lpass-cdc-rx-macro.c 134 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
  3. */
  4. #include <linux/module.h>
  5. #include <linux/init.h>
  6. #include <linux/io.h>
  7. #include <linux/platform_device.h>
  8. #include <linux/clk.h>
  9. #include <linux/pm_runtime.h>
  10. #include <sound/soc.h>
  11. #include <sound/pcm.h>
  12. #include <sound/pcm_params.h>
  13. #include <sound/soc-dapm.h>
  14. #include <sound/tlv.h>
  15. #include <soc/swr-common.h>
  16. #include <soc/swr-wcd.h>
  17. #include <asoc/msm-cdc-pinctrl.h>
  18. #include "lpass-cdc.h"
  19. #include "lpass-cdc-registers.h"
  20. #include "lpass-cdc-clk-rsc.h"
  21. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  22. #define LPASS_CDC_RX_MACRO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  23. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  24. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000 |\
  25. SNDRV_PCM_RATE_384000)
  26. /* Fractional Rates */
  27. #define LPASS_CDC_RX_MACRO_FRAC_RATES (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_88200 |\
  28. SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_352800)
  29. #define LPASS_CDC_RX_MACRO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  30. SNDRV_PCM_FMTBIT_S24_LE |\
  31. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  32. #define LPASS_CDC_RX_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  33. SNDRV_PCM_RATE_48000)
  34. #define LPASS_CDC_RX_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  35. SNDRV_PCM_FMTBIT_S24_LE |\
  36. SNDRV_PCM_FMTBIT_S24_3LE)
  37. #define SAMPLING_RATE_44P1KHZ 44100
  38. #define SAMPLING_RATE_88P2KHZ 88200
  39. #define SAMPLING_RATE_176P4KHZ 176400
  40. #define SAMPLING_RATE_352P8KHZ 352800
  41. #define LPASS_CDC_RX_MACRO_MAX_OFFSET 0x1000
  42. #define LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT 2
  43. #define RX_SWR_STRING_LEN 80
  44. #define LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX 3
  45. #define LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS 3
  46. #define LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX 5
  47. #define STRING(name) #name
  48. #define LPASS_CDC_RX_MACRO_DAPM_ENUM(name, reg, offset, text) \
  49. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  50. static const struct snd_kcontrol_new name##_mux = \
  51. SOC_DAPM_ENUM(STRING(name), name##_enum)
  52. #define LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(name, reg, offset, text, getname, putname) \
  53. static SOC_ENUM_SINGLE_DECL(name##_enum, reg, offset, text); \
  54. static const struct snd_kcontrol_new name##_mux = \
  55. SOC_DAPM_ENUM_EXT(STRING(name), name##_enum, getname, putname)
  56. #define LPASS_CDC_RX_MACRO_DAPM_MUX(name, shift, kctl) \
  57. SND_SOC_DAPM_MUX(name, SND_SOC_NOPM, shift, 0, &kctl##_mux)
  58. #define LPASS_CDC_RX_MACRO_RX_PATH_OFFSET 0x80
  59. #define LPASS_CDC_RX_MACRO_COMP_OFFSET 0x40
  60. #define MAX_IMPED_PARAMS 6
  61. #define LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK 0xf0
  62. #define LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK 0x0f
  63. #define LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK 0x0f
  64. #define LPASS_CDC_RX_MACRO_GAIN_MAX_VAL 0x28
  65. #define LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY 0x0
  66. /* Define macros to increase PA Gain by half */
  67. #define LPASS_CDC_RX_MACRO_MOD_GAIN (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY + 6)
  68. #define COMP_MAX_COEFF 25
  69. struct wcd_imped_val {
  70. u32 imped_val;
  71. u8 index;
  72. };
  73. static const struct wcd_imped_val imped_index[] = {
  74. {4, 0},
  75. {5, 1},
  76. {6, 2},
  77. {7, 3},
  78. {8, 4},
  79. {9, 5},
  80. {10, 6},
  81. {11, 7},
  82. {12, 8},
  83. {13, 9},
  84. };
  85. struct comp_coeff_val {
  86. u8 lsb;
  87. u8 msb;
  88. };
  89. enum {
  90. HPH_ULP,
  91. HPH_LOHIFI,
  92. HPH_MODE_MAX,
  93. };
  94. static const struct comp_coeff_val
  95. comp_coeff_table [HPH_MODE_MAX][COMP_MAX_COEFF] = {
  96. {
  97. {0x40, 0x00},
  98. {0x4C, 0x00},
  99. {0x5A, 0x00},
  100. {0x6B, 0x00},
  101. {0x7F, 0x00},
  102. {0x97, 0x00},
  103. {0xB3, 0x00},
  104. {0xD5, 0x00},
  105. {0xFD, 0x00},
  106. {0x2D, 0x01},
  107. {0x66, 0x01},
  108. {0xA7, 0x01},
  109. {0xF8, 0x01},
  110. {0x57, 0x02},
  111. {0xC7, 0x02},
  112. {0x4B, 0x03},
  113. {0xE9, 0x03},
  114. {0xA3, 0x04},
  115. {0x7D, 0x05},
  116. {0x90, 0x06},
  117. {0xD1, 0x07},
  118. {0x49, 0x09},
  119. {0x00, 0x0B},
  120. {0x01, 0x0D},
  121. {0x59, 0x0F},
  122. },
  123. {
  124. {0x40, 0x00},
  125. {0x4C, 0x00},
  126. {0x5A, 0x00},
  127. {0x6B, 0x00},
  128. {0x80, 0x00},
  129. {0x98, 0x00},
  130. {0xB4, 0x00},
  131. {0xD5, 0x00},
  132. {0xFE, 0x00},
  133. {0x2E, 0x01},
  134. {0x66, 0x01},
  135. {0xA9, 0x01},
  136. {0xF8, 0x01},
  137. {0x56, 0x02},
  138. {0xC4, 0x02},
  139. {0x4F, 0x03},
  140. {0xF0, 0x03},
  141. {0xAE, 0x04},
  142. {0x8B, 0x05},
  143. {0x8E, 0x06},
  144. {0xBC, 0x07},
  145. {0x56, 0x09},
  146. {0x0F, 0x0B},
  147. {0x13, 0x0D},
  148. {0x6F, 0x0F},
  149. },
  150. };
  151. struct lpass_cdc_rx_macro_reg_mask_val {
  152. u16 reg;
  153. u8 mask;
  154. u8 val;
  155. };
  156. static const struct lpass_cdc_rx_macro_reg_mask_val imped_table[][MAX_IMPED_PARAMS] = {
  157. {
  158. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf2},
  159. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf2},
  160. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  161. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf2},
  162. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf2},
  163. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  164. },
  165. {
  166. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf4},
  167. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf4},
  168. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  169. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf4},
  170. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf4},
  171. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  172. },
  173. {
  174. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf7},
  175. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf7},
  176. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  177. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf7},
  178. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf7},
  179. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  180. },
  181. {
  182. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xf9},
  183. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xf9},
  184. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  185. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xf9},
  186. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xf9},
  187. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  188. },
  189. {
  190. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfa},
  191. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfa},
  192. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  193. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfa},
  194. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfa},
  195. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  196. },
  197. {
  198. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfb},
  199. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfb},
  200. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  201. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfb},
  202. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfb},
  203. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  204. },
  205. {
  206. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfc},
  207. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfc},
  208. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  209. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfc},
  210. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfc},
  211. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  212. },
  213. {
  214. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  215. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  216. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x00},
  217. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  218. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  219. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x00},
  220. },
  221. {
  222. {LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xff, 0xfd},
  223. {LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL, 0xff, 0xfd},
  224. {LPASS_CDC_RX_RX0_RX_PATH_SEC1, 0x01, 0x01},
  225. {LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xff, 0xfd},
  226. {LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL, 0xff, 0xfd},
  227. {LPASS_CDC_RX_RX1_RX_PATH_SEC1, 0x01, 0x01},
  228. },
  229. };
  230. enum {
  231. INTERP_HPHL,
  232. INTERP_HPHR,
  233. INTERP_AUX,
  234. INTERP_MAX
  235. };
  236. enum {
  237. LPASS_CDC_RX_MACRO_RX0,
  238. LPASS_CDC_RX_MACRO_RX1,
  239. LPASS_CDC_RX_MACRO_RX2,
  240. LPASS_CDC_RX_MACRO_RX3,
  241. LPASS_CDC_RX_MACRO_RX4,
  242. LPASS_CDC_RX_MACRO_RX5,
  243. LPASS_CDC_RX_MACRO_PORTS_MAX
  244. };
  245. enum {
  246. LPASS_CDC_RX_MACRO_COMP1, /* HPH_L */
  247. LPASS_CDC_RX_MACRO_COMP2, /* HPH_R */
  248. LPASS_CDC_RX_MACRO_COMP_MAX
  249. };
  250. enum {
  251. LPASS_CDC_RX_MACRO_EC0_MUX = 0,
  252. LPASS_CDC_RX_MACRO_EC1_MUX,
  253. LPASS_CDC_RX_MACRO_EC2_MUX,
  254. LPASS_CDC_RX_MACRO_EC_MUX_MAX,
  255. };
  256. enum {
  257. INTn_1_INP_SEL_ZERO = 0,
  258. INTn_1_INP_SEL_DEC0,
  259. INTn_1_INP_SEL_DEC1,
  260. INTn_1_INP_SEL_IIR0,
  261. INTn_1_INP_SEL_IIR1,
  262. INTn_1_INP_SEL_RX0,
  263. INTn_1_INP_SEL_RX1,
  264. INTn_1_INP_SEL_RX2,
  265. INTn_1_INP_SEL_RX3,
  266. INTn_1_INP_SEL_RX4,
  267. INTn_1_INP_SEL_RX5,
  268. };
  269. enum {
  270. INTn_2_INP_SEL_ZERO = 0,
  271. INTn_2_INP_SEL_RX0,
  272. INTn_2_INP_SEL_RX1,
  273. INTn_2_INP_SEL_RX2,
  274. INTn_2_INP_SEL_RX3,
  275. INTn_2_INP_SEL_RX4,
  276. INTn_2_INP_SEL_RX5,
  277. };
  278. enum {
  279. INTERP_MAIN_PATH,
  280. INTERP_MIX_PATH,
  281. };
  282. /* Codec supports 2 IIR filters */
  283. enum {
  284. IIR0 = 0,
  285. IIR1,
  286. IIR_MAX,
  287. };
  288. /* Each IIR has 5 Filter Stages */
  289. enum {
  290. BAND1 = 0,
  291. BAND2,
  292. BAND3,
  293. BAND4,
  294. BAND5,
  295. BAND_MAX,
  296. };
  297. struct lpass_cdc_rx_macro_idle_detect_config {
  298. u8 hph_idle_thr;
  299. u8 hph_idle_detect_en;
  300. };
  301. struct interp_sample_rate {
  302. int sample_rate;
  303. int rate_val;
  304. };
  305. static struct interp_sample_rate sr_val_tbl[] = {
  306. {8000, 0x0}, {16000, 0x1}, {32000, 0x3}, {48000, 0x4}, {96000, 0x5},
  307. {192000, 0x6}, {384000, 0x7}, {44100, 0x9}, {88200, 0xA},
  308. {176400, 0xB}, {352800, 0xC},
  309. };
  310. struct lpass_cdc_rx_macro_bcl_pmic_params {
  311. u8 id;
  312. u8 sid;
  313. u8 ppid;
  314. };
  315. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  316. struct snd_pcm_hw_params *params,
  317. struct snd_soc_dai *dai);
  318. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  319. unsigned int *tx_num, unsigned int *tx_slot,
  320. unsigned int *rx_num, unsigned int *rx_slot);
  321. static int lpass_cdc_rx_macro_digital_mute(struct snd_soc_dai *dai, int mute);
  322. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  323. struct snd_ctl_elem_value *ucontrol);
  324. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  325. struct snd_ctl_elem_value *ucontrol);
  326. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  327. struct snd_ctl_elem_value *ucontrol);
  328. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  329. int event, int interp_idx);
  330. /* Hold instance to soundwire platform device */
  331. struct rx_swr_ctrl_data {
  332. struct platform_device *rx_swr_pdev;
  333. };
  334. struct rx_swr_ctrl_platform_data {
  335. void *handle; /* holds codec private data */
  336. int (*read)(void *handle, int reg);
  337. int (*write)(void *handle, int reg, int val);
  338. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  339. int (*clk)(void *handle, bool enable);
  340. int (*core_vote)(void *handle, bool enable);
  341. int (*handle_irq)(void *handle,
  342. irqreturn_t (*swrm_irq_handler)(int irq,
  343. void *data),
  344. void *swrm_handle,
  345. int action);
  346. };
  347. enum {
  348. RX_MACRO_AIF_INVALID = 0,
  349. RX_MACRO_AIF1_PB,
  350. RX_MACRO_AIF2_PB,
  351. RX_MACRO_AIF3_PB,
  352. RX_MACRO_AIF4_PB,
  353. RX_MACRO_AIF_ECHO,
  354. RX_MACRO_AIF5_PB,
  355. RX_MACRO_AIF6_PB,
  356. LPASS_CDC_RX_MACRO_MAX_DAIS,
  357. };
  358. enum {
  359. RX_MACRO_AIF1_CAP = 0,
  360. RX_MACRO_AIF2_CAP,
  361. RX_MACRO_AIF3_CAP,
  362. LPASS_CDC_RX_MACRO_MAX_AIF_CAP_DAIS
  363. };
  364. /*
  365. * @dev: rx macro device pointer
  366. * @comp_enabled: compander enable mixer value set
  367. * @prim_int_users: Users of interpolator
  368. * @rx_mclk_users: RX MCLK users count
  369. * @vi_feed_value: VI sense mask
  370. * @swr_clk_lock: to lock swr master clock operations
  371. * @swr_ctrl_data: SoundWire data structure
  372. * @swr_plat_data: Soundwire platform data
  373. * @lpass_cdc_rx_macro_add_child_devices_work: work for adding child devices
  374. * @rx_swr_gpio_p: used by pinctrl API
  375. * @component: codec handle
  376. */
  377. struct lpass_cdc_rx_macro_priv {
  378. struct device *dev;
  379. int comp_enabled[LPASS_CDC_RX_MACRO_COMP_MAX];
  380. /* Main path clock users count */
  381. int main_clk_users[INTERP_MAX];
  382. int rx_port_value[LPASS_CDC_RX_MACRO_PORTS_MAX];
  383. u16 prim_int_users[INTERP_MAX];
  384. int rx_mclk_users;
  385. int swr_clk_users;
  386. bool dapm_mclk_enable;
  387. bool reset_swr;
  388. int clsh_users;
  389. int rx_mclk_cnt;
  390. bool is_native_on;
  391. bool is_ear_mode_on;
  392. bool dev_up;
  393. bool hph_pwr_mode;
  394. bool hph_hd2_mode;
  395. struct mutex mclk_lock;
  396. struct mutex swr_clk_lock;
  397. struct rx_swr_ctrl_data *swr_ctrl_data;
  398. struct rx_swr_ctrl_platform_data swr_plat_data;
  399. struct work_struct lpass_cdc_rx_macro_add_child_devices_work;
  400. struct device_node *rx_swr_gpio_p;
  401. struct snd_soc_component *component;
  402. unsigned long active_ch_mask[LPASS_CDC_RX_MACRO_MAX_DAIS];
  403. unsigned long active_ch_cnt[LPASS_CDC_RX_MACRO_MAX_DAIS];
  404. u16 bit_width[LPASS_CDC_RX_MACRO_MAX_DAIS];
  405. char __iomem *rx_io_base;
  406. char __iomem *rx_mclk_mode_muxsel;
  407. struct lpass_cdc_rx_macro_idle_detect_config idle_det_cfg;
  408. u8 sidetone_coeff_array[IIR_MAX][BAND_MAX]
  409. [LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX * 4];
  410. struct platform_device *pdev_child_devices
  411. [LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX];
  412. int child_count;
  413. int is_softclip_on;
  414. int is_aux_hpf_on;
  415. int softclip_clk_users;
  416. struct lpass_cdc_rx_macro_bcl_pmic_params bcl_pmic_params;
  417. u16 clk_id;
  418. u16 default_clk_id;
  419. int8_t rx0_gain_val;
  420. int8_t rx1_gain_val;
  421. };
  422. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[];
  423. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  424. static const char * const rx_int_mix_mux_text[] = {
  425. "ZERO", "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  426. };
  427. static const char * const rx_prim_mix_text[] = {
  428. "ZERO", "DEC0", "DEC1", "IIR0", "IIR1", "RX0", "RX1", "RX2",
  429. "RX3", "RX4", "RX5"
  430. };
  431. static const char * const rx_sidetone_mix_text[] = {
  432. "ZERO", "SRC0", "SRC1", "SRC_SUM"
  433. };
  434. static const char * const iir_inp_mux_text[] = {
  435. "ZERO", "DEC0", "DEC1", "DEC2", "DEC3",
  436. "RX0", "RX1", "RX2", "RX3", "RX4", "RX5"
  437. };
  438. static const char * const rx_int_dem_inp_mux_text[] = {
  439. "NORMAL_DSM_OUT", "CLSH_DSM_OUT",
  440. };
  441. static const char * const rx_int0_1_interp_mux_text[] = {
  442. "ZERO", "RX INT0_1 MIX1",
  443. };
  444. static const char * const rx_int1_1_interp_mux_text[] = {
  445. "ZERO", "RX INT1_1 MIX1",
  446. };
  447. static const char * const rx_int2_1_interp_mux_text[] = {
  448. "ZERO", "RX INT2_1 MIX1",
  449. };
  450. static const char * const rx_int0_2_interp_mux_text[] = {
  451. "ZERO", "RX INT0_2 MUX",
  452. };
  453. static const char * const rx_int1_2_interp_mux_text[] = {
  454. "ZERO", "RX INT1_2 MUX",
  455. };
  456. static const char * const rx_int2_2_interp_mux_text[] = {
  457. "ZERO", "RX INT2_2 MUX",
  458. };
  459. static const char *const lpass_cdc_rx_macro_mux_text[] = {
  460. "ZERO", "AIF1_PB", "AIF2_PB", "AIF3_PB", "AIF4_PB"
  461. };
  462. static const char *const lpass_cdc_rx_macro_ear_mode_text[] = {"OFF", "ON"};
  463. static const struct soc_enum lpass_cdc_rx_macro_ear_mode_enum =
  464. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_ear_mode_text);
  465. static const char *const lpass_cdc_rx_macro_hph_hd2_mode_text[] = {"OFF", "ON"};
  466. static const struct soc_enum lpass_cdc_rx_macro_hph_hd2_mode_enum =
  467. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_hd2_mode_text);
  468. static const char *const lpass_cdc_rx_macro_hph_pwr_mode_text[] = {"ULP", "LOHIFI"};
  469. static const struct soc_enum lpass_cdc_rx_macro_hph_pwr_mode_enum =
  470. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_hph_pwr_mode_text);
  471. static const char * const lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text[] = {"OFF", "ON"};
  472. static const struct soc_enum lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum =
  473. SOC_ENUM_SINGLE_EXT(2, lpass_cdc_rx_macro_vbat_bcl_gsm_mode_text);
  474. static const struct snd_kcontrol_new rx_int2_1_vbat_mix_switch[] = {
  475. SOC_DAPM_SINGLE("RX AUX VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  476. };
  477. static const char * const hph_idle_detect_text[] = {"OFF", "ON"};
  478. static SOC_ENUM_SINGLE_EXT_DECL(hph_idle_detect_enum, hph_idle_detect_text);
  479. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 0,
  480. rx_int_mix_mux_text);
  481. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 0,
  482. rx_int_mix_mux_text);
  483. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 0,
  484. rx_int_mix_mux_text);
  485. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 0,
  486. rx_prim_mix_text);
  487. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0, 4,
  488. rx_prim_mix_text);
  489. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1, 4,
  490. rx_prim_mix_text);
  491. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 0,
  492. rx_prim_mix_text);
  493. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0, 4,
  494. rx_prim_mix_text);
  495. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT1_CFG1, 4,
  496. rx_prim_mix_text);
  497. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp0, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 0,
  498. rx_prim_mix_text);
  499. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp1, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG0, 4,
  500. rx_prim_mix_text);
  501. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_mix_inp2, LPASS_CDC_RX_INP_MUX_RX_INT2_CFG1, 4,
  502. rx_prim_mix_text);
  503. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 2,
  504. rx_sidetone_mix_text);
  505. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 4,
  506. rx_sidetone_mix_text);
  507. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_mix2_inp, LPASS_CDC_RX_INP_MUX_SIDETONE_SRC_CFG0, 6,
  508. rx_sidetone_mix_text);
  509. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG0, 0,
  510. iir_inp_mux_text);
  511. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG1, 0,
  512. iir_inp_mux_text);
  513. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG2, 0,
  514. iir_inp_mux_text);
