lpass-cdc-wsa-macro.c 102 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/pm_runtime.h>
  10. #include <sound/soc.h>
  11. #include <sound/soc-dapm.h>
  12. #include <sound/tlv.h>
  13. #include <soc/swr-common.h>
  14. #include <soc/swr-wcd.h>
  15. #include <asoc/msm-cdc-pinctrl.h>
  16. #include "lpass-cdc.h"
  17. #include "lpass-cdc-registers.h"
  18. #include "lpass-cdc-wsa-macro.h"
  19. #include "lpass-cdc-clk-rsc.h"
  20. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  21. #define LPASS_CDC_WSA_MACRO_MAX_OFFSET 0x1000
  22. #define LPASS_CDC_WSA_MACRO_RX_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  23. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  24. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  25. #define LPASS_CDC_WSA_MACRO_RX_MIX_RATES (SNDRV_PCM_RATE_48000 |\
  26. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  27. #define LPASS_CDC_WSA_MACRO_RX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  28. SNDRV_PCM_FMTBIT_S24_LE |\
  29. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  30. #define LPASS_CDC_WSA_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  31. SNDRV_PCM_RATE_48000)
  32. #define LPASS_CDC_WSA_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  33. SNDRV_PCM_FMTBIT_S24_LE |\
  34. SNDRV_PCM_FMTBIT_S24_3LE)
  35. #define NUM_INTERPOLATORS 2
  36. #define LPASS_CDC_WSA_MACRO_MUX_INP_SHFT 0x3
  37. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK1 0x07
  38. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK2 0x38
  39. #define LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET 0x8
  40. #define LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET 0x4
  41. #define LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET 0x40
  42. #define LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET 0x40
  43. #define LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET 0x80
  44. #define LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET 0x10
  45. #define LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET 0x4C
  46. #define LPASS_CDC_WSA_MACRO_FS_RATE_MASK 0x0F
  47. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK 0x03
  48. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK 0x18
  49. #define LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT 0x2
  50. enum {
  51. LPASS_CDC_WSA_MACRO_RX0 = 0,
  52. LPASS_CDC_WSA_MACRO_RX1,
  53. LPASS_CDC_WSA_MACRO_RX_MIX,
  54. LPASS_CDC_WSA_MACRO_RX_MIX0 = LPASS_CDC_WSA_MACRO_RX_MIX,
  55. LPASS_CDC_WSA_MACRO_RX_MIX1,
  56. LPASS_CDC_WSA_MACRO_RX_MAX,
  57. };
  58. enum {
  59. LPASS_CDC_WSA_MACRO_TX0 = 0,
  60. LPASS_CDC_WSA_MACRO_TX1,
  61. LPASS_CDC_WSA_MACRO_TX_MAX,
  62. };
  63. enum {
  64. LPASS_CDC_WSA_MACRO_EC0_MUX = 0,
  65. LPASS_CDC_WSA_MACRO_EC1_MUX,
  66. LPASS_CDC_WSA_MACRO_EC_MUX_MAX,
  67. };
  68. enum {
  69. LPASS_CDC_WSA_MACRO_COMP1, /* SPK_L */
  70. LPASS_CDC_WSA_MACRO_COMP2, /* SPK_R */
  71. LPASS_CDC_WSA_MACRO_COMP_MAX
  72. };
  73. enum {
  74. LPASS_CDC_WSA_MACRO_SOFTCLIP0, /* RX0 */
  75. LPASS_CDC_WSA_MACRO_SOFTCLIP1, /* RX1 */
  76. LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX
  77. };
  78. enum {
  79. INTn_1_INP_SEL_ZERO = 0,
  80. INTn_1_INP_SEL_RX0,
  81. INTn_1_INP_SEL_RX1,
  82. INTn_1_INP_SEL_RX2,
  83. INTn_1_INP_SEL_RX3,
  84. INTn_1_INP_SEL_DEC0,
  85. INTn_1_INP_SEL_DEC1,
  86. };
  87. enum {
  88. INTn_2_INP_SEL_ZERO = 0,
  89. INTn_2_INP_SEL_RX0,
  90. INTn_2_INP_SEL_RX1,
  91. INTn_2_INP_SEL_RX2,
  92. INTn_2_INP_SEL_RX3,
  93. };
  94. struct interp_sample_rate {
  95. int sample_rate;
  96. int rate_val;
  97. };
  98. /*
  99. * Structure used to update codec
  100. * register defaults after reset
  101. */
  102. struct lpass_cdc_wsa_macro_reg_mask_val {
  103. u16 reg;
  104. u8 mask;
  105. u8 val;
  106. };
  107. static struct interp_sample_rate int_prim_sample_rate_val[] = {
  108. {8000, 0x0}, /* 8K */
  109. {16000, 0x1}, /* 16K */
  110. {24000, -EINVAL},/* 24K */
  111. {32000, 0x3}, /* 32K */
  112. {48000, 0x4}, /* 48K */
  113. {96000, 0x5}, /* 96K */
  114. {192000, 0x6}, /* 192K */
  115. {384000, 0x7}, /* 384K */
  116. {44100, 0x8}, /* 44.1K */
  117. };
  118. static struct interp_sample_rate int_mix_sample_rate_val[] = {
  119. {48000, 0x4}, /* 48K */
  120. {96000, 0x5}, /* 96K */
  121. {192000, 0x6}, /* 192K */
  122. };
  123. #define LPASS_CDC_WSA_MACRO_SWR_STRING_LEN 80
  124. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  125. struct snd_pcm_hw_params *params,
  126. struct snd_soc_dai *dai);
  127. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  128. unsigned int *tx_num, unsigned int *tx_slot,
  129. unsigned int *rx_num, unsigned int *rx_slot);
  130. static int lpass_cdc_wsa_macro_digital_mute(struct snd_soc_dai *dai, int mute);
  131. /* Hold instance to soundwire platform device */
  132. struct lpass_cdc_wsa_macro_swr_ctrl_data {
  133. struct platform_device *wsa_swr_pdev;
  134. };
  135. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data {
  136. void *handle; /* holds codec private data */
  137. int (*read)(void *handle, int reg);
  138. int (*write)(void *handle, int reg, int val);
  139. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  140. int (*clk)(void *handle, bool enable);
  141. int (*core_vote)(void *handle, bool enable);
  142. int (*handle_irq)(void *handle,
  143. irqreturn_t (*swrm_irq_handler)(int irq,
  144. void *data),
  145. void *swrm_handle,
  146. int action);
  147. };
  148. struct lpass_cdc_wsa_macro_bcl_pmic_params {
  149. u8 id;
  150. u8 sid;
  151. u8 ppid;
  152. };
  153. enum {
  154. LPASS_CDC_WSA_MACRO_AIF_INVALID = 0,
  155. LPASS_CDC_WSA_MACRO_AIF1_PB,
  156. LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  157. LPASS_CDC_WSA_MACRO_AIF_VI,
  158. LPASS_CDC_WSA_MACRO_AIF_ECHO,
  159. LPASS_CDC_WSA_MACRO_MAX_DAIS,
  160. };
  161. #define LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX 3
  162. /*
  163. * @dev: wsa macro device pointer
  164. * @comp_enabled: compander enable mixer value set
  165. * @ec_hq: echo HQ enable mixer value set
  166. * @prim_int_users: Users of interpolator
  167. * @wsa_mclk_users: WSA MCLK users count
  168. * @swr_clk_users: SWR clk users count
  169. * @vi_feed_value: VI sense mask
  170. * @mclk_lock: to lock mclk operations
  171. * @swr_clk_lock: to lock swr master clock operations
  172. * @swr_ctrl_data: SoundWire data structure
  173. * @swr_plat_data: Soundwire platform data
  174. * @lpass_cdc_wsa_macro_add_child_devices_work: work for adding child devices
  175. * @wsa_swr_gpio_p: used by pinctrl API
  176. * @component: codec handle
  177. * @rx_0_count: RX0 interpolation users
  178. * @rx_1_count: RX1 interpolation users
  179. * @active_ch_mask: channel mask for all AIF DAIs
  180. * @active_ch_cnt: channel count of all AIF DAIs
  181. * @rx_port_value: mixer ctl value of WSA RX MUXes
  182. * @wsa_io_base: Base address of WSA macro addr space
  183. */
  184. struct lpass_cdc_wsa_macro_priv {
  185. struct device *dev;
  186. int comp_enabled[LPASS_CDC_WSA_MACRO_COMP_MAX];
  187. int ec_hq[LPASS_CDC_WSA_MACRO_RX1 + 1];
  188. u16 prim_int_users[LPASS_CDC_WSA_MACRO_RX1 + 1];
  189. u16 wsa_mclk_users;
  190. u16 swr_clk_users;
  191. bool dapm_mclk_enable;
  192. bool reset_swr;
  193. unsigned int vi_feed_value;
  194. struct mutex mclk_lock;
  195. struct mutex swr_clk_lock;
  196. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data;
  197. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data swr_plat_data;
  198. struct work_struct lpass_cdc_wsa_macro_add_child_devices_work;
  199. struct device_node *wsa_swr_gpio_p;
  200. struct snd_soc_component *component;
  201. int rx_0_count;
  202. int rx_1_count;
  203. unsigned long active_ch_mask[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  204. unsigned long active_ch_cnt[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  205. int rx_port_value[LPASS_CDC_WSA_MACRO_RX_MAX];
  206. char __iomem *wsa_io_base;
  207. struct platform_device *pdev_child_devices
  208. [LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX];
  209. int child_count;
  210. int ear_spkr_gain;
  211. int spkr_gain_offset;
  212. int spkr_mode;
  213. int is_softclip_on[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  214. int softclip_clk_users[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  215. struct lpass_cdc_wsa_macro_bcl_pmic_params bcl_pmic_params;
  216. char __iomem *mclk_mode_muxsel;
  217. u16 default_clk_id;
  218. u32 pcm_rate_vi;
  219. int wsa_digital_mute_status[LPASS_CDC_WSA_MACRO_RX_MAX];
  220. };
  221. static int lpass_cdc_wsa_macro_config_ear_spkr_gain(struct snd_soc_component *component,
  222. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  223. int event, int gain_reg);
  224. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[];
  225. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  226. static const char *const rx_text[] = {
  227. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1", "DEC0", "DEC1"
  228. };
  229. static const char *const rx_mix_text[] = {
  230. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1"
  231. };
  232. static const char *const rx_mix_ec_text[] = {
  233. "ZERO", "RX_MIX_TX0", "RX_MIX_TX1"
  234. };
  235. static const char *const rx_mux_text[] = {
  236. "ZERO", "AIF1_PB", "AIF_MIX1_PB"
  237. };
  238. static const char *const rx_sidetone_mix_text[] = {
  239. "ZERO", "SRC0"
  240. };
  241. static const char * const lpass_cdc_wsa_macro_ear_spkr_pa_gain_text[] = {
  242. "G_DEFAULT", "G_0_DB", "G_1_DB", "G_2_DB", "G_3_DB",
  243. "G_4_DB", "G_5_DB", "G_6_DB"
  244. };
  245. static const char * const lpass_cdc_wsa_macro_speaker_boost_stage_text[] = {
  246. "NO_MAX_STATE", "MAX_STATE_1", "MAX_STATE_2"
  247. };
  248. static const char * const lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text[] = {
  249. "OFF", "ON"
  250. };
  251. static const struct snd_kcontrol_new wsa_int0_vbat_mix_switch[] = {
  252. SOC_DAPM_SINGLE("WSA RX0 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  253. };
  254. static const struct snd_kcontrol_new wsa_int1_vbat_mix_switch[] = {
  255. SOC_DAPM_SINGLE("WSA RX1 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  256. };
  257. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_ear_spkr_pa_gain_enum,
  258. lpass_cdc_wsa_macro_ear_spkr_pa_gain_text);
  259. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_spkr_boost_stage_enum,
  260. lpass_cdc_wsa_macro_speaker_boost_stage_text);
  261. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  262. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text);
  263. /* RX INT0 */
  264. static const struct soc_enum rx0_prim_inp0_chain_enum =
  265. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  266. 0, 7, rx_text);
  267. static const struct soc_enum rx0_prim_inp1_chain_enum =
  268. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  269. 3, 7, rx_text);
  270. static const struct soc_enum rx0_prim_inp2_chain_enum =
  271. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  272. 3, 7, rx_text);
  273. static const struct soc_enum rx0_mix_chain_enum =
  274. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  275. 0, 5, rx_mix_text);
  276. static const struct soc_enum rx0_sidetone_mix_enum =
  277. SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, 2, rx_sidetone_mix_text);
  278. static const struct snd_kcontrol_new rx0_prim_inp0_mux =
  279. SOC_DAPM_ENUM("WSA_RX0 INP0 Mux", rx0_prim_inp0_chain_enum);
  280. static const struct snd_kcontrol_new rx0_prim_inp1_mux =
  281. SOC_DAPM_ENUM("WSA_RX0 INP1 Mux", rx0_prim_inp1_chain_enum);
  282. static const struct snd_kcontrol_new rx0_prim_inp2_mux =
  283. SOC_DAPM_ENUM("WSA_RX0 INP2 Mux", rx0_prim_inp2_chain_enum);
  284. static const struct snd_kcontrol_new rx0_mix_mux =
  285. SOC_DAPM_ENUM("WSA_RX0 MIX Mux", rx0_mix_chain_enum);
  286. static const struct snd_kcontrol_new rx0_sidetone_mix_mux =
  287. SOC_DAPM_ENUM("WSA_RX0 SIDETONE MIX Mux", rx0_sidetone_mix_enum);
  288. /* RX INT1 */
  289. static const struct soc_enum rx1_prim_inp0_chain_enum =
  290. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  291. 0, 7, rx_text);
  292. static const struct soc_enum rx1_prim_inp1_chain_enum =
  293. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  294. 3, 7, rx_text);
  295. static const struct soc_enum rx1_prim_inp2_chain_enum =
  296. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  297. 3, 7, rx_text);
  298. static const struct soc_enum rx1_mix_chain_enum =
  299. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  300. 0, 5, rx_mix_text);
  301. static const struct snd_kcontrol_new rx1_prim_inp0_mux =
  302. SOC_DAPM_ENUM("WSA_RX1 INP0 Mux", rx1_prim_inp0_chain_enum);
  303. static const struct snd_kcontrol_new rx1_prim_inp1_mux =
  304. SOC_DAPM_ENUM("WSA_RX1 INP1 Mux", rx1_prim_inp1_chain_enum);
  305. static const struct snd_kcontrol_new rx1_prim_inp2_mux =
  306. SOC_DAPM_ENUM("WSA_RX1 INP2 Mux", rx1_prim_inp2_chain_enum);
  307. static const struct snd_kcontrol_new rx1_mix_mux =
  308. SOC_DAPM_ENUM("WSA_RX1 MIX Mux", rx1_mix_chain_enum);
  309. static const struct soc_enum rx_mix_ec0_enum =
  310. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  311. 0, 3, rx_mix_ec_text);
  312. static const struct soc_enum rx_mix_ec1_enum =
  313. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  314. 3, 3, rx_mix_ec_text);
  315. static const struct snd_kcontrol_new rx_mix_ec0_mux =
  316. SOC_DAPM_ENUM("WSA RX_MIX EC0_Mux", rx_mix_ec0_enum);
  317. static const struct snd_kcontrol_new rx_mix_ec1_mux =
  318. SOC_DAPM_ENUM("WSA RX_MIX EC1_Mux", rx_mix_ec1_enum);
  319. static struct snd_soc_dai_ops lpass_cdc_wsa_macro_dai_ops = {
  320. .hw_params = lpass_cdc_wsa_macro_hw_params,
  321. .get_channel_map = lpass_cdc_wsa_macro_get_channel_map,
  322. .digital_mute = lpass_cdc_wsa_macro_digital_mute,
  323. };
  324. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[] = {
  325. {
  326. .name = "lpass_cdc_wsa_macro_rx1",
  327. .id = LPASS_CDC_WSA_MACRO_AIF1_PB,
  328. .playback = {
  329. .stream_name = "WSA_AIF1 Playback",
  330. .rates = LPASS_CDC_WSA_MACRO_RX_RATES,
  331. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  332. .rate_max = 384000,
  333. .rate_min = 8000,
  334. .channels_min = 1,
  335. .channels_max = 2,
  336. },
  337. .ops = &lpass_cdc_wsa_macro_dai_ops,
  338. },
  339. {
  340. .name = "lpass_cdc_wsa_macro_rx_mix",
  341. .id = LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  342. .playback = {
  343. .stream_name = "WSA_AIF_MIX1 Playback",
  344. .rates = LPASS_CDC_WSA_MACRO_RX_MIX_RATES,
  345. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  346. .rate_max = 192000,
  347. .rate_min = 48000,
  348. .channels_min = 1,
  349. .channels_max = 2,
  350. },
  351. .ops = &lpass_cdc_wsa_macro_dai_ops,
  352. },
  353. {
  354. .name = "lpass_cdc_wsa_macro_vifeedback",
  355. .id = LPASS_CDC_WSA_MACRO_AIF_VI,
  356. .capture = {
  357. .stream_name = "WSA_AIF_VI Capture",
  358. .rates = SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_48000,
  359. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  360. .rate_max = 48000,
  361. .rate_min = 8000,
  362. .channels_min = 1,
  363. .channels_max = 4,
  364. },
  365. .ops = &lpass_cdc_wsa_macro_dai_ops,
  366. },
  367. {
  368. .name = "lpass_cdc_wsa_macro_echo",
  369. .id = LPASS_CDC_WSA_MACRO_AIF_ECHO,
  370. .capture = {
  371. .stream_name = "WSA_AIF_ECHO Capture",
  372. .rates = LPASS_CDC_WSA_MACRO_ECHO_RATES,
  373. .formats = LPASS_CDC_WSA_MACRO_ECHO_FORMATS,
  374. .rate_max = 48000,
  375. .rate_min = 8000,
  376. .channels_min = 1,
  377. .channels_max = 2,
  378. },
  379. .ops = &lpass_cdc_wsa_macro_dai_ops,
  380. },
  381. };
  382. static const struct lpass_cdc_wsa_macro_reg_mask_val
  383. lpass_cdc_wsa_macro_spkr_default[] = {
  384. {LPASS_CDC_WSA_COMPANDER0_CTL3, 0x80, 0x80},
  385. {LPASS_CDC_WSA_COMPANDER1_CTL3, 0x80, 0x80},
  386. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x01, 0x01},
  387. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x01, 0x01},
  388. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x7C, 0x58},
  389. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x7C, 0x58},
  390. };
  391. static const struct lpass_cdc_wsa_macro_reg_mask_val
  392. lpass_cdc_wsa_macro_spkr_mode1[] = {
  393. {LPASS_CDC_WSA_COMPANDER0_CTL3, 0x80, 0x00},
  394. {LPASS_CDC_WSA_COMPANDER1_CTL3, 0x80, 0x00},
  395. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x01, 0x00},
  396. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x01, 0x00},
  397. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x7C, 0x44},
  398. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x7C, 0x44},
  399. };
  400. static bool lpass_cdc_wsa_macro_get_data(struct snd_soc_component *component,
  401. struct device **wsa_dev,
  402. struct lpass_cdc_wsa_macro_priv **wsa_priv,
  403. const char *func_name)
  404. {
  405. *wsa_dev = lpass_cdc_get_device_ptr(component->dev,
  406. WSA_MACRO);
  407. if (!(*wsa_dev)) {
  408. dev_err(component->dev,
  409. "%s: null device for macro!\n", func_name);
  410. return false;
  411. }
  412. *wsa_priv = dev_get_drvdata((*wsa_dev));
  413. if (!(*wsa_priv) || !(*wsa_priv)->component) {
  414. dev_err(component->dev,
  415. "%s: priv is null for macro!\n", func_name);
  416. return false;
  417. }
  418. return true;
  419. }
  420. static int lpass_cdc_wsa_macro_set_port_map(struct snd_soc_component *component,
  421. u32 usecase, u32 size, void *data)
  422. {
  423. struct device *wsa_dev = NULL;
  424. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  425. struct swrm_port_config port_cfg;
  426. int ret = 0;
  427. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  428. return -EINVAL;
  429. memset(&port_cfg, 0, sizeof(port_cfg));
  430. port_cfg.uc = usecase;
  431. port_cfg.size = size;
  432. port_cfg.params = data;
  433. if (wsa_priv->swr_ctrl_data)
  434. ret = swrm_wcd_notify(
  435. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  436. SWR_SET_PORT_MAP, &port_cfg);
  437. return ret;
  438. }
  439. /**
  440. * lpass_cdc_wsa_macro_set_spkr_gain_offset - offset the speaker path
  441. * gain with the given offset value.
