic read/write access is provided for startup/config/debug usage.
  129. * Caller must guarantee proper alignment, when applicable, and single user
  130. * at any moment.
  131. */
  132. #define FW_SRAM_ADDRESS 0x000C0000
  133. QDF_STATUS hif_diag_read_mem(struct hif_opaque_softc *hif_ctx,
  134. uint32_t address, uint8_t *data, int nbytes)
  135. {
  136. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  137. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(scn);
  138. QDF_STATUS status = QDF_STATUS_SUCCESS;
  139. qdf_dma_addr_t buf;
  140. unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
  141. unsigned int id;
  142. unsigned int flags;
  143. struct CE_handle *ce_diag;
  144. qdf_dma_addr_t CE_data; /* Host buffer address in CE space */
  145. qdf_dma_addr_t CE_data_base = 0;
  146. void *data_buf = NULL;
  147. int i;
  148. unsigned int mux_id = 0;
  149. unsigned int transaction_id = 0xffff;
  150. qdf_dma_addr_t ce_phy_addr = address;
  151. unsigned int toeplitz_hash_result;
  152. unsigned int user_flags = 0;
  153. unsigned int target_type = 0;
  154. unsigned int boundary_addr = 0;
  155. transaction_id = (mux_id & MUX_ID_MASK) |
  156. (transaction_id & TRANSACTION_ID_MASK);
  157. #ifdef QCA_WIFI_3_0
  158. user_flags &= DESC_DATA_FLAG_MASK;
  159. #endif
  160. target_type = (hif_get_target_info_handle(hif_ctx))->target_type;
  161. /* This code cannot handle reads to non-memory space. Redirect to the
  162. * register read fn but preserve the multi word read capability of
  163. * this fn
  164. */
  165. if ((target_type == TARGET_TYPE_IPQ4019) ||
  166. (target_type == TARGET_TYPE_AR900B) ||
  167. (target_type == TARGET_TYPE_QCA9984) ||
  168. (target_type == TARGET_TYPE_IPQ4019) ||
  169. (target_type == TARGET_TYPE_QCA9888))
  170. boundary_addr = FW_SRAM_ADDRESS;
  171. else
  172. boundary_addr = DRAM_BASE_ADDRESS;
  173. if (address < boundary_addr) {
  174. if ((address & 0x3) || ((uintptr_t) data & 0x3))
  175. return QDF_STATUS_E_INVAL;
  176. while ((nbytes >= 4) &&
  177. (QDF_STATUS_SUCCESS == (status =
  178. hif_diag_read_access(hif_ctx, address,
  179. (uint32_t *)data)))) {
  180. nbytes -= sizeof(uint32_t);
  181. address += sizeof(uint32_t);
  182. data += sizeof(uint32_t);
  183. }
  184. return status;
  185. }
  186. ce_diag = hif_state->ce_diag;
  187. A_TARGET_ACCESS_LIKELY(scn);
  188. /*
  189. * Allocate a temporary bounce buffer to hold caller's data
  190. * to be DMA'ed from Target. This guarantees
  191. * 1) 4-byte alignment
  192. * 2) Buffer in DMA-able space
  193. */
  194. orig_nbytes = nbytes;
  195. data_buf = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  196. orig_nbytes, &CE_data_base);
  197. if (!data_buf) {
  198. status = QDF_STATUS_E_NOMEM;
  199. goto done;
  200. }
  201. qdf_mem_set(data_buf, orig_nbytes, 0);
  202. qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data_base,
  203. orig_nbytes, DMA_FROM_DEVICE);
  204. remaining_bytes = orig_nbytes;
  205. CE_data = CE_data_base;
  206. while (remaining_bytes) {
  207. nbytes = min(remaining_bytes, DIAG_TRANSFER_LIMIT);
  208. {
  209. status = ce_recv_buf_enqueue(ce_diag, NULL, CE_data);
  210. if (status != QDF_STATUS_SUCCESS)
  211. goto done;
  212. }
  213. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  214. return QDF_STATUS_E_FAILURE;
  215. /* convert soc virtual address to physical address */
  216. ce_phy_addr = get_ce_phy_addr(scn, address, target_type);
  217. if (Q_TARGET_ACCESS_END(scn) < 0)
  218. return QDF_STATUS_E_FAILURE;
  219. /* Request CE to send from Target(!)