  515. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir0_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR0_MIX_CFG3, 0,
  516. iir_inp_mux_text);
  517. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp0, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG0, 0,
  518. iir_inp_mux_text);
  519. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp1, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG1, 0,
  520. iir_inp_mux_text);
  521. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp2, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG2, 0,
  522. iir_inp_mux_text);
  523. LPASS_CDC_RX_MACRO_DAPM_ENUM(iir1_inp3, LPASS_CDC_RX_IIR_INP_MUX_IIR1_MIX_CFG3, 0,
  524. iir_inp_mux_text);
  525. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_1_interp, SND_SOC_NOPM, 0,
  526. rx_int0_1_interp_mux_text);
  527. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_1_interp, SND_SOC_NOPM, 0,
  528. rx_int1_1_interp_mux_text);
  529. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_1_interp, SND_SOC_NOPM, 0,
  530. rx_int2_1_interp_mux_text);
  531. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int0_2_interp, SND_SOC_NOPM, 0,
  532. rx_int0_2_interp_mux_text);
  533. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int1_2_interp, SND_SOC_NOPM, 0,
  534. rx_int1_2_interp_mux_text);
  535. LPASS_CDC_RX_MACRO_DAPM_ENUM(rx_int2_2_interp, SND_SOC_NOPM, 0,
  536. rx_int2_2_interp_mux_text);
  537. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int0_dem_inp, LPASS_CDC_RX_RX0_RX_PATH_CFG1, 0,
  538. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  539. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  540. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(rx_int1_dem_inp, LPASS_CDC_RX_RX1_RX_PATH_CFG1, 0,
  541. rx_int_dem_inp_mux_text, snd_soc_dapm_get_enum_double,
  542. lpass_cdc_rx_macro_int_dem_inp_mux_put);
  543. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx0, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  544. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  545. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx1, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  546. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  547. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx2, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  548. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  549. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx3, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  550. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  551. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx4, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  552. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  553. LPASS_CDC_RX_MACRO_DAPM_ENUM_EXT(lpass_cdc_rx_macro_rx5, SND_SOC_NOPM, 0, lpass_cdc_rx_macro_mux_text,
  554. lpass_cdc_rx_macro_mux_get, lpass_cdc_rx_macro_mux_put);
  555. static const char * const rx_echo_mux_text[] = {
  556. "ZERO", "RX_MIX0", "RX_MIX1", "RX_MIX2"
  557. };
  558. static const struct soc_enum rx_mix_tx2_mux_enum =
  559. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5, 0, 4,
  560. rx_echo_mux_text);
  561. static const struct snd_kcontrol_new rx_mix_tx2_mux =
  562. SOC_DAPM_ENUM("RX MIX TX2_MUX Mux", rx_mix_tx2_mux_enum);
  563. static const struct soc_enum rx_mix_tx1_mux_enum =
  564. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 0, 4,
  565. rx_echo_mux_text);
  566. static const struct snd_kcontrol_new rx_mix_tx1_mux =
  567. SOC_DAPM_ENUM("RX MIX TX1_MUX Mux", rx_mix_tx1_mux_enum);
  568. static const struct soc_enum rx_mix_tx0_mux_enum =
  569. SOC_ENUM_SINGLE(LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4, 4, 4,
  570. rx_echo_mux_text);
  571. static const struct snd_kcontrol_new rx_mix_tx0_mux =
  572. SOC_DAPM_ENUM("RX MIX TX0_MUX Mux", rx_mix_tx0_mux_enum);
  573. static struct snd_soc_dai_ops lpass_cdc_rx_macro_dai_ops = {
  574. .hw_params = lpass_cdc_rx_macro_hw_params,
  575. .get_channel_map = lpass_cdc_rx_macro_get_channel_map,
  576. .digital_mute = lpass_cdc_rx_macro_digital_mute,
  577. };
  578. static struct snd_soc_dai_driver lpass_cdc_rx_macro_dai[] = {
  579. {
  580. .name = "rx_macro_rx1",
  581. .id = RX_MACRO_AIF1_PB,
  582. .playback = {
  583. .stream_name = "RX_MACRO_AIF1 Playback",
  584. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  585. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  586. .rate_max = 384000,
  587. .rate_min = 8000,
  588. .channels_min = 1,
  589. .channels_max = 2,
  590. },
  591. .ops = &lpass_cdc_rx_macro_dai_ops,
  592. },
  593. {
  594. .name = "rx_macro_rx2",
  595. .id = RX_MACRO_AIF2_PB,
  596. .playback = {
  597. .stream_name = "RX_MACRO_AIF2 Playback",
  598. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  599. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  600. .rate_max = 384000,
  601. .rate_min = 8000,
  602. .channels_min = 1,
  603. .channels_max = 2,
  604. },
  605. .ops = &lpass_cdc_rx_macro_dai_ops,
  606. },
  607. {
  608. .name = "rx_macro_rx3",
  609. .id = RX_MACRO_AIF3_PB,
  610. .playback = {
  611. .stream_name = "RX_MACRO_AIF3 Playback",
  612. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  613. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  614. .rate_max = 384000,
  615. .rate_min = 8000,
  616. .channels_min = 1,
  617. .channels_max = 2,
  618. },
  619. .ops = &lpass_cdc_rx_macro_dai_ops,
  620. },
  621. {
  622. .name = "rx_macro_rx4",
  623. .id = RX_MACRO_AIF4_PB,
  624. .playback = {
  625. .stream_name = "RX_MACRO_AIF4 Playback",
  626. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  627. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  628. .rate_max = 384000,
  629. .rate_min = 8000,
  630. .channels_min = 1,
  631. .channels_max = 2,
  632. },
  633. .ops = &lpass_cdc_rx_macro_dai_ops,
  634. },
  635. {
  636. .name = "lpass_cdc_rx_macro_echo",
  637. .id = RX_MACRO_AIF_ECHO,
  638. .capture = {
  639. .stream_name = "RX_AIF_ECHO Capture",
  640. .rates = LPASS_CDC_RX_MACRO_ECHO_RATES,
  641. .formats = LPASS_CDC_RX_MACRO_ECHO_FORMATS,
  642. .rate_max = 48000,
  643. .rate_min = 8000,
  644. .channels_min = 1,
  645. .channels_max = 3,
  646. },
  647. .ops = &lpass_cdc_rx_macro_dai_ops,
  648. },
  649. {
  650. .name = "rx_macro_rx5",
  651. .id = RX_MACRO_AIF5_PB,
  652. .playback = {
  653. .stream_name = "RX_MACRO_AIF5 Playback",
  654. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  655. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  656. .rate_max = 384000,
  657. .rate_min = 8000,
  658. .channels_min = 1,
  659. .channels_max = 4,
  660. },
  661. .ops = &lpass_cdc_rx_macro_dai_ops,
  662. },
  663. {
  664. .name = "rx_macro_rx6",
  665. .id = RX_MACRO_AIF6_PB,
  666. .playback = {
  667. .stream_name = "RX_MACRO_AIF6 Playback",
  668. .rates = LPASS_CDC_RX_MACRO_RATES | LPASS_CDC_RX_MACRO_FRAC_RATES,
  669. .formats = LPASS_CDC_RX_MACRO_FORMATS,
  670. .rate_max = 384000,
  671. .rate_min = 8000,
  672. .channels_min = 1,
  673. .channels_max = 4,
  674. },
  675. .ops = &lpass_cdc_rx_macro_dai_ops,
  676. },
  677. };
  678. static int get_impedance_index(int imped)
  679. {
  680. int i = 0;
  681. if (imped < imped_index[i].imped_val) {
  682. pr_debug("%s, detected impedance is less than %d Ohm\n",
  683. __func__, imped_index[i].imped_val);
  684. i = 0;
  685. goto ret;
  686. }
  687. if (imped >= imped_index[ARRAY_SIZE(imped_index) - 1].imped_val) {
  688. pr_debug("%s, detected impedance is greater than %d Ohm\n",
  689. __func__,
  690. imped_index[ARRAY_SIZE(imped_index) - 1].imped_val);
  691. i = ARRAY_SIZE(imped_index) - 1;
  692. goto ret;
  693. }
  694. for (i = 0; i < ARRAY_SIZE(imped_index) - 1; i++) {
  695. if (imped >= imped_index[i].imped_val &&
  696. imped < imped_index[i + 1].imped_val)
  697. break;
  698. }
  699. ret:
  700. pr_debug("%s: selected impedance index = %d\n",
  701. __func__, imped_index[i].index);
  702. return imped_index[i].index;
  703. }
  704. /*
  705. * lpass_cdc_rx_macro_wcd_clsh_imped_config -
  706. * This function updates HPHL and HPHR gain settings
  707. * according to the impedance value.
  708. *
  709. * @component: codec pointer handle
  710. * @imped: impedance value of HPHL/R
  711. * @reset: bool variable to reset registers when teardown
  712. */
  713. static void lpass_cdc_rx_macro_wcd_clsh_imped_config(struct snd_soc_component *component,
  714. int imped, bool reset)
  715. {
  716. int i;
  717. int index = 0;
  718. int table_size;
  719. static const struct lpass_cdc_rx_macro_reg_mask_val
  720. (*imped_table_ptr)[MAX_IMPED_PARAMS];
  721. table_size = ARRAY_SIZE(imped_table);
  722. imped_table_ptr = imped_table;
  723. /* reset = 1, which means request is to reset the register values */
  724. if (reset) {
  725. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  726. snd_soc_component_update_bits(component,
  727. imped_table_ptr[index][i].reg,
  728. imped_table_ptr[index][i].mask, 0);
  729. return;
  730. }
  731. index = get_impedance_index(imped);
  732. if (index >= (ARRAY_SIZE(imped_index) - 1)) {
  733. pr_debug("%s, impedance not in range = %d\n", __func__, imped);
  734. return;
  735. }
  736. if (index >= table_size) {
  737. pr_debug("%s, impedance index not in range = %d\n", __func__,
  738. index);
  739. return;
  740. }
  741. for (i = 0; i < MAX_IMPED_PARAMS; i++)
  742. snd_soc_component_update_bits(component,
  743. imped_table_ptr[index][i].reg,
  744. imped_table_ptr[index][i].mask,
  745. imped_table_ptr[index][i].val);
  746. }
  747. static bool lpass_cdc_rx_macro_get_data(struct snd_soc_component *component,
  748. struct device **rx_dev,
  749. struct lpass_cdc_rx_macro_priv **rx_priv,
  750. const char *func_name)
  751. {
  752. *rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  753. if (!(*rx_dev)) {
  754. dev_err(component->dev,
  755. "%s: null device for macro!\n", func_name);
  756. return false;
  757. }
  758. *rx_priv = dev_get_drvdata((*rx_dev));
  759. if (!(*rx_priv)) {
  760. dev_err(component->dev,
  761. "%s: priv is null for macro!\n", func_name);
  762. return false;
  763. }
  764. if (!(*rx_priv)->component) {
  765. dev_err(component->dev,
  766. "%s: rx_priv component is not initialized!\n", func_name);
  767. return false;
  768. }
  769. return true;
  770. }
  771. static int lpass_cdc_rx_macro_set_port_map(struct snd_soc_component *component,
  772. u32 usecase, u32 size, void *data)
  773. {
  774. struct device *rx_dev = NULL;
  775. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  776. struct swrm_port_config port_cfg;
  777. int ret = 0;
  778. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  779. return -EINVAL;
  780. memset(&port_cfg, 0, sizeof(port_cfg));
  781. port_cfg.uc = usecase;
  782. port_cfg.size = size;
  783. port_cfg.params = data;
  784. if (rx_priv->swr_ctrl_data)
  785. ret = swrm_wcd_notify(
  786. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  787. SWR_SET_PORT_MAP, &port_cfg);
  788. return ret;
  789. }
  790. static int lpass_cdc_rx_macro_int_dem_inp_mux_put(struct snd_kcontrol *kcontrol,
  791. struct snd_ctl_elem_value *ucontrol)
  792. {
  793. struct snd_soc_dapm_widget *widget =
  794. snd_soc_dapm_kcontrol_widget(kcontrol);
  795. struct snd_soc_component *component =
  796. snd_soc_dapm_to_component(widget->dapm);
  797. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  798. unsigned int val = 0;
  799. unsigned short look_ahead_dly_reg =
  800. LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  801. val = ucontrol->value.enumerated.item[0];
  802. if (val >= e->items)
  803. return -EINVAL;
  804. dev_dbg(component->dev, "%s: wname: %s, val: 0x%x\n", __func__,
  805. widget->name, val);
  806. if (e->reg == LPASS_CDC_RX_RX0_RX_PATH_CFG1)
  807. look_ahead_dly_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  808. else if (e->reg == LPASS_CDC_RX_RX1_RX_PATH_CFG1)
  809. look_ahead_dly_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  810. /* Set Look Ahead Delay */
  811. snd_soc_component_update_bits(component, look_ahead_dly_reg,
  812. 0x08, (val ? 0x08 : 0x00));
  813. /* Set DEM INP Select */
  814. return snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
  815. }
  816. static int lpass_cdc_rx_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  817. u8 rate_reg_val,
  818. u32 sample_rate)
  819. {
  820. u8 int_1_mix1_inp = 0;
  821. u32 j = 0, port = 0;
  822. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  823. u16 int_fs_reg = 0;
  824. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  825. u8 inp0_sel = 0, inp1_sel = 0, inp2_sel = 0;
  826. struct snd_soc_component *component = dai->component;
  827. struct device *rx_dev = NULL;
  828. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  829. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  830. return -EINVAL;
  831. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  832. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  833. int_1_mix1_inp = port;
  834. if ((int_1_mix1_inp < LPASS_CDC_RX_MACRO_RX0) ||
  835. (int_1_mix1_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  836. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  837. __func__, dai->id);
  838. return -EINVAL;
  839. }
  840. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0;
  841. /*
  842. * Loop through all interpolator MUX inputs and find out
  843. * to which interpolator input, the rx port
  844. * is connected
  845. */
  846. for (j = 0; j < INTERP_MAX; j++) {
  847. int_mux_cfg1 = int_mux_cfg0 + 4;
  848. int_mux_cfg0_val = snd_soc_component_read32(
  849. component, int_mux_cfg0);
  850. int_mux_cfg1_val = snd_soc_component_read32(
  851. component, int_mux_cfg1);
  852. inp0_sel = int_mux_cfg0_val & 0x0F;
  853. inp1_sel = (int_mux_cfg0_val >> 4) & 0x0F;
  854. inp2_sel = (int_mux_cfg1_val >> 4) & 0x0F;
  855. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  856. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  857. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  858. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  859. 0x80 * j;
  860. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  861. __func__, dai->id, j);
  862. pr_debug("%s: set INT%u_1 sample rate to %u\n",
  863. __func__, j, sample_rate);
  864. /* sample_rate is in Hz */
  865. snd_soc_component_update_bits(component,
  866. int_fs_reg,
  867. 0x0F, rate_reg_val);
  868. }
  869. int_mux_cfg0 += 8;
  870. }
  871. }
  872. return 0;
  873. }
  874. static int lpass_cdc_rx_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  875. u8 rate_reg_val,
  876. u32 sample_rate)
  877. {
  878. u8 int_2_inp = 0;
  879. u32 j = 0, port = 0;
  880. u16 int_mux_cfg1 = 0, int_fs_reg = 0;
  881. u8 int_mux_cfg1_val = 0;
  882. struct snd_soc_component *component = dai->component;
  883. struct device *rx_dev = NULL;
  884. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  885. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  886. return -EINVAL;
  887. for_each_set_bit(port, &rx_priv->active_ch_mask[dai->id],
  888. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  889. int_2_inp = port;
  890. if ((int_2_inp < LPASS_CDC_RX_MACRO_RX0) ||
  891. (int_2_inp > LPASS_CDC_RX_MACRO_PORTS_MAX)) {
  892. pr_err("%s: Invalid RX port, Dai ID is %d\n",
  893. __func__, dai->id);
  894. return -EINVAL;
  895. }
  896. int_mux_cfg1 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1;
  897. for (j = 0; j < INTERP_MAX; j++) {
  898. int_mux_cfg1_val = snd_soc_component_read32(
  899. component, int_mux_cfg1) &
  900. 0x0F;
  901. if (int_mux_cfg1_val == int_2_inp +
  902. INTn_2_INP_SEL_RX0) {
  903. int_fs_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  904. 0x80 * j;
  905. pr_debug("%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  906. __func__, dai->id, j);
  907. pr_debug("%s: set INT%u_2 sample rate to %u\n",
  908. __func__, j, sample_rate);
  909. snd_soc_component_update_bits(
  910. component, int_fs_reg,
  911. 0x0F, rate_reg_val);
  912. }
  913. int_mux_cfg1 += 8;
  914. }
  915. }
  916. return 0;
  917. }
  918. static bool lpass_cdc_rx_macro_is_fractional_sample_rate(u32 sample_rate)
  919. {
  920. switch (sample_rate) {
  921. case SAMPLING_RATE_44P1KHZ:
  922. case SAMPLING_RATE_88P2KHZ:
  923. case SAMPLING_RATE_176P4KHZ:
  924. case SAMPLING_RATE_352P8KHZ:
  925. return true;
  926. default:
  927. return false;
  928. }
  929. return false;
  930. }
  931. static int lpass_cdc_rx_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  932. u32 sample_rate)
  933. {
  934. struct snd_soc_component *component = dai->component;
  935. int rate_val = 0;
  936. int i = 0, ret = 0;
  937. struct device *rx_dev = NULL;
  938. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  939. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  940. return -EINVAL;
  941. for (i = 0; i < ARRAY_SIZE(sr_val_tbl); i++) {
  942. if (sample_rate == sr_val_tbl[i].sample_rate) {
  943. rate_val = sr_val_tbl[i].rate_val;
  944. if (lpass_cdc_rx_macro_is_fractional_sample_rate(sample_rate))
  945. rx_priv->is_native_on = true;
  946. else
  947. rx_priv->is_native_on = false;
  948. break;
  949. }
  950. }
  951. if ((i == ARRAY_SIZE(sr_val_tbl)) || (rate_val < 0)) {
  952. dev_err(component->dev, "%s: Unsupported sample rate: %d\n",
  953. __func__, sample_rate);
  954. return -EINVAL;
  955. }
  956. ret = lpass_cdc_rx_macro_set_prim_interpolator_rate(dai, (u8)rate_val, sample_rate);
  957. if (ret)
  958. return ret;
  959. ret = lpass_cdc_rx_macro_set_mix_interpolator_rate(dai, (u8)rate_val, sample_rate);
  960. if (ret)
  961. return ret;
  962. return ret;
  963. }
  964. static int lpass_cdc_rx_macro_hw_params(struct snd_pcm_substream *substream,
  965. struct snd_pcm_hw_params *params,
  966. struct snd_soc_dai *dai)
  967. {
  968. struct snd_soc_component *component = dai->component;
  969. int ret = 0;
  970. struct device *rx_dev = NULL;
  971. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  972. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  973. return -EINVAL;
  974. dev_dbg(component->dev,
  975. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  976. dai->name, dai->id, params_rate(params),
  977. params_channels(params));
  978. switch (substream->stream) {
  979. case SNDRV_PCM_STREAM_PLAYBACK:
  980. ret = lpass_cdc_rx_macro_set_interpolator_rate(dai, params_rate(params));
  981. if (ret) {
  982. pr_err("%s: cannot set sample rate: %u\n",
  983. __func__, params_rate(params));
  984. return ret;
  985. }
  986. rx_priv->bit_width[dai->id] = params_width(params);
  987. break;
  988. case SNDRV_PCM_STREAM_CAPTURE:
  989. default:
  990. break;
  991. }
  992. return 0;
  993. }
  994. static int lpass_cdc_rx_macro_get_channel_map(struct snd_soc_dai *dai,
  995. unsigned int *tx_num, unsigned int *tx_slot,
  996. unsigned int *rx_num, unsigned int *rx_slot)
  997. {
  998. struct snd_soc_component *component = dai->component;
  999. struct device *rx_dev = NULL;
  1000. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1001. unsigned int temp = 0, ch_mask = 0;
  1002. u16 val = 0, mask = 0, cnt = 0, i = 0;
  1003. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1004. return -EINVAL;
  1005. switch (dai->id) {
  1006. case RX_MACRO_AIF1_PB:
  1007. case RX_MACRO_AIF2_PB:
  1008. case RX_MACRO_AIF3_PB:
  1009. case RX_MACRO_AIF4_PB:
  1010. for_each_set_bit(temp, &rx_priv->active_ch_mask[dai->id],
  1011. LPASS_CDC_RX_MACRO_PORTS_MAX) {
  1012. ch_mask |= (1 << temp);
  1013. if (++i == LPASS_CDC_RX_MACRO_MAX_DMA_CH_PER_PORT)
  1014. break;
  1015. }
  1016. /*
  1017. * CDC_DMA_RX_0 port drives RX0/RX1 -- ch_mask 0x1/0x2/0x3
  1018. * CDC_DMA_RX_1 port drives RX2/RX3 -- ch_mask 0x1/0x2/0x3
  1019. * CDC_DMA_RX_2 port drives RX4 -- ch_mask 0x1
  1020. * CDC_DMA_RX_3 port drives RX5 -- ch_mask 0x1
  1021. * AIFn can pair to any CDC_DMA_RX_n port.