  442. *
  443. * @component: codec instance
  444. * @offset: Indicates speaker path gain offset value.
  445. *
  446. * Returns 0 on success or -EINVAL on error.
  447. */
  448. int lpass_cdc_wsa_macro_set_spkr_gain_offset(struct snd_soc_component *component,
  449. int offset)
  450. {
  451. struct device *wsa_dev = NULL;
  452. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  453. if (!component) {
  454. pr_err("%s: NULL component pointer!\n", __func__);
  455. return -EINVAL;
  456. }
  457. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  458. return -EINVAL;
  459. wsa_priv->spkr_gain_offset = offset;
  460. return 0;
  461. }
  462. EXPORT_SYMBOL(lpass_cdc_wsa_macro_set_spkr_gain_offset);
  463. /**
  464. * lpass_cdc_wsa_macro_set_spkr_mode - Configures speaker compander and smartboost
  465. * settings based on speaker mode.
  466. *
  467. * @component: codec instance
  468. * @mode: Indicates speaker configuration mode.
  469. *
  470. * Returns 0 on success or -EINVAL on error.
  471. */
  472. int lpass_cdc_wsa_macro_set_spkr_mode(struct snd_soc_component *component, int mode)
  473. {
  474. int i;
  475. const struct lpass_cdc_wsa_macro_reg_mask_val *regs;
  476. int size;
  477. struct device *wsa_dev = NULL;
  478. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  479. if (!component) {
  480. pr_err("%s: NULL codec pointer!\n", __func__);
  481. return -EINVAL;
  482. }
  483. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  484. return -EINVAL;
  485. switch (mode) {
  486. case LPASS_CDC_WSA_MACRO_SPKR_MODE_1:
  487. regs = lpass_cdc_wsa_macro_spkr_mode1;
  488. size = ARRAY_SIZE(lpass_cdc_wsa_macro_spkr_mode1);
  489. break;
  490. default:
  491. regs = lpass_cdc_wsa_macro_spkr_default;
  492. size = ARRAY_SIZE(lpass_cdc_wsa_macro_spkr_default);
  493. break;
  494. }
  495. wsa_priv->spkr_mode = mode;
  496. for (i = 0; i < size; i++)
  497. snd_soc_component_update_bits(component, regs[i].reg,
  498. regs[i].mask, regs[i].val);
  499. return 0;
  500. }
  501. EXPORT_SYMBOL(lpass_cdc_wsa_macro_set_spkr_mode);
  502. static int lpass_cdc_wsa_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  503. u8 int_prim_fs_rate_reg_val,
  504. u32 sample_rate)
  505. {
  506. u8 int_1_mix1_inp;
  507. u32 j, port;
  508. u16 int_mux_cfg0, int_mux_cfg1;
  509. u16 int_fs_reg;
  510. u8 int_mux_cfg0_val, int_mux_cfg1_val;
  511. u8 inp0_sel, inp1_sel, inp2_sel;
  512. struct snd_soc_component *component = dai->component;
  513. struct device *wsa_dev = NULL;
  514. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  515. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  516. return -EINVAL;
  517. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  518. LPASS_CDC_WSA_MACRO_RX_MAX) {
  519. int_1_mix1_inp = port;
  520. if ((int_1_mix1_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  521. (int_1_mix1_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  522. dev_err(wsa_dev,
  523. "%s: Invalid RX port, Dai ID is %d\n",
  524. __func__, dai->id);
  525. return -EINVAL;
  526. }
  527. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0;
  528. /*
  529. * Loop through all interpolator MUX inputs and find out
  530. * to which interpolator input, the cdc_dma rx port
  531. * is connected
  532. */
  533. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  534. int_mux_cfg1 = int_mux_cfg0 + LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET;
  535. int_mux_cfg0_val = snd_soc_component_read32(component,
  536. int_mux_cfg0);
  537. int_mux_cfg1_val = snd_soc_component_read32(component,
  538. int_mux_cfg1);
  539. inp0_sel = int_mux_cfg0_val & LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  540. inp1_sel = (int_mux_cfg0_val >>
  541. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  542. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  543. inp2_sel = (int_mux_cfg1_val >>
  544. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  545. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  546. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  547. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  548. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  549. int_fs_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  550. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  551. dev_dbg(wsa_dev,
  552. "%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  553. __func__, dai->id, j);
  554. dev_dbg(wsa_dev,
  555. "%s: set INT%u_1 sample rate to %u\n",
  556. __func__, j, sample_rate);
  557. /* sample_rate is in Hz */
  558. snd_soc_component_update_bits(component,
  559. int_fs_reg,
  560. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  561. int_prim_fs_rate_reg_val);
  562. }
  563. int_mux_cfg0 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  564. }
  565. }
  566. return 0;
  567. }
  568. static int lpass_cdc_wsa_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  569. u8 int_mix_fs_rate_reg_val,
  570. u32 sample_rate)
  571. {
  572. u8 int_2_inp;
  573. u32 j, port;
  574. u16 int_mux_cfg1, int_fs_reg;
  575. u8 int_mux_cfg1_val;
  576. struct snd_soc_component *component = dai->component;
  577. struct device *wsa_dev = NULL;
  578. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  579. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  580. return -EINVAL;
  581. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  582. LPASS_CDC_WSA_MACRO_RX_MAX) {
  583. int_2_inp = port;
  584. if ((int_2_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  585. (int_2_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  586. dev_err(wsa_dev,
  587. "%s: Invalid RX port, Dai ID is %d\n",
  588. __func__, dai->id);
  589. return -EINVAL;
  590. }
  591. int_mux_cfg1 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1;
  592. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  593. int_mux_cfg1_val = snd_soc_component_read32(component,
  594. int_mux_cfg1) &
  595. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  596. if (int_mux_cfg1_val == int_2_inp +
  597. INTn_2_INP_SEL_RX0) {
  598. int_fs_reg =
  599. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  600. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  601. dev_dbg(wsa_dev,
  602. "%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  603. __func__, dai->id, j);
  604. dev_dbg(wsa_dev,
  605. "%s: set INT%u_2 sample rate to %u\n",
  606. __func__, j, sample_rate);
  607. snd_soc_component_update_bits(component,
  608. int_fs_reg,
  609. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  610. int_mix_fs_rate_reg_val);
  611. }
  612. int_mux_cfg1 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  613. }
  614. }
  615. return 0;
  616. }
  617. static int lpass_cdc_wsa_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  618. u32 sample_rate)
  619. {
  620. int rate_val = 0;
  621. int i, ret;
  622. /* set mixing path rate */
  623. for (i = 0; i < ARRAY_SIZE(int_mix_sample_rate_val); i++) {
  624. if (sample_rate ==
  625. int_mix_sample_rate_val[i].sample_rate) {
  626. rate_val =
  627. int_mix_sample_rate_val[i].rate_val;
  628. break;
  629. }
  630. }
  631. if ((i == ARRAY_SIZE(int_mix_sample_rate_val)) ||
  632. (rate_val < 0))
  633. goto prim_rate;
  634. ret = lpass_cdc_wsa_macro_set_mix_interpolator_rate(dai,
  635. (u8) rate_val, sample_rate);
  636. prim_rate:
  637. /* set primary path sample rate */
  638. for (i = 0; i < ARRAY_SIZE(int_prim_sample_rate_val); i++) {
  639. if (sample_rate ==
  640. int_prim_sample_rate_val[i].sample_rate) {
  641. rate_val =
  642. int_prim_sample_rate_val[i].rate_val;
  643. break;
  644. }
  645. }
  646. if ((i == ARRAY_SIZE(int_prim_sample_rate_val)) ||
  647. (rate_val < 0))
  648. return -EINVAL;
  649. ret = lpass_cdc_wsa_macro_set_prim_interpolator_rate(dai,
  650. (u8) rate_val, sample_rate);
  651. return ret;
  652. }
  653. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  654. struct snd_pcm_hw_params *params,
  655. struct snd_soc_dai *dai)
  656. {
  657. struct snd_soc_component *component = dai->component;
  658. int ret;
  659. struct device *wsa_dev = NULL;
  660. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  661. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  662. return -EINVAL;
  663. wsa_priv = dev_get_drvdata(wsa_dev);
  664. if (!wsa_priv)
  665. return -EINVAL;
  666. dev_dbg(component->dev,
  667. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  668. dai->name, dai->id, params_rate(params),
  669. params_channels(params));
  670. switch (substream->stream) {
  671. case SNDRV_PCM_STREAM_PLAYBACK:
  672. ret = lpass_cdc_wsa_macro_set_interpolator_rate(dai, params_rate(params));
  673. if (ret) {
  674. dev_err(component->dev,
  675. "%s: cannot set sample rate: %u\n",
  676. __func__, params_rate(params));
  677. return ret;
  678. }
  679. break;
  680. case SNDRV_PCM_STREAM_CAPTURE:
  681. if (dai->id == LPASS_CDC_WSA_MACRO_AIF_VI)
  682. wsa_priv->pcm_rate_vi = params_rate(params);
  683. default:
  684. break;
  685. }
  686. return 0;
  687. }
  688. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  689. unsigned int *tx_num, unsigned int *tx_slot,
  690. unsigned int *rx_num, unsigned int *rx_slot)
  691. {
  692. struct snd_soc_component *component = dai->component;
  693. struct device *wsa_dev = NULL;
  694. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  695. u16 val = 0, mask = 0, cnt = 0, temp = 0;
  696. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  697. return -EINVAL;
  698. wsa_priv = dev_get_drvdata(wsa_dev);
  699. if (!wsa_priv)
  700. return -EINVAL;
  701. switch (dai->id) {
  702. case LPASS_CDC_WSA_MACRO_AIF_VI:
  703. *tx_slot = wsa_priv->active_ch_mask[dai->id];
  704. *tx_num = wsa_priv->active_ch_cnt[dai->id];
  705. break;
  706. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  707. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  708. for_each_set_bit(temp, &wsa_priv->active_ch_mask[dai->id],
  709. LPASS_CDC_WSA_MACRO_RX_MAX) {
  710. mask |= (1 << temp);
  711. if (++cnt == LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT)
  712. break;
  713. }
  714. if (mask & 0x0C)
  715. mask = mask >> 0x2;
  716. *rx_slot = mask;
  717. *rx_num = cnt;
  718. break;
  719. case LPASS_CDC_WSA_MACRO_AIF_ECHO:
  720. val = snd_soc_component_read32(component,
  721. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  722. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK) {
  723. mask |= 0x2;
  724. cnt++;
  725. }
  726. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK) {
  727. mask |= 0x1;
  728. cnt++;
  729. }
  730. *tx_slot = mask;
  731. *tx_num = cnt;
  732. break;
  733. default:
  734. dev_err(wsa_dev, "%s: Invalid AIF\n", __func__);
  735. break;
  736. }
  737. return 0;
  738. }
  739. static int lpass_cdc_wsa_macro_digital_mute(struct snd_soc_dai *dai, int mute)
  740. {
  741. struct snd_soc_component *component = dai->component;
  742. struct device *wsa_dev = NULL;
  743. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  744. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  745. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  746. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  747. bool adie_lb = false;
  748. if (mute)
  749. return 0;
  750. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  751. return -EINVAL;
  752. switch (dai->id) {
  753. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  754. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  755. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  756. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  757. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  758. mix_reg = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  759. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  760. dsm_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  761. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET) +
  762. LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET;
  763. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  764. int_mux_cfg1 = int_mux_cfg0 + 4;
  765. int_mux_cfg0_val = snd_soc_component_read32(component,
  766. int_mux_cfg0);
  767. int_mux_cfg1_val = snd_soc_component_read32(component,
  768. int_mux_cfg1);
  769. if (snd_soc_component_read32(component, dsm_reg) & 0x01) {
  770. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0x38))
  771. snd_soc_component_update_bits(component, reg,
  772. 0x20, 0x20);
  773. if (int_mux_cfg1_val & 0x07) {
  774. snd_soc_component_update_bits(component, reg,
  775. 0x20, 0x20);
  776. snd_soc_component_update_bits(component,
  777. mix_reg, 0x20, 0x20);
  778. }
  779. }
  780. }
  781. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  782. break;
  783. default:
  784. break;
  785. }
  786. return 0;
  787. }
  788. static int lpass_cdc_wsa_macro_mclk_enable(
  789. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  790. bool mclk_enable, bool dapm)
  791. {
  792. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  793. int ret = 0;
  794. if (regmap == NULL) {
  795. dev_err(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  796. return -EINVAL;
  797. }
  798. dev_dbg(wsa_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  799. __func__, mclk_enable, dapm, wsa_priv->wsa_mclk_users);
  800. mutex_lock(&wsa_priv->mclk_lock);
  801. if (mclk_enable) {
  802. if (wsa_priv->wsa_mclk_users == 0) {
  803. ret = lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  804. wsa_priv->default_clk_id,
  805. wsa_priv->default_clk_id,
  806. true);
  807. if (ret < 0) {
  808. dev_err_ratelimited(wsa_priv->dev,
  809. "%s: wsa request clock enable failed\n",
  810. __func__);
  811. goto exit;
  812. }
  813. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  814. true);