  220. * address to Host buffer */
  221. status = ce_send(ce_diag, NULL, ce_phy_addr, nbytes,
  222. transaction_id, 0, user_flags);
  223. if (status != QDF_STATUS_SUCCESS)
  224. goto done;
  225. i = 0;
  226. while (ce_completed_send_next(ce_diag, NULL, NULL, &buf,
  227. &completed_nbytes, &id, NULL, NULL,
  228. &toeplitz_hash_result) != QDF_STATUS_SUCCESS) {
  229. qdf_mdelay(1);
  230. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  231. status = QDF_STATUS_E_BUSY;
  232. goto done;
  233. }
  234. }
  235. if (nbytes != completed_nbytes) {
  236. status = QDF_STATUS_E_FAILURE;
  237. goto done;
  238. }
  239. if (buf != ce_phy_addr) {
  240. status = QDF_STATUS_E_FAILURE;
  241. goto done;
  242. }
  243. i = 0;
  244. while (ce_completed_recv_next
  245. (ce_diag, NULL, NULL, &buf,
  246. &completed_nbytes, &id,
  247. &flags) != QDF_STATUS_SUCCESS) {
  248. qdf_mdelay(1);
  249. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  250. status = QDF_STATUS_E_BUSY;
  251. goto done;
  252. }
  253. }
  254. if (nbytes != completed_nbytes) {
  255. status = QDF_STATUS_E_FAILURE;
  256. goto done;
  257. }
  258. if (buf != CE_data) {
  259. status = QDF_STATUS_E_FAILURE;
  260. goto done;
  261. }
  262. remaining_bytes -= nbytes;
  263. address += nbytes;
  264. CE_data += nbytes;
  265. }
  266. done:
  267. A_TARGET_ACCESS_UNLIKELY(scn);
  268. if (status == QDF_STATUS_SUCCESS)
  269. qdf_mem_copy(data, data_buf, orig_nbytes);
  270. else
  271. HIF_ERROR("%s failure (0x%x)", __func__, address);
  272. if (data_buf)
  273. qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  274. orig_nbytes, data_buf, CE_data_base, 0);
  275. return status;
  276. }
  277. /* Read 4-byte aligned data from Target memory or register */
  278. QDF_STATUS hif_diag_read_access(struct hif_opaque_softc *hif_ctx,
  279. uint32_t address, uint32_t *data)
  280. {
  281. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  282. if (address >= DRAM_BASE_ADDRESS) {
  283. /* Assume range doesn't cross this boundary */
  284. return hif_diag_read_mem(hif_ctx, address, (uint8_t *) data,
  285. sizeof(uint32_t));
  286. } else {
  287. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  288. return QDF_STATUS_E_FAILURE;
  289. *data = A_TARGET_READ(scn, address);
  290. if (Q_TARGET_ACCESS_END(scn) < 0)
  291. return QDF_STATUS_E_FAILURE;
  292. return QDF_STATUS_SUCCESS;
  293. }
  294. }
  295. /**
  296. * hif_diag_write_mem() - write data into the soc memory
  297. * @hif_ctx: hif context
  298. * @address: soc virtual address
  299. * @data: data to copy into the soc address
  300. * @nbytes: number of bytes to coppy
  301. */
  302. QDF_STATUS hif_diag_write_mem(struct hif_opaque_softc *hif_ctx,
  303. uint32_t address, uint8_t *data, int nbytes)
  304. {
  305. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  306. struct HIF_CE_state *hif_state = HIF_GET_CE_STATE(hif_ctx);
  307. QDF_STATUS status = QDF_STATUS_SUCCESS;
  308. qdf_dma_addr_t buf;
  309. unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
  310. unsigned int id;
  311. unsigned int flags;
  312. struct CE_handle *ce_diag;
  313. void *data_buf = NULL;
  314. qdf_dma_addr_t CE_data; /* Host buffer address in CE space */
  315. qdf_dma_addr_t CE_data_base = 0;
  316. int i;
  317. unsigned int mux_id = 0;
  318. unsigned int transaction_id = 0xffff;
  319. qdf_dma_addr_t ce_phy_addr = address;
  320. unsigned int toeplitz_hash_result;
  321. unsigned int user_flags = 0;
  322. unsigned int target_type = 0;
  323. ce_diag = hif_state->ce_diag;
  324. transaction_id = (mux_id & MUX_ID_MASK) |
  325. (transaction_id & TRANSACTION_ID_MASK);
  326. #ifdef QCA_WIFI_3_0
  327. user_flags &= DESC_DATA_FLAG_MASK;
  328. #endif
  329. A_TARGET_ACCESS_LIKELY(scn);
  330. /*
  331. * Allocate a temporary bounce buffer to hold caller's data
  332. * to be DMA'ed to Target. This guarantees
  333. * 1) 4-byte alignment
  334. * 2) Buffer in DMA-able space
  335. */
  336. orig_nbytes = nbytes;
  337. data_buf = qdf_mem_alloc_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  338. orig_nbytes, &CE_data_base);
  339. if (!data_buf) {
  340. status = A_NO_MEMORY;
  341. goto done;
  342. }
  343. /* Copy caller's data to allocated DMA buf */
  344. qdf_mem_copy(data_buf, data, orig_nbytes);
  345. qdf_mem_dma_sync_single_for_device(scn->qdf_dev, CE_data_base,
  346. orig_nbytes, DMA_TO_DEVICE);
  347. target_type = (hif_get_target_info_handle(hif_ctx))->target_type;
  348. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  349. return QDF_STATUS_E_FAILURE;
  350. /* convert soc virtual address to physical address */
  351. ce_phy_addr = get_ce_phy_addr(scn, address, target_type);
  352. if (Q_TARGET_ACCESS_END(scn) < 0)
  353. return QDF_STATUS_E_FAILURE;
  354. remaining_bytes = orig_nbytes;
  355. CE_data = CE_data_base;
  356. while (remaining_bytes) {
  357. nbytes = min(remaining_bytes, DIAG_TRANSFER_LIMIT);
  358. /* Set up to receive directly into Target(!) address */
  359. status = ce_recv_buf_enqueue(ce_diag, NULL, ce_phy_addr);
  360. if (status != QDF_STATUS_SUCCESS)
  361. goto done;
  362. /*
  363. * Request CE to send caller-supplied data that
  364. * was copied to bounce buffer to Target(!) address.