  1022. * In general, below convention is used::
  1023. * CDC_DMA_RX_0(AIF1)/CDC_DMA_RX_1(AIF2)/
  1024. * CDC_DMA_RX_2(AIF3)/CDC_DMA_RX_3(AIF4)
  1025. * Above is reflected in machine driver BE dailink
  1026. */
  1027. if (ch_mask & 0x0C)
  1028. ch_mask = ch_mask >> 2;
  1029. if ((ch_mask & 0x10) || (ch_mask & 0x20))
  1030. ch_mask = 0x1;
  1031. *rx_slot = ch_mask;
  1032. *rx_num = rx_priv->active_ch_cnt[dai->id];
  1033. dev_dbg(rx_priv->dev,
  1034. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d active_mask: 0x%x\n",
  1035. __func__, dai->id, *rx_slot, *rx_num, rx_priv->active_ch_mask[dai->id]);
  1036. break;
  1037. case RX_MACRO_AIF5_PB:
  1038. *rx_slot = 0x1;
  1039. *rx_num = 0x01;
  1040. dev_dbg(rx_priv->dev,
  1041. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1042. __func__, dai->id, *rx_slot, *rx_num);
  1043. break;
  1044. case RX_MACRO_AIF6_PB:
  1045. *rx_slot = 0x1;
  1046. *rx_num = 0x01;
  1047. dev_dbg(rx_priv->dev,
  1048. "%s: dai->id:%d, ch_mask:0x%x, active_ch_cnt:%d\n",
  1049. __func__, dai->id, *rx_slot, *rx_num);
  1050. break;
  1051. case RX_MACRO_AIF_ECHO:
  1052. val = snd_soc_component_read32(component,
  1053. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  1054. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX0_MASK) {
  1055. mask |= 0x1;
  1056. cnt++;
  1057. }
  1058. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX1_MASK) {
  1059. mask |= 0x2;
  1060. cnt++;
  1061. }
  1062. val = snd_soc_component_read32(component,
  1063. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  1064. if (val & LPASS_CDC_RX_MACRO_EC_MIX_TX2_MASK) {
  1065. mask |= 0x4;
  1066. cnt++;
  1067. }
  1068. *tx_slot = mask;
  1069. *tx_num = cnt;
  1070. break;
  1071. default:
  1072. dev_err(rx_dev, "%s: Invalid AIF\n", __func__);
  1073. break;
  1074. }
  1075. return 0;
  1076. }
  1077. static int lpass_cdc_rx_macro_digital_mute(struct snd_soc_dai *dai, int mute)
  1078. {
  1079. struct snd_soc_component *component = dai->component;
  1080. struct device *rx_dev = NULL;
  1081. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1082. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  1083. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1084. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1085. if (mute)
  1086. return 0;
  1087. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1088. return -EINVAL;
  1089. switch (dai->id) {
  1090. case RX_MACRO_AIF1_PB:
  1091. case RX_MACRO_AIF2_PB:
  1092. case RX_MACRO_AIF3_PB:
  1093. case RX_MACRO_AIF4_PB:
  1094. for (j = 0; j < INTERP_MAX; j++) {
  1095. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1096. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1097. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1098. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1099. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  1100. (j * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1101. if (j == INTERP_AUX)
  1102. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  1103. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  1104. int_mux_cfg1 = int_mux_cfg0 + 4;
  1105. int_mux_cfg0_val = snd_soc_component_read32(component,
  1106. int_mux_cfg0);
  1107. int_mux_cfg1_val = snd_soc_component_read32(component,
  1108. int_mux_cfg1);
  1109. if (snd_soc_component_read32(component, dsm_reg) & 0x01) {
  1110. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0xF0))
  1111. snd_soc_component_update_bits(component,
  1112. reg, 0x20, 0x20);
  1113. if (int_mux_cfg1_val & 0x0F) {
  1114. snd_soc_component_update_bits(component,
  1115. reg, 0x20, 0x20);
  1116. snd_soc_component_update_bits(component,
  1117. mix_reg, 0x20, 0x20);
  1118. }
  1119. }
  1120. }
  1121. break;
  1122. default:
  1123. break;
  1124. }
  1125. return 0;
  1126. }
  1127. static int lpass_cdc_rx_macro_mclk_enable(
  1128. struct lpass_cdc_rx_macro_priv *rx_priv,
  1129. bool mclk_enable, bool dapm)
  1130. {
  1131. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  1132. int ret = 0;
  1133. if (regmap == NULL) {
  1134. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  1135. return -EINVAL;
  1136. }
  1137. dev_dbg(rx_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1138. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1139. mutex_lock(&rx_priv->mclk_lock);
  1140. if (mclk_enable) {
  1141. if (rx_priv->rx_mclk_users == 0) {
  1142. if (rx_priv->is_native_on)
  1143. rx_priv->clk_id = RX_CORE_CLK;
  1144. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1145. rx_priv->default_clk_id,
  1146. rx_priv->clk_id,
  1147. true);
  1148. if (ret < 0) {
  1149. dev_err(rx_priv->dev,
  1150. "%s: rx request clock enable failed\n",
  1151. __func__);
  1152. goto exit;
  1153. }
  1154. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1155. true);
  1156. regcache_mark_dirty(regmap);
  1157. regcache_sync_region(regmap,
  1158. RX_START_OFFSET,
  1159. RX_MAX_OFFSET);
  1160. regmap_update_bits(regmap,
  1161. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1162. 0x01, 0x01);
  1163. regmap_update_bits(regmap,
  1164. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1165. 0x02, 0x02);
  1166. regmap_update_bits(regmap,
  1167. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1168. 0x02, 0x00);
  1169. regmap_update_bits(regmap,
  1170. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1171. 0x01, 0x01);
  1172. }
  1173. rx_priv->rx_mclk_users++;
  1174. } else {
  1175. if (rx_priv->rx_mclk_users <= 0) {
  1176. dev_err(rx_priv->dev, "%s: clock already disabled\n",
  1177. __func__);
  1178. rx_priv->rx_mclk_users = 0;
  1179. goto exit;
  1180. }
  1181. rx_priv->rx_mclk_users--;
  1182. if (rx_priv->rx_mclk_users == 0) {
  1183. regmap_update_bits(regmap,
  1184. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1185. 0x01, 0x00);
  1186. regmap_update_bits(regmap,
  1187. LPASS_CDC_RX_CLK_RST_CTRL_FS_CNT_CONTROL,
  1188. 0x02, 0x02);
  1189. regmap_update_bits(regmap,
  1190. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1191. 0x02, 0x00);
  1192. regmap_update_bits(regmap,
  1193. LPASS_CDC_RX_CLK_RST_CTRL_MCLK_CONTROL,
  1194. 0x01, 0x00);
  1195. lpass_cdc_clk_rsc_fs_gen_request(rx_priv->dev,
  1196. false);
  1197. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1198. rx_priv->default_clk_id,
  1199. rx_priv->clk_id,
  1200. false);
  1201. rx_priv->clk_id = rx_priv->default_clk_id;
  1202. }
  1203. }
  1204. exit:
  1205. trace_printk("%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  1206. __func__, mclk_enable, dapm, rx_priv->rx_mclk_users);
  1207. mutex_unlock(&rx_priv->mclk_lock);
  1208. return ret;
  1209. }
  1210. static int lpass_cdc_rx_macro_mclk_event(struct snd_soc_dapm_widget *w,
  1211. struct snd_kcontrol *kcontrol, int event)
  1212. {
  1213. struct snd_soc_component *component =
  1214. snd_soc_dapm_to_component(w->dapm);
  1215. int ret = 0;
  1216. struct device *rx_dev = NULL;
  1217. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1218. int mclk_freq = MCLK_FREQ;
  1219. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1220. return -EINVAL;
  1221. dev_dbg(rx_dev, "%s: event = %d\n", __func__, event);
  1222. switch (event) {
  1223. case SND_SOC_DAPM_PRE_PMU:
  1224. if (rx_priv->is_native_on)
  1225. mclk_freq = MCLK_FREQ_NATIVE;
  1226. if (rx_priv->swr_ctrl_data)
  1227. swrm_wcd_notify(
  1228. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1229. SWR_CLK_FREQ, &mclk_freq);
  1230. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  1231. if (ret)
  1232. rx_priv->dapm_mclk_enable = false;
  1233. else
  1234. rx_priv->dapm_mclk_enable = true;
  1235. break;
  1236. case SND_SOC_DAPM_POST_PMD:
  1237. if (rx_priv->dapm_mclk_enable)
  1238. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  1239. break;
  1240. default:
  1241. dev_err(rx_priv->dev,
  1242. "%s: invalid DAPM event %d\n", __func__, event);
  1243. ret = -EINVAL;
  1244. }
  1245. return ret;
  1246. }
  1247. static int lpass_cdc_rx_macro_event_handler(struct snd_soc_component *component,
  1248. u16 event, u32 data)
  1249. {
  1250. u16 reg = 0, reg_mix = 0, rx_idx = 0, mute = 0x0, val = 0;
  1251. struct device *rx_dev = NULL;
  1252. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1253. int ret = 0;
  1254. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1255. return -EINVAL;
  1256. switch (event) {
  1257. case LPASS_CDC_MACRO_EVT_RX_MUTE:
  1258. rx_idx = data >> 0x10;
  1259. mute = data & 0xffff;
  1260. val = mute ? 0x10 : 0x00;
  1261. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (rx_idx *
  1262. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1263. reg_mix = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL + (rx_idx *
  1264. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1265. snd_soc_component_update_bits(component, reg,
  1266. 0x10, val);
  1267. snd_soc_component_update_bits(component, reg_mix,
  1268. 0x10, val);
  1269. break;
  1270. case LPASS_CDC_MACRO_EVT_RX_COMPANDER_SOFT_RST:
  1271. rx_idx = data >> 0x10;
  1272. if (rx_idx == INTERP_AUX)
  1273. goto done;
  1274. reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1275. (rx_idx * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1276. snd_soc_component_write(component, reg,
  1277. snd_soc_component_read32(component, reg));
  1278. break;
  1279. case LPASS_CDC_MACRO_EVT_IMPED_TRUE:
  1280. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, true);
  1281. break;
  1282. case LPASS_CDC_MACRO_EVT_IMPED_FALSE:
  1283. lpass_cdc_rx_macro_wcd_clsh_imped_config(component, data, false);
  1284. break;
  1285. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  1286. trace_printk("%s, enter SSR down\n", __func__);
  1287. rx_priv->dev_up = false;
  1288. if (rx_priv->swr_ctrl_data) {
  1289. swrm_wcd_notify(
  1290. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1291. SWR_DEVICE_SSR_DOWN, NULL);
  1292. }
  1293. if ((!pm_runtime_enabled(rx_dev) ||
  1294. !pm_runtime_suspended(rx_dev))) {
  1295. ret = lpass_cdc_runtime_suspend(rx_dev);
  1296. if (!ret) {
  1297. pm_runtime_disable(rx_dev);
  1298. pm_runtime_set_suspended(rx_dev);
  1299. pm_runtime_enable(rx_dev);
  1300. }
  1301. }
  1302. break;
  1303. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  1304. /* enable&disable RX_CORE_CLK to reset GFMUX reg */
  1305. ret = lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1306. rx_priv->default_clk_id,
  1307. RX_CORE_CLK, true);
  1308. if (ret < 0)
  1309. dev_err_ratelimited(rx_priv->dev,
  1310. "%s, failed to enable clk, ret:%d\n",
  1311. __func__, ret);
  1312. else
  1313. lpass_cdc_clk_rsc_request_clock(rx_priv->dev,
  1314. rx_priv->default_clk_id,
  1315. RX_CORE_CLK, false);
  1316. break;
  1317. case LPASS_CDC_MACRO_EVT_SSR_UP:
  1318. trace_printk("%s, enter SSR up\n", __func__);
  1319. rx_priv->dev_up = true;
  1320. /* reset swr after ssr/pdr */
  1321. rx_priv->reset_swr = true;
  1322. if (rx_priv->swr_ctrl_data)
  1323. swrm_wcd_notify(
  1324. rx_priv->swr_ctrl_data[0].rx_swr_pdev,
  1325. SWR_DEVICE_SSR_UP, NULL);
  1326. break;
  1327. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  1328. lpass_cdc_rsc_clk_reset(rx_dev, RX_CORE_CLK);
  1329. break;
  1330. case LPASS_CDC_MACRO_EVT_RX_PA_GAIN_UPDATE:
  1331. rx_priv->rx0_gain_val = snd_soc_component_read32(component,
  1332. LPASS_CDC_RX_RX0_RX_VOL_CTL);
  1333. rx_priv->rx1_gain_val = snd_soc_component_read32(component,
  1334. LPASS_CDC_RX_RX1_RX_VOL_CTL);
  1335. if (data) {
  1336. /* Reduce gain by half only if its greater than -6DB */
  1337. if ((rx_priv->rx0_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1338. && (rx_priv->rx0_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1339. snd_soc_component_update_bits(component,
  1340. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1341. (rx_priv->rx0_gain_val -
  1342. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1343. if ((rx_priv->rx1_gain_val >= LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY)
  1344. && (rx_priv->rx1_gain_val <= LPASS_CDC_RX_MACRO_GAIN_MAX_VAL))
  1345. snd_soc_component_update_bits(component,
  1346. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1347. (rx_priv->rx1_gain_val -
  1348. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1349. }
  1350. else {
  1351. /* Reset gain value to default */
  1352. if ((rx_priv->rx0_gain_val >=
  1353. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1354. (rx_priv->rx0_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1355. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1356. snd_soc_component_update_bits(component,
  1357. LPASS_CDC_RX_RX0_RX_VOL_CTL, 0xFF,
  1358. (rx_priv->rx0_gain_val +
  1359. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1360. if ((rx_priv->rx1_gain_val >=
  1361. (LPASS_CDC_RX_MACRO_GAIN_VAL_UNITY - LPASS_CDC_RX_MACRO_MOD_GAIN)) &&
  1362. (rx_priv->rx1_gain_val <= (LPASS_CDC_RX_MACRO_GAIN_MAX_VAL -
  1363. LPASS_CDC_RX_MACRO_MOD_GAIN)))
  1364. snd_soc_component_update_bits(component,
  1365. LPASS_CDC_RX_RX1_RX_VOL_CTL, 0xFF,
  1366. (rx_priv->rx1_gain_val +
  1367. LPASS_CDC_RX_MACRO_MOD_GAIN));
  1368. }
  1369. break;
  1370. case LPASS_CDC_MACRO_EVT_HPHL_HD2_ENABLE:
  1371. /* Enable hd2 config for hphl*/
  1372. snd_soc_component_update_bits(component,
  1373. LPASS_CDC_RX_RX0_RX_PATH_CFG0, 0x04, data);
  1374. break;
  1375. case LPASS_CDC_MACRO_EVT_HPHR_HD2_ENABLE:
  1376. /* Enable hd2 config for hphr*/
  1377. snd_soc_component_update_bits(component,
  1378. LPASS_CDC_RX_RX1_RX_PATH_CFG0, 0x04, data);
  1379. break;
  1380. }
  1381. done:
  1382. return ret;
  1383. }
  1384. static int lpass_cdc_rx_macro_find_playback_dai_id_for_port(int port_id,
  1385. struct lpass_cdc_rx_macro_priv *rx_priv)
  1386. {
  1387. int i = 0;
  1388. for (i = RX_MACRO_AIF1_PB; i < LPASS_CDC_RX_MACRO_MAX_DAIS; i++) {
  1389. if (test_bit(port_id, &rx_priv->active_ch_mask[i]))
  1390. return i;
  1391. }
  1392. return -EINVAL;
  1393. }
  1394. static int lpass_cdc_rx_macro_set_idle_detect_thr(struct snd_soc_component *component,
  1395. struct lpass_cdc_rx_macro_priv *rx_priv,
  1396. int interp, int path_type)
  1397. {
  1398. int port_id[4] = { 0, 0, 0, 0 };
  1399. int *port_ptr = NULL;
  1400. int num_ports = 0;
  1401. int bit_width = 0, i = 0;
  1402. int mux_reg = 0, mux_reg_val = 0;
  1403. int dai_id = 0, idle_thr = 0;
  1404. if ((interp != INTERP_HPHL) && (interp != INTERP_HPHR))
  1405. return 0;
  1406. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  1407. return 0;
  1408. port_ptr = &port_id[0];
  1409. num_ports = 0;
  1410. /*
  1411. * Read interpolator MUX input registers and find
  1412. * which cdc_dma port is connected and store the port
  1413. * numbers in port_id array.
  1414. */
  1415. if (path_type == INTERP_MIX_PATH) {
  1416. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG1 +
  1417. 2 * interp;
  1418. mux_reg_val = snd_soc_component_read32(component, mux_reg) &
  1419. 0x0f;
  1420. if ((mux_reg_val >= INTn_2_INP_SEL_RX0) &&
  1421. (mux_reg_val <= INTn_2_INP_SEL_RX5)) {
  1422. *port_ptr++ = mux_reg_val - 1;
  1423. num_ports++;
  1424. }
  1425. }
  1426. if (path_type == INTERP_MAIN_PATH) {
  1427. mux_reg = LPASS_CDC_RX_INP_MUX_RX_INT1_CFG0 +
  1428. 2 * (interp - 1);
  1429. mux_reg_val = snd_soc_component_read32(component, mux_reg) &
  1430. 0x0f;
  1431. i = LPASS_CDC_RX_MACRO_INTERP_MUX_NUM_INPUTS;
  1432. while (i) {
  1433. if ((mux_reg_val >= INTn_1_INP_SEL_RX0) &&
  1434. (mux_reg_val <= INTn_1_INP_SEL_RX5)) {
  1435. *port_ptr++ = mux_reg_val -
  1436. INTn_1_INP_SEL_RX0;
  1437. num_ports++;
  1438. }
  1439. mux_reg_val =
  1440. (snd_soc_component_read32(component, mux_reg) &
  1441. 0xf0) >> 4;
  1442. mux_reg += 1;
  1443. i--;
  1444. }
  1445. }
  1446. dev_dbg(component->dev, "%s: num_ports: %d, ports[%d %d %d %d]\n",
  1447. __func__, num_ports, port_id[0], port_id[1],
  1448. port_id[2], port_id[3]);
  1449. i = 0;
  1450. while (num_ports) {
  1451. dai_id = lpass_cdc_rx_macro_find_playback_dai_id_for_port(port_id[i++],
  1452. rx_priv);
  1453. if ((dai_id >= 0) && (dai_id < LPASS_CDC_RX_MACRO_MAX_DAIS)) {
  1454. dev_dbg(component->dev, "%s: dai_id: %d bit_width: %d\n",
  1455. __func__, dai_id,
  1456. rx_priv->bit_width[dai_id]);
  1457. if (rx_priv->bit_width[dai_id] > bit_width)
  1458. bit_width = rx_priv->bit_width[dai_id];
  1459. }
  1460. num_ports--;
  1461. }
  1462. switch (bit_width) {
  1463. case 16:
  1464. idle_thr = 0xff; /* F16 */
  1465. break;
  1466. case 24:
  1467. case 32:
  1468. idle_thr = 0x03; /* F22 */
  1469. break;
  1470. default:
  1471. idle_thr = 0x00;
  1472. break;
  1473. }
  1474. dev_dbg(component->dev, "%s: (new) idle_thr: %d, (cur) idle_thr: %d\n",
  1475. __func__, idle_thr, rx_priv->idle_det_cfg.hph_idle_thr);
  1476. if ((rx_priv->idle_det_cfg.hph_idle_thr == 0) ||
  1477. (idle_thr < rx_priv->idle_det_cfg.hph_idle_thr)) {
  1478. snd_soc_component_write(component,
  1479. LPASS_CDC_RX_IDLE_DETECT_CFG3, idle_thr);
  1480. rx_priv->idle_det_cfg.hph_idle_thr = idle_thr;
  1481. }
  1482. return 0;
  1483. }
  1484. static int lpass_cdc_rx_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1485. struct snd_kcontrol *kcontrol, int event)
  1486. {
  1487. struct snd_soc_component *component =
  1488. snd_soc_dapm_to_component(w->dapm);
  1489. u16 gain_reg = 0, mix_reg = 0;
  1490. struct device *rx_dev = NULL;
  1491. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1492. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1493. return -EINVAL;
  1494. if (w->shift >= INTERP_MAX) {
  1495. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1496. __func__, w->shift, w->name);
  1497. return -EINVAL;
  1498. }
  1499. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL +
  1500. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1501. mix_reg = LPASS_CDC_RX_RX0_RX_PATH_MIX_CTL +
  1502. (w->shift * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1503. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1504. switch (event) {
  1505. case SND_SOC_DAPM_PRE_PMU:
  1506. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1507. INTERP_MIX_PATH);
  1508. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1509. break;
  1510. case SND_SOC_DAPM_POST_PMU:
  1511. snd_soc_component_write(component, gain_reg,
  1512. snd_soc_component_read32(component, gain_reg));
  1513. break;
  1514. case SND_SOC_DAPM_POST_PMD:
  1515. /* Clk Disable */
  1516. snd_soc_component_update_bits(component, mix_reg, 0x20, 0x00);
  1517. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1518. /* Reset enable and disable */
  1519. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x40);
  1520. snd_soc_component_update_bits(component, mix_reg, 0x40, 0x00);
  1521. break;
  1522. }
  1523. return 0;
  1524. }
  1525. static bool lpass_cdc_rx_macro_adie_lb(struct snd_soc_component *component,
  1526. int interp_idx)
  1527. {
  1528. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1529. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1530. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1531. int_mux_cfg0 = LPASS_CDC_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1532. int_mux_cfg1 = int_mux_cfg0 + 4;
  1533. int_mux_cfg0_val = snd_soc_component_read32(component, int_mux_cfg0);
  1534. int_mux_cfg1_val = snd_soc_component_read32(component, int_mux_cfg1);
  1535. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1536. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1537. int_n_inp0 == INTn_1_INP_SEL_DEC1 ||
  1538. int_n_inp0 == INTn_1_INP_SEL_IIR0 ||
  1539. int_n_inp0 == INTn_1_INP_SEL_IIR1)
  1540. return true;
  1541. int_n_inp1 = int_mux_cfg0_val >> 4;
  1542. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1543. int_n_inp1 == INTn_1_INP_SEL_DEC1 ||
  1544. int_n_inp1 == INTn_1_INP_SEL_IIR0 ||
  1545. int_n_inp1 == INTn_1_INP_SEL_IIR1)
  1546. return true;
  1547. int_n_inp2 = int_mux_cfg1_val >> 4;
  1548. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1549. int_n_inp2 == INTn_1_INP_SEL_DEC1 ||
  1550. int_n_inp2 == INTn_1_INP_SEL_IIR0 ||
  1551. int_n_inp2 == INTn_1_INP_SEL_IIR1)
  1552. return true;
  1553. return false;
  1554. }