  815. regcache_mark_dirty(regmap);
  816. regcache_sync_region(regmap,
  817. WSA_START_OFFSET,
  818. WSA_MAX_OFFSET);
  819. /* 9.6MHz MCLK, set value 0x00 if other frequency */
  820. regmap_update_bits(regmap,
  821. LPASS_CDC_WSA_TOP_FREQ_MCLK, 0x01, 0x01);
  822. regmap_update_bits(regmap,
  823. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  824. 0x01, 0x01);
  825. regmap_update_bits(regmap,
  826. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  827. 0x01, 0x01);
  828. }
  829. wsa_priv->wsa_mclk_users++;
  830. } else {
  831. if (wsa_priv->wsa_mclk_users <= 0) {
  832. dev_err(wsa_priv->dev, "%s: clock already disabled\n",
  833. __func__);
  834. wsa_priv->wsa_mclk_users = 0;
  835. goto exit;
  836. }
  837. wsa_priv->wsa_mclk_users--;
  838. if (wsa_priv->wsa_mclk_users == 0) {
  839. regmap_update_bits(regmap,
  840. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  841. 0x01, 0x00);
  842. regmap_update_bits(regmap,
  843. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  844. 0x01, 0x00);
  845. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  846. false);
  847. lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  848. wsa_priv->default_clk_id,
  849. wsa_priv->default_clk_id,
  850. false);
  851. }
  852. }
  853. exit:
  854. mutex_unlock(&wsa_priv->mclk_lock);
  855. return ret;
  856. }
  857. static int lpass_cdc_wsa_macro_mclk_event(struct snd_soc_dapm_widget *w,
  858. struct snd_kcontrol *kcontrol, int event)
  859. {
  860. struct snd_soc_component *component =
  861. snd_soc_dapm_to_component(w->dapm);
  862. int ret = 0;
  863. struct device *wsa_dev = NULL;
  864. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  865. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  866. return -EINVAL;
  867. dev_dbg(wsa_dev, "%s: event = %d\n", __func__, event);
  868. switch (event) {
  869. case SND_SOC_DAPM_PRE_PMU:
  870. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  871. if (ret)
  872. wsa_priv->dapm_mclk_enable = false;
  873. else
  874. wsa_priv->dapm_mclk_enable = true;
  875. break;
  876. case SND_SOC_DAPM_POST_PMD:
  877. if (wsa_priv->dapm_mclk_enable)
  878. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  879. break;
  880. default:
  881. dev_err(wsa_priv->dev,
  882. "%s: invalid DAPM event %d\n", __func__, event);
  883. ret = -EINVAL;
  884. }
  885. return ret;
  886. }
  887. static int lpass_cdc_wsa_macro_event_handler(struct snd_soc_component *component,
  888. u16 event, u32 data)
  889. {
  890. struct device *wsa_dev = NULL;
  891. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  892. int ret = 0;
  893. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  894. return -EINVAL;
  895. switch (event) {
  896. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  897. trace_printk("%s, enter SSR down\n", __func__);
  898. if (wsa_priv->swr_ctrl_data) {
  899. swrm_wcd_notify(
  900. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  901. SWR_DEVICE_SSR_DOWN, NULL);
  902. }
  903. if ((!pm_runtime_enabled(wsa_dev) ||
  904. !pm_runtime_suspended(wsa_dev))) {
  905. ret = lpass_cdc_runtime_suspend(wsa_dev);
  906. if (!ret) {
  907. pm_runtime_disable(wsa_dev);
  908. pm_runtime_set_suspended(wsa_dev);
  909. pm_runtime_enable(wsa_dev);
  910. }
  911. }
  912. break;
  913. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  914. /* enable&disable WSA_CORE_CLK to reset GFMUX reg */
  915. ret = lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  916. wsa_priv->default_clk_id,
  917. WSA_CORE_CLK, true);
  918. if (ret < 0)
  919. dev_err_ratelimited(wsa_priv->dev,
  920. "%s, failed to enable clk, ret:%d\n",
  921. __func__, ret);
  922. else
  923. lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  924. wsa_priv->default_clk_id,
  925. WSA_CORE_CLK, false);
  926. break;
  927. case LPASS_CDC_MACRO_EVT_SSR_UP:
  928. trace_printk("%s, enter SSR up\n", __func__);
  929. /* reset swr after ssr/pdr */
  930. wsa_priv->reset_swr = true;
  931. if (wsa_priv->swr_ctrl_data)
  932. swrm_wcd_notify(
  933. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  934. SWR_DEVICE_SSR_UP, NULL);
  935. break;
  936. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  937. lpass_cdc_rsc_clk_reset(wsa_dev, WSA_CORE_CLK);
  938. break;
  939. }
  940. return 0;
  941. }
  942. static int lpass_cdc_wsa_macro_enable_vi_feedback(struct snd_soc_dapm_widget *w,
  943. struct snd_kcontrol *kcontrol,
  944. int event)
  945. {
  946. struct snd_soc_component *component =
  947. snd_soc_dapm_to_component(w->dapm);
  948. struct device *wsa_dev = NULL;
  949. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  950. u8 val = 0x0;
  951. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  952. return -EINVAL;
  953. switch (wsa_priv->pcm_rate_vi) {
  954. case 48000:
  955. val = 0x04;
  956. break;
  957. case 24000:
  958. val = 0x02;
  959. break;
  960. case 8000:
  961. default:
  962. val = 0x00;
  963. break;
  964. }
  965. switch (event) {
  966. case SND_SOC_DAPM_POST_PMU:
  967. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  968. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  969. dev_dbg(wsa_dev, "%s: spkr1 enabled\n", __func__);
  970. /* Enable V&I sensing */
  971. snd_soc_component_update_bits(component,
  972. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  973. 0x20, 0x20);
  974. snd_soc_component_update_bits(component,
  975. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  976. 0x20, 0x20);
  977. snd_soc_component_update_bits(component,
  978. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  979. 0x0F, val);
  980. snd_soc_component_update_bits(component,
  981. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  982. 0x0F, val);
  983. snd_soc_component_update_bits(component,
  984. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  985. 0x10, 0x10);
  986. snd_soc_component_update_bits(component,
  987. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  988. 0x10, 0x10);
  989. snd_soc_component_update_bits(component,
  990. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  991. 0x20, 0x00);
  992. snd_soc_component_update_bits(component,
  993. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  994. 0x20, 0x00);
  995. }
  996. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  997. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  998. dev_dbg(wsa_dev, "%s: spkr2 enabled\n", __func__);
  999. /* Enable V&I sensing */
  1000. snd_soc_component_update_bits(component,
  1001. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1002. 0x20, 0x20);
  1003. snd_soc_component_update_bits(component,
  1004. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1005. 0x20, 0x20);
  1006. snd_soc_component_update_bits(component,
  1007. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1008. 0x0F, val);
  1009. snd_soc_component_update_bits(component,
  1010. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1011. 0x0F, val);
  1012. snd_soc_component_update_bits(component,
  1013. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1014. 0x10, 0x10);
  1015. snd_soc_component_update_bits(component,
  1016. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1017. 0x10, 0x10);
  1018. snd_soc_component_update_bits(component,
  1019. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1020. 0x20, 0x00);
  1021. snd_soc_component_update_bits(component,
  1022. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1023. 0x20, 0x00);
  1024. }
  1025. break;
  1026. case SND_SOC_DAPM_POST_PMD:
  1027. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  1028. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1029. /* Disable V&I sensing */
  1030. snd_soc_component_update_bits(component,
  1031. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1032. 0x20, 0x20);
  1033. snd_soc_component_update_bits(component,
  1034. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1035. 0x20, 0x20);
  1036. dev_dbg(wsa_dev, "%s: spkr1 disabled\n", __func__);
  1037. snd_soc_component_update_bits(component,
  1038. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1039. 0x10, 0x00);
  1040. snd_soc_component_update_bits(component,
  1041. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1042. 0x10, 0x00);
  1043. }
  1044. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  1045. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1046. /* Disable V&I sensing */
  1047. dev_dbg(wsa_dev, "%s: spkr2 disabled\n", __func__);
  1048. snd_soc_component_update_bits(component,
  1049. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1050. 0x20, 0x20);
  1051. snd_soc_component_update_bits(component,
  1052. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1053. 0x20, 0x20);
  1054. snd_soc_component_update_bits(component,
  1055. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1056. 0x10, 0x00);
  1057. snd_soc_component_update_bits(component,
  1058. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1059. 0x10, 0x00);
  1060. }
  1061. break;
  1062. }
  1063. return 0;
  1064. }
  1065. static void lpass_cdc_wsa_macro_hd2_control(struct snd_soc_component *component,
  1066. u16 reg, int event)
  1067. {
  1068. u16 hd2_scale_reg;
  1069. u16 hd2_enable_reg = 0;
  1070. if (reg == LPASS_CDC_WSA_RX0_RX_PATH_CTL) {
  1071. hd2_scale_reg = LPASS_CDC_WSA_RX0_RX_PATH_SEC3;
  1072. hd2_enable_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0;
  1073. }
  1074. if (reg == LPASS_CDC_WSA_RX1_RX_PATH_CTL) {
  1075. hd2_scale_reg = LPASS_CDC_WSA_RX1_RX_PATH_SEC3;
  1076. hd2_enable_reg = LPASS_CDC_WSA_RX1_RX_PATH_CFG0;
  1077. }
  1078. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1079. snd_soc_component_update_bits(component, hd2_scale_reg,
  1080. 0x3C, 0x10);
  1081. snd_soc_component_update_bits(component, hd2_scale_reg,
  1082. 0x03, 0x01);
  1083. snd_soc_component_update_bits(component, hd2_enable_reg,
  1084. 0x04, 0x04);
  1085. }
  1086. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1087. snd_soc_component_update_bits(component, hd2_enable_reg,
  1088. 0x04, 0x00);
  1089. snd_soc_component_update_bits(component, hd2_scale_reg,
  1090. 0x03, 0x00);
  1091. snd_soc_component_update_bits(component, hd2_scale_reg,
  1092. 0x3C, 0x00);
  1093. }
  1094. }
  1095. static int lpass_cdc_wsa_macro_enable_swr(struct snd_soc_dapm_widget *w,
  1096. struct snd_kcontrol *kcontrol, int event)
  1097. {
  1098. struct snd_soc_component *component =
  1099. snd_soc_dapm_to_component(w->dapm);
  1100. int ch_cnt;
  1101. struct device *wsa_dev = NULL;
  1102. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1103. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1104. return -EINVAL;
  1105. switch (event) {
  1106. case SND_SOC_DAPM_PRE_PMU:
  1107. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1108. !wsa_priv->rx_0_count)
  1109. wsa_priv->rx_0_count++;
  1110. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1111. !wsa_priv->rx_1_count)
  1112. wsa_priv->rx_1_count++;
  1113. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1114. if (wsa_priv->swr_ctrl_data) {
  1115. swrm_wcd_notify(
  1116. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1117. SWR_DEVICE_UP, NULL);
  1118. swrm_wcd_notify(
  1119. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1120. SWR_SET_NUM_RX_CH, &ch_cnt);
  1121. }
  1122. break;
  1123. case SND_SOC_DAPM_POST_PMD:
  1124. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1125. wsa_priv->rx_0_count)
  1126. wsa_priv->rx_0_count--;
  1127. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1128. wsa_priv->rx_1_count)
  1129. wsa_priv->rx_1_count--;
  1130. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1131. if (wsa_priv->swr_ctrl_data)
  1132. swrm_wcd_notify(
  1133. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1134. SWR_SET_NUM_RX_CH, &ch_cnt);
  1135. break;
  1136. }
  1137. dev_dbg(wsa_priv->dev, "%s: current swr ch cnt: %d\n",
  1138. __func__, wsa_priv->rx_0_count + wsa_priv->rx_1_count);
  1139. return 0;
  1140. }
  1141. static int lpass_cdc_wsa_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1142. struct snd_kcontrol *kcontrol, int event)
  1143. {
  1144. struct snd_soc_component *component =
  1145. snd_soc_dapm_to_component(w->dapm);
  1146. u16 gain_reg;
  1147. int offset_val = 0;
  1148. int val = 0;
  1149. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1150. if (!(strcmp(w->name, "WSA_RX0 MIX INP"))) {
  1151. gain_reg = LPASS_CDC_WSA_RX0_RX_VOL_MIX_CTL;
  1152. } else if (!(strcmp(w->name, "WSA_RX1 MIX INP"))) {
  1153. gain_reg = LPASS_CDC_WSA_RX1_RX_VOL_MIX_CTL;
  1154. } else {
  1155. dev_err(component->dev, "%s: No gain register avail for %s\n",
  1156. __func__, w->name);
  1157. return 0;
  1158. }
  1159. switch (event) {
  1160. case SND_SOC_DAPM_PRE_PMU:
  1161. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1162. val = snd_soc_component_read32(component, gain_reg);
  1163. val += offset_val;
  1164. snd_soc_component_write(component, gain_reg, val);
  1165. break;
  1166. case SND_SOC_DAPM_POST_PMD:
  1167. snd_soc_component_update_bits(component,
  1168. w->reg, 0x20, 0x00);
  1169. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1170. break;
  1171. }
  1172. return 0;
  1173. }
  1174. static int lpass_cdc_wsa_macro_config_compander(struct snd_soc_component *component,
  1175. int comp, int event)
  1176. {
  1177. u16 comp_ctl0_reg, rx_path_cfg0_reg;
  1178. struct device *wsa_dev = NULL;
  1179. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1180. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1181. return -EINVAL;
  1182. dev_dbg(component->dev, "%s: event %d compander %d, enabled %d\n",
  1183. __func__, event, comp + 1, wsa_priv->comp_enabled[comp]);
  1184. if (!wsa_priv->comp_enabled[comp])
  1185. return 0;