  365. */
  366. status = ce_send(ce_diag, NULL, (qdf_dma_addr_t) CE_data,
  367. nbytes, transaction_id, 0, user_flags);
  368. if (status != QDF_STATUS_SUCCESS)
  369. goto done;
  370. /* poll for transfer complete */
  371. i = 0;
  372. while (ce_completed_send_next(ce_diag, NULL, NULL, &buf,
  373. &completed_nbytes, &id,
  374. NULL, NULL, &toeplitz_hash_result) !=
  375. QDF_STATUS_SUCCESS) {
  376. qdf_mdelay(1);
  377. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  378. status = QDF_STATUS_E_BUSY;
  379. goto done;
  380. }
  381. }
  382. if (nbytes != completed_nbytes) {
  383. status = QDF_STATUS_E_FAILURE;
  384. goto done;
  385. }
  386. if (buf != CE_data) {
  387. status = QDF_STATUS_E_FAILURE;
  388. goto done;
  389. }
  390. i = 0;
  391. while (ce_completed_recv_next
  392. (ce_diag, NULL, NULL, &buf,
  393. &completed_nbytes, &id,
  394. &flags) != QDF_STATUS_SUCCESS) {
  395. qdf_mdelay(1);
  396. if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
  397. status = QDF_STATUS_E_BUSY;
  398. goto done;
  399. }
  400. }
  401. if (nbytes != completed_nbytes) {
  402. status = QDF_STATUS_E_FAILURE;
  403. goto done;
  404. }
  405. if (buf != ce_phy_addr) {
  406. status = QDF_STATUS_E_FAILURE;
  407. goto done;
  408. }
  409. remaining_bytes -= nbytes;
  410. address += nbytes;
  411. CE_data += nbytes;
  412. }
  413. done:
  414. A_TARGET_ACCESS_UNLIKELY(scn);
  415. if (data_buf) {
  416. qdf_mem_free_consistent(scn->qdf_dev, scn->qdf_dev->dev,
  417. orig_nbytes, data_buf, CE_data_base, 0);
  418. }
  419. if (status != QDF_STATUS_SUCCESS) {
  420. HIF_ERROR("%s failure (0x%llu)", __func__,
  421. (uint64_t)ce_phy_addr);
  422. }
  423. return status;
  424. }
  425. /* Write 4B data to Target memory or register */
  426. QDF_STATUS hif_diag_write_access(struct hif_opaque_softc *hif_ctx,
  427. uint32_t address, uint32_t data)
  428. {
  429. struct hif_softc *scn = HIF_GET_SOFTC(hif_ctx);
  430. if (address >= DRAM_BASE_ADDRESS) {
  431. /* Assume range doesn't cross this boundary */
  432. uint32_t data_buf = data;
  433. return hif_diag_write_mem(hif_ctx, address,
  434. (uint8_t *) &data_buf,
  435. sizeof(uint32_t));
  436. } else {
  437. if (Q_TARGET_ACCESS_BEGIN(scn) < 0)
  438. return QDF_STATUS_E_FAILURE;
  439. A_TARGET_WRITE(scn, address, data);
  440. if (Q_TARGET_ACCESS_END(scn) < 0)
  441. return QDF_STATUS_E_FAILURE;
  442. return QDF_STATUS_SUCCESS;
  443. }
  444. }