  1555. static int lpass_cdc_rx_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1556. struct snd_kcontrol *kcontrol,
  1557. int event)
  1558. {
  1559. struct snd_soc_component *component =
  1560. snd_soc_dapm_to_component(w->dapm);
  1561. u16 gain_reg = 0;
  1562. u16 reg = 0;
  1563. struct device *rx_dev = NULL;
  1564. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1565. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1566. return -EINVAL;
  1567. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1568. if (w->shift >= INTERP_MAX) {
  1569. dev_err(component->dev, "%s: Invalid Interpolator value %d for name %s\n",
  1570. __func__, w->shift, w->name);
  1571. return -EINVAL;
  1572. }
  1573. reg = LPASS_CDC_RX_RX0_RX_PATH_CTL + (w->shift *
  1574. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1575. gain_reg = LPASS_CDC_RX_RX0_RX_VOL_CTL + (w->shift *
  1576. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1577. switch (event) {
  1578. case SND_SOC_DAPM_PRE_PMU:
  1579. lpass_cdc_rx_macro_set_idle_detect_thr(component, rx_priv, w->shift,
  1580. INTERP_MAIN_PATH);
  1581. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1582. if (lpass_cdc_rx_macro_adie_lb(component, w->shift))
  1583. snd_soc_component_update_bits(component,
  1584. reg, 0x20, 0x20);
  1585. break;
  1586. case SND_SOC_DAPM_POST_PMU:
  1587. snd_soc_component_write(component, gain_reg,
  1588. snd_soc_component_read32(component, gain_reg));
  1589. break;
  1590. case SND_SOC_DAPM_POST_PMD:
  1591. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  1592. break;
  1593. }
  1594. return 0;
  1595. }
  1596. static int lpass_cdc_rx_macro_config_compander(struct snd_soc_component *component,
  1597. struct lpass_cdc_rx_macro_priv *rx_priv,
  1598. int interp_n, int event)
  1599. {
  1600. int comp = 0;
  1601. u16 comp_ctl0_reg = 0, rx_path_cfg0_reg = 0, rx_path_cfg3_reg = 0;
  1602. u16 rx0_path_ctl_reg = 0;
  1603. u8 pcm_rate = 0, val = 0;
  1604. /* AUX does not have compander */
  1605. if (interp_n == INTERP_AUX)
  1606. return 0;
  1607. comp = interp_n;
  1608. dev_dbg(component->dev, "%s: event %d compander %d, enabled %d\n",
  1609. __func__, event, comp + 1, rx_priv->comp_enabled[comp]);
  1610. rx_path_cfg3_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG3 +
  1611. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1612. rx0_path_ctl_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  1613. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1614. pcm_rate = (snd_soc_component_read32(component, rx0_path_ctl_reg)
  1615. & 0x0F);
  1616. if (pcm_rate < 0x06)
  1617. val = 0x03;
  1618. else if (pcm_rate < 0x08)
  1619. val = 0x01;
  1620. else if (pcm_rate < 0x0B)
  1621. val = 0x02;
  1622. else
  1623. val = 0x00;
  1624. if (SND_SOC_DAPM_EVENT_ON(event))
  1625. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1626. 0x03, val);
  1627. if (SND_SOC_DAPM_EVENT_OFF(event))
  1628. snd_soc_component_update_bits(component, rx_path_cfg3_reg,
  1629. 0x03, 0x03);
  1630. if (!rx_priv->comp_enabled[comp])
  1631. return 0;
  1632. comp_ctl0_reg = LPASS_CDC_RX_COMPANDER0_CTL0 +
  1633. (comp * LPASS_CDC_RX_MACRO_COMP_OFFSET);
  1634. rx_path_cfg0_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0 +
  1635. (comp * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  1636. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1637. /* Enable Compander Clock */
  1638. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1639. 0x01, 0x01);
  1640. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1641. 0x02, 0x02);
  1642. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1643. 0x02, 0x00);
  1644. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1645. 0x02, 0x02);
  1646. }
  1647. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1648. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1649. 0x04, 0x04);
  1650. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1651. 0x02, 0x00);
  1652. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1653. 0x01, 0x00);
  1654. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1655. 0x04, 0x00);
  1656. }
  1657. return 0;
  1658. }
  1659. static int lpass_cdc_rx_macro_load_compander_coeff(struct snd_soc_component *component,
  1660. struct lpass_cdc_rx_macro_priv *rx_priv,
  1661. int interp_n, int event)
  1662. {
  1663. int comp = 0;
  1664. u16 comp_coeff_lsb_reg = 0, comp_coeff_msb_reg = 0;
  1665. int i = 0;
  1666. int hph_pwr_mode = HPH_LOHIFI;
  1667. if (!rx_priv->comp_enabled[comp])
  1668. return 0;
  1669. if (interp_n == INTERP_HPHL) {
  1670. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_LSB;
  1671. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHL_COMP_WR_MSB;
  1672. } else if (interp_n == INTERP_HPHR) {
  1673. comp_coeff_lsb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_LSB;
  1674. comp_coeff_msb_reg = LPASS_CDC_RX_TOP_HPHR_COMP_WR_MSB;
  1675. } else {
  1676. /* compander coefficients are loaded only for hph path */
  1677. return 0;
  1678. }
  1679. comp = interp_n;
  1680. hph_pwr_mode = rx_priv->hph_pwr_mode;
  1681. dev_dbg(component->dev, "%s: event %d compander %d, enabled %d\n",
  1682. __func__, event, comp + 1, rx_priv->comp_enabled[comp]);
  1683. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1684. /* Load Compander Coeff */
  1685. for (i = 0; i < COMP_MAX_COEFF; i++) {
  1686. snd_soc_component_write(component, comp_coeff_lsb_reg,
  1687. comp_coeff_table[hph_pwr_mode][i].lsb);
  1688. snd_soc_component_write(component, comp_coeff_msb_reg,
  1689. comp_coeff_table[hph_pwr_mode][i].msb);
  1690. }
  1691. }
  1692. return 0;
  1693. }
  1694. static void lpass_cdc_rx_macro_enable_softclip_clk(struct snd_soc_component *component,
  1695. struct lpass_cdc_rx_macro_priv *rx_priv,
  1696. bool enable)
  1697. {
  1698. if (enable) {
  1699. if (rx_priv->softclip_clk_users == 0)
  1700. snd_soc_component_update_bits(component,
  1701. LPASS_CDC_RX_SOFTCLIP_CRC,
  1702. 0x01, 0x01);
  1703. rx_priv->softclip_clk_users++;
  1704. } else {
  1705. rx_priv->softclip_clk_users--;
  1706. if (rx_priv->softclip_clk_users == 0)
  1707. snd_soc_component_update_bits(component,
  1708. LPASS_CDC_RX_SOFTCLIP_CRC,
  1709. 0x01, 0x00);
  1710. }
  1711. }
  1712. static int lpass_cdc_rx_macro_config_softclip(struct snd_soc_component *component,
  1713. struct lpass_cdc_rx_macro_priv *rx_priv,
  1714. int event)
  1715. {
  1716. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1717. __func__, event, rx_priv->is_softclip_on);
  1718. if (!rx_priv->is_softclip_on)
  1719. return 0;
  1720. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1721. /* Enable Softclip clock */
  1722. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  1723. /* Enable Softclip control */
  1724. snd_soc_component_update_bits(component,
  1725. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x01);
  1726. }
  1727. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1728. snd_soc_component_update_bits(component,
  1729. LPASS_CDC_RX_SOFTCLIP_SOFTCLIP_CTRL, 0x01, 0x00);
  1730. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  1731. }
  1732. return 0;
  1733. }
  1734. static int lpass_cdc_rx_macro_config_aux_hpf(struct snd_soc_component *component,
  1735. struct lpass_cdc_rx_macro_priv *rx_priv,
  1736. int event)
  1737. {
  1738. dev_dbg(component->dev, "%s: event %d, enabled %d\n",
  1739. __func__, event, rx_priv->is_aux_hpf_on);
  1740. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1741. /* Update Aux HPF control */
  1742. if (!rx_priv->is_aux_hpf_on)
  1743. snd_soc_component_update_bits(component,
  1744. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x00);
  1745. }
  1746. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1747. /* Reset to default (HPF=ON) */
  1748. snd_soc_component_update_bits(component,
  1749. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x04, 0x04);
  1750. }
  1751. return 0;
  1752. }
  1753. static inline void
  1754. lpass_cdc_rx_macro_enable_clsh_block(struct lpass_cdc_rx_macro_priv *rx_priv, bool enable)
  1755. {
  1756. if ((enable && ++rx_priv->clsh_users == 1) ||
  1757. (!enable && --rx_priv->clsh_users == 0))
  1758. snd_soc_component_update_bits(rx_priv->component,
  1759. LPASS_CDC_RX_CLSH_CRC, 0x01,
  1760. (u8) enable);
  1761. if (rx_priv->clsh_users < 0)
  1762. rx_priv->clsh_users = 0;
  1763. dev_dbg(rx_priv->dev, "%s: clsh_users %d, enable %d", __func__,
  1764. rx_priv->clsh_users, enable);
  1765. }
  1766. static int lpass_cdc_rx_macro_config_classh(struct snd_soc_component *component,
  1767. struct lpass_cdc_rx_macro_priv *rx_priv,
  1768. int interp_n, int event)
  1769. {
  1770. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1771. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, false);
  1772. return 0;
  1773. }
  1774. if (!SND_SOC_DAPM_EVENT_ON(event))
  1775. return 0;
  1776. lpass_cdc_rx_macro_enable_clsh_block(rx_priv, true);
  1777. if (interp_n == INTERP_HPHL ||
  1778. interp_n == INTERP_HPHR) {
  1779. /*
  1780. * These K1 values depend on the Headphone Impedance
  1781. * For now it is assumed to be 16 ohm
  1782. */
  1783. snd_soc_component_update_bits(component,
  1784. LPASS_CDC_RX_CLSH_K1_LSB,
  1785. 0xFF, 0xC0);
  1786. snd_soc_component_update_bits(component,
  1787. LPASS_CDC_RX_CLSH_K1_MSB,
  1788. 0x0F, 0x00);
  1789. }
  1790. switch (interp_n) {
  1791. case INTERP_HPHL:
  1792. if (rx_priv->is_ear_mode_on)
  1793. snd_soc_component_update_bits(component,
  1794. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1795. 0x3F, 0x39);
  1796. else
  1797. snd_soc_component_update_bits(component,
  1798. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1799. 0x3F, 0x1C);
  1800. snd_soc_component_update_bits(component,
  1801. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1802. 0x07, 0x00);
  1803. snd_soc_component_update_bits(component,
  1804. LPASS_CDC_RX_RX0_RX_PATH_CFG0,
  1805. 0x40, 0x40);
  1806. break;
  1807. case INTERP_HPHR:
  1808. if (rx_priv->is_ear_mode_on)
  1809. snd_soc_component_update_bits(component,
  1810. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1811. 0x3F, 0x39);
  1812. else
  1813. snd_soc_component_update_bits(component,
  1814. LPASS_CDC_RX_CLSH_HPH_V_PA,
  1815. 0x3F, 0x1C);
  1816. snd_soc_component_update_bits(component,
  1817. LPASS_CDC_RX_CLSH_DECAY_CTRL,
  1818. 0x07, 0x00);
  1819. snd_soc_component_update_bits(component,
  1820. LPASS_CDC_RX_RX1_RX_PATH_CFG0,
  1821. 0x40, 0x40);
  1822. break;
  1823. case INTERP_AUX:
  1824. snd_soc_component_update_bits(component,
  1825. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1826. 0x08, 0x08);
  1827. snd_soc_component_update_bits(component,
  1828. LPASS_CDC_RX_RX2_RX_PATH_CFG0,
  1829. 0x10, 0x10);
  1830. break;
  1831. }
  1832. return 0;
  1833. }
  1834. static void lpass_cdc_rx_macro_hd2_control(struct snd_soc_component *component,
  1835. u16 interp_idx, int event)
  1836. {
  1837. u16 hd2_scale_reg = 0;
  1838. u16 hd2_enable_reg = 0;
  1839. switch (interp_idx) {
  1840. case INTERP_HPHL:
  1841. hd2_scale_reg = LPASS_CDC_RX_RX0_RX_PATH_SEC3;
  1842. hd2_enable_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG0;
  1843. break;
  1844. case INTERP_HPHR:
  1845. hd2_scale_reg = LPASS_CDC_RX_RX1_RX_PATH_SEC3;
  1846. hd2_enable_reg = LPASS_CDC_RX_RX1_RX_PATH_CFG0;
  1847. break;
  1848. }
  1849. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1850. snd_soc_component_update_bits(component, hd2_scale_reg,
  1851. 0x3C, 0x14);
  1852. snd_soc_component_update_bits(component, hd2_enable_reg,
  1853. 0x04, 0x04);
  1854. }
  1855. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1856. snd_soc_component_update_bits(component, hd2_enable_reg,
  1857. 0x04, 0x00);
  1858. snd_soc_component_update_bits(component, hd2_scale_reg,
  1859. 0x3C, 0x00);
  1860. }
  1861. }
  1862. static int lpass_cdc_rx_macro_hph_idle_detect_get(struct snd_kcontrol *kcontrol,
  1863. struct snd_ctl_elem_value *ucontrol)
  1864. {
  1865. struct snd_soc_component *component =
  1866. snd_soc_kcontrol_component(kcontrol);
  1867. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1868. struct device *rx_dev = NULL;
  1869. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1870. return -EINVAL;
  1871. ucontrol->value.integer.value[0] =
  1872. rx_priv->idle_det_cfg.hph_idle_detect_en;
  1873. return 0;
  1874. }
  1875. static int lpass_cdc_rx_macro_hph_idle_detect_put(struct snd_kcontrol *kcontrol,
  1876. struct snd_ctl_elem_value *ucontrol)
  1877. {
  1878. struct snd_soc_component *component =
  1879. snd_soc_kcontrol_component(kcontrol);
  1880. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1881. struct device *rx_dev = NULL;
  1882. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1883. return -EINVAL;
  1884. rx_priv->idle_det_cfg.hph_idle_detect_en =
  1885. ucontrol->value.integer.value[0];
  1886. return 0;
  1887. }
  1888. static int lpass_cdc_rx_macro_get_compander(struct snd_kcontrol *kcontrol,
  1889. struct snd_ctl_elem_value *ucontrol)
  1890. {
  1891. struct snd_soc_component *component =
  1892. snd_soc_kcontrol_component(kcontrol);
  1893. int comp = ((struct soc_multi_mixer_control *)
  1894. kcontrol->private_value)->shift;
  1895. struct device *rx_dev = NULL;
  1896. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1897. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1898. return -EINVAL;
  1899. ucontrol->value.integer.value[0] = rx_priv->comp_enabled[comp];
  1900. return 0;
  1901. }
  1902. static int lpass_cdc_rx_macro_set_compander(struct snd_kcontrol *kcontrol,
  1903. struct snd_ctl_elem_value *ucontrol)
  1904. {
  1905. struct snd_soc_component *component =
  1906. snd_soc_kcontrol_component(kcontrol);
  1907. int comp = ((struct soc_multi_mixer_control *)
  1908. kcontrol->private_value)->shift;
  1909. int value = ucontrol->value.integer.value[0];
  1910. struct device *rx_dev = NULL;
  1911. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1912. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1913. return -EINVAL;
  1914. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  1915. __func__, comp + 1, rx_priv->comp_enabled[comp], value);
  1916. rx_priv->comp_enabled[comp] = value;
  1917. return 0;
  1918. }
  1919. static int lpass_cdc_rx_macro_mux_get(struct snd_kcontrol *kcontrol,
  1920. struct snd_ctl_elem_value *ucontrol)
  1921. {
  1922. struct snd_soc_dapm_widget *widget =
  1923. snd_soc_dapm_kcontrol_widget(kcontrol);
  1924. struct snd_soc_component *component =
  1925. snd_soc_dapm_to_component(widget->dapm);
  1926. struct device *rx_dev = NULL;
  1927. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1928. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1929. return -EINVAL;
  1930. ucontrol->value.integer.value[0] =
  1931. rx_priv->rx_port_value[widget->shift];
  1932. return 0;
  1933. }
  1934. static int lpass_cdc_rx_macro_mux_put(struct snd_kcontrol *kcontrol,
  1935. struct snd_ctl_elem_value *ucontrol)
  1936. {
  1937. struct snd_soc_dapm_widget *widget =
  1938. snd_soc_dapm_kcontrol_widget(kcontrol);
  1939. struct snd_soc_component *component =
  1940. snd_soc_dapm_to_component(widget->dapm);
  1941. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  1942. struct snd_soc_dapm_update *update = NULL;
  1943. u32 rx_port_value = ucontrol->value.integer.value[0];
  1944. u32 aif_rst = 0;
  1945. struct device *rx_dev = NULL;
  1946. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1947. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1948. return -EINVAL;
  1949. aif_rst = rx_priv->rx_port_value[widget->shift];
  1950. if (!rx_port_value) {
  1951. if (aif_rst == 0) {
  1952. dev_err(rx_dev, "%s:AIF reset already\n", __func__);
  1953. return 0;
  1954. }
  1955. if (aif_rst > RX_MACRO_AIF4_PB) {
  1956. dev_err(rx_dev, "%s: Invalid AIF reset\n", __func__);
  1957. return 0;
  1958. }
  1959. }
  1960. rx_priv->rx_port_value[widget->shift] = rx_port_value;
  1961. dev_dbg(rx_dev, "%s: mux input: %d, mux output: %d, aif_rst: %d\n",
  1962. __func__, rx_port_value, widget->shift, aif_rst);
  1963. switch (rx_port_value) {
  1964. case 0:
  1965. if (rx_priv->active_ch_cnt[aif_rst]) {
  1966. clear_bit(widget->shift,
  1967. &rx_priv->active_ch_mask[aif_rst]);
  1968. rx_priv->active_ch_cnt[aif_rst]--;
  1969. }
  1970. break;
  1971. case 1:
  1972. case 2:
  1973. case 3:
  1974. case 4:
  1975. set_bit(widget->shift,
  1976. &rx_priv->active_ch_mask[rx_port_value]);
  1977. rx_priv->active_ch_cnt[rx_port_value]++;
  1978. break;
  1979. default:
  1980. dev_err(component->dev,
  1981. "%s:Invalid AIF_ID for LPASS_CDC_RX_MACRO MUX %d\n",
  1982. __func__, rx_port_value);
  1983. goto err;
  1984. }
  1985. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  1986. rx_port_value, e, update);
  1987. return 0;
  1988. err:
  1989. return -EINVAL;
  1990. }
  1991. static int lpass_cdc_rx_macro_get_ear_mode(struct snd_kcontrol *kcontrol,
  1992. struct snd_ctl_elem_value *ucontrol)
  1993. {
  1994. struct snd_soc_component *component =
  1995. snd_soc_kcontrol_component(kcontrol);
  1996. struct device *rx_dev = NULL;
  1997. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  1998. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  1999. return -EINVAL;
  2000. ucontrol->value.integer.value[0] = rx_priv->is_ear_mode_on;
  2001. return 0;
  2002. }
  2003. static int lpass_cdc_rx_macro_put_ear_mode(struct snd_kcontrol *kcontrol,
  2004. struct snd_ctl_elem_value *ucontrol)
  2005. {
  2006. struct snd_soc_component *component =
  2007. snd_soc_kcontrol_component(kcontrol);
  2008. struct device *rx_dev = NULL;
  2009. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2010. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2011. return -EINVAL;
  2012. rx_priv->is_ear_mode_on =
  2013. (!ucontrol->value.integer.value[0] ? false : true);
  2014. return 0;
  2015. }
  2016. static int lpass_cdc_rx_macro_get_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2017. struct snd_ctl_elem_value *ucontrol)
  2018. {
  2019. struct snd_soc_component *component =
  2020. snd_soc_kcontrol_component(kcontrol);
  2021. struct device *rx_dev = NULL;
  2022. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2023. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2024. return -EINVAL;
  2025. ucontrol->value.integer.value[0] = rx_priv->hph_hd2_mode;
  2026. return 0;
  2027. }
  2028. static int lpass_cdc_rx_macro_put_hph_hd2_mode(struct snd_kcontrol *kcontrol,
  2029. struct snd_ctl_elem_value *ucontrol)
  2030. {
  2031. struct snd_soc_component *component =
  2032. snd_soc_kcontrol_component(kcontrol);
  2033. struct device *rx_dev = NULL;
  2034. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2035. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2036. return -EINVAL;
  2037. rx_priv->hph_hd2_mode = ucontrol->value.integer.value[0];
  2038. return 0;
  2039. }
  2040. static int lpass_cdc_rx_macro_get_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2041. struct snd_ctl_elem_value *ucontrol)
  2042. {
  2043. struct snd_soc_component *component =
  2044. snd_soc_kcontrol_component(kcontrol);
  2045. struct device *rx_dev = NULL;
  2046. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2047. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2048. return -EINVAL;
  2049. ucontrol->value.integer.value[0] = rx_priv->hph_pwr_mode;
  2050. return 0;
  2051. }
  2052. static int lpass_cdc_rx_macro_put_hph_pwr_mode(struct snd_kcontrol *kcontrol,
  2053. struct snd_ctl_elem_value *ucontrol)
  2054. {
  2055. struct snd_soc_component *component =
  2056. snd_soc_kcontrol_component(kcontrol);
  2057. struct device *rx_dev = NULL;
  2058. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2059. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2060. return -EINVAL;
  2061. rx_priv->hph_pwr_mode = ucontrol->value.integer.value[0];
  2062. return 0;
  2063. }
  2064. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2065. struct snd_ctl_elem_value *ucontrol)
  2066. {
  2067. struct snd_soc_component *component =
  2068. snd_soc_kcontrol_component(kcontrol);
  2069. ucontrol->value.integer.value[0] =
  2070. ((snd_soc_component_read32(
  2071. component, LPASS_CDC_RX_BCL_VBAT_CFG) & 0x04) ?