  1186. comp_ctl0_reg = LPASS_CDC_WSA_COMPANDER0_CTL0 +
  1187. (comp * LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET);
  1188. rx_path_cfg0_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0 +
  1189. (comp * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  1190. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1191. /* Enable Compander Clock */
  1192. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1193. 0x01, 0x01);
  1194. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1195. 0x02, 0x02);
  1196. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1197. 0x02, 0x00);
  1198. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1199. 0x02, 0x02);
  1200. }
  1201. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1202. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1203. 0x04, 0x04);
  1204. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1205. 0x02, 0x00);
  1206. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1207. 0x02, 0x02);
  1208. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1209. 0x02, 0x00);
  1210. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1211. 0x01, 0x00);
  1212. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1213. 0x04, 0x00);
  1214. }
  1215. return 0;
  1216. }
  1217. static void lpass_cdc_wsa_macro_enable_softclip_clk(struct snd_soc_component *component,
  1218. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  1219. int path,
  1220. bool enable)
  1221. {
  1222. u16 softclip_clk_reg = LPASS_CDC_WSA_SOFTCLIP0_CRC +
  1223. (path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1224. u8 softclip_mux_mask = (1 << path);
  1225. u8 softclip_mux_value = (1 << path);
  1226. dev_dbg(component->dev, "%s: path %d, enable %d\n",
  1227. __func__, path, enable);
  1228. if (enable) {
  1229. if (wsa_priv->softclip_clk_users[path] == 0) {
  1230. snd_soc_component_update_bits(component,
  1231. softclip_clk_reg, 0x01, 0x01);
  1232. snd_soc_component_update_bits(component,
  1233. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1234. softclip_mux_mask, softclip_mux_value);
  1235. }
  1236. wsa_priv->softclip_clk_users[path]++;
  1237. } else {
  1238. wsa_priv->softclip_clk_users[path]--;
  1239. if (wsa_priv->softclip_clk_users[path] == 0) {
  1240. snd_soc_component_update_bits(component,
  1241. softclip_clk_reg, 0x01, 0x00);
  1242. snd_soc_component_update_bits(component,
  1243. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1244. softclip_mux_mask, 0x00);
  1245. }
  1246. }
  1247. }
  1248. static int lpass_cdc_wsa_macro_config_softclip(struct snd_soc_component *component,
  1249. int path, int event)
  1250. {
  1251. u16 softclip_ctrl_reg = 0;
  1252. struct device *wsa_dev = NULL;
  1253. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1254. int softclip_path = 0;
  1255. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1256. return -EINVAL;
  1257. if (path == LPASS_CDC_WSA_MACRO_COMP1)
  1258. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1259. else if (path == LPASS_CDC_WSA_MACRO_COMP2)
  1260. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1261. dev_dbg(component->dev, "%s: event %d path %d, enabled %d\n",
  1262. __func__, event, softclip_path,
  1263. wsa_priv->is_softclip_on[softclip_path]);
  1264. if (!wsa_priv->is_softclip_on[softclip_path])
  1265. return 0;
  1266. softclip_ctrl_reg = LPASS_CDC_WSA_SOFTCLIP0_SOFTCLIP_CTRL +
  1267. (softclip_path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1268. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1269. /* Enable Softclip clock and mux */
  1270. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1271. softclip_path, true);
  1272. /* Enable Softclip control */
  1273. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1274. 0x01, 0x01);
  1275. }
  1276. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1277. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1278. 0x01, 0x00);
  1279. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1280. softclip_path, false);
  1281. }
  1282. return 0;
  1283. }
  1284. static bool lpass_cdc_wsa_macro_adie_lb(struct snd_soc_component *component,
  1285. int interp_idx)
  1286. {
  1287. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1288. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1289. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1290. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1291. int_mux_cfg1 = int_mux_cfg0 + 4;
  1292. int_mux_cfg0_val = snd_soc_component_read32(component, int_mux_cfg0);
  1293. int_mux_cfg1_val = snd_soc_component_read32(component, int_mux_cfg1);
  1294. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1295. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1296. int_n_inp0 == INTn_1_INP_SEL_DEC1)
  1297. return true;
  1298. int_n_inp1 = int_mux_cfg0_val >> 4;
  1299. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1300. int_n_inp1 == INTn_1_INP_SEL_DEC1)
  1301. return true;
  1302. int_n_inp2 = int_mux_cfg1_val >> 4;
  1303. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1304. int_n_inp2 == INTn_1_INP_SEL_DEC1)
  1305. return true;
  1306. return false;
  1307. }
  1308. static int lpass_cdc_wsa_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1309. struct snd_kcontrol *kcontrol,
  1310. int event)
  1311. {
  1312. struct snd_soc_component *component =
  1313. snd_soc_dapm_to_component(w->dapm);
  1314. u16 reg = 0;
  1315. struct device *wsa_dev = NULL;
  1316. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1317. bool adie_lb = false;
  1318. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1319. return -EINVAL;
  1320. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  1321. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * w->shift;
  1322. switch (event) {
  1323. case SND_SOC_DAPM_PRE_PMU:
  1324. if (lpass_cdc_wsa_macro_adie_lb(component, w->shift)) {
  1325. adie_lb = true;
  1326. snd_soc_component_update_bits(component,
  1327. reg, 0x20, 0x20);
  1328. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  1329. }
  1330. break;
  1331. default:
  1332. break;
  1333. }
  1334. return 0;
  1335. }
  1336. static int lpass_cdc_wsa_macro_interp_get_primary_reg(u16 reg, u16 *ind)
  1337. {
  1338. u16 prim_int_reg = 0;
  1339. switch (reg) {
  1340. case LPASS_CDC_WSA_RX0_RX_PATH_CTL:
  1341. case LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL:
  1342. prim_int_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1343. *ind = 0;
  1344. break;
  1345. case LPASS_CDC_WSA_RX1_RX_PATH_CTL:
  1346. case LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL:
  1347. prim_int_reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1348. *ind = 1;
  1349. break;
  1350. }
  1351. return prim_int_reg;
  1352. }
  1353. static int lpass_cdc_wsa_macro_enable_prim_interpolator(
  1354. struct snd_soc_component *component,
  1355. u16 reg, int event)
  1356. {
  1357. u16 prim_int_reg;
  1358. u16 ind = 0;
  1359. struct device *wsa_dev = NULL;
  1360. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1361. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1362. return -EINVAL;
  1363. prim_int_reg = lpass_cdc_wsa_macro_interp_get_primary_reg(reg, &ind);
  1364. switch (event) {
  1365. case SND_SOC_DAPM_PRE_PMU:
  1366. wsa_priv->prim_int_users[ind]++;
  1367. if (wsa_priv->prim_int_users[ind] == 1) {
  1368. snd_soc_component_update_bits(component,
  1369. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET,
  1370. 0x03, 0x03);
  1371. snd_soc_component_update_bits(component, prim_int_reg,
  1372. 0x10, 0x10);
  1373. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1374. snd_soc_component_update_bits(component,
  1375. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1376. 0x1, 0x1);
  1377. }
  1378. if ((reg != prim_int_reg) &&
  1379. ((snd_soc_component_read32(
  1380. component, prim_int_reg)) & 0x10))
  1381. snd_soc_component_update_bits(component, reg,
  1382. 0x10, 0x10);
  1383. break;
  1384. case SND_SOC_DAPM_POST_PMD:
  1385. wsa_priv->prim_int_users[ind]--;
  1386. if (wsa_priv->prim_int_users[ind] == 0) {
  1387. snd_soc_component_update_bits(component, prim_int_reg,
  1388. 1 << 0x5, 0 << 0x5);
  1389. snd_soc_component_update_bits(component,
  1390. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1391. 0x1, 0x0);
  1392. snd_soc_component_update_bits(component, prim_int_reg,
  1393. 0x40, 0x40);
  1394. snd_soc_component_update_bits(component, prim_int_reg,
  1395. 0x40, 0x00);
  1396. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1397. }
  1398. break;
  1399. }
  1400. dev_dbg(component->dev, "%s: primary interpolator: INT%d, users: %d\n",
  1401. __func__, ind, wsa_priv->prim_int_users[ind]);
  1402. return 0;
  1403. }
  1404. static int lpass_cdc_wsa_macro_enable_interpolator(struct snd_soc_dapm_widget *w,
  1405. struct snd_kcontrol *kcontrol,
  1406. int event)
  1407. {
  1408. struct snd_soc_component *component =
  1409. snd_soc_dapm_to_component(w->dapm);
  1410. u16 gain_reg;
  1411. u16 reg;
  1412. int val;
  1413. int offset_val = 0;
  1414. struct device *wsa_dev = NULL;
  1415. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1416. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1417. return -EINVAL;
  1418. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1419. if (!(strcmp(w->name, "WSA_RX INT0 INTERP"))) {
  1420. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1421. gain_reg = LPASS_CDC_WSA_RX0_RX_VOL_CTL;
  1422. } else if (!(strcmp(w->name, "WSA_RX INT1 INTERP"))) {
  1423. reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1424. gain_reg = LPASS_CDC_WSA_RX1_RX_VOL_CTL;
  1425. } else {
  1426. dev_err(component->dev, "%s: Interpolator reg not found\n",
  1427. __func__);
  1428. return -EINVAL;
  1429. }
  1430. switch (event) {
  1431. case SND_SOC_DAPM_PRE_PMU:
  1432. /* Reset if needed */
  1433. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1434. break;
  1435. case SND_SOC_DAPM_POST_PMU:
  1436. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1437. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1438. /* apply gain after int clk is enabled */
  1439. if ((wsa_priv->spkr_gain_offset ==
  1440. LPASS_CDC_WSA_MACRO_GAIN_OFFSET_M1P5_DB) &&
  1441. (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] ||
  1442. wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP2]) &&
  1443. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL ||
  1444. gain_reg == LPASS_CDC_WSA_RX1_RX_VOL_CTL)) {
  1445. snd_soc_component_update_bits(component,
  1446. LPASS_CDC_WSA_RX0_RX_PATH_SEC1,
  1447. 0x01, 0x01);
  1448. snd_soc_component_update_bits(component,
  1449. LPASS_CDC_WSA_RX0_RX_PATH_MIX_SEC0,
  1450. 0x01, 0x01);
  1451. snd_soc_component_update_bits(component,
  1452. LPASS_CDC_WSA_RX1_RX_PATH_SEC1,
  1453. 0x01, 0x01);
  1454. snd_soc_component_update_bits(component,
  1455. LPASS_CDC_WSA_RX1_RX_PATH_MIX_SEC0,
  1456. 0x01, 0x01);
  1457. offset_val = -2;
  1458. }
  1459. val = snd_soc_component_read32(component, gain_reg);
  1460. val += offset_val;
  1461. snd_soc_component_write(component, gain_reg, val);
  1462. lpass_cdc_wsa_macro_config_ear_spkr_gain(component, wsa_priv,
  1463. event, gain_reg);
  1464. break;
  1465. case SND_SOC_DAPM_POST_PMD:
  1466. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1467. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1468. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1469. if ((wsa_priv->spkr_gain_offset ==
  1470. LPASS_CDC_WSA_MACRO_GAIN_OFFSET_M1P5_DB) &&
  1471. (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] ||
  1472. wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP2]) &&
  1473. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL ||
  1474. gain_reg == LPASS_CDC_WSA_RX1_RX_VOL_CTL)) {
  1475. snd_soc_component_update_bits(component,
  1476. LPASS_CDC_WSA_RX0_RX_PATH_SEC1,
  1477. 0x01, 0x00);
  1478. snd_soc_component_update_bits(component,
  1479. LPASS_CDC_WSA_RX0_RX_PATH_MIX_SEC0,
  1480. 0x01, 0x00);
  1481. snd_soc_component_update_bits(component,
  1482. LPASS_CDC_WSA_RX1_RX_PATH_SEC1,
  1483. 0x01, 0x00);
  1484. snd_soc_component_update_bits(component,
  1485. LPASS_CDC_WSA_RX1_RX_PATH_MIX_SEC0,
  1486. 0x01, 0x00);
  1487. offset_val = 2;
  1488. val = snd_soc_component_read32(component, gain_reg);
  1489. val += offset_val;
  1490. snd_soc_component_write(component, gain_reg, val);
  1491. }
  1492. lpass_cdc_wsa_macro_config_ear_spkr_gain(component, wsa_priv,
  1493. event, gain_reg);
  1494. break;
  1495. }
  1496. return 0;
  1497. }
  1498. static int lpass_cdc_wsa_macro_config_ear_spkr_gain(struct snd_soc_component *component,
  1499. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  1500. int event, int gain_reg)
  1501. {
  1502. int comp_gain_offset, val;
  1503. switch (wsa_priv->spkr_mode) {
  1504. /* Compander gain in LPASS_CDC_WSA_MACRO_SPKR_MODE1 case is 12 dB */
  1505. case LPASS_CDC_WSA_MACRO_SPKR_MODE_1:
  1506. comp_gain_offset = -12;
  1507. break;
  1508. /* Default case compander gain is 15 dB */
  1509. default:
  1510. comp_gain_offset = -15;
  1511. break;
  1512. }
  1513. switch (event) {
  1514. case SND_SOC_DAPM_POST_PMU:
  1515. /* Apply ear spkr gain only if compander is enabled */
  1516. if (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] &&
  1517. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL) &&
  1518. (wsa_priv->ear_spkr_gain != 0)) {
  1519. /* For example, val is -8(-12+5-1) for 4dB of gain */
  1520. val = comp_gain_offset + wsa_priv->ear_spkr_gain - 1;
  1521. snd_soc_component_write(component, gain_reg, val);
  1522. dev_dbg(wsa_priv->dev, "%s: RX0 Volume %d dB\n",
  1523. __func__, val);
  1524. }
  1525. break;
  1526. case SND_SOC_DAPM_POST_PMD:
  1527. /*
  1528. * Reset RX0 volume to 0 dB if compander is enabled and
  1529. * ear_spkr_gain is non-zero.