  2072. 1 : 0);
  2073. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2074. ucontrol->value.integer.value[0]);
  2075. return 0;
  2076. }
  2077. static int lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2078. struct snd_ctl_elem_value *ucontrol)
  2079. {
  2080. struct snd_soc_component *component =
  2081. snd_soc_kcontrol_component(kcontrol);
  2082. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2083. ucontrol->value.integer.value[0]);
  2084. /* Set Vbat register configuration for GSM mode bit based on value */
  2085. if (ucontrol->value.integer.value[0])
  2086. snd_soc_component_update_bits(component,
  2087. LPASS_CDC_RX_BCL_VBAT_CFG,
  2088. 0x04, 0x04);
  2089. else
  2090. snd_soc_component_update_bits(component,
  2091. LPASS_CDC_RX_BCL_VBAT_CFG,
  2092. 0x04, 0x00);
  2093. return 0;
  2094. }
  2095. static int lpass_cdc_rx_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2096. struct snd_ctl_elem_value *ucontrol)
  2097. {
  2098. struct snd_soc_component *component =
  2099. snd_soc_kcontrol_component(kcontrol);
  2100. struct device *rx_dev = NULL;
  2101. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2102. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2103. return -EINVAL;
  2104. ucontrol->value.integer.value[0] = rx_priv->is_softclip_on;
  2105. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2106. __func__, ucontrol->value.integer.value[0]);
  2107. return 0;
  2108. }
  2109. static int lpass_cdc_rx_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2110. struct snd_ctl_elem_value *ucontrol)
  2111. {
  2112. struct snd_soc_component *component =
  2113. snd_soc_kcontrol_component(kcontrol);
  2114. struct device *rx_dev = NULL;
  2115. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2116. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2117. return -EINVAL;
  2118. rx_priv->is_softclip_on = ucontrol->value.integer.value[0];
  2119. dev_dbg(component->dev, "%s: soft clip enable = %d\n", __func__,
  2120. rx_priv->is_softclip_on);
  2121. return 0;
  2122. }
  2123. static int lpass_cdc_rx_macro_aux_hpf_mode_get(struct snd_kcontrol *kcontrol,
  2124. struct snd_ctl_elem_value *ucontrol)
  2125. {
  2126. struct snd_soc_component *component =
  2127. snd_soc_kcontrol_component(kcontrol);
  2128. struct device *rx_dev = NULL;
  2129. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2130. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2131. return -EINVAL;
  2132. ucontrol->value.integer.value[0] = rx_priv->is_aux_hpf_on;
  2133. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2134. __func__, ucontrol->value.integer.value[0]);
  2135. return 0;
  2136. }
  2137. static int lpass_cdc_rx_macro_aux_hpf_mode_put(struct snd_kcontrol *kcontrol,
  2138. struct snd_ctl_elem_value *ucontrol)
  2139. {
  2140. struct snd_soc_component *component =
  2141. snd_soc_kcontrol_component(kcontrol);
  2142. struct device *rx_dev = NULL;
  2143. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2144. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2145. return -EINVAL;
  2146. rx_priv->is_aux_hpf_on = ucontrol->value.integer.value[0];
  2147. dev_dbg(component->dev, "%s: aux hpf enable = %d\n", __func__,
  2148. rx_priv->is_aux_hpf_on);
  2149. return 0;
  2150. }
  2151. static int lpass_cdc_rx_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  2152. struct snd_kcontrol *kcontrol,
  2153. int event)
  2154. {
  2155. struct snd_soc_component *component =
  2156. snd_soc_dapm_to_component(w->dapm);
  2157. struct device *rx_dev = NULL;
  2158. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2159. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  2160. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2161. return -EINVAL;
  2162. switch (event) {
  2163. case SND_SOC_DAPM_PRE_PMU:
  2164. /* Enable clock for VBAT block */
  2165. snd_soc_component_update_bits(component,
  2166. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  2167. /* Enable VBAT block */
  2168. snd_soc_component_update_bits(component,
  2169. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x01);
  2170. /* Update interpolator with 384K path */
  2171. snd_soc_component_update_bits(component,
  2172. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x80, 0x80);
  2173. /* Update DSM FS rate */
  2174. snd_soc_component_update_bits(component,
  2175. LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x02, 0x02);
  2176. /* Use attenuation mode */
  2177. snd_soc_component_update_bits(component,
  2178. LPASS_CDC_RX_BCL_VBAT_CFG, 0x02, 0x00);
  2179. /* BCL block needs softclip clock to be enabled */
  2180. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, true);
  2181. /* Enable VBAT at channel level */
  2182. snd_soc_component_update_bits(component,
  2183. LPASS_CDC_RX_RX2_RX_PATH_CFG1, 0x02, 0x02);
  2184. /* Set the ATTK1 gain */
  2185. snd_soc_component_update_bits(component,
  2186. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2187. 0xFF, 0xFF);
  2188. snd_soc_component_update_bits(component,
  2189. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2190. 0xFF, 0x03);
  2191. snd_soc_component_update_bits(component,
  2192. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2193. 0xFF, 0x00);
  2194. /* Set the ATTK2 gain */
  2195. snd_soc_component_update_bits(component,
  2196. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2197. 0xFF, 0xFF);
  2198. snd_soc_component_update_bits(component,
  2199. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2200. 0xFF, 0x03);
  2201. snd_soc_component_update_bits(component,
  2202. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2203. 0xFF, 0x00);
  2204. /* Set the ATTK3 gain */
  2205. snd_soc_component_update_bits(component,
  2206. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2207. 0xFF, 0xFF);
  2208. snd_soc_component_update_bits(component,
  2209. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2210. 0xFF, 0x03);
  2211. snd_soc_component_update_bits(component,
  2212. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2213. 0xFF, 0x00);
  2214. break;
  2215. case SND_SOC_DAPM_POST_PMD:
  2216. snd_soc_component_update_bits(component,
  2217. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2218. 0x80, 0x00);
  2219. snd_soc_component_update_bits(component,
  2220. LPASS_CDC_RX_RX2_RX_PATH_SEC7,
  2221. 0x02, 0x00);
  2222. snd_soc_component_update_bits(component,
  2223. LPASS_CDC_RX_BCL_VBAT_CFG,
  2224. 0x02, 0x02);
  2225. snd_soc_component_update_bits(component,
  2226. LPASS_CDC_RX_RX2_RX_PATH_CFG1,
  2227. 0x02, 0x00);
  2228. snd_soc_component_update_bits(component,
  2229. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD1,
  2230. 0xFF, 0x00);
  2231. snd_soc_component_update_bits(component,
  2232. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD2,
  2233. 0xFF, 0x00);
  2234. snd_soc_component_update_bits(component,
  2235. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD3,
  2236. 0xFF, 0x00);
  2237. snd_soc_component_update_bits(component,
  2238. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD4,
  2239. 0xFF, 0x00);
  2240. snd_soc_component_update_bits(component,
  2241. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD5,
  2242. 0xFF, 0x00);
  2243. snd_soc_component_update_bits(component,
  2244. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD6,
  2245. 0xFF, 0x00);
  2246. snd_soc_component_update_bits(component,
  2247. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD7,
  2248. 0xFF, 0x00);
  2249. snd_soc_component_update_bits(component,
  2250. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD8,
  2251. 0xFF, 0x00);
  2252. snd_soc_component_update_bits(component,
  2253. LPASS_CDC_RX_BCL_VBAT_BCL_GAIN_UPD9,
  2254. 0xFF, 0x00);
  2255. lpass_cdc_rx_macro_enable_softclip_clk(component, rx_priv, false);
  2256. snd_soc_component_update_bits(component,
  2257. LPASS_CDC_RX_BCL_VBAT_CFG, 0x01, 0x00);
  2258. snd_soc_component_update_bits(component,
  2259. LPASS_CDC_RX_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  2260. break;
  2261. default:
  2262. dev_err(rx_dev, "%s: Invalid event %d\n", __func__, event);
  2263. break;
  2264. }
  2265. return 0;
  2266. }
  2267. static void lpass_cdc_rx_macro_idle_detect_control(struct snd_soc_component *component,
  2268. struct lpass_cdc_rx_macro_priv *rx_priv,
  2269. int interp, int event)
  2270. {
  2271. int reg = 0, mask = 0, val = 0;
  2272. if (!rx_priv->idle_det_cfg.hph_idle_detect_en)
  2273. return;
  2274. if (interp == INTERP_HPHL) {
  2275. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2276. mask = 0x01;
  2277. val = 0x01;
  2278. }
  2279. if (interp == INTERP_HPHR) {
  2280. reg = LPASS_CDC_RX_IDLE_DETECT_PATH_CTL;
  2281. mask = 0x02;
  2282. val = 0x02;
  2283. }
  2284. if (reg && SND_SOC_DAPM_EVENT_ON(event))
  2285. snd_soc_component_update_bits(component, reg, mask, val);
  2286. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2287. snd_soc_component_update_bits(component, reg, mask, 0x00);
  2288. rx_priv->idle_det_cfg.hph_idle_thr = 0;
  2289. snd_soc_component_write(component,
  2290. LPASS_CDC_RX_IDLE_DETECT_CFG3, 0x0);
  2291. }
  2292. }
  2293. static void lpass_cdc_rx_macro_hphdelay_lutbypass(struct snd_soc_component *component,
  2294. struct lpass_cdc_rx_macro_priv *rx_priv,
  2295. u16 interp_idx, int event)
  2296. {
  2297. u16 hph_lut_bypass_reg = 0;
  2298. u16 hph_comp_ctrl7 = 0;
  2299. switch (interp_idx) {
  2300. case INTERP_HPHL:
  2301. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHL_COMP_LUT;
  2302. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER0_CTL7;
  2303. break;
  2304. case INTERP_HPHR:
  2305. hph_lut_bypass_reg = LPASS_CDC_RX_TOP_HPHR_COMP_LUT;
  2306. hph_comp_ctrl7 = LPASS_CDC_RX_COMPANDER1_CTL7;
  2307. break;
  2308. default:
  2309. break;
  2310. }
  2311. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  2312. if (interp_idx == INTERP_HPHL) {
  2313. if (rx_priv->is_ear_mode_on)
  2314. snd_soc_component_update_bits(component,
  2315. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2316. 0x02, 0x02);
  2317. else
  2318. snd_soc_component_update_bits(component,
  2319. hph_lut_bypass_reg,
  2320. 0x80, 0x80);
  2321. } else {
  2322. snd_soc_component_update_bits(component,
  2323. hph_lut_bypass_reg,
  2324. 0x80, 0x80);
  2325. }
  2326. if (rx_priv->hph_pwr_mode)
  2327. snd_soc_component_update_bits(component,
  2328. hph_comp_ctrl7,
  2329. 0x20, 0x00);
  2330. }
  2331. if (hph_lut_bypass_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  2332. snd_soc_component_update_bits(component,
  2333. LPASS_CDC_RX_RX0_RX_PATH_CFG1,
  2334. 0x02, 0x00);
  2335. snd_soc_component_update_bits(component, hph_lut_bypass_reg,
  2336. 0x80, 0x00);
  2337. snd_soc_component_update_bits(component, hph_comp_ctrl7,
  2338. 0x20, 0x20);
  2339. }
  2340. }
  2341. static int lpass_cdc_rx_macro_enable_interp_clk(struct snd_soc_component *component,
  2342. int event, int interp_idx)
  2343. {
  2344. u16 main_reg = 0, dsm_reg = 0, rx_cfg2_reg = 0;
  2345. struct device *rx_dev = NULL;
  2346. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2347. if (!component) {
  2348. pr_err("%s: component is NULL\n", __func__);
  2349. return -EINVAL;
  2350. }
  2351. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2352. return -EINVAL;
  2353. main_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2354. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2355. dsm_reg = LPASS_CDC_RX_RX0_RX_PATH_DSM_CTL +
  2356. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2357. if (interp_idx == INTERP_AUX)
  2358. dsm_reg = LPASS_CDC_RX_RX2_RX_PATH_DSM_CTL;
  2359. rx_cfg2_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG2 +
  2360. (interp_idx * LPASS_CDC_RX_MACRO_RX_PATH_OFFSET);
  2361. if (SND_SOC_DAPM_EVENT_ON(event)) {
  2362. if (rx_priv->main_clk_users[interp_idx] == 0) {
  2363. /* Main path PGA mute enable */
  2364. snd_soc_component_update_bits(component, main_reg,
  2365. 0x10, 0x10);
  2366. snd_soc_component_update_bits(component, dsm_reg,
  2367. 0x01, 0x01);
  2368. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2369. 0x03, 0x03);
  2370. lpass_cdc_rx_macro_load_compander_coeff(component, rx_priv,
  2371. interp_idx, event);
  2372. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2373. interp_idx, event);
  2374. if (rx_priv->hph_hd2_mode)
  2375. lpass_cdc_rx_macro_hd2_control(
  2376. component, interp_idx, event);
  2377. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2378. interp_idx, event);
  2379. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2380. interp_idx, event);
  2381. if (interp_idx == INTERP_AUX) {
  2382. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2383. event);
  2384. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2385. event);
  2386. }
  2387. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2388. interp_idx, event);
  2389. }
  2390. rx_priv->main_clk_users[interp_idx]++;
  2391. }
  2392. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  2393. rx_priv->main_clk_users[interp_idx]--;
  2394. if (rx_priv->main_clk_users[interp_idx] <= 0) {
  2395. rx_priv->main_clk_users[interp_idx] = 0;
  2396. /* Main path PGA mute enable */
  2397. snd_soc_component_update_bits(component, main_reg,
  2398. 0x10, 0x10);
  2399. /* Clk Disable */
  2400. snd_soc_component_update_bits(component, dsm_reg,
  2401. 0x01, 0x00);
  2402. snd_soc_component_update_bits(component, main_reg,
  2403. 0x20, 0x00);
  2404. /* Reset enable and disable */
  2405. snd_soc_component_update_bits(component, main_reg,
  2406. 0x40, 0x40);
  2407. snd_soc_component_update_bits(component, main_reg,
  2408. 0x40, 0x00);
  2409. /* Reset rate to 48K*/
  2410. snd_soc_component_update_bits(component, main_reg,
  2411. 0x0F, 0x04);
  2412. snd_soc_component_update_bits(component, rx_cfg2_reg,
  2413. 0x03, 0x00);
  2414. lpass_cdc_rx_macro_config_classh(component, rx_priv,
  2415. interp_idx, event);
  2416. lpass_cdc_rx_macro_config_compander(component, rx_priv,
  2417. interp_idx, event);
  2418. if (interp_idx == INTERP_AUX) {
  2419. lpass_cdc_rx_macro_config_softclip(component, rx_priv,
  2420. event);
  2421. lpass_cdc_rx_macro_config_aux_hpf(component, rx_priv,
  2422. event);
  2423. }
  2424. lpass_cdc_rx_macro_hphdelay_lutbypass(component, rx_priv,
  2425. interp_idx, event);
  2426. if (rx_priv->hph_hd2_mode)
  2427. lpass_cdc_rx_macro_hd2_control(component, interp_idx,
  2428. event);
  2429. lpass_cdc_rx_macro_idle_detect_control(component, rx_priv,
  2430. interp_idx, event);
  2431. }
  2432. }
  2433. dev_dbg(component->dev, "%s event %d main_clk_users %d\n",
  2434. __func__, event, rx_priv->main_clk_users[interp_idx]);
  2435. return rx_priv->main_clk_users[interp_idx];
  2436. }
  2437. static int lpass_cdc_rx_macro_enable_rx_path_clk(struct snd_soc_dapm_widget *w,
  2438. struct snd_kcontrol *kcontrol, int event)
  2439. {
  2440. struct snd_soc_component *component =
  2441. snd_soc_dapm_to_component(w->dapm);
  2442. u16 sidetone_reg = 0, fs_reg = 0;
  2443. dev_dbg(component->dev, "%s %d %d\n", __func__, event, w->shift);
  2444. sidetone_reg = LPASS_CDC_RX_RX0_RX_PATH_CFG1 +
  2445. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2446. fs_reg = LPASS_CDC_RX_RX0_RX_PATH_CTL +
  2447. LPASS_CDC_RX_MACRO_RX_PATH_OFFSET * (w->shift);
  2448. switch (event) {
  2449. case SND_SOC_DAPM_PRE_PMU:
  2450. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2451. snd_soc_component_update_bits(component, sidetone_reg,
  2452. 0x10, 0x10);
  2453. snd_soc_component_update_bits(component, fs_reg,
  2454. 0x20, 0x20);
  2455. break;
  2456. case SND_SOC_DAPM_POST_PMD:
  2457. snd_soc_component_update_bits(component, sidetone_reg,
  2458. 0x10, 0x00);
  2459. lpass_cdc_rx_macro_enable_interp_clk(component, event, w->shift);
  2460. break;
  2461. default:
  2462. break;
  2463. };
  2464. return 0;
  2465. }
  2466. static void lpass_cdc_rx_macro_restore_iir_coeff(struct lpass_cdc_rx_macro_priv *rx_priv, int iir_idx,
  2467. int band_idx)
  2468. {
  2469. u16 reg_add = 0, coeff_idx = 0, idx = 0;
  2470. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  2471. if (regmap == NULL) {
  2472. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  2473. return;
  2474. }
  2475. regmap_write(regmap,
  2476. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2477. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2478. reg_add = LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx;
  2479. /* 5 coefficients per band and 4 writes per coefficient */
  2480. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2481. coeff_idx++) {
  2482. /* Four 8 bit values(one 32 bit) per coefficient */
  2483. regmap_write(regmap, reg_add,
  2484. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2485. regmap_write(regmap, reg_add,
  2486. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2487. regmap_write(regmap, reg_add,
  2488. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2489. regmap_write(regmap, reg_add,
  2490. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++]);
  2491. }
  2492. }
  2493. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2494. struct snd_ctl_elem_value *ucontrol)
  2495. {
  2496. struct snd_soc_component *component =
  2497. snd_soc_kcontrol_component(kcontrol);
  2498. int iir_idx = ((struct soc_multi_mixer_control *)
  2499. kcontrol->private_value)->reg;
  2500. int band_idx = ((struct soc_multi_mixer_control *)
  2501. kcontrol->private_value)->shift;
  2502. /* IIR filter band registers are at integer multiples of 0x80 */
  2503. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2504. ucontrol->value.integer.value[0] = (
  2505. snd_soc_component_read32(component, iir_reg) &
  2506. (1 << band_idx)) != 0;
  2507. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2508. iir_idx, band_idx,
  2509. (uint32_t)ucontrol->value.integer.value[0]);
  2510. return 0;
  2511. }
  2512. static int lpass_cdc_rx_macro_iir_enable_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2513. struct snd_ctl_elem_value *ucontrol)
  2514. {
  2515. struct snd_soc_component *component =
  2516. snd_soc_kcontrol_component(kcontrol);
  2517. int iir_idx = ((struct soc_multi_mixer_control *)
  2518. kcontrol->private_value)->reg;
  2519. int band_idx = ((struct soc_multi_mixer_control *)
  2520. kcontrol->private_value)->shift;
  2521. bool iir_band_en_status = 0;
  2522. int value = ucontrol->value.integer.value[0];
  2523. u16 iir_reg = LPASS_CDC_RX_SIDETONE_IIR0_IIR_CTL + 0x80 * iir_idx;
  2524. struct device *rx_dev = NULL;
  2525. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2526. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2527. return -EINVAL;
  2528. lpass_cdc_rx_macro_restore_iir_coeff(rx_priv, iir_idx, band_idx);
  2529. /* Mask first 5 bits, 6-8 are reserved */
  2530. snd_soc_component_update_bits(component, iir_reg, (1 << band_idx),
  2531. (value << band_idx));
  2532. iir_band_en_status = ((snd_soc_component_read32(component, iir_reg) &
  2533. (1 << band_idx)) != 0);
  2534. dev_dbg(component->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
  2535. iir_idx, band_idx, iir_band_en_status);
  2536. return 0;
  2537. }
  2538. static uint32_t get_iir_band_coeff(struct snd_soc_component *component,
  2539. int iir_idx, int band_idx,
  2540. int coeff_idx)
  2541. {
  2542. uint32_t value = 0;
  2543. /* Address does not automatically update if reading */
  2544. snd_soc_component_write(component,
  2545. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2546. ((band_idx * BAND_MAX + coeff_idx)
  2547. * sizeof(uint32_t)) & 0x7F);
  2548. value |= snd_soc_component_read32(component,
  2549. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx));
  2550. snd_soc_component_write(component,
  2551. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2552. ((band_idx * BAND_MAX + coeff_idx)
  2553. * sizeof(uint32_t) + 1) & 0x7F);
  2554. value |= (snd_soc_component_read32(component,
  2555. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2556. 0x80 * iir_idx)) << 8);
  2557. snd_soc_component_write(component,
  2558. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2559. ((band_idx * BAND_MAX + coeff_idx)
  2560. * sizeof(uint32_t) + 2) & 0x7F);
  2561. value |= (snd_soc_component_read32(component,
  2562. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2563. 0x80 * iir_idx)) << 16);
  2564. snd_soc_component_write(component,
  2565. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 0x80 * iir_idx),
  2566. ((band_idx * BAND_MAX + coeff_idx)
  2567. * sizeof(uint32_t) + 3) & 0x7F);
  2568. /* Mask bits top 2 bits since they are reserved */
  2569. value |= ((snd_soc_component_read32(component,
  2570. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL +
  2571. 16 * iir_idx)) & 0x3F) << 24);
  2572. return value;
  2573. }
  2574. static int lpass_cdc_rx_macro_iir_band_audio_mixer_get(struct snd_kcontrol *kcontrol,
  2575. struct snd_ctl_elem_value *ucontrol)
  2576. {
  2577. struct snd_soc_component *component =
  2578. snd_soc_kcontrol_component(kcontrol);
  2579. int iir_idx = ((struct soc_multi_mixer_control *)
  2580. kcontrol->private_value)->reg;
  2581. int band_idx = ((struct soc_multi_mixer_control *)
  2582. kcontrol->private_value)->shift;
  2583. ucontrol->value.integer.value[0] =
  2584. get_iir_band_coeff(component, iir_idx, band_idx, 0);
  2585. ucontrol->value.integer.value[1] =
  2586. get_iir_band_coeff(component, iir_idx, band_idx, 1);
  2587. ucontrol->value.integer.value[2] =
  2588. get_iir_band_coeff(component, iir_idx, band_idx, 2);
  2589. ucontrol->value.integer.value[3] =
  2590. get_iir_band_coeff(component, iir_idx, band_idx, 3);
  2591. ucontrol->value.integer.value[4] =
  2592. get_iir_band_coeff(component, iir_idx, band_idx, 4);
  2593. dev_dbg(component->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
  2594. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2595. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2596. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2597. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2598. __func__, iir_idx, band_idx,
  2599. (uint32_t)ucontrol->value.integer.value[0],
  2600. __func__, iir_idx, band_idx,
  2601. (uint32_t)ucontrol->value.integer.value[1],
  2602. __func__, iir_idx, band_idx,
  2603. (uint32_t)ucontrol->value.integer.value[2],
  2604. __func__, iir_idx, band_idx,
  2605. (uint32_t)ucontrol->value.integer.value[3],
  2606. __func__, iir_idx, band_idx,
  2607. (uint32_t)ucontrol->value.integer.value[4]);
  2608. return 0;
  2609. }
  2610. static void set_iir_band_coeff(struct snd_soc_component *component,
  2611. int iir_idx, int band_idx,
  2612. uint32_t value)
  2613. {
  2614. snd_soc_component_write(component,
  2615. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2616. (value & 0xFF));
  2617. snd_soc_component_write(component,
  2618. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2619. (value >> 8) & 0xFF);
  2620. snd_soc_component_write(component,
  2621. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2622. (value >> 16) & 0xFF);
  2623. /* Mask top 2 bits, 7-8 are reserved */
  2624. snd_soc_component_write(component,
  2625. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B2_CTL + 0x80 * iir_idx),
  2626. (value >> 24) & 0x3F);
  2627. }
  2628. static int lpass_cdc_rx_macro_iir_band_audio_mixer_put(struct snd_kcontrol *kcontrol,
  2629. struct snd_ctl_elem_value *ucontrol)
  2630. {
  2631. struct snd_soc_component *component =
  2632. snd_soc_kcontrol_component(kcontrol);
  2633. int iir_idx = ((struct soc_multi_mixer_control *)
  2634. kcontrol->private_value)->reg;
  2635. int band_idx = ((struct soc_multi_mixer_control *)
  2636. kcontrol->private_value)->shift;
  2637. int coeff_idx, idx = 0;
  2638. struct device *rx_dev = NULL;
  2639. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2640. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2641. return -EINVAL;
  2642. /*
  2643. * Mask top bit it is reserved
  2644. * Updates addr automatically for each B2 write
  2645. */
  2646. snd_soc_component_write(component,
  2647. (LPASS_CDC_RX_SIDETONE_IIR0_IIR_COEF_B1_CTL + 16 * iir_idx),
  2648. (band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
  2649. /* Store the coefficients in sidetone coeff array */
  2650. for (coeff_idx = 0; coeff_idx < LPASS_CDC_RX_MACRO_SIDETONE_IIR_COEFF_MAX;
  2651. coeff_idx++) {
  2652. uint32_t value = ucontrol->value.integer.value[coeff_idx];
  2653. set_iir_band_coeff(component, iir_idx, band_idx, value);
  2654. /* Four 8 bit values(one 32 bit) per coefficient */
  2655. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2656. (value & 0xFF);
  2657. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2658. (value >> 8) & 0xFF;
  2659. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2660. (value >> 16) & 0xFF;
  2661. rx_priv->sidetone_coeff_array[iir_idx][band_idx][idx++] =
  2662. (value >> 24) & 0xFF;
  2663. }
  2664. pr_debug("%s: IIR #%d band #%d b0 = 0x%x\n"
  2665. "%s: IIR #%d band #%d b1 = 0x%x\n"
  2666. "%s: IIR #%d band #%d b2 = 0x%x\n"
  2667. "%s: IIR #%d band #%d a1 = 0x%x\n"
  2668. "%s: IIR #%d band #%d a2 = 0x%x\n",
  2669. __func__, iir_idx, band_idx,
  2670. get_iir_band_coeff(component, iir_idx, band_idx, 0),
  2671. __func__, iir_idx, band_idx,
  2672. get_iir_band_coeff(component, iir_idx, band_idx, 1),
  2673. __func__, iir_idx, band_idx,
  2674. get_iir_band_coeff(component, iir_idx, band_idx, 2),
  2675. __func__, iir_idx, band_idx,
  2676. get_iir_band_coeff(component, iir_idx, band_idx, 3),
  2677. __func__, iir_idx, band_idx,
  2678. get_iir_band_coeff(component, iir_idx, band_idx, 4));
  2679. return 0;
  2680. }
  2681. static int lpass_cdc_rx_macro_set_iir_gain(struct snd_soc_dapm_widget *w,
  2682. struct snd_kcontrol *kcontrol, int event)
  2683. {
  2684. struct snd_soc_component *component =
  2685. snd_soc_dapm_to_component(w->dapm);
  2686. dev_dbg(component->dev, "%s: event = %d\n", __func__, event);
  2687. switch (event) {
  2688. case SND_SOC_DAPM_POST_PMU: /* fall through */
  2689. case SND_SOC_DAPM_PRE_PMD:
  2690. if (strnstr(w->name, "IIR0", sizeof("IIR0"))) {
  2691. snd_soc_component_write(component,
  2692. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL,
  2693. snd_soc_component_read32(component,
  2694. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL));
  2695. snd_soc_component_write(component,
  2696. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL,
  2697. snd_soc_component_read32(component,
  2698. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL));
  2699. snd_soc_component_write(component,
  2700. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL,
  2701. snd_soc_component_read32(component,
  2702. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL));
  2703. snd_soc_component_write(component,
  2704. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL,
  2705. snd_soc_component_read32(component,
  2706. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL));
  2707. } else {
  2708. snd_soc_component_write(component,
  2709. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL,
  2710. snd_soc_component_read32(component,
  2711. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL));
  2712. snd_soc_component_write(component,
  2713. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL,
  2714. snd_soc_component_read32(component,
  2715. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL));
  2716. snd_soc_component_write(component,
  2717. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL,
  2718. snd_soc_component_read32(component,
  2719. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL));
  2720. snd_soc_component_write(component,
  2721. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL,
  2722. snd_soc_component_read32(component,
  2723. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL));
  2724. }
  2725. break;
  2726. }
  2727. return 0;
  2728. }
  2729. static const struct snd_kcontrol_new lpass_cdc_rx_macro_snd_controls[] = {
  2730. SOC_SINGLE_S8_TLV("RX_RX0 Digital Volume",
  2731. LPASS_CDC_RX_RX0_RX_VOL_CTL,
  2732. -84, 40, digital_gain),
  2733. SOC_SINGLE_S8_TLV("RX_RX1 Digital Volume",
  2734. LPASS_CDC_RX_RX1_RX_VOL_CTL,
  2735. -84, 40, digital_gain),
  2736. SOC_SINGLE_S8_TLV("RX_RX2 Digital Volume",
  2737. LPASS_CDC_RX_RX2_RX_VOL_CTL,
  2738. -84, 40, digital_gain),
  2739. SOC_SINGLE_S8_TLV("RX_RX0 Mix Digital Volume",
  2740. LPASS_CDC_RX_RX0_RX_VOL_MIX_CTL,
  2741. -84, 40, digital_gain),
  2742. SOC_SINGLE_S8_TLV("RX_RX1 Mix Digital Volume",
  2743. LPASS_CDC_RX_RX1_RX_VOL_MIX_CTL,
  2744. -84, 40, digital_gain),
  2745. SOC_SINGLE_S8_TLV("RX_RX2 Mix Digital Volume",
  2746. LPASS_CDC_RX_RX2_RX_VOL_MIX_CTL,
  2747. -84, 40, digital_gain),
  2748. SOC_SINGLE_EXT("RX_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP1, 1, 0,
  2749. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  2750. SOC_SINGLE_EXT("RX_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_RX_MACRO_COMP2, 1, 0,
  2751. lpass_cdc_rx_macro_get_compander, lpass_cdc_rx_macro_set_compander),
  2752. SOC_ENUM_EXT("HPH Idle Detect", hph_idle_detect_enum,
  2753. lpass_cdc_rx_macro_hph_idle_detect_get, lpass_cdc_rx_macro_hph_idle_detect_put),
  2754. SOC_ENUM_EXT("RX_EAR Mode", lpass_cdc_rx_macro_ear_mode_enum,
  2755. lpass_cdc_rx_macro_get_ear_mode, lpass_cdc_rx_macro_put_ear_mode),
  2756. SOC_ENUM_EXT("RX_HPH HD2 Mode", lpass_cdc_rx_macro_hph_hd2_mode_enum,
  2757. lpass_cdc_rx_macro_get_hph_hd2_mode, lpass_cdc_rx_macro_put_hph_hd2_mode),
  2758. SOC_ENUM_EXT("RX_HPH_PWR_MODE", lpass_cdc_rx_macro_hph_pwr_mode_enum,
  2759. lpass_cdc_rx_macro_get_hph_pwr_mode, lpass_cdc_rx_macro_put_hph_pwr_mode),
  2760. SOC_ENUM_EXT("RX_GSM mode Enable", lpass_cdc_rx_macro_vbat_bcl_gsm_mode_enum,
  2761. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_get,
  2762. lpass_cdc_rx_macro_vbat_bcl_gsm_mode_func_put),
  2763. SOC_SINGLE_EXT("RX_Softclip Enable", SND_SOC_NOPM, 0, 1, 0,
  2764. lpass_cdc_rx_macro_soft_clip_enable_get,
  2765. lpass_cdc_rx_macro_soft_clip_enable_put),
  2766. SOC_SINGLE_EXT("AUX_HPF Enable", SND_SOC_NOPM, 0, 1, 0,
  2767. lpass_cdc_rx_macro_aux_hpf_mode_get,
  2768. lpass_cdc_rx_macro_aux_hpf_mode_put),
  2769. SOC_SINGLE_S8_TLV("IIR0 INP0 Volume",
  2770. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B1_CTL, -84, 40,
  2771. digital_gain),
  2772. SOC_SINGLE_S8_TLV("IIR0 INP1 Volume",
  2773. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B2_CTL, -84, 40,
  2774. digital_gain),
  2775. SOC_SINGLE_S8_TLV("IIR0 INP2 Volume",
  2776. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B3_CTL, -84, 40,
  2777. digital_gain),
  2778. SOC_SINGLE_S8_TLV("IIR0 INP3 Volume",
  2779. LPASS_CDC_RX_SIDETONE_IIR0_IIR_GAIN_B4_CTL, -84, 40,
  2780. digital_gain),
  2781. SOC_SINGLE_S8_TLV("IIR1 INP0 Volume",
  2782. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B1_CTL, -84, 40,
  2783. digital_gain),
  2784. SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
  2785. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B2_CTL, -84, 40,
  2786. digital_gain),
  2787. SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
  2788. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B3_CTL, -84, 40,
  2789. digital_gain),
  2790. SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
  2791. LPASS_CDC_RX_SIDETONE_IIR1_IIR_GAIN_B4_CTL, -84, 40,
  2792. digital_gain),
  2793. SOC_SINGLE_EXT("IIR0 Enable Band1", IIR0, BAND1, 1, 0,
  2794. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2795. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2796. SOC_SINGLE_EXT("IIR0 Enable Band2", IIR0, BAND2, 1, 0,
  2797. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2798. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2799. SOC_SINGLE_EXT("IIR0 Enable Band3", IIR0, BAND3, 1, 0,
  2800. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2801. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2802. SOC_SINGLE_EXT("IIR0 Enable Band4", IIR0, BAND4, 1, 0,
  2803. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2804. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2805. SOC_SINGLE_EXT("IIR0 Enable Band5", IIR0, BAND5, 1, 0,
  2806. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2807. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2808. SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
  2809. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2810. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2811. SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
  2812. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2813. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2814. SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
  2815. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2816. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2817. SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
  2818. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2819. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2820. SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
  2821. lpass_cdc_rx_macro_iir_enable_audio_mixer_get,
  2822. lpass_cdc_rx_macro_iir_enable_audio_mixer_put),
  2823. SOC_SINGLE_MULTI_EXT("IIR0 Band1", IIR0, BAND1, 255, 0, 5,
  2824. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2825. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2826. SOC_SINGLE_MULTI_EXT("IIR0 Band2", IIR0, BAND2, 255, 0, 5,
  2827. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2828. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2829. SOC_SINGLE_MULTI_EXT("IIR0 Band3", IIR0, BAND3, 255, 0, 5,
  2830. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2831. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2832. SOC_SINGLE_MULTI_EXT("IIR0 Band4", IIR0, BAND4, 255, 0, 5,
  2833. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2834. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2835. SOC_SINGLE_MULTI_EXT("IIR0 Band5", IIR0, BAND5, 255, 0, 5,
  2836. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2837. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2838. SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5,
  2839. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2840. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2841. SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5,
  2842. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2843. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2844. SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5,
  2845. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2846. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2847. SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5,
  2848. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2849. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2850. SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5,
  2851. lpass_cdc_rx_macro_iir_band_audio_mixer_get,
  2852. lpass_cdc_rx_macro_iir_band_audio_mixer_put),
  2853. };
  2854. static int lpass_cdc_rx_macro_enable_echo(struct snd_soc_dapm_widget *w,
  2855. struct snd_kcontrol *kcontrol,
  2856. int event)
  2857. {
  2858. struct snd_soc_component *component =
  2859. snd_soc_dapm_to_component(w->dapm);
  2860. struct device *rx_dev = NULL;
  2861. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  2862. u16 val = 0, ec_hq_reg = 0;
  2863. int ec_tx = 0;
  2864. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  2865. return -EINVAL;
  2866. dev_dbg(rx_dev, "%s %d %s\n", __func__, event, w->name);
  2867. val = snd_soc_component_read32(component,
  2868. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG4);
  2869. if (!(strcmp(w->name, "RX MIX TX0 MUX")))
  2870. ec_tx = ((val & 0xf0) >> 0x4) - 1;
  2871. else if (!(strcmp(w->name, "RX MIX TX1 MUX")))
  2872. ec_tx = (val & 0x0f) - 1;
  2873. val = snd_soc_component_read32(component,
  2874. LPASS_CDC_RX_INP_MUX_RX_MIX_CFG5);
  2875. if (!(strcmp(w->name, "RX MIX TX2 MUX")))
  2876. ec_tx = (val & 0x0f) - 1;
  2877. if (ec_tx < 0 || (ec_tx >= LPASS_CDC_RX_MACRO_EC_MUX_MAX)) {
  2878. dev_err(rx_dev, "%s: EC mix control not set correctly\n",
  2879. __func__);
  2880. return -EINVAL;
  2881. }
  2882. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_PATH_CTL +
  2883. 0x40 * ec_tx;
  2884. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  2885. ec_hq_reg = LPASS_CDC_RX_EC_REF_HQ0_EC_REF_HQ_CFG0 +
  2886. 0x40 * ec_tx;
  2887. /* default set to 48k */
  2888. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  2889. return 0;
  2890. }
  2891. static const struct snd_soc_dapm_widget lpass_cdc_rx_macro_dapm_widgets[] = {
  2892. SND_SOC_DAPM_AIF_IN("RX AIF1 PB", "RX_MACRO_AIF1 Playback", 0,
  2893. SND_SOC_NOPM, 0, 0),
  2894. SND_SOC_DAPM_AIF_IN("RX AIF2 PB", "RX_MACRO_AIF2 Playback", 0,
  2895. SND_SOC_NOPM, 0, 0),
  2896. SND_SOC_DAPM_AIF_IN("RX AIF3 PB", "RX_MACRO_AIF3 Playback", 0,
  2897. SND_SOC_NOPM, 0, 0),
  2898. SND_SOC_DAPM_AIF_IN("RX AIF4 PB", "RX_MACRO_AIF4 Playback", 0,
  2899. SND_SOC_NOPM, 0, 0),
  2900. SND_SOC_DAPM_AIF_OUT("RX AIF_ECHO", "RX_AIF_ECHO Capture", 0,
  2901. SND_SOC_NOPM, 0, 0),
  2902. SND_SOC_DAPM_AIF_IN("RX AIF5 PB", "RX_MACRO_AIF5 Playback", 0,
  2903. SND_SOC_NOPM, 0, 0),
  2904. SND_SOC_DAPM_AIF_IN("RX AIF6 PB", "RX_MACRO_AIF6 Playback", 0,
  2905. SND_SOC_NOPM, 0, 0),
  2906. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX0 MUX", LPASS_CDC_RX_MACRO_RX0, lpass_cdc_rx_macro_rx0),
  2907. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX1 MUX", LPASS_CDC_RX_MACRO_RX1, lpass_cdc_rx_macro_rx1),
  2908. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX2 MUX", LPASS_CDC_RX_MACRO_RX2, lpass_cdc_rx_macro_rx2),
  2909. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX3 MUX", LPASS_CDC_RX_MACRO_RX3, lpass_cdc_rx_macro_rx3),
  2910. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX4 MUX", LPASS_CDC_RX_MACRO_RX4, lpass_cdc_rx_macro_rx4),