  1530. */
  1531. if (wsa_priv->comp_enabled[LPASS_CDC_WSA_MACRO_COMP1] &&
  1532. (gain_reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL) &&
  1533. (wsa_priv->ear_spkr_gain != 0)) {
  1534. snd_soc_component_write(component, gain_reg, 0x0);
  1535. dev_dbg(wsa_priv->dev, "%s: Reset RX0 Volume to 0 dB\n",
  1536. __func__);
  1537. }
  1538. break;
  1539. }
  1540. return 0;
  1541. }
  1542. static int lpass_cdc_wsa_macro_spk_boost_event(struct snd_soc_dapm_widget *w,
  1543. struct snd_kcontrol *kcontrol,
  1544. int event)
  1545. {
  1546. struct snd_soc_component *component =
  1547. snd_soc_dapm_to_component(w->dapm);
  1548. u16 boost_path_ctl, boost_path_cfg1;
  1549. u16 reg, reg_mix;
  1550. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1551. if (!strcmp(w->name, "WSA_RX INT0 CHAIN")) {
  1552. boost_path_ctl = LPASS_CDC_WSA_BOOST0_BOOST_PATH_CTL;
  1553. boost_path_cfg1 = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1554. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1555. reg_mix = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL;
  1556. } else if (!strcmp(w->name, "WSA_RX INT1 CHAIN")) {
  1557. boost_path_ctl = LPASS_CDC_WSA_BOOST1_BOOST_PATH_CTL;
  1558. boost_path_cfg1 = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1559. reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1560. reg_mix = LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL;
  1561. } else {
  1562. dev_err(component->dev, "%s: unknown widget: %s\n",
  1563. __func__, w->name);
  1564. return -EINVAL;
  1565. }
  1566. switch (event) {
  1567. case SND_SOC_DAPM_PRE_PMU:
  1568. snd_soc_component_update_bits(component, boost_path_cfg1,
  1569. 0x01, 0x01);
  1570. snd_soc_component_update_bits(component, boost_path_ctl,
  1571. 0x10, 0x10);
  1572. if ((snd_soc_component_read32(component, reg_mix)) & 0x10)
  1573. snd_soc_component_update_bits(component, reg_mix,
  1574. 0x10, 0x00);
  1575. break;
  1576. case SND_SOC_DAPM_POST_PMU:
  1577. snd_soc_component_update_bits(component, reg, 0x10, 0x00);
  1578. break;
  1579. case SND_SOC_DAPM_POST_PMD:
  1580. snd_soc_component_update_bits(component, boost_path_ctl,
  1581. 0x10, 0x00);
  1582. snd_soc_component_update_bits(component, boost_path_cfg1,
  1583. 0x01, 0x00);
  1584. break;
  1585. }
  1586. return 0;
  1587. }
  1588. static int lpass_cdc_wsa_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  1589. struct snd_kcontrol *kcontrol,
  1590. int event)
  1591. {
  1592. struct snd_soc_component *component =
  1593. snd_soc_dapm_to_component(w->dapm);
  1594. struct device *wsa_dev = NULL;
  1595. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1596. u16 vbat_path_cfg = 0;
  1597. int softclip_path = 0;
  1598. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1599. return -EINVAL;
  1600. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1601. if (!strcmp(w->name, "WSA_RX INT0 VBAT")) {
  1602. vbat_path_cfg = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1603. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1604. } else if (!strcmp(w->name, "WSA_RX INT1 VBAT")) {
  1605. vbat_path_cfg = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1606. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1607. }
  1608. switch (event) {
  1609. case SND_SOC_DAPM_PRE_PMU:
  1610. /* Enable clock for VBAT block */
  1611. snd_soc_component_update_bits(component,
  1612. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  1613. /* Enable VBAT block */
  1614. snd_soc_component_update_bits(component,
  1615. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x01);
  1616. /* Update interpolator with 384K path */
  1617. snd_soc_component_update_bits(component, vbat_path_cfg,
  1618. 0x80, 0x80);
  1619. /* Use attenuation mode */
  1620. snd_soc_component_update_bits(component,
  1621. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x02, 0x00);
  1622. /*
  1623. * BCL block needs softclip clock and mux config to be enabled
  1624. */
  1625. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1626. softclip_path, true);
  1627. /* Enable VBAT at channel level */
  1628. snd_soc_component_update_bits(component, vbat_path_cfg,
  1629. 0x02, 0x02);
  1630. /* Set the ATTK1 gain */
  1631. snd_soc_component_update_bits(component,
  1632. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1633. 0xFF, 0xFF);
  1634. snd_soc_component_update_bits(component,
  1635. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1636. 0xFF, 0x03);
  1637. snd_soc_component_update_bits(component,
  1638. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1639. 0xFF, 0x00);
  1640. /* Set the ATTK2 gain */
  1641. snd_soc_component_update_bits(component,
  1642. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1643. 0xFF, 0xFF);
  1644. snd_soc_component_update_bits(component,
  1645. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1646. 0xFF, 0x03);
  1647. snd_soc_component_update_bits(component,
  1648. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1649. 0xFF, 0x00);
  1650. /* Set the ATTK3 gain */
  1651. snd_soc_component_update_bits(component,
  1652. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1653. 0xFF, 0xFF);
  1654. snd_soc_component_update_bits(component,
  1655. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1656. 0xFF, 0x03);
  1657. snd_soc_component_update_bits(component,
  1658. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1659. 0xFF, 0x00);
  1660. break;
  1661. case SND_SOC_DAPM_POST_PMD:
  1662. snd_soc_component_update_bits(component, vbat_path_cfg,
  1663. 0x80, 0x00);
  1664. snd_soc_component_update_bits(component,
  1665. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  1666. 0x02, 0x02);
  1667. snd_soc_component_update_bits(component, vbat_path_cfg,
  1668. 0x02, 0x00);
  1669. snd_soc_component_update_bits(component,
  1670. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1671. 0xFF, 0x00);
  1672. snd_soc_component_update_bits(component,
  1673. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1674. 0xFF, 0x00);
  1675. snd_soc_component_update_bits(component,
  1676. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1677. 0xFF, 0x00);
  1678. snd_soc_component_update_bits(component,
  1679. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1680. 0xFF, 0x00);
  1681. snd_soc_component_update_bits(component,
  1682. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1683. 0xFF, 0x00);
  1684. snd_soc_component_update_bits(component,
  1685. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1686. 0xFF, 0x00);
  1687. snd_soc_component_update_bits(component,
  1688. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1689. 0xFF, 0x00);
  1690. snd_soc_component_update_bits(component,
  1691. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1692. 0xFF, 0x00);
  1693. snd_soc_component_update_bits(component,
  1694. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1695. 0xFF, 0x00);
  1696. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1697. softclip_path, false);
  1698. snd_soc_component_update_bits(component,
  1699. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x00);
  1700. snd_soc_component_update_bits(component,
  1701. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  1702. break;
  1703. default:
  1704. dev_err(wsa_dev, "%s: Invalid event %d\n", __func__, event);
  1705. break;
  1706. }
  1707. return 0;
  1708. }
  1709. static int lpass_cdc_wsa_macro_enable_echo(struct snd_soc_dapm_widget *w,
  1710. struct snd_kcontrol *kcontrol,
  1711. int event)
  1712. {
  1713. struct snd_soc_component *component =
  1714. snd_soc_dapm_to_component(w->dapm);
  1715. struct device *wsa_dev = NULL;
  1716. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1717. u16 val, ec_tx = 0, ec_hq_reg;
  1718. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1719. return -EINVAL;
  1720. dev_dbg(wsa_dev, "%s %d %s\n", __func__, event, w->name);
  1721. val = snd_soc_component_read32(component,
  1722. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  1723. if (!(strcmp(w->name, "WSA RX_MIX EC0_MUX")))
  1724. ec_tx = (val & 0x07) - 1;
  1725. else
  1726. ec_tx = ((val & 0x38) >> 0x3) - 1;
  1727. if (ec_tx < 0 || ec_tx >= (LPASS_CDC_WSA_MACRO_RX1 + 1)) {
  1728. dev_err(wsa_dev, "%s: EC mix control not set correctly\n",
  1729. __func__);
  1730. return -EINVAL;
  1731. }
  1732. if (wsa_priv->ec_hq[ec_tx]) {
  1733. snd_soc_component_update_bits(component,
  1734. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  1735. 0x1 << ec_tx, 0x1 << ec_tx);
  1736. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_PATH_CTL +
  1737. 0x40 * ec_tx;
  1738. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  1739. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_CFG0 +
  1740. 0x40 * ec_tx;
  1741. /* default set to 48k */
  1742. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  1743. }
  1744. return 0;
  1745. }
  1746. static int lpass_cdc_wsa_macro_get_ec_hq(struct snd_kcontrol *kcontrol,
  1747. struct snd_ctl_elem_value *ucontrol)
  1748. {
  1749. struct snd_soc_component *component =
  1750. snd_soc_kcontrol_component(kcontrol);
  1751. int ec_tx = ((struct soc_multi_mixer_control *)
  1752. kcontrol->private_value)->shift;
  1753. struct device *wsa_dev = NULL;
  1754. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1755. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1756. return -EINVAL;
  1757. ucontrol->value.integer.value[0] = wsa_priv->ec_hq[ec_tx];
  1758. return 0;
  1759. }
  1760. static int lpass_cdc_wsa_macro_set_ec_hq(struct snd_kcontrol *kcontrol,
  1761. struct snd_ctl_elem_value *ucontrol)
  1762. {
  1763. struct snd_soc_component *component =
  1764. snd_soc_kcontrol_component(kcontrol);
  1765. int ec_tx = ((struct soc_multi_mixer_control *)
  1766. kcontrol->private_value)->shift;
  1767. int value = ucontrol->value.integer.value[0];
  1768. struct device *wsa_dev = NULL;
  1769. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1770. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1771. return -EINVAL;
  1772. dev_dbg(wsa_dev, "%s: enable current %d, new %d\n",
  1773. __func__, wsa_priv->ec_hq[ec_tx], value);
  1774. wsa_priv->ec_hq[ec_tx] = value;
  1775. return 0;
  1776. }
  1777. static int lpass_cdc_wsa_macro_get_rx_mute_status(struct snd_kcontrol *kcontrol,
  1778. struct snd_ctl_elem_value *ucontrol)
  1779. {
  1780. struct snd_soc_component *component =
  1781. snd_soc_kcontrol_component(kcontrol);
  1782. struct device *wsa_dev = NULL;
  1783. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1784. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1785. kcontrol->private_value)->shift;
  1786. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1787. return -EINVAL;
  1788. ucontrol->value.integer.value[0] =
  1789. wsa_priv->wsa_digital_mute_status[wsa_rx_shift];
  1790. return 0;
  1791. }
  1792. static int lpass_cdc_wsa_macro_set_rx_mute_status(struct snd_kcontrol *kcontrol,
  1793. struct snd_ctl_elem_value *ucontrol)
  1794. {
  1795. struct snd_soc_component *component =
  1796. snd_soc_kcontrol_component(kcontrol);
  1797. struct device *wsa_dev = NULL;
  1798. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1799. int value = ucontrol->value.integer.value[0];
  1800. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1801. kcontrol->private_value)->shift;
  1802. int ret = 0;
  1803. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1804. return -EINVAL;
  1805. pm_runtime_get_sync(wsa_priv->dev);
  1806. switch (wsa_rx_shift) {
  1807. case 0:
  1808. snd_soc_component_update_bits(component,
  1809. LPASS_CDC_WSA_RX0_RX_PATH_CTL,
  1810. 0x10, value << 4);
  1811. break;
  1812. case 1:
  1813. snd_soc_component_update_bits(component,
  1814. LPASS_CDC_WSA_RX1_RX_PATH_CTL,
  1815. 0x10, value << 4);
  1816. break;
  1817. case 2:
  1818. snd_soc_component_update_bits(component,
  1819. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL,
  1820. 0x10, value << 4);
  1821. break;
  1822. case 3:
  1823. snd_soc_component_update_bits(component,
  1824. LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL,
  1825. 0x10, value << 4);
  1826. break;
  1827. default:
  1828. pr_err("%s: invalid argument rx_shift = %d\n", __func__,
  1829. wsa_rx_shift);
  1830. ret = -EINVAL;
  1831. }
  1832. pm_runtime_mark_last_busy(wsa_priv->dev);
  1833. pm_runtime_put_autosuspend(wsa_priv->dev);
  1834. dev_dbg(component->dev, "%s: WSA Digital Mute RX %d Enable %d\n",
  1835. __func__, wsa_rx_shift, value);
  1836. wsa_priv->wsa_digital_mute_status[wsa_rx_shift] = value;
  1837. return ret;
  1838. }
  1839. static int lpass_cdc_wsa_macro_get_compander(struct snd_kcontrol *kcontrol,
  1840. struct snd_ctl_elem_value *ucontrol)
  1841. {
  1842. struct snd_soc_component *component =
  1843. snd_soc_kcontrol_component(kcontrol);
  1844. int comp = ((struct soc_multi_mixer_control *)
  1845. kcontrol->private_value)->shift;
  1846. struct device *wsa_dev = NULL;
  1847. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1848. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1849. return -EINVAL;
  1850. ucontrol->value.integer.value[0] = wsa_priv->comp_enabled[comp];
  1851. return 0;
  1852. }
  1853. static int lpass_cdc_wsa_macro_set_compander(struct snd_kcontrol *kcontrol,
  1854. struct snd_ctl_elem_value *ucontrol)
  1855. {
  1856. struct snd_soc_component *component =
  1857. snd_soc_kcontrol_component(kcontrol);
  1858. int comp = ((struct soc_multi_mixer_control *)
  1859. kcontrol->private_value)->shift;
  1860. int value = ucontrol->value.integer.value[0];
  1861. struct device *wsa_dev = NULL;
  1862. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1863. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1864. return -EINVAL;
  1865. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1866. __func__, comp + 1, wsa_priv->comp_enabled[comp], value);
  1867. wsa_priv->comp_enabled[comp] = value;
  1868. return 0;
  1869. }
  1870. static int lpass_cdc_wsa_macro_ear_spkr_pa_gain_get(struct snd_kcontrol *kcontrol,
  1871. struct snd_ctl_elem_value *ucontrol)
  1872. {
  1873. struct snd_soc_component *component =
  1874. snd_soc_kcontrol_component(kcontrol);
  1875. struct device *wsa_dev = NULL;
  1876. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1877. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1878. return -EINVAL;
  1879. ucontrol->value.integer.value[0] = wsa_priv->ear_spkr_gain;
  1880. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1881. __func__, ucontrol->value.integer.value[0]);
  1882. return 0;
  1883. }
  1884. static int lpass_cdc_wsa_macro_ear_spkr_pa_gain_put(struct snd_kcontrol *kcontrol,
  1885. struct snd_ctl_elem_value *ucontrol)
  1886. {
  1887. struct snd_soc_component *component =
  1888. snd_soc_kcontrol_component(kcontrol);
  1889. struct device *wsa_dev = NULL;
  1890. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1891. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1892. return -EINVAL;
  1893. wsa_priv->ear_spkr_gain = ucontrol->value.integer.value[0];
  1894. dev_dbg(component->dev, "%s: gain = %d\n", __func__,
  1895. wsa_priv->ear_spkr_gain);
  1896. return 0;
  1897. }
  1898. static int lpass_cdc_wsa_macro_spkr_left_boost_stage_get(struct snd_kcontrol *kcontrol,
  1899. struct snd_ctl_elem_value *ucontrol)
  1900. {
  1901. u8 bst_state_max = 0;
  1902. struct snd_soc_component *component =
  1903. snd_soc_kcontrol_component(kcontrol);
  1904. bst_state_max = snd_soc_component_read32(component,
  1905. LPASS_CDC_WSA_BOOST0_BOOST_CTL);
  1906. bst_state_max = (bst_state_max & 0x0c) >> 2;
  1907. ucontrol->value.integer.value[0] = bst_state_max;
  1908. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1909. __func__, ucontrol->value.integer.value[0]);
  1910. return 0;
  1911. }
  1912. static int lpass_cdc_wsa_macro_spkr_left_boost_stage_put(struct snd_kcontrol *kcontrol,
  1913. struct snd_ctl_elem_value *ucontrol)
  1914. {
  1915. u8 bst_state_max;
  1916. struct snd_soc_component *component =
  1917. snd_soc_kcontrol_component(kcontrol);
  1918. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1919. __func__, ucontrol->value.integer.value[0]);
  1920. bst_state_max = ucontrol->value.integer.value[0] << 2;
  1921. /* lpass_cdc does not need to limit the boost levels */
  1922. return 0;
  1923. }
  1924. static int lpass_cdc_wsa_macro_spkr_right_boost_stage_get(struct snd_kcontrol *kcontrol,
  1925. struct snd_ctl_elem_value *ucontrol)
  1926. {
  1927. u8 bst_state_max = 0;
  1928. struct snd_soc_component *component =
  1929. snd_soc_kcontrol_component(kcontrol);
  1930. bst_state_max = snd_soc_component_read32(component,
  1931. LPASS_CDC_WSA_BOOST1_BOOST_CTL);
  1932. bst_state_max = (bst_state_max & 0x0c) >> 2;
  1933. ucontrol->value.integer.value[0] = bst_state_max;
  1934. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1935. __func__, ucontrol->value.integer.value[0]);
  1936. return 0;
  1937. }
  1938. static int lpass_cdc_wsa_macro_spkr_right_boost_stage_put(struct snd_kcontrol *kcontrol,
  1939. struct snd_ctl_elem_value *ucontrol)
  1940. {
  1941. u8 bst_state_max;
  1942. struct snd_soc_component *component =
  1943. snd_soc_kcontrol_component(kcontrol);
  1944. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  1945. __func__, ucontrol->value.integer.value[0]);
  1946. bst_state_max = ucontrol->value.integer.value[0] << 2;
  1947. /* lpass_cdc does not need to limit the boost levels */
  1948. return 0;
  1949. }
  1950. static int lpass_cdc_wsa_macro_rx_mux_get(struct snd_kcontrol *kcontrol,
  1951. struct snd_ctl_elem_value *ucontrol)
  1952. {
  1953. struct snd_soc_dapm_widget *widget =
  1954. snd_soc_dapm_kcontrol_widget(kcontrol);
  1955. struct snd_soc_component *component =
  1956. snd_soc_dapm_to_component(widget->dapm);
  1957. struct device *wsa_dev = NULL;
  1958. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1959. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1960. return -EINVAL;
  1961. ucontrol->value.integer.value[0] =
  1962. wsa_priv->rx_port_value[widget->shift];
  1963. return 0;
  1964. }
  1965. static int lpass_cdc_wsa_macro_rx_mux_put(struct snd_kcontrol *kcontrol,
  1966. struct snd_ctl_elem_value *ucontrol)
  1967. {
  1968. struct snd_soc_dapm_widget *widget =
  1969. snd_soc_dapm_kcontrol_widget(kcontrol);
  1970. struct snd_soc_component *component =
  1971. snd_soc_dapm_to_component(widget->dapm);
  1972. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1973. struct snd_soc_dapm_update *update = NULL;
  1974. u32 rx_port_value = ucontrol->value.integer.value[0];
  1975. u32 bit_input = 0;
  1976. u32 aif_rst;
  1977. struct device *wsa_dev = NULL;
  1978. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1979. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1980. return -EINVAL;
  1981. aif_rst = wsa_priv->rx_port_value[widget->shift];
  1982. if (!rx_port_value) {
  1983. if (aif_rst == 0) {
  1984. dev_err(wsa_dev, "%s: AIF reset already\n", __func__);
  1985. return 0;
  1986. }
  1987. if (aif_rst >= LPASS_CDC_WSA_MACRO_RX_MAX) {
  1988. dev_err(wsa_dev, "%s: Invalid AIF reset\n", __func__);
  1989. return 0;
  1990. }
  1991. }
  1992. wsa_priv->rx_port_value[widget->shift] = rx_port_value;
  1993. bit_input = widget->shift;
  1994. dev_dbg(wsa_dev,
  1995. "%s: mux input: %d, mux output: %d, bit: %d\n",
  1996. __func__, rx_port_value, widget->shift, bit_input);
  1997. switch (rx_port_value) {
  1998. case 0:
  1999. if (wsa_priv->active_ch_cnt[aif_rst]) {
  2000. clear_bit(bit_input,
  2001. &wsa_priv->active_ch_mask[aif_rst]);
  2002. wsa_priv->active_ch_cnt[aif_rst]--;
  2003. }
  2004. break;
  2005. case 1:
  2006. case 2:
  2007. set_bit(bit_input,
  2008. &wsa_priv->active_ch_mask[rx_port_value]);
  2009. wsa_priv->active_ch_cnt[rx_port_value]++;
  2010. break;
  2011. default:
  2012. dev_err(wsa_dev,
  2013. "%s: Invalid AIF_ID for WSA RX MUX %d\n",
  2014. __func__, rx_port_value);
  2015. return -EINVAL;
  2016. }
  2017. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2018. rx_port_value, e, update);
  2019. return 0;
  2020. }
  2021. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2022. struct snd_ctl_elem_value *ucontrol)
  2023. {
  2024. struct snd_soc_component *component =
  2025. snd_soc_kcontrol_component(kcontrol);
  2026. ucontrol->value.integer.value[0] =
  2027. ((snd_soc_component_read32(
  2028. component, LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG) & 0x04) ?
  2029. 1 : 0);
  2030. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2031. ucontrol->value.integer.value[0]);
  2032. return 0;
  2033. }
  2034. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2035. struct snd_ctl_elem_value *ucontrol)
  2036. {
  2037. struct snd_soc_component *component =
  2038. snd_soc_kcontrol_component(kcontrol);
  2039. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2040. ucontrol->value.integer.value[0]);
  2041. /* Set Vbat register configuration for GSM mode bit based on value */
  2042. if (ucontrol->value.integer.value[0])
  2043. snd_soc_component_update_bits(component,
  2044. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  2045. 0x04, 0x04);
  2046. else
  2047. snd_soc_component_update_bits(component,
  2048. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  2049. 0x04, 0x00);
  2050. return 0;
  2051. }
  2052. static int lpass_cdc_wsa_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2053. struct snd_ctl_elem_value *ucontrol)
  2054. {
  2055. struct snd_soc_component *component =
  2056. snd_soc_kcontrol_component(kcontrol);
  2057. struct device *wsa_dev = NULL;
  2058. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2059. int path = ((struct soc_multi_mixer_control *)
  2060. kcontrol->private_value)->shift;
  2061. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2062. return -EINVAL;
  2063. ucontrol->value.integer.value[0] = wsa_priv->is_softclip_on[path];
  2064. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2065. __func__, ucontrol->value.integer.value[0]);
  2066. return 0;
  2067. }
  2068. static int lpass_cdc_wsa_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2069. struct snd_ctl_elem_value *ucontrol)
  2070. {
  2071. struct snd_soc_component *component =
  2072. snd_soc_kcontrol_component(kcontrol);
  2073. struct device *wsa_dev = NULL;
  2074. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2075. int path = ((struct soc_multi_mixer_control *)
  2076. kcontrol->private_value)->shift;
  2077. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2078. return -EINVAL;
  2079. wsa_priv->is_softclip_on[path] = ucontrol->value.integer.value[0];
  2080. dev_dbg(component->dev, "%s: soft clip enable for %d: %d\n", __func__,
  2081. path, wsa_priv->is_softclip_on[path]);
  2082. return 0;
  2083. }
  2084. static const struct snd_kcontrol_new lpass_cdc_wsa_macro_snd_controls[] = {
  2085. SOC_ENUM_EXT("EAR SPKR PA Gain", lpass_cdc_wsa_macro_ear_spkr_pa_gain_enum,
  2086. lpass_cdc_wsa_macro_ear_spkr_pa_gain_get,
  2087. lpass_cdc_wsa_macro_ear_spkr_pa_gain_put),
  2088. SOC_ENUM_EXT("SPKR Left Boost Max State",
  2089. lpass_cdc_wsa_macro_spkr_boost_stage_enum,
  2090. lpass_cdc_wsa_macro_spkr_left_boost_stage_get,
  2091. lpass_cdc_wsa_macro_spkr_left_boost_stage_put),
  2092. SOC_ENUM_EXT("SPKR Right Boost Max State",
  2093. lpass_cdc_wsa_macro_spkr_boost_stage_enum,
  2094. lpass_cdc_wsa_macro_spkr_right_boost_stage_get,
  2095. lpass_cdc_wsa_macro_spkr_right_boost_stage_put),
  2096. SOC_ENUM_EXT("GSM mode Enable", lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  2097. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get,
  2098. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put),
  2099. SOC_SINGLE_EXT("WSA_Softclip0 Enable", SND_SOC_NOPM,
  2100. LPASS_CDC_WSA_MACRO_SOFTCLIP0, 1, 0,
  2101. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2102. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2103. SOC_SINGLE_EXT("WSA_Softclip1 Enable", SND_SOC_NOPM,
  2104. LPASS_CDC_WSA_MACRO_SOFTCLIP1, 1, 0,
  2105. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2106. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2107. SOC_SINGLE_S8_TLV("WSA_RX0 Digital Volume",
  2108. LPASS_CDC_WSA_RX0_RX_VOL_CTL,
  2109. -84, 40, digital_gain),
  2110. SOC_SINGLE_S8_TLV("WSA_RX1 Digital Volume",
  2111. LPASS_CDC_WSA_RX1_RX_VOL_CTL,
  2112. -84, 40, digital_gain),
  2113. SOC_SINGLE_EXT("WSA_RX0 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 1,
  2114. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2115. lpass_cdc_wsa_macro_set_rx_mute_status),
  2116. SOC_SINGLE_EXT("WSA_RX1 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 1,
  2117. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2118. lpass_cdc_wsa_macro_set_rx_mute_status),
  2119. SOC_SINGLE_EXT("WSA_RX0_MIX Digital Mute", SND_SOC_NOPM,
  2120. LPASS_CDC_WSA_MACRO_RX_MIX0, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2121. lpass_cdc_wsa_macro_set_rx_mute_status),
  2122. SOC_SINGLE_EXT("WSA_RX1_MIX Digital Mute", SND_SOC_NOPM,
  2123. LPASS_CDC_WSA_MACRO_RX_MIX1, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2124. lpass_cdc_wsa_macro_set_rx_mute_status),
  2125. SOC_SINGLE_EXT("WSA_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP1, 1, 0,
  2126. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2127. SOC_SINGLE_EXT("WSA_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP2, 1, 0,
  2128. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2129. SOC_SINGLE_EXT("WSA_RX0 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0,
  2130. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2131. SOC_SINGLE_EXT("WSA_RX1 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1,
  2132. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2133. };
  2134. static const struct soc_enum rx_mux_enum =
  2135. SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(rx_mux_text), rx_mux_text);
  2136. static const struct snd_kcontrol_new rx_mux[LPASS_CDC_WSA_MACRO_RX_MAX] = {
  2137. SOC_DAPM_ENUM_EXT("WSA RX0 Mux", rx_mux_enum,
  2138. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2139. SOC_DAPM_ENUM_EXT("WSA RX1 Mux", rx_mux_enum,
  2140. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2141. SOC_DAPM_ENUM_EXT("WSA RX_MIX0 Mux", rx_mux_enum,
  2142. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2143. SOC_DAPM_ENUM_EXT("WSA RX_MIX1 Mux", rx_mux_enum,
  2144. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2145. };
  2146. static int lpass_cdc_wsa_macro_vi_feed_mixer_get(struct snd_kcontrol *kcontrol,
  2147. struct snd_ctl_elem_value *ucontrol)
  2148. {
  2149. struct snd_soc_dapm_widget *widget =
  2150. snd_soc_dapm_kcontrol_widget(kcontrol);
  2151. struct snd_soc_component *component =
  2152. snd_soc_dapm_to_component(widget->dapm);
  2153. struct soc_multi_mixer_control *mixer =
  2154. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2155. u32 dai_id = widget->shift;
  2156. u32 spk_tx_id = mixer->shift;
  2157. struct device *wsa_dev = NULL;
  2158. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2159. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2160. return -EINVAL;
  2161. if (test_bit(spk_tx_id, &wsa_priv->active_ch_mask[dai_id]))
  2162. ucontrol->value.integer.value[0] = 1;
  2163. else
  2164. ucontrol->value.integer.value[0] = 0;
  2165. return 0;
  2166. }
  2167. static int lpass_cdc_wsa_macro_vi_feed_mixer_put(struct snd_kcontrol *kcontrol,
  2168. struct snd_ctl_elem_value *ucontrol)
  2169. {
  2170. struct snd_soc_dapm_widget *widget =
  2171. snd_soc_dapm_kcontrol_widget(kcontrol);
  2172. struct snd_soc_component *component =
  2173. snd_soc_dapm_to_component(widget->dapm);
  2174. struct soc_multi_mixer_control *mixer =
  2175. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2176. u32 spk_tx_id = mixer->shift;
  2177. u32 enable = ucontrol->value.integer.value[0];
  2178. struct device *wsa_dev = NULL;
  2179. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2180. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2181. return -EINVAL;
  2182. wsa_priv->vi_feed_value = ucontrol->value.integer.value[0];
  2183. if (enable) {
  2184. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2185. !test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2186. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2187. set_bit(LPASS_CDC_WSA_MACRO_TX0,
  2188. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2189. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2190. }
  2191. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2192. !test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2193. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2194. set_bit(LPASS_CDC_WSA_MACRO_TX1,
  2195. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2196. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2197. }
  2198. } else {
  2199. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2200. test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2201. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2202. clear_bit(LPASS_CDC_WSA_MACRO_TX0,
  2203. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2204. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2205. }
  2206. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2207. test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2208. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2209. clear_bit(LPASS_CDC_WSA_MACRO_TX1,
  2210. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2211. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2212. }
  2213. }
  2214. snd_soc_dapm_mixer_update_power(widget->dapm, kcontrol, enable, NULL);
  2215. return 0;
  2216. }
  2217. static const struct snd_kcontrol_new aif_vi_mixer[] = {
  2218. SOC_SINGLE_EXT("WSA_SPKR_VI_1", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX0, 1, 0,
  2219. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2220. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2221. SOC_SINGLE_EXT("WSA_SPKR_VI_2", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX1, 1, 0,
  2222. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2223. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2224. };
  2225. static const struct snd_soc_dapm_widget lpass_cdc_wsa_macro_dapm_widgets[] = {
  2226. SND_SOC_DAPM_AIF_IN("WSA AIF1 PB", "WSA_AIF1 Playback", 0,
  2227. SND_SOC_NOPM, 0, 0),
  2228. SND_SOC_DAPM_AIF_IN("WSA AIF_MIX1 PB", "WSA_AIF_MIX1 Playback", 0,
  2229. SND_SOC_NOPM, 0, 0),
  2230. SND_SOC_DAPM_AIF_OUT_E("WSA AIF_VI", "WSA_AIF_VI Capture", 0,
  2231. SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI, 0,
  2232. lpass_cdc_wsa_macro_enable_vi_feedback,
  2233. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
  2234. SND_SOC_DAPM_AIF_OUT("WSA AIF_ECHO", "WSA_AIF_ECHO Capture", 0,
  2235. SND_SOC_NOPM, 0, 0),
  2236. SND_SOC_DAPM_MIXER("WSA_AIF_VI Mixer", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI,
  2237. 0, aif_vi_mixer, ARRAY_SIZE(aif_vi_mixer)),
  2238. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC0_MUX", SND_SOC_NOPM,
  2239. LPASS_CDC_WSA_MACRO_EC0_MUX, 0,
  2240. &rx_mix_ec0_mux, lpass_cdc_wsa_macro_enable_echo,
  2241. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2242. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC1_MUX", SND_SOC_NOPM,
  2243. LPASS_CDC_WSA_MACRO_EC1_MUX, 0,
  2244. &rx_mix_ec1_mux, lpass_cdc_wsa_macro_enable_echo,
  2245. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2246. SND_SOC_DAPM_MUX("WSA RX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 0,
  2247. &rx_mux[LPASS_CDC_WSA_MACRO_RX0]),
  2248. SND_SOC_DAPM_MUX("WSA RX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 0,
  2249. &rx_mux[LPASS_CDC_WSA_MACRO_RX1]),
  2250. SND_SOC_DAPM_MUX("WSA RX_MIX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX0, 0,
  2251. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX0]),
  2252. SND_SOC_DAPM_MUX("WSA RX_MIX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX1, 0,
  2253. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX1]),
  2254. SND_SOC_DAPM_MIXER("WSA RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2255. SND_SOC_DAPM_MIXER("WSA RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2256. SND_SOC_DAPM_MIXER("WSA RX_MIX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2257. SND_SOC_DAPM_MIXER("WSA RX_MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2258. SND_SOC_DAPM_MUX_E("WSA_RX0 INP0", SND_SOC_NOPM, 0, 0,
  2259. &rx0_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2260. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2261. SND_SOC_DAPM_MUX_E("WSA_RX0 INP1", SND_SOC_NOPM, 0, 0,
  2262. &rx0_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2263. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2264. SND_SOC_DAPM_MUX_E("WSA_RX0 INP2", SND_SOC_NOPM, 0, 0,
  2265. &rx0_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2266. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2267. SND_SOC_DAPM_MUX_E("WSA_RX0 MIX INP", SND_SOC_NOPM,
  2268. 0, 0, &rx0_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2269. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2270. SND_SOC_DAPM_MUX_E("WSA_RX1 INP0", SND_SOC_NOPM, 0, 0,
  2271. &rx1_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2272. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2273. SND_SOC_DAPM_MUX_E("WSA_RX1 INP1", SND_SOC_NOPM, 0, 0,
  2274. &rx1_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2275. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2276. SND_SOC_DAPM_MUX_E("WSA_RX1 INP2", SND_SOC_NOPM, 0, 0,
  2277. &rx1_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2278. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2279. SND_SOC_DAPM_MUX_E("WSA_RX1 MIX INP", SND_SOC_NOPM,
  2280. 0, 0, &rx1_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2281. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2282. SND_SOC_DAPM_PGA_E("WSA_RX INT0 MIX", SND_SOC_NOPM,
  2283. 0, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2284. SND_SOC_DAPM_PRE_PMU),
  2285. SND_SOC_DAPM_PGA_E("WSA_RX INT1 MIX", SND_SOC_NOPM,
  2286. 1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2287. SND_SOC_DAPM_PRE_PMU),
  2288. SND_SOC_DAPM_MIXER("WSA_RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2289. SND_SOC_DAPM_MIXER("WSA_RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2290. SND_SOC_DAPM_MUX_E("WSA_RX0 INT0 SIDETONE MIX",
  2291. LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 4, 0,
  2292. &rx0_sidetone_mix_mux, lpass_cdc_wsa_macro_enable_swr,
  2293. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2294. SND_SOC_DAPM_INPUT("WSA SRC0_INP"),