  2911. LPASS_CDC_RX_MACRO_DAPM_MUX("RX_MACRO RX5 MUX", LPASS_CDC_RX_MACRO_RX5, lpass_cdc_rx_macro_rx5),
  2912. SND_SOC_DAPM_MIXER("RX_RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2913. SND_SOC_DAPM_MIXER("RX_RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2914. SND_SOC_DAPM_MIXER("RX_RX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  2915. SND_SOC_DAPM_MIXER("RX_RX3", SND_SOC_NOPM, 0, 0, NULL, 0),
  2916. SND_SOC_DAPM_MIXER("RX_RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  2917. SND_SOC_DAPM_MIXER("RX_RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  2918. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP0 MUX", 0, iir0_inp0),
  2919. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP1 MUX", 0, iir0_inp1),
  2920. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP2 MUX", 0, iir0_inp2),
  2921. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR0 INP3 MUX", 0, iir0_inp3),
  2922. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP0 MUX", 0, iir1_inp0),
  2923. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP1 MUX", 0, iir1_inp1),
  2924. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP2 MUX", 0, iir1_inp2),
  2925. LPASS_CDC_RX_MACRO_DAPM_MUX("IIR1 INP3 MUX", 0, iir1_inp3),
  2926. SND_SOC_DAPM_MUX_E("RX MIX TX0 MUX", SND_SOC_NOPM,
  2927. LPASS_CDC_RX_MACRO_EC0_MUX, 0,
  2928. &rx_mix_tx0_mux, lpass_cdc_rx_macro_enable_echo,
  2929. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2930. SND_SOC_DAPM_MUX_E("RX MIX TX1 MUX", SND_SOC_NOPM,
  2931. LPASS_CDC_RX_MACRO_EC1_MUX, 0,
  2932. &rx_mix_tx1_mux, lpass_cdc_rx_macro_enable_echo,
  2933. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2934. SND_SOC_DAPM_MUX_E("RX MIX TX2 MUX", SND_SOC_NOPM,
  2935. LPASS_CDC_RX_MACRO_EC2_MUX, 0,
  2936. &rx_mix_tx2_mux, lpass_cdc_rx_macro_enable_echo,
  2937. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2938. SND_SOC_DAPM_MIXER_E("IIR0", LPASS_CDC_RX_SIDETONE_IIR0_IIR_PATH_CTL,
  2939. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  2940. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  2941. SND_SOC_DAPM_MIXER_E("IIR1", LPASS_CDC_RX_SIDETONE_IIR1_IIR_PATH_CTL,
  2942. 4, 0, NULL, 0, lpass_cdc_rx_macro_set_iir_gain,
  2943. SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
  2944. SND_SOC_DAPM_MIXER("SRC0", LPASS_CDC_RX_SIDETONE_SRC0_ST_SRC_PATH_CTL,
  2945. 4, 0, NULL, 0),
  2946. SND_SOC_DAPM_MIXER("SRC1", LPASS_CDC_RX_SIDETONE_SRC1_ST_SRC_PATH_CTL,
  2947. 4, 0, NULL, 0),
  2948. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0 DEM MUX", 0, rx_int0_dem_inp),
  2949. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1 DEM MUX", 0, rx_int1_dem_inp),
  2950. SND_SOC_DAPM_MUX_E("RX INT0_2 MUX", SND_SOC_NOPM, INTERP_HPHL, 0,
  2951. &rx_int0_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2952. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2953. SND_SOC_DAPM_POST_PMD),
  2954. SND_SOC_DAPM_MUX_E("RX INT1_2 MUX", SND_SOC_NOPM, INTERP_HPHR, 0,
  2955. &rx_int1_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2956. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2957. SND_SOC_DAPM_POST_PMD),
  2958. SND_SOC_DAPM_MUX_E("RX INT2_2 MUX", SND_SOC_NOPM, INTERP_AUX, 0,
  2959. &rx_int2_2_mux, lpass_cdc_rx_macro_enable_mix_path,
  2960. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2961. SND_SOC_DAPM_POST_PMD),
  2962. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP0", 0, rx_int0_1_mix_inp0),
  2963. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP1", 0, rx_int0_1_mix_inp1),
  2964. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_1 MIX1 INP2", 0, rx_int0_1_mix_inp2),
  2965. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP0", 0, rx_int1_1_mix_inp0),
  2966. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP1", 0, rx_int1_1_mix_inp1),
  2967. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_1 MIX1 INP2", 0, rx_int1_1_mix_inp2),
  2968. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP0", 0, rx_int2_1_mix_inp0),
  2969. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP1", 0, rx_int2_1_mix_inp1),
  2970. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_1 MIX1 INP2", 0, rx_int2_1_mix_inp2),
  2971. SND_SOC_DAPM_MUX_E("RX INT0_1 INTERP", SND_SOC_NOPM, INTERP_HPHL, 0,
  2972. &rx_int0_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2973. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2974. SND_SOC_DAPM_POST_PMD),
  2975. SND_SOC_DAPM_MUX_E("RX INT1_1 INTERP", SND_SOC_NOPM, INTERP_HPHR, 0,
  2976. &rx_int1_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2977. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2978. SND_SOC_DAPM_POST_PMD),
  2979. SND_SOC_DAPM_MUX_E("RX INT2_1 INTERP", SND_SOC_NOPM, INTERP_AUX, 0,
  2980. &rx_int2_1_interp_mux, lpass_cdc_rx_macro_enable_main_path,
  2981. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2982. SND_SOC_DAPM_POST_PMD),
  2983. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT0_2 INTERP", 0, rx_int0_2_interp),
  2984. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT1_2 INTERP", 0, rx_int1_2_interp),
  2985. LPASS_CDC_RX_MACRO_DAPM_MUX("RX INT2_2 INTERP", 0, rx_int2_2_interp),
  2986. SND_SOC_DAPM_MIXER("RX INT0_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2987. SND_SOC_DAPM_MIXER("RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2988. SND_SOC_DAPM_MIXER("RX INT1_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2989. SND_SOC_DAPM_MIXER("RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2990. SND_SOC_DAPM_MIXER("RX INT2_1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2991. SND_SOC_DAPM_MIXER("RX INT2 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2992. SND_SOC_DAPM_MUX_E("RX INT0 MIX2 INP", SND_SOC_NOPM, INTERP_HPHL,
  2993. 0, &rx_int0_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  2994. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2995. SND_SOC_DAPM_MUX_E("RX INT1 MIX2 INP", SND_SOC_NOPM, INTERP_HPHR,
  2996. 0, &rx_int1_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  2997. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2998. SND_SOC_DAPM_MUX_E("RX INT2 MIX2 INP", SND_SOC_NOPM, INTERP_AUX,
  2999. 0, &rx_int2_mix2_inp_mux, lpass_cdc_rx_macro_enable_rx_path_clk,
  3000. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3001. SND_SOC_DAPM_MIXER_E("RX INT2_1 VBAT", SND_SOC_NOPM,
  3002. 0, 0, rx_int2_1_vbat_mix_switch,
  3003. ARRAY_SIZE(rx_int2_1_vbat_mix_switch),
  3004. lpass_cdc_rx_macro_enable_vbat,
  3005. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3006. SND_SOC_DAPM_MIXER("RX INT0 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3007. SND_SOC_DAPM_MIXER("RX INT1 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3008. SND_SOC_DAPM_MIXER("RX INT2 MIX2", SND_SOC_NOPM, 0, 0, NULL, 0),
  3009. SND_SOC_DAPM_OUTPUT("HPHL_OUT"),
  3010. SND_SOC_DAPM_OUTPUT("HPHR_OUT"),
  3011. SND_SOC_DAPM_OUTPUT("AUX_OUT"),
  3012. SND_SOC_DAPM_OUTPUT("PCM_OUT"),
  3013. SND_SOC_DAPM_INPUT("RX_TX DEC0_INP"),
  3014. SND_SOC_DAPM_INPUT("RX_TX DEC1_INP"),
  3015. SND_SOC_DAPM_INPUT("RX_TX DEC2_INP"),
  3016. SND_SOC_DAPM_INPUT("RX_TX DEC3_INP"),
  3017. SND_SOC_DAPM_SUPPLY_S("RX_MCLK", 0, SND_SOC_NOPM, 0, 0,
  3018. lpass_cdc_rx_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  3019. };
  3020. static const struct snd_soc_dapm_route rx_audio_map[] = {
  3021. {"RX AIF1 PB", NULL, "RX_MCLK"},
  3022. {"RX AIF2 PB", NULL, "RX_MCLK"},
  3023. {"RX AIF3 PB", NULL, "RX_MCLK"},
  3024. {"RX AIF4 PB", NULL, "RX_MCLK"},
  3025. {"RX AIF6 PB", NULL, "RX_MCLK"},
  3026. {"PCM_OUT", NULL, "RX AIF6 PB"},
  3027. {"RX_MACRO RX0 MUX", "AIF1_PB", "RX AIF1 PB"},
  3028. {"RX_MACRO RX1 MUX", "AIF1_PB", "RX AIF1 PB"},
  3029. {"RX_MACRO RX2 MUX", "AIF1_PB", "RX AIF1 PB"},
  3030. {"RX_MACRO RX3 MUX", "AIF1_PB", "RX AIF1 PB"},
  3031. {"RX_MACRO RX4 MUX", "AIF1_PB", "RX AIF1 PB"},
  3032. {"RX_MACRO RX5 MUX", "AIF1_PB", "RX AIF1 PB"},
  3033. {"RX_MACRO RX0 MUX", "AIF2_PB", "RX AIF2 PB"},
  3034. {"RX_MACRO RX1 MUX", "AIF2_PB", "RX AIF2 PB"},
  3035. {"RX_MACRO RX2 MUX", "AIF2_PB", "RX AIF2 PB"},
  3036. {"RX_MACRO RX3 MUX", "AIF2_PB", "RX AIF2 PB"},
  3037. {"RX_MACRO RX4 MUX", "AIF2_PB", "RX AIF2 PB"},
  3038. {"RX_MACRO RX5 MUX", "AIF2_PB", "RX AIF2 PB"},
  3039. {"RX_MACRO RX0 MUX", "AIF3_PB", "RX AIF3 PB"},
  3040. {"RX_MACRO RX1 MUX", "AIF3_PB", "RX AIF3 PB"},
  3041. {"RX_MACRO RX2 MUX", "AIF3_PB", "RX AIF3 PB"},
  3042. {"RX_MACRO RX3 MUX", "AIF3_PB", "RX AIF3 PB"},
  3043. {"RX_MACRO RX4 MUX", "AIF3_PB", "RX AIF3 PB"},
  3044. {"RX_MACRO RX5 MUX", "AIF3_PB", "RX AIF3 PB"},
  3045. {"RX_MACRO RX0 MUX", "AIF4_PB", "RX AIF4 PB"},
  3046. {"RX_MACRO RX1 MUX", "AIF4_PB", "RX AIF4 PB"},
  3047. {"RX_MACRO RX2 MUX", "AIF4_PB", "RX AIF4 PB"},
  3048. {"RX_MACRO RX3 MUX", "AIF4_PB", "RX AIF4 PB"},
  3049. {"RX_MACRO RX4 MUX", "AIF4_PB", "RX AIF4 PB"},
  3050. {"RX_MACRO RX5 MUX", "AIF4_PB", "RX AIF4 PB"},
  3051. {"RX_RX0", NULL, "RX_MACRO RX0 MUX"},
  3052. {"RX_RX1", NULL, "RX_MACRO RX1 MUX"},
  3053. {"RX_RX2", NULL, "RX_MACRO RX2 MUX"},
  3054. {"RX_RX3", NULL, "RX_MACRO RX3 MUX"},
  3055. {"RX_RX4", NULL, "RX_MACRO RX4 MUX"},
  3056. {"RX_RX5", NULL, "RX_MACRO RX5 MUX"},
  3057. {"RX INT0_1 MIX1 INP0", "RX0", "RX_RX0"},
  3058. {"RX INT0_1 MIX1 INP0", "RX1", "RX_RX1"},
  3059. {"RX INT0_1 MIX1 INP0", "RX2", "RX_RX2"},
  3060. {"RX INT0_1 MIX1 INP0", "RX3", "RX_RX3"},
  3061. {"RX INT0_1 MIX1 INP0", "RX4", "RX_RX4"},
  3062. {"RX INT0_1 MIX1 INP0", "RX5", "RX_RX5"},
  3063. {"RX INT0_1 MIX1 INP0", "IIR0", "IIR0"},
  3064. {"RX INT0_1 MIX1 INP0", "IIR1", "IIR1"},
  3065. {"RX INT0_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3066. {"RX INT0_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3067. {"RX INT0_1 MIX1 INP1", "RX0", "RX_RX0"},
  3068. {"RX INT0_1 MIX1 INP1", "RX1", "RX_RX1"},
  3069. {"RX INT0_1 MIX1 INP1", "RX2", "RX_RX2"},
  3070. {"RX INT0_1 MIX1 INP1", "RX3", "RX_RX3"},
  3071. {"RX INT0_1 MIX1 INP1", "RX4", "RX_RX4"},
  3072. {"RX INT0_1 MIX1 INP1", "RX5", "RX_RX5"},
  3073. {"RX INT0_1 MIX1 INP1", "IIR0", "IIR0"},
  3074. {"RX INT0_1 MIX1 INP1", "IIR1", "IIR1"},
  3075. {"RX INT0_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3076. {"RX INT0_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3077. {"RX INT0_1 MIX1 INP2", "RX0", "RX_RX0"},
  3078. {"RX INT0_1 MIX1 INP2", "RX1", "RX_RX1"},
  3079. {"RX INT0_1 MIX1 INP2", "RX2", "RX_RX2"},
  3080. {"RX INT0_1 MIX1 INP2", "RX3", "RX_RX3"},
  3081. {"RX INT0_1 MIX1 INP2", "RX4", "RX_RX4"},
  3082. {"RX INT0_1 MIX1 INP2", "RX5", "RX_RX5"},
  3083. {"RX INT0_1 MIX1 INP2", "IIR0", "IIR0"},
  3084. {"RX INT0_1 MIX1 INP2", "IIR1", "IIR1"},
  3085. {"RX INT0_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3086. {"RX INT0_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3087. {"RX INT1_1 MIX1 INP0", "RX0", "RX_RX0"},
  3088. {"RX INT1_1 MIX1 INP0", "RX1", "RX_RX1"},
  3089. {"RX INT1_1 MIX1 INP0", "RX2", "RX_RX2"},
  3090. {"RX INT1_1 MIX1 INP0", "RX3", "RX_RX3"},
  3091. {"RX INT1_1 MIX1 INP0", "RX4", "RX_RX4"},
  3092. {"RX INT1_1 MIX1 INP0", "RX5", "RX_RX5"},
  3093. {"RX INT1_1 MIX1 INP0", "IIR0", "IIR0"},
  3094. {"RX INT1_1 MIX1 INP0", "IIR1", "IIR1"},
  3095. {"RX INT1_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3096. {"RX INT1_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3097. {"RX INT1_1 MIX1 INP1", "RX0", "RX_RX0"},
  3098. {"RX INT1_1 MIX1 INP1", "RX1", "RX_RX1"},
  3099. {"RX INT1_1 MIX1 INP1", "RX2", "RX_RX2"},
  3100. {"RX INT1_1 MIX1 INP1", "RX3", "RX_RX3"},
  3101. {"RX INT1_1 MIX1 INP1", "RX4", "RX_RX4"},
  3102. {"RX INT1_1 MIX1 INP1", "RX5", "RX_RX5"},
  3103. {"RX INT1_1 MIX1 INP1", "IIR0", "IIR0"},
  3104. {"RX INT1_1 MIX1 INP1", "IIR1", "IIR1"},
  3105. {"RX INT1_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3106. {"RX INT1_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3107. {"RX INT1_1 MIX1 INP2", "RX0", "RX_RX0"},
  3108. {"RX INT1_1 MIX1 INP2", "RX1", "RX_RX1"},
  3109. {"RX INT1_1 MIX1 INP2", "RX2", "RX_RX2"},
  3110. {"RX INT1_1 MIX1 INP2", "RX3", "RX_RX3"},
  3111. {"RX INT1_1 MIX1 INP2", "RX4", "RX_RX4"},
  3112. {"RX INT1_1 MIX1 INP2", "RX5", "RX_RX5"},
  3113. {"RX INT1_1 MIX1 INP2", "IIR0", "IIR0"},
  3114. {"RX INT1_1 MIX1 INP2", "IIR1", "IIR1"},
  3115. {"RX INT1_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3116. {"RX INT1_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3117. {"RX INT2_1 MIX1 INP0", "RX0", "RX_RX0"},
  3118. {"RX INT2_1 MIX1 INP0", "RX1", "RX_RX1"},
  3119. {"RX INT2_1 MIX1 INP0", "RX2", "RX_RX2"},
  3120. {"RX INT2_1 MIX1 INP0", "RX3", "RX_RX3"},
  3121. {"RX INT2_1 MIX1 INP0", "RX4", "RX_RX4"},
  3122. {"RX INT2_1 MIX1 INP0", "RX5", "RX_RX5"},
  3123. {"RX INT2_1 MIX1 INP0", "IIR0", "IIR0"},
  3124. {"RX INT2_1 MIX1 INP0", "IIR1", "IIR1"},
  3125. {"RX INT2_1 MIX1 INP0", "DEC0", "RX_TX DEC0_INP"},
  3126. {"RX INT2_1 MIX1 INP0", "DEC1", "RX_TX DEC1_INP"},
  3127. {"RX INT2_1 MIX1 INP1", "RX0", "RX_RX0"},
  3128. {"RX INT2_1 MIX1 INP1", "RX1", "RX_RX1"},
  3129. {"RX INT2_1 MIX1 INP1", "RX2", "RX_RX2"},
  3130. {"RX INT2_1 MIX1 INP1", "RX3", "RX_RX3"},
  3131. {"RX INT2_1 MIX1 INP1", "RX4", "RX_RX4"},
  3132. {"RX INT2_1 MIX1 INP1", "RX5", "RX_RX5"},
  3133. {"RX INT2_1 MIX1 INP1", "IIR0", "IIR0"},
  3134. {"RX INT2_1 MIX1 INP1", "IIR1", "IIR1"},
  3135. {"RX INT2_1 MIX1 INP1", "DEC0", "RX_TX DEC0_INP"},
  3136. {"RX INT2_1 MIX1 INP1", "DEC1", "RX_TX DEC1_INP"},
  3137. {"RX INT2_1 MIX1 INP2", "RX0", "RX_RX0"},
  3138. {"RX INT2_1 MIX1 INP2", "RX1", "RX_RX1"},
  3139. {"RX INT2_1 MIX1 INP2", "RX2", "RX_RX2"},
  3140. {"RX INT2_1 MIX1 INP2", "RX3", "RX_RX3"},
  3141. {"RX INT2_1 MIX1 INP2", "RX4", "RX_RX4"},
  3142. {"RX INT2_1 MIX1 INP2", "RX5", "RX_RX5"},
  3143. {"RX INT2_1 MIX1 INP2", "IIR0", "IIR0"},
  3144. {"RX INT2_1 MIX1 INP2", "IIR1", "IIR1"},
  3145. {"RX INT2_1 MIX1 INP2", "DEC0", "RX_TX DEC0_INP"},
  3146. {"RX INT2_1 MIX1 INP2", "DEC1", "RX_TX DEC1_INP"},
  3147. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP0"},
  3148. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP1"},
  3149. {"RX INT0_1 MIX1", NULL, "RX INT0_1 MIX1 INP2"},
  3150. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP0"},
  3151. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP1"},
  3152. {"RX INT1_1 MIX1", NULL, "RX INT1_1 MIX1 INP2"},
  3153. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP0"},
  3154. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP1"},
  3155. {"RX INT2_1 MIX1", NULL, "RX INT2_1 MIX1 INP2"},
  3156. {"RX MIX TX0 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3157. {"RX MIX TX0 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3158. {"RX MIX TX0 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3159. {"RX MIX TX1 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3160. {"RX MIX TX1 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3161. {"RX MIX TX1 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3162. {"RX MIX TX2 MUX", "RX_MIX0", "RX INT0 SEC MIX"},
  3163. {"RX MIX TX2 MUX", "RX_MIX1", "RX INT1 SEC MIX"},
  3164. {"RX MIX TX2 MUX", "RX_MIX2", "RX INT2 SEC MIX"},
  3165. {"RX AIF_ECHO", NULL, "RX MIX TX0 MUX"},
  3166. {"RX AIF_ECHO", NULL, "RX MIX TX1 MUX"},
  3167. {"RX AIF_ECHO", NULL, "RX MIX TX2 MUX"},
  3168. {"RX AIF_ECHO", NULL, "RX_MCLK"},
  3169. /* Mixing path INT0 */
  3170. {"RX INT0_2 MUX", "RX0", "RX_RX0"},
  3171. {"RX INT0_2 MUX", "RX1", "RX_RX1"},
  3172. {"RX INT0_2 MUX", "RX2", "RX_RX2"},
  3173. {"RX INT0_2 MUX", "RX3", "RX_RX3"},
  3174. {"RX INT0_2 MUX", "RX4", "RX_RX4"},
  3175. {"RX INT0_2 MUX", "RX5", "RX_RX5"},
  3176. {"RX INT0_2 INTERP", NULL, "RX INT0_2 MUX"},
  3177. {"RX INT0 SEC MIX", NULL, "RX INT0_2 INTERP"},
  3178. /* Mixing path INT1 */
  3179. {"RX INT1_2 MUX", "RX0", "RX_RX0"},
  3180. {"RX INT1_2 MUX", "RX1", "RX_RX1"},
  3181. {"RX INT1_2 MUX", "RX2", "RX_RX2"},
  3182. {"RX INT1_2 MUX", "RX3", "RX_RX3"},
  3183. {"RX INT1_2 MUX", "RX4", "RX_RX4"},
  3184. {"RX INT1_2 MUX", "RX5", "RX_RX5"},
  3185. {"RX INT1_2 INTERP", NULL, "RX INT1_2 MUX"},
  3186. {"RX INT1 SEC MIX", NULL, "RX INT1_2 INTERP"},
  3187. /* Mixing path INT2 */
  3188. {"RX INT2_2 MUX", "RX0", "RX_RX0"},
  3189. {"RX INT2_2 MUX", "RX1", "RX_RX1"},
  3190. {"RX INT2_2 MUX", "RX2", "RX_RX2"},
  3191. {"RX INT2_2 MUX", "RX3", "RX_RX3"},
  3192. {"RX INT2_2 MUX", "RX4", "RX_RX4"},
  3193. {"RX INT2_2 MUX", "RX5", "RX_RX5"},
  3194. {"RX INT2_2 INTERP", NULL, "RX INT2_2 MUX"},
  3195. {"RX INT2 SEC MIX", NULL, "RX INT2_2 INTERP"},
  3196. {"RX INT0_1 INTERP", NULL, "RX INT0_1 MIX1"},
  3197. {"RX INT0 SEC MIX", NULL, "RX INT0_1 INTERP"},
  3198. {"RX INT0 MIX2", NULL, "RX INT0 SEC MIX"},
  3199. {"RX INT0 MIX2", NULL, "RX INT0 MIX2 INP"},
  3200. {"RX INT0 DEM MUX", "CLSH_DSM_OUT", "RX INT0 MIX2"},
  3201. {"HPHL_OUT", NULL, "RX INT0 DEM MUX"},
  3202. {"HPHL_OUT", NULL, "RX_MCLK"},
  3203. {"RX INT1_1 INTERP", NULL, "RX INT1_1 MIX1"},
  3204. {"RX INT1 SEC MIX", NULL, "RX INT1_1 INTERP"},
  3205. {"RX INT1 MIX2", NULL, "RX INT1 SEC MIX"},
  3206. {"RX INT1 MIX2", NULL, "RX INT1 MIX2 INP"},
  3207. {"RX INT1 DEM MUX", "CLSH_DSM_OUT", "RX INT1 MIX2"},
  3208. {"HPHR_OUT", NULL, "RX INT1 DEM MUX"},
  3209. {"HPHR_OUT", NULL, "RX_MCLK"},
  3210. {"RX INT2_1 INTERP", NULL, "RX INT2_1 MIX1"},
  3211. {"RX INT2_1 VBAT", "RX AUX VBAT Enable", "RX INT2_1 INTERP"},
  3212. {"RX INT2 SEC MIX", NULL, "RX INT2_1 VBAT"},
  3213. {"RX INT2 SEC MIX", NULL, "RX INT2_1 INTERP"},
  3214. {"RX INT2 MIX2", NULL, "RX INT2 SEC MIX"},
  3215. {"RX INT2 MIX2", NULL, "RX INT2 MIX2 INP"},
  3216. {"AUX_OUT", NULL, "RX INT2 MIX2"},
  3217. {"AUX_OUT", NULL, "RX_MCLK"},
  3218. {"IIR0", NULL, "RX_MCLK"},
  3219. {"IIR0", NULL, "IIR0 INP0 MUX"},
  3220. {"IIR0 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3221. {"IIR0 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3222. {"IIR0 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3223. {"IIR0 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3224. {"IIR0 INP0 MUX", "RX0", "RX_RX0"},
  3225. {"IIR0 INP0 MUX", "RX1", "RX_RX1"},
  3226. {"IIR0 INP0 MUX", "RX2", "RX_RX2"},
  3227. {"IIR0 INP0 MUX", "RX3", "RX_RX3"},
  3228. {"IIR0 INP0 MUX", "RX4", "RX_RX4"},
  3229. {"IIR0 INP0 MUX", "RX5", "RX_RX5"},
  3230. {"IIR0", NULL, "IIR0 INP1 MUX"},
  3231. {"IIR0 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3232. {"IIR0 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3233. {"IIR0 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3234. {"IIR0 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3235. {"IIR0 INP1 MUX", "RX0", "RX_RX0"},
  3236. {"IIR0 INP1 MUX", "RX1", "RX_RX1"},
  3237. {"IIR0 INP1 MUX", "RX2", "RX_RX2"},
  3238. {"IIR0 INP1 MUX", "RX3", "RX_RX3"},
  3239. {"IIR0 INP1 MUX", "RX4", "RX_RX4"},
  3240. {"IIR0 INP1 MUX", "RX5", "RX_RX5"},
  3241. {"IIR0", NULL, "IIR0 INP2 MUX"},
  3242. {"IIR0 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3243. {"IIR0 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3244. {"IIR0 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3245. {"IIR0 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3246. {"IIR0 INP2 MUX", "RX0", "RX_RX0"},