  2295. SND_SOC_DAPM_INPUT("WSA_TX DEC0_INP"),
  2296. SND_SOC_DAPM_INPUT("WSA_TX DEC1_INP"),
  2297. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 INTERP", SND_SOC_NOPM,
  2298. LPASS_CDC_WSA_MACRO_COMP1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2299. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2300. SND_SOC_DAPM_POST_PMD),
  2301. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 INTERP", SND_SOC_NOPM,
  2302. LPASS_CDC_WSA_MACRO_COMP2, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2303. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2304. SND_SOC_DAPM_POST_PMD),
  2305. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 CHAIN", SND_SOC_NOPM, 0, 0,
  2306. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2307. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2308. SND_SOC_DAPM_POST_PMD),
  2309. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 CHAIN", SND_SOC_NOPM, 0, 0,
  2310. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2311. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2312. SND_SOC_DAPM_POST_PMD),
  2313. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 VBAT", SND_SOC_NOPM,
  2314. 0, 0, wsa_int0_vbat_mix_switch,
  2315. ARRAY_SIZE(wsa_int0_vbat_mix_switch),
  2316. lpass_cdc_wsa_macro_enable_vbat,
  2317. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2318. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 VBAT", SND_SOC_NOPM,
  2319. 0, 0, wsa_int1_vbat_mix_switch,
  2320. ARRAY_SIZE(wsa_int1_vbat_mix_switch),
  2321. lpass_cdc_wsa_macro_enable_vbat,
  2322. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2323. SND_SOC_DAPM_INPUT("VIINPUT_WSA"),
  2324. SND_SOC_DAPM_OUTPUT("WSA_SPK1 OUT"),
  2325. SND_SOC_DAPM_OUTPUT("WSA_SPK2 OUT"),
  2326. SND_SOC_DAPM_SUPPLY_S("WSA_MCLK", 0, SND_SOC_NOPM, 0, 0,
  2327. lpass_cdc_wsa_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2328. };
  2329. static const struct snd_soc_dapm_route wsa_audio_map[] = {
  2330. /* VI Feedback */
  2331. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_1", "VIINPUT_WSA"},
  2332. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_2", "VIINPUT_WSA"},
  2333. {"WSA AIF_VI", NULL, "WSA_AIF_VI Mixer"},
  2334. {"WSA AIF_VI", NULL, "WSA_MCLK"},
  2335. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2336. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2337. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2338. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2339. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC0_MUX"},
  2340. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC1_MUX"},
  2341. {"WSA AIF_ECHO", NULL, "WSA_MCLK"},
  2342. {"WSA AIF1 PB", NULL, "WSA_MCLK"},
  2343. {"WSA AIF_MIX1 PB", NULL, "WSA_MCLK"},
  2344. {"WSA RX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2345. {"WSA RX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2346. {"WSA RX_MIX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2347. {"WSA RX_MIX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2348. {"WSA RX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2349. {"WSA RX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2350. {"WSA RX_MIX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2351. {"WSA RX_MIX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2352. {"WSA RX0", NULL, "WSA RX0 MUX"},
  2353. {"WSA RX1", NULL, "WSA RX1 MUX"},
  2354. {"WSA RX_MIX0", NULL, "WSA RX_MIX0 MUX"},
  2355. {"WSA RX_MIX1", NULL, "WSA RX_MIX1 MUX"},
  2356. {"WSA_RX0 INP0", "RX0", "WSA RX0"},
  2357. {"WSA_RX0 INP0", "RX1", "WSA RX1"},
  2358. {"WSA_RX0 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2359. {"WSA_RX0 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2360. {"WSA_RX0 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2361. {"WSA_RX0 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2362. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP0"},
  2363. {"WSA_RX0 INP1", "RX0", "WSA RX0"},
  2364. {"WSA_RX0 INP1", "RX1", "WSA RX1"},
  2365. {"WSA_RX0 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2366. {"WSA_RX0 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2367. {"WSA_RX0 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2368. {"WSA_RX0 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2369. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP1"},
  2370. {"WSA_RX0 INP2", "RX0", "WSA RX0"},
  2371. {"WSA_RX0 INP2", "RX1", "WSA RX1"},
  2372. {"WSA_RX0 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2373. {"WSA_RX0 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2374. {"WSA_RX0 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2375. {"WSA_RX0 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2376. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP2"},
  2377. {"WSA_RX0 MIX INP", "RX0", "WSA RX0"},
  2378. {"WSA_RX0 MIX INP", "RX1", "WSA RX1"},
  2379. {"WSA_RX0 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2380. {"WSA_RX0 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2381. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX0 MIX INP"},
  2382. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX INT0 MIX"},
  2383. {"WSA_RX INT0 INTERP", NULL, "WSA_RX INT0 SEC MIX"},
  2384. {"WSA_RX0 INT0 SIDETONE MIX", "SRC0", "WSA SRC0_INP"},
  2385. {"WSA_RX INT0 INTERP", NULL, "WSA_RX0 INT0 SIDETONE MIX"},
  2386. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 INTERP"},
  2387. {"WSA_RX INT0 VBAT", "WSA RX0 VBAT Enable", "WSA_RX INT0 INTERP"},
  2388. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 VBAT"},
  2389. {"WSA_SPK1 OUT", NULL, "WSA_RX INT0 CHAIN"},
  2390. {"WSA_SPK1 OUT", NULL, "WSA_MCLK"},
  2391. {"WSA_RX1 INP0", "RX0", "WSA RX0"},
  2392. {"WSA_RX1 INP0", "RX1", "WSA RX1"},
  2393. {"WSA_RX1 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2394. {"WSA_RX1 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2395. {"WSA_RX1 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2396. {"WSA_RX1 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2397. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP0"},
  2398. {"WSA_RX1 INP1", "RX0", "WSA RX0"},
  2399. {"WSA_RX1 INP1", "RX1", "WSA RX1"},
  2400. {"WSA_RX1 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2401. {"WSA_RX1 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2402. {"WSA_RX1 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2403. {"WSA_RX1 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2404. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP1"},
  2405. {"WSA_RX1 INP2", "RX0", "WSA RX0"},
  2406. {"WSA_RX1 INP2", "RX1", "WSA RX1"},
  2407. {"WSA_RX1 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2408. {"WSA_RX1 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2409. {"WSA_RX1 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2410. {"WSA_RX1 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2411. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP2"},
  2412. {"WSA_RX1 MIX INP", "RX0", "WSA RX0"},
  2413. {"WSA_RX1 MIX INP", "RX1", "WSA RX1"},
  2414. {"WSA_RX1 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2415. {"WSA_RX1 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2416. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX1 MIX INP"},
  2417. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX INT1 MIX"},
  2418. {"WSA_RX INT1 INTERP", NULL, "WSA_RX INT1 SEC MIX"},
  2419. {"WSA_RX INT1 VBAT", "WSA RX1 VBAT Enable", "WSA_RX INT1 INTERP"},
  2420. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 VBAT"},
  2421. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 INTERP"},
  2422. {"WSA_SPK2 OUT", NULL, "WSA_RX INT1 CHAIN"},
  2423. {"WSA_SPK2 OUT", NULL, "WSA_MCLK"},
  2424. };
  2425. static const struct lpass_cdc_wsa_macro_reg_mask_val
  2426. lpass_cdc_wsa_macro_reg_init[] = {
  2427. {LPASS_CDC_WSA_BOOST0_BOOST_CFG1, 0x3F, 0x12},
  2428. {LPASS_CDC_WSA_BOOST0_BOOST_CFG2, 0x1C, 0x08},
  2429. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x1E, 0x0C},
  2430. {LPASS_CDC_WSA_BOOST1_BOOST_CFG1, 0x3F, 0x12},
  2431. {LPASS_CDC_WSA_BOOST1_BOOST_CFG2, 0x1C, 0x08},
  2432. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x1E, 0x0C},
  2433. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x70, 0x58},
  2434. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x70, 0x58},
  2435. {LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 0x08, 0x08},
  2436. {LPASS_CDC_WSA_RX1_RX_PATH_CFG1, 0x08, 0x08},
  2437. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x02, 0x02},
  2438. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x01, 0x01},
  2439. {LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2440. {LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2441. {LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2442. {LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2443. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x01, 0x01},
  2444. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x01, 0x01},
  2445. {LPASS_CDC_WSA_RX0_RX_PATH_CFG0, 0x01, 0x01},
  2446. {LPASS_CDC_WSA_RX1_RX_PATH_CFG0, 0x01, 0x01},
  2447. {LPASS_CDC_WSA_RX0_RX_PATH_MIX_CFG, 0x01, 0x01},
  2448. {LPASS_CDC_WSA_RX1_RX_PATH_MIX_CFG, 0x01, 0x01},
  2449. };
  2450. static void lpass_cdc_wsa_macro_init_bcl_pmic_reg(struct snd_soc_component *component)
  2451. {
  2452. struct device *wsa_dev = NULL;
  2453. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2454. if (!component) {
  2455. pr_err("%s: NULL component pointer!\n", __func__);
  2456. return;
  2457. }
  2458. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2459. return;
  2460. switch (wsa_priv->bcl_pmic_params.id) {
  2461. case 0:
  2462. /* Enable ID0 to listen to respective PMIC group interrupts */
  2463. snd_soc_component_update_bits(component,
  2464. LPASS_CDC_WSA_VBAT_BCL_VBAT_DECODE_CTL1, 0x02, 0x02);
  2465. /* Update MC_SID0 */
  2466. snd_soc_component_update_bits(component,
  2467. LPASS_CDC_WSA_VBAT_BCL_VBAT_DECODE_CFG1, 0x0F,
  2468. wsa_priv->bcl_pmic_params.sid);
  2469. /* Update MC_PPID0 */
  2470. snd_soc_component_update_bits(component,
  2471. LPASS_CDC_WSA_VBAT_BCL_VBAT_DECODE_CFG2, 0xFF,
  2472. wsa_priv->bcl_pmic_params.ppid);
  2473. break;
  2474. case 1:
  2475. /* Enable ID1 to listen to respective PMIC group interrupts */
  2476. snd_soc_component_update_bits(component,
  2477. LPASS_CDC_WSA_VBAT_BCL_VBAT_DECODE_CTL1, 0x01, 0x01);
  2478. /* Update MC_SID1 */
  2479. snd_soc_component_update_bits(component,
  2480. LPASS_CDC_WSA_VBAT_BCL_VBAT_DECODE_CFG3, 0x0F,
  2481. wsa_priv->bcl_pmic_params.sid);
  2482. /* Update MC_PPID1 */
  2483. snd_soc_component_update_bits(component,
  2484. LPASS_CDC_WSA_VBAT_BCL_VBAT_DECODE_CFG4, 0xFF,
  2485. wsa_priv->bcl_pmic_params.ppid);
  2486. break;
  2487. default:
  2488. dev_err(wsa_dev, "%s: PMIC ID is invalid %d\n",
  2489. __func__, wsa_priv->bcl_pmic_params.id);
  2490. break;
  2491. }
  2492. }
  2493. static void lpass_cdc_wsa_macro_init_reg(struct snd_soc_component *component)
  2494. {
  2495. int i;
  2496. for (i = 0; i < ARRAY_SIZE(lpass_cdc_wsa_macro_reg_init); i++)
  2497. snd_soc_component_update_bits(component,
  2498. lpass_cdc_wsa_macro_reg_init[i].reg,
  2499. lpass_cdc_wsa_macro_reg_init[i].mask,
  2500. lpass_cdc_wsa_macro_reg_init[i].val);
  2501. lpass_cdc_wsa_macro_init_bcl_pmic_reg(component);
  2502. }
  2503. static int lpass_cdc_wsa_macro_core_vote(void *handle, bool enable)
  2504. {
  2505. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2506. if (wsa_priv == NULL) {
  2507. pr_err("%s: wsa priv data is NULL\n", __func__);
  2508. return -EINVAL;
  2509. }
  2510. if (enable) {
  2511. pm_runtime_get_sync(wsa_priv->dev);
  2512. pm_runtime_put_autosuspend(wsa_priv->dev);
  2513. pm_runtime_mark_last_busy(wsa_priv->dev);
  2514. }
  2515. if (lpass_cdc_check_core_votes(wsa_priv->dev))
  2516. return 0;
  2517. else
  2518. return -EINVAL;
  2519. }
  2520. static int wsa_swrm_clock(void *handle, bool enable)
  2521. {
  2522. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2523. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  2524. int ret = 0;
  2525. if (regmap == NULL) {
  2526. dev_err(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  2527. return -EINVAL;
  2528. }
  2529. mutex_lock(&wsa_priv->swr_clk_lock);
  2530. trace_printk("%s: %s swrm clock %s\n",
  2531. dev_name(wsa_priv->dev), __func__,
  2532. (enable ? "enable" : "disable"));
  2533. dev_dbg(wsa_priv->dev, "%s: swrm clock %s\n",
  2534. __func__, (enable ? "enable" : "disable"));
  2535. if (enable) {
  2536. pm_runtime_get_sync(wsa_priv->dev);
  2537. if (wsa_priv->swr_clk_users == 0) {
  2538. ret = msm_cdc_pinctrl_select_active_state(
  2539. wsa_priv->wsa_swr_gpio_p);
  2540. if (ret < 0) {
  2541. dev_err_ratelimited(wsa_priv->dev,
  2542. "%s: wsa swr pinctrl enable failed\n",
  2543. __func__);
  2544. pm_runtime_mark_last_busy(wsa_priv->dev);
  2545. pm_runtime_put_autosuspend(wsa_priv->dev);
  2546. goto exit;
  2547. }
  2548. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  2549. if (ret < 0) {
  2550. msm_cdc_pinctrl_select_sleep_state(
  2551. wsa_priv->wsa_swr_gpio_p);
  2552. dev_err_ratelimited(wsa_priv->dev,
  2553. "%s: wsa request clock enable failed\n",
  2554. __func__);
  2555. pm_runtime_mark_last_busy(wsa_priv->dev);
  2556. pm_runtime_put_autosuspend(wsa_priv->dev);
  2557. goto exit;
  2558. }
  2559. if (wsa_priv->reset_swr)
  2560. regmap_update_bits(regmap,
  2561. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2562. 0x02, 0x02);
  2563. regmap_update_bits(regmap,
  2564. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2565. 0x01, 0x01);
  2566. if (wsa_priv->reset_swr)
  2567. regmap_update_bits(regmap,
  2568. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2569. 0x02, 0x00);
  2570. regmap_update_bits(regmap,
  2571. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2572. 0x1C, 0x0C);
  2573. wsa_priv->reset_swr = false;
  2574. }
  2575. wsa_priv->swr_clk_users++;
  2576. pm_runtime_mark_last_busy(wsa_priv->dev);
  2577. pm_runtime_put_autosuspend(wsa_priv->dev);
  2578. } else {
  2579. if (wsa_priv->swr_clk_users <= 0) {
  2580. dev_err(wsa_priv->dev, "%s: clock already disabled\n",
  2581. __func__);
  2582. wsa_priv->swr_clk_users = 0;
  2583. goto exit;
  2584. }
  2585. wsa_priv->swr_clk_users--;
  2586. if (wsa_priv->swr_clk_users == 0) {
  2587. regmap_update_bits(regmap,
  2588. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  2589. 0x01, 0x00);
  2590. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  2591. ret = msm_cdc_pinctrl_select_sleep_state(
  2592. wsa_priv->wsa_swr_gpio_p);
  2593. if (ret < 0) {
  2594. dev_err_ratelimited(wsa_priv->dev,
  2595. "%s: wsa swr pinctrl disable failed\n",
  2596. __func__);
  2597. goto exit;
  2598. }
  2599. }
  2600. }
  2601. trace_printk("%s: %s swrm clock users: %d\n",
  2602. dev_name(wsa_priv->dev), __func__,
  2603. wsa_priv->swr_clk_users);
  2604. dev_dbg(wsa_priv->dev, "%s: swrm clock users %d\n",
  2605. __func__, wsa_priv->swr_clk_users);
  2606. exit:
  2607. mutex_unlock(&wsa_priv->swr_clk_lock);
  2608. return ret;
  2609. }
  2610. static int lpass_cdc_wsa_macro_init(struct snd_soc_component *component)
  2611. {
  2612. struct snd_soc_dapm_context *dapm =
  2613. snd_soc_component_get_dapm(component);
  2614. int ret;
  2615. struct device *wsa_dev = NULL;
  2616. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2617. wsa_dev = lpass_cdc_get_device_ptr(component->dev, WSA_MACRO);
  2618. if (!wsa_dev) {
  2619. dev_err(component->dev,
  2620. "%s: null device for macro!\n", __func__);
  2621. return -EINVAL;
  2622. }
  2623. wsa_priv = dev_get_drvdata(wsa_dev);
  2624. if (!wsa_priv) {
  2625. dev_err(component->dev,
  2626. "%s: priv is null for macro!\n", __func__);
  2627. return -EINVAL;
  2628. }
  2629. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_wsa_macro_dapm_widgets,
  2630. ARRAY_SIZE(lpass_cdc_wsa_macro_dapm_widgets));
  2631. if (ret < 0) {
  2632. dev_err(wsa_dev, "%s: Failed to add controls\n", __func__);
  2633. return ret;
  2634. }
  2635. ret = snd_soc_dapm_add_routes(dapm, wsa_audio_map,
  2636. ARRAY_SIZE(wsa_audio_map));
  2637. if (ret < 0) {
  2638. dev_err(wsa_dev, "%s: Failed to add routes\n", __func__);
  2639. return ret;
  2640. }
  2641. ret = snd_soc_dapm_new_widgets(dapm->card);
  2642. if (ret < 0) {
  2643. dev_err(wsa_dev, "%s: Failed to add widgets\n", __func__);
  2644. return ret;
  2645. }
  2646. ret = snd_soc_add_component_controls(component, lpass_cdc_wsa_macro_snd_controls,
  2647. ARRAY_SIZE(lpass_cdc_wsa_macro_snd_controls));
  2648. if (ret < 0) {
  2649. dev_err(wsa_dev, "%s: Failed to add snd_ctls\n", __func__);
  2650. return ret;
  2651. }
  2652. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF1 Playback");
  2653. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_MIX1 Playback");
  2654. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_VI Capture");
  2655. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_ECHO Capture");
  2656. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK1 OUT");
  2657. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK2 OUT");
  2658. snd_soc_dapm_ignore_suspend(dapm, "VIINPUT_WSA");
  2659. snd_soc_dapm_ignore_suspend(dapm, "WSA SRC0_INP");
  2660. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC0_INP");
  2661. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC1_INP");
  2662. snd_soc_dapm_sync(dapm);
  2663. wsa_priv->component = component;
  2664. wsa_priv->spkr_gain_offset = LPASS_CDC_WSA_MACRO_GAIN_OFFSET_0_DB;
  2665. lpass_cdc_wsa_macro_init_reg(component);
  2666. return 0;
  2667. }
  2668. static int lpass_cdc_wsa_macro_deinit(struct snd_soc_component *component)
  2669. {
  2670. struct device *wsa_dev = NULL;
  2671. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2672. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2673. return -EINVAL;
  2674. wsa_priv->component = NULL;
  2675. return 0;
  2676. }
  2677. static void lpass_cdc_wsa_macro_add_child_devices(struct work_struct *work)
  2678. {
  2679. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2680. struct platform_device *pdev;
  2681. struct device_node *node;
  2682. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data = NULL, *temp;
  2683. int ret;
  2684. u16 count = 0, ctrl_num = 0;
  2685. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data *platdata;
  2686. char plat_dev_name[LPASS_CDC_WSA_MACRO_SWR_STRING_LEN];
  2687. wsa_priv = container_of(work, struct lpass_cdc_wsa_macro_priv,
  2688. lpass_cdc_wsa_macro_add_child_devices_work);
  2689. if (!wsa_priv) {
  2690. pr_err("%s: Memory for wsa_priv does not exist\n",
  2691. __func__);
  2692. return;
  2693. }
  2694. if (!wsa_priv->dev || !wsa_priv->dev->of_node) {
  2695. dev_err(wsa_priv->dev,
  2696. "%s: DT node for wsa_priv does not exist\n", __func__);
  2697. return;
  2698. }
  2699. platdata = &wsa_priv->swr_plat_data;
  2700. wsa_priv->child_count = 0;
  2701. for_each_available_child_of_node(wsa_priv->dev->of_node, node) {
  2702. if (strnstr(node->name, "wsa_swr_master",
  2703. strlen("wsa_swr_master")) != NULL)
  2704. strlcpy(plat_dev_name, "wsa_swr_ctrl",
  2705. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  2706. else if (strnstr(node->name, "msm_cdc_pinctrl",
  2707. strlen("msm_cdc_pinctrl")) != NULL)
  2708. strlcpy(plat_dev_name, node->name,
  2709. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  2710. else
  2711. continue;
  2712. pdev = platform_device_alloc(plat_dev_name, -1);
  2713. if (!pdev) {
  2714. dev_err(wsa_priv->dev, "%s: pdev memory alloc failed\n",
  2715. __func__);
  2716. ret = -ENOMEM;
  2717. goto err;
  2718. }
  2719. pdev->dev.parent = wsa_priv->dev;
  2720. pdev->dev.of_node = node;
  2721. if (strnstr(node->name, "wsa_swr_master",
  2722. strlen("wsa_swr_master")) != NULL) {
  2723. ret = platform_device_add_data(pdev, platdata,
  2724. sizeof(*platdata));
  2725. if (ret) {
  2726. dev_err(&pdev->dev,
  2727. "%s: cannot add plat data ctrl:%d\n",
  2728. __func__, ctrl_num);
  2729. goto fail_pdev_add;
  2730. }
  2731. }
  2732. ret = platform_device_add(pdev);
  2733. if (ret) {
  2734. dev_err(&pdev->dev,
  2735. "%s: Cannot add platform device\n",
  2736. __func__);
  2737. goto fail_pdev_add;
  2738. }
  2739. if (!strcmp(node->name, "wsa_swr_master")) {
  2740. temp = krealloc(swr_ctrl_data,
  2741. (ctrl_num + 1) * sizeof(
  2742. struct lpass_cdc_wsa_macro_swr_ctrl_data),
  2743. GFP_KERNEL);
  2744. if (!temp) {
  2745. dev_err(&pdev->dev, "out of memory\n");
  2746. ret = -ENOMEM;
  2747. goto err;
  2748. }
  2749. swr_ctrl_data = temp;
  2750. swr_ctrl_data[ctrl_num].wsa_swr_pdev = pdev;
  2751. ctrl_num++;
  2752. dev_dbg(&pdev->dev,
  2753. "%s: Added soundwire ctrl device(s)\n",
  2754. __func__);
  2755. wsa_priv->swr_ctrl_data = swr_ctrl_data;
  2756. }
  2757. if (wsa_priv->child_count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX)
  2758. wsa_priv->pdev_child_devices[
  2759. wsa_priv->child_count++] = pdev;
  2760. else
  2761. goto err;
  2762. }
  2763. return;
  2764. fail_pdev_add:
  2765. for (count = 0; count < wsa_priv->child_count; count++)
  2766. platform_device_put(wsa_priv->pdev_child_devices[count]);
  2767. err:
  2768. return;
  2769. }
  2770. static void lpass_cdc_wsa_macro_init_ops(struct macro_ops *ops,
  2771. char __iomem *wsa_io_base)
  2772. {
  2773. memset(ops, 0, sizeof(struct macro_ops));
  2774. ops->init = lpass_cdc_wsa_macro_init;
  2775. ops->exit = lpass_cdc_wsa_macro_deinit;
  2776. ops->io_base = wsa_io_base;
  2777. ops->dai_ptr = lpass_cdc_wsa_macro_dai;
  2778. ops->num_dais = ARRAY_SIZE(lpass_cdc_wsa_macro_dai);
  2779. ops->event_handler = lpass_cdc_wsa_macro_event_handler;
  2780. ops->set_port_map = lpass_cdc_wsa_macro_set_port_map;
  2781. }
  2782. static int lpass_cdc_wsa_macro_probe(struct platform_device *pdev)
  2783. {
  2784. struct macro_ops ops;
  2785. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2786. u32 wsa_base_addr, default_clk_id;
  2787. char __iomem *wsa_io_base;
  2788. int ret = 0;
  2789. u8 bcl_pmic_params[3];
  2790. u32 is_used_wsa_swr_gpio = 1;
  2791. const char *is_used_wsa_swr_gpio_dt = "qcom,is-used-swr-gpio";
  2792. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  2793. dev_err(&pdev->dev,
  2794. "%s: va-macro not registered yet, defer\n", __func__);
  2795. return -EPROBE_DEFER;
  2796. }
  2797. wsa_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_wsa_macro_priv),
  2798. GFP_KERNEL);
  2799. if (!wsa_priv)
  2800. return -ENOMEM;
  2801. wsa_priv->dev = &pdev->dev;
  2802. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  2803. &wsa_base_addr);
  2804. if (ret) {
  2805. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  2806. __func__, "reg");
  2807. return ret;
  2808. }
  2809. if (of_find_property(pdev->dev.of_node, is_used_wsa_swr_gpio_dt,
  2810. NULL)) {
  2811. ret = of_property_read_u32(pdev->dev.of_node,
  2812. is_used_wsa_swr_gpio_dt,
  2813. &is_used_wsa_swr_gpio);
  2814. if (ret) {
  2815. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  2816. __func__, is_used_wsa_swr_gpio_dt);
  2817. is_used_wsa_swr_gpio = 1;
  2818. }
  2819. }
  2820. wsa_priv->wsa_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  2821. "qcom,wsa-swr-gpios", 0);
  2822. if (!wsa_priv->wsa_swr_gpio_p && is_used_wsa_swr_gpio) {
  2823. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  2824. __func__);
  2825. return -EINVAL;
  2826. }
  2827. if (msm_cdc_pinctrl_get_state(wsa_priv->wsa_swr_gpio_p) < 0 &&
  2828. is_used_wsa_swr_gpio) {
  2829. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  2830. __func__);
  2831. return -EPROBE_DEFER;
  2832. }
  2833. msm_cdc_pinctrl_set_wakeup_capable(
  2834. wsa_priv->wsa_swr_gpio_p, false);
  2835. wsa_io_base = devm_ioremap(&pdev->dev,
  2836. wsa_base_addr, LPASS_CDC_WSA_MACRO_MAX_OFFSET);
  2837. if (!wsa_io_base) {
  2838. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  2839. return -EINVAL;
  2840. }
  2841. wsa_priv->wsa_io_base = wsa_io_base;
  2842. wsa_priv->reset_swr = true;
  2843. INIT_WORK(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work,
  2844. lpass_cdc_wsa_macro_add_child_devices);
  2845. wsa_priv->swr_plat_data.handle = (void *) wsa_priv;
  2846. wsa_priv->swr_plat_data.read = NULL;
  2847. wsa_priv->swr_plat_data.write = NULL;
  2848. wsa_priv->swr_plat_data.bulk_write = NULL;
  2849. wsa_priv->swr_plat_data.clk = wsa_swrm_clock;
  2850. wsa_priv->swr_plat_data.core_vote = lpass_cdc_wsa_macro_core_vote;
  2851. wsa_priv->swr_plat_data.handle_irq = NULL;
  2852. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  2853. &default_clk_id);
  2854. if (ret) {
  2855. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  2856. __func__, "qcom,mux0-clk-id");
  2857. default_clk_id = WSA_CORE_CLK;
  2858. }
  2859. ret = of_property_read_u8_array(pdev->dev.of_node,
  2860. "qcom,wsa-bcl-pmic-params", bcl_pmic_params,
  2861. sizeof(bcl_pmic_params));
  2862. if (ret) {
  2863. dev_dbg(&pdev->dev, "%s: could not find %s entry in dt\n",
  2864. __func__, "qcom,wsa-bcl-pmic-params");
  2865. } else {
  2866. wsa_priv->bcl_pmic_params.id = bcl_pmic_params[0];
  2867. wsa_priv->bcl_pmic_params.sid = bcl_pmic_params[1];
  2868. wsa_priv->bcl_pmic_params.ppid = bcl_pmic_params[2];
  2869. }
  2870. wsa_priv->default_clk_id = default_clk_id;
  2871. dev_set_drvdata(&pdev->dev, wsa_priv);
  2872. mutex_init(&wsa_priv->mclk_lock);
  2873. mutex_init(&wsa_priv->swr_clk_lock);
  2874. lpass_cdc_wsa_macro_init_ops(&ops, wsa_io_base);
  2875. ops.clk_id_req = wsa_priv->default_clk_id;
  2876. ops.default_clk_id = wsa_priv->default_clk_id;
  2877. ret = lpass_cdc_register_macro(&pdev->dev, WSA_MACRO, &ops);
  2878. if (ret < 0) {
  2879. dev_err(&pdev->dev, "%s: register macro failed\n", __func__);
  2880. goto reg_macro_fail;
  2881. }
  2882. schedule_work(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work);
  2883. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  2884. pm_runtime_use_autosuspend(&pdev->dev);
  2885. pm_runtime_set_suspended(&pdev->dev);
  2886. pm_suspend_ignore_children(&pdev->dev, true);
  2887. pm_runtime_enable(&pdev->dev);
  2888. return ret;
  2889. reg_macro_fail:
  2890. mutex_destroy(&wsa_priv->mclk_lock);
  2891. mutex_destroy(&wsa_priv->swr_clk_lock);
  2892. return ret;
  2893. }
  2894. static int lpass_cdc_wsa_macro_remove(struct platform_device *pdev)
  2895. {
  2896. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  2897. u16 count = 0;
  2898. wsa_priv = dev_get_drvdata(&pdev->dev);
  2899. if (!wsa_priv)
  2900. return -EINVAL;
  2901. for (count = 0; count < wsa_priv->child_count &&
  2902. count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX; count++)
  2903. platform_device_unregister(wsa_priv->pdev_child_devices[count]);
  2904. pm_runtime_disable(&pdev->dev);
  2905. pm_runtime_set_suspended(&pdev->dev);
  2906. lpass_cdc_unregister_macro(&pdev->dev, WSA_MACRO);
  2907. mutex_destroy(&wsa_priv->mclk_lock);
  2908. mutex_destroy(&wsa_priv->swr_clk_lock);
  2909. return 0;
  2910. }
  2911. static const struct of_device_id lpass_cdc_wsa_macro_dt_match[] = {
  2912. {.compatible = "qcom,lpass-cdc-wsa-macro"},
  2913. {}
  2914. };
  2915. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  2916. SET_SYSTEM_SLEEP_PM_OPS(
  2917. pm_runtime_force_suspend,
  2918. pm_runtime_force_resume
  2919. )
  2920. SET_RUNTIME_PM_OPS(
  2921. lpass_cdc_runtime_suspend,
  2922. lpass_cdc_runtime_resume,
  2923. NULL
  2924. )
  2925. };
  2926. static struct platform_driver lpass_cdc_wsa_macro_driver = {
  2927. .driver = {
  2928. .name = "lpass_cdc_wsa_macro",
  2929. .owner = THIS_MODULE,
  2930. .pm = &lpass_cdc_dev_pm_ops,
  2931. .of_match_table = lpass_cdc_wsa_macro_dt_match,
  2932. .suppress_bind_attrs = true,
  2933. },
  2934. .probe = lpass_cdc_wsa_macro_probe,
  2935. .remove = lpass_cdc_wsa_macro_remove,
  2936. };
  2937. module_platform_driver(lpass_cdc_wsa_macro_driver);
  2938. MODULE_DESCRIPTION("WSA macro driver");
  2939. MODULE_LICENSE("GPL v2");