  3247. {"IIR0 INP2 MUX", "RX1", "RX_RX1"},
  3248. {"IIR0 INP2 MUX", "RX2", "RX_RX2"},
  3249. {"IIR0 INP2 MUX", "RX3", "RX_RX3"},
  3250. {"IIR0 INP2 MUX", "RX4", "RX_RX4"},
  3251. {"IIR0 INP2 MUX", "RX5", "RX_RX5"},
  3252. {"IIR0", NULL, "IIR0 INP3 MUX"},
  3253. {"IIR0 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3254. {"IIR0 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3255. {"IIR0 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3256. {"IIR0 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3257. {"IIR0 INP3 MUX", "RX0", "RX_RX0"},
  3258. {"IIR0 INP3 MUX", "RX1", "RX_RX1"},
  3259. {"IIR0 INP3 MUX", "RX2", "RX_RX2"},
  3260. {"IIR0 INP3 MUX", "RX3", "RX_RX3"},
  3261. {"IIR0 INP3 MUX", "RX4", "RX_RX4"},
  3262. {"IIR0 INP3 MUX", "RX5", "RX_RX5"},
  3263. {"IIR1", NULL, "RX_MCLK"},
  3264. {"IIR1", NULL, "IIR1 INP0 MUX"},
  3265. {"IIR1 INP0 MUX", "DEC0", "RX_TX DEC0_INP"},
  3266. {"IIR1 INP0 MUX", "DEC1", "RX_TX DEC1_INP"},
  3267. {"IIR1 INP0 MUX", "DEC2", "RX_TX DEC2_INP"},
  3268. {"IIR1 INP0 MUX", "DEC3", "RX_TX DEC3_INP"},
  3269. {"IIR1 INP0 MUX", "RX0", "RX_RX0"},
  3270. {"IIR1 INP0 MUX", "RX1", "RX_RX1"},
  3271. {"IIR1 INP0 MUX", "RX2", "RX_RX2"},
  3272. {"IIR1 INP0 MUX", "RX3", "RX_RX3"},
  3273. {"IIR1 INP0 MUX", "RX4", "RX_RX4"},
  3274. {"IIR1 INP0 MUX", "RX5", "RX_RX5"},
  3275. {"IIR1", NULL, "IIR1 INP1 MUX"},
  3276. {"IIR1 INP1 MUX", "DEC0", "RX_TX DEC0_INP"},
  3277. {"IIR1 INP1 MUX", "DEC1", "RX_TX DEC1_INP"},
  3278. {"IIR1 INP1 MUX", "DEC2", "RX_TX DEC2_INP"},
  3279. {"IIR1 INP1 MUX", "DEC3", "RX_TX DEC3_INP"},
  3280. {"IIR1 INP1 MUX", "RX0", "RX_RX0"},
  3281. {"IIR1 INP1 MUX", "RX1", "RX_RX1"},
  3282. {"IIR1 INP1 MUX", "RX2", "RX_RX2"},
  3283. {"IIR1 INP1 MUX", "RX3", "RX_RX3"},
  3284. {"IIR1 INP1 MUX", "RX4", "RX_RX4"},
  3285. {"IIR1 INP1 MUX", "RX5", "RX_RX5"},
  3286. {"IIR1", NULL, "IIR1 INP2 MUX"},
  3287. {"IIR1 INP2 MUX", "DEC0", "RX_TX DEC0_INP"},
  3288. {"IIR1 INP2 MUX", "DEC1", "RX_TX DEC1_INP"},
  3289. {"IIR1 INP2 MUX", "DEC2", "RX_TX DEC2_INP"},
  3290. {"IIR1 INP2 MUX", "DEC3", "RX_TX DEC3_INP"},
  3291. {"IIR1 INP2 MUX", "RX0", "RX_RX0"},
  3292. {"IIR1 INP2 MUX", "RX1", "RX_RX1"},
  3293. {"IIR1 INP2 MUX", "RX2", "RX_RX2"},
  3294. {"IIR1 INP2 MUX", "RX3", "RX_RX3"},
  3295. {"IIR1 INP2 MUX", "RX4", "RX_RX4"},
  3296. {"IIR1 INP2 MUX", "RX5", "RX_RX5"},
  3297. {"IIR1", NULL, "IIR1 INP3 MUX"},
  3298. {"IIR1 INP3 MUX", "DEC0", "RX_TX DEC0_INP"},
  3299. {"IIR1 INP3 MUX", "DEC1", "RX_TX DEC1_INP"},
  3300. {"IIR1 INP3 MUX", "DEC2", "RX_TX DEC2_INP"},
  3301. {"IIR1 INP3 MUX", "DEC3", "RX_TX DEC3_INP"},
  3302. {"IIR1 INP3 MUX", "RX0", "RX_RX0"},
  3303. {"IIR1 INP3 MUX", "RX1", "RX_RX1"},
  3304. {"IIR1 INP3 MUX", "RX2", "RX_RX2"},
  3305. {"IIR1 INP3 MUX", "RX3", "RX_RX3"},
  3306. {"IIR1 INP3 MUX", "RX4", "RX_RX4"},
  3307. {"IIR1 INP3 MUX", "RX5", "RX_RX5"},
  3308. {"SRC0", NULL, "IIR0"},
  3309. {"SRC1", NULL, "IIR1"},
  3310. {"RX INT0 MIX2 INP", "SRC0", "SRC0"},
  3311. {"RX INT0 MIX2 INP", "SRC1", "SRC1"},
  3312. {"RX INT1 MIX2 INP", "SRC0", "SRC0"},
  3313. {"RX INT1 MIX2 INP", "SRC1", "SRC1"},
  3314. {"RX INT2 MIX2 INP", "SRC0", "SRC0"},
  3315. {"RX INT2 MIX2 INP", "SRC1", "SRC1"},
  3316. };
  3317. static int lpass_cdc_rx_macro_core_vote(void *handle, bool enable)
  3318. {
  3319. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3320. if (rx_priv == NULL) {
  3321. pr_err("%s: rx priv data is NULL\n", __func__);
  3322. return -EINVAL;
  3323. }
  3324. if (enable) {
  3325. pm_runtime_get_sync(rx_priv->dev);
  3326. pm_runtime_put_autosuspend(rx_priv->dev);
  3327. pm_runtime_mark_last_busy(rx_priv->dev);
  3328. }
  3329. if (lpass_cdc_check_core_votes(rx_priv->dev))
  3330. return 0;
  3331. else
  3332. return -EINVAL;
  3333. }
  3334. static int rx_swrm_clock(void *handle, bool enable)
  3335. {
  3336. struct lpass_cdc_rx_macro_priv *rx_priv = (struct lpass_cdc_rx_macro_priv *) handle;
  3337. struct regmap *regmap = dev_get_regmap(rx_priv->dev->parent, NULL);
  3338. int ret = 0;
  3339. if (regmap == NULL) {
  3340. dev_err(rx_priv->dev, "%s: regmap is NULL\n", __func__);
  3341. return -EINVAL;
  3342. }
  3343. mutex_lock(&rx_priv->swr_clk_lock);
  3344. trace_printk("%s: swrm clock %s\n",
  3345. __func__, (enable ? "enable" : "disable"));
  3346. dev_dbg(rx_priv->dev, "%s: swrm clock %s\n",
  3347. __func__, (enable ? "enable" : "disable"));
  3348. if (enable) {
  3349. pm_runtime_get_sync(rx_priv->dev);
  3350. if (rx_priv->swr_clk_users == 0) {
  3351. ret = msm_cdc_pinctrl_select_active_state(
  3352. rx_priv->rx_swr_gpio_p);
  3353. if (ret < 0) {
  3354. dev_err(rx_priv->dev,
  3355. "%s: rx swr pinctrl enable failed\n",
  3356. __func__);
  3357. pm_runtime_mark_last_busy(rx_priv->dev);
  3358. pm_runtime_put_autosuspend(rx_priv->dev);
  3359. goto exit;
  3360. }
  3361. ret = lpass_cdc_rx_macro_mclk_enable(rx_priv, 1, true);
  3362. if (ret < 0) {
  3363. msm_cdc_pinctrl_select_sleep_state(
  3364. rx_priv->rx_swr_gpio_p);
  3365. dev_err(rx_priv->dev,
  3366. "%s: rx request clock enable failed\n",
  3367. __func__);
  3368. pm_runtime_mark_last_busy(rx_priv->dev);
  3369. pm_runtime_put_autosuspend(rx_priv->dev);
  3370. goto exit;
  3371. }
  3372. if (rx_priv->reset_swr)
  3373. regmap_update_bits(regmap,
  3374. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3375. 0x02, 0x02);
  3376. regmap_update_bits(regmap,
  3377. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3378. 0x01, 0x01);
  3379. if (rx_priv->reset_swr)
  3380. regmap_update_bits(regmap,
  3381. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3382. 0x02, 0x00);
  3383. rx_priv->reset_swr = false;
  3384. }
  3385. pm_runtime_mark_last_busy(rx_priv->dev);
  3386. pm_runtime_put_autosuspend(rx_priv->dev);
  3387. rx_priv->swr_clk_users++;
  3388. } else {
  3389. if (rx_priv->swr_clk_users <= 0) {
  3390. dev_err(rx_priv->dev,
  3391. "%s: rx swrm clock users already reset\n",
  3392. __func__);
  3393. rx_priv->swr_clk_users = 0;
  3394. goto exit;
  3395. }
  3396. rx_priv->swr_clk_users--;
  3397. if (rx_priv->swr_clk_users == 0) {
  3398. regmap_update_bits(regmap,
  3399. LPASS_CDC_RX_CLK_RST_CTRL_SWR_CONTROL,
  3400. 0x01, 0x00);
  3401. lpass_cdc_rx_macro_mclk_enable(rx_priv, 0, true);
  3402. ret = msm_cdc_pinctrl_select_sleep_state(
  3403. rx_priv->rx_swr_gpio_p);
  3404. if (ret < 0) {
  3405. dev_err(rx_priv->dev,
  3406. "%s: rx swr pinctrl disable failed\n",
  3407. __func__);
  3408. goto exit;
  3409. }
  3410. }
  3411. }
  3412. trace_printk("%s: swrm clock users %d\n",
  3413. __func__, rx_priv->swr_clk_users);
  3414. dev_dbg(rx_priv->dev, "%s: swrm clock users %d\n",
  3415. __func__, rx_priv->swr_clk_users);
  3416. exit:
  3417. mutex_unlock(&rx_priv->swr_clk_lock);
  3418. return ret;
  3419. }
  3420. static const struct lpass_cdc_rx_macro_reg_mask_val
  3421. lpass_cdc_rx_macro_reg_init[] = {
  3422. {LPASS_CDC_RX_RX0_RX_PATH_SEC7, 0x07, 0x02},
  3423. {LPASS_CDC_RX_RX1_RX_PATH_SEC7, 0x07, 0x02},
  3424. {LPASS_CDC_RX_RX2_RX_PATH_SEC7, 0x07, 0x02},
  3425. {LPASS_CDC_RX_RX0_RX_PATH_CFG3, 0x03, 0x02},
  3426. {LPASS_CDC_RX_RX1_RX_PATH_CFG3, 0x03, 0x02},
  3427. {LPASS_CDC_RX_RX2_RX_PATH_CFG3, 0x03, 0x02},
  3428. };
  3429. static void lpass_cdc_rx_macro_init_bcl_pmic_reg(struct snd_soc_component *component)
  3430. {
  3431. struct device *rx_dev = NULL;
  3432. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3433. if (!component) {
  3434. pr_err("%s: NULL component pointer!\n", __func__);
  3435. return;
  3436. }
  3437. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3438. return;
  3439. switch (rx_priv->bcl_pmic_params.id) {
  3440. case 0:
  3441. /* Enable ID0 to listen to respective PMIC group interrupts */
  3442. snd_soc_component_update_bits(component,
  3443. LPASS_CDC_RX_BCL_VBAT_DECODE_CTL1, 0x02, 0x02);
  3444. /* Update MC_SID0 */
  3445. snd_soc_component_update_bits(component,
  3446. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG1, 0x0F,
  3447. rx_priv->bcl_pmic_params.sid);
  3448. /* Update MC_PPID0 */
  3449. snd_soc_component_update_bits(component,
  3450. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG2, 0xFF,
  3451. rx_priv->bcl_pmic_params.ppid);
  3452. break;
  3453. case 1:
  3454. /* Enable ID1 to listen to respective PMIC group interrupts */
  3455. snd_soc_component_update_bits(component,
  3456. LPASS_CDC_RX_BCL_VBAT_DECODE_CTL1, 0x01, 0x01);
  3457. /* Update MC_SID1 */
  3458. snd_soc_component_update_bits(component,
  3459. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG3, 0x0F,
  3460. rx_priv->bcl_pmic_params.sid);
  3461. /* Update MC_PPID1 */
  3462. snd_soc_component_update_bits(component,
  3463. LPASS_CDC_RX_BCL_VBAT_DECODE_CFG1, 0xFF,
  3464. rx_priv->bcl_pmic_params.ppid);
  3465. break;
  3466. default:
  3467. dev_err(rx_dev, "%s: PMIC ID is invalid %d\n",
  3468. __func__, rx_priv->bcl_pmic_params.id);
  3469. break;
  3470. }
  3471. }
  3472. static int lpass_cdc_rx_macro_init(struct snd_soc_component *component)
  3473. {
  3474. struct snd_soc_dapm_context *dapm =
  3475. snd_soc_component_get_dapm(component);
  3476. int ret = 0;
  3477. struct device *rx_dev = NULL;
  3478. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3479. int i;
  3480. rx_dev = lpass_cdc_get_device_ptr(component->dev, RX_MACRO);
  3481. if (!rx_dev) {
  3482. dev_err(component->dev,
  3483. "%s: null device for macro!\n", __func__);
  3484. return -EINVAL;
  3485. }
  3486. rx_priv = dev_get_drvdata(rx_dev);
  3487. if (!rx_priv) {
  3488. dev_err(component->dev,
  3489. "%s: priv is null for macro!\n", __func__);
  3490. return -EINVAL;
  3491. }
  3492. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_rx_macro_dapm_widgets,
  3493. ARRAY_SIZE(lpass_cdc_rx_macro_dapm_widgets));
  3494. if (ret < 0) {
  3495. dev_err(rx_dev, "%s: failed to add controls\n", __func__);
  3496. return ret;
  3497. }
  3498. ret = snd_soc_dapm_add_routes(dapm, rx_audio_map,
  3499. ARRAY_SIZE(rx_audio_map));
  3500. if (ret < 0) {
  3501. dev_err(rx_dev, "%s: failed to add routes\n", __func__);
  3502. return ret;
  3503. }
  3504. ret = snd_soc_dapm_new_widgets(dapm->card);
  3505. if (ret < 0) {
  3506. dev_err(rx_dev, "%s: failed to add widgets\n", __func__);
  3507. return ret;
  3508. }
  3509. ret = snd_soc_add_component_controls(component, lpass_cdc_rx_macro_snd_controls,
  3510. ARRAY_SIZE(lpass_cdc_rx_macro_snd_controls));
  3511. if (ret < 0) {
  3512. dev_err(rx_dev, "%s: failed to add snd_ctls\n", __func__);
  3513. return ret;
  3514. }
  3515. rx_priv->dev_up = true;
  3516. rx_priv->rx0_gain_val = 0;
  3517. rx_priv->rx1_gain_val = 0;
  3518. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF1 Playback");
  3519. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF2 Playback");
  3520. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF3 Playback");
  3521. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF4 Playback");
  3522. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF5 Playback");
  3523. snd_soc_dapm_ignore_suspend(dapm, "RX_MACRO_AIF6 Playback");
  3524. snd_soc_dapm_ignore_suspend(dapm, "HPHL_OUT");
  3525. snd_soc_dapm_ignore_suspend(dapm, "HPHR_OUT");
  3526. snd_soc_dapm_ignore_suspend(dapm, "AUX_OUT");
  3527. snd_soc_dapm_ignore_suspend(dapm, "PCM_OUT");
  3528. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC0_INP");
  3529. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC1_INP");
  3530. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC2_INP");
  3531. snd_soc_dapm_ignore_suspend(dapm, "RX_TX DEC3_INP");
  3532. snd_soc_dapm_sync(dapm);
  3533. for (i = 0; i < ARRAY_SIZE(lpass_cdc_rx_macro_reg_init); i++)
  3534. snd_soc_component_update_bits(component,
  3535. lpass_cdc_rx_macro_reg_init[i].reg,
  3536. lpass_cdc_rx_macro_reg_init[i].mask,
  3537. lpass_cdc_rx_macro_reg_init[i].val);
  3538. rx_priv->component = component;
  3539. lpass_cdc_rx_macro_init_bcl_pmic_reg(component);
  3540. return 0;
  3541. }
  3542. static int lpass_cdc_rx_macro_deinit(struct snd_soc_component *component)
  3543. {
  3544. struct device *rx_dev = NULL;
  3545. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3546. if (!lpass_cdc_rx_macro_get_data(component, &rx_dev, &rx_priv, __func__))
  3547. return -EINVAL;
  3548. rx_priv->component = NULL;
  3549. return 0;
  3550. }
  3551. static void lpass_cdc_rx_macro_add_child_devices(struct work_struct *work)
  3552. {
  3553. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3554. struct platform_device *pdev = NULL;
  3555. struct device_node *node = NULL;
  3556. struct rx_swr_ctrl_data *swr_ctrl_data = NULL, *temp = NULL;
  3557. int ret = 0;
  3558. u16 count = 0, ctrl_num = 0;
  3559. struct rx_swr_ctrl_platform_data *platdata = NULL;
  3560. char plat_dev_name[RX_SWR_STRING_LEN] = "";
  3561. bool rx_swr_master_node = false;
  3562. rx_priv = container_of(work, struct lpass_cdc_rx_macro_priv,
  3563. lpass_cdc_rx_macro_add_child_devices_work);
  3564. if (!rx_priv) {
  3565. pr_err("%s: Memory for rx_priv does not exist\n",
  3566. __func__);
  3567. return;
  3568. }
  3569. if (!rx_priv->dev) {
  3570. pr_err("%s: RX device does not exist\n", __func__);
  3571. return;
  3572. }
  3573. if(!rx_priv->dev->of_node) {
  3574. dev_err(rx_priv->dev,
  3575. "%s: DT node for RX dev does not exist\n", __func__);
  3576. return;
  3577. }
  3578. platdata = &rx_priv->swr_plat_data;
  3579. rx_priv->child_count = 0;
  3580. for_each_available_child_of_node(rx_priv->dev->of_node, node) {
  3581. rx_swr_master_node = false;
  3582. if (strnstr(node->name, "rx_swr_master",
  3583. strlen("rx_swr_master")) != NULL)
  3584. rx_swr_master_node = true;
  3585. if(rx_swr_master_node)
  3586. strlcpy(plat_dev_name, "rx_swr_ctrl",
  3587. (RX_SWR_STRING_LEN - 1));
  3588. else
  3589. strlcpy(plat_dev_name, node->name,
  3590. (RX_SWR_STRING_LEN - 1));
  3591. pdev = platform_device_alloc(plat_dev_name, -1);
  3592. if (!pdev) {
  3593. dev_err(rx_priv->dev, "%s: pdev memory alloc failed\n",
  3594. __func__);
  3595. ret = -ENOMEM;
  3596. goto err;
  3597. }
  3598. pdev->dev.parent = rx_priv->dev;
  3599. pdev->dev.of_node = node;
  3600. if (rx_swr_master_node) {
  3601. ret = platform_device_add_data(pdev, platdata,
  3602. sizeof(*platdata));
  3603. if (ret) {
  3604. dev_err(&pdev->dev,
  3605. "%s: cannot add plat data ctrl:%d\n",
  3606. __func__, ctrl_num);
  3607. goto fail_pdev_add;
  3608. }
  3609. }
  3610. ret = platform_device_add(pdev);
  3611. if (ret) {
  3612. dev_err(&pdev->dev,
  3613. "%s: Cannot add platform device\n",
  3614. __func__);
  3615. goto fail_pdev_add;
  3616. }
  3617. if (rx_swr_master_node) {
  3618. temp = krealloc(swr_ctrl_data,
  3619. (ctrl_num + 1) * sizeof(
  3620. struct rx_swr_ctrl_data),
  3621. GFP_KERNEL);
  3622. if (!temp) {
  3623. ret = -ENOMEM;
  3624. goto fail_pdev_add;
  3625. }
  3626. swr_ctrl_data = temp;
  3627. swr_ctrl_data[ctrl_num].rx_swr_pdev = pdev;
  3628. ctrl_num++;
  3629. dev_dbg(&pdev->dev,
  3630. "%s: Added soundwire ctrl device(s)\n",
  3631. __func__);
  3632. rx_priv->swr_ctrl_data = swr_ctrl_data;
  3633. }
  3634. if (rx_priv->child_count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX)
  3635. rx_priv->pdev_child_devices[
  3636. rx_priv->child_count++] = pdev;
  3637. else
  3638. goto err;
  3639. }
  3640. return;
  3641. fail_pdev_add:
  3642. for (count = 0; count < rx_priv->child_count; count++)
  3643. platform_device_put(rx_priv->pdev_child_devices[count]);
  3644. err:
  3645. return;
  3646. }
  3647. static void lpass_cdc_rx_macro_init_ops(struct macro_ops *ops, char __iomem *rx_io_base)
  3648. {
  3649. memset(ops, 0, sizeof(struct macro_ops));
  3650. ops->init = lpass_cdc_rx_macro_init;
  3651. ops->exit = lpass_cdc_rx_macro_deinit;
  3652. ops->io_base = rx_io_base;
  3653. ops->dai_ptr = lpass_cdc_rx_macro_dai;
  3654. ops->num_dais = ARRAY_SIZE(lpass_cdc_rx_macro_dai);
  3655. ops->event_handler = lpass_cdc_rx_macro_event_handler;
  3656. ops->set_port_map = lpass_cdc_rx_macro_set_port_map;
  3657. }
  3658. static int lpass_cdc_rx_macro_probe(struct platform_device *pdev)
  3659. {
  3660. struct macro_ops ops = {0};
  3661. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3662. u32 rx_base_addr = 0, muxsel = 0;
  3663. char __iomem *rx_io_base = NULL, *muxsel_io = NULL;
  3664. int ret = 0;
  3665. u8 bcl_pmic_params[3];
  3666. u32 default_clk_id = 0;
  3667. u32 is_used_rx_swr_gpio = 1;
  3668. const char *is_used_rx_swr_gpio_dt = "qcom,is-used-swr-gpio";
  3669. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  3670. dev_err(&pdev->dev,
  3671. "%s: va-macro not registered yet, defer\n", __func__);
  3672. return -EPROBE_DEFER;
  3673. }
  3674. rx_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_rx_macro_priv),
  3675. GFP_KERNEL);
  3676. if (!rx_priv)
  3677. return -ENOMEM;
  3678. rx_priv->dev = &pdev->dev;
  3679. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  3680. &rx_base_addr);
  3681. if (ret) {
  3682. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3683. __func__, "reg");
  3684. return ret;
  3685. }
  3686. ret = of_property_read_u32(pdev->dev.of_node, "qcom,rx_mclk_mode_muxsel",
  3687. &muxsel);
  3688. if (ret) {
  3689. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3690. __func__, "reg");
  3691. return ret;
  3692. }
  3693. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  3694. &default_clk_id);
  3695. if (ret) {
  3696. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3697. __func__, "qcom,default-clk-id");
  3698. default_clk_id = RX_CORE_CLK;
  3699. }
  3700. if (of_find_property(pdev->dev.of_node, is_used_rx_swr_gpio_dt,
  3701. NULL)) {
  3702. ret = of_property_read_u32(pdev->dev.of_node,
  3703. is_used_rx_swr_gpio_dt,
  3704. &is_used_rx_swr_gpio);
  3705. if (ret) {
  3706. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  3707. __func__, is_used_rx_swr_gpio_dt);
  3708. is_used_rx_swr_gpio = 1;
  3709. }
  3710. }
  3711. rx_priv->rx_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  3712. "qcom,rx-swr-gpios", 0);
  3713. if (!rx_priv->rx_swr_gpio_p && is_used_rx_swr_gpio) {
  3714. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  3715. __func__);
  3716. return -EINVAL;
  3717. }
  3718. if (msm_cdc_pinctrl_get_state(rx_priv->rx_swr_gpio_p) < 0 &&
  3719. is_used_rx_swr_gpio) {
  3720. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  3721. __func__);
  3722. return -EPROBE_DEFER;
  3723. }
  3724. msm_cdc_pinctrl_set_wakeup_capable(
  3725. rx_priv->rx_swr_gpio_p, false);
  3726. rx_io_base = devm_ioremap(&pdev->dev, rx_base_addr,
  3727. LPASS_CDC_RX_MACRO_MAX_OFFSET);
  3728. if (!rx_io_base) {
  3729. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  3730. return -ENOMEM;
  3731. }
  3732. rx_priv->rx_io_base = rx_io_base;
  3733. muxsel_io = devm_ioremap(&pdev->dev, muxsel, 0x4);
  3734. if (!muxsel_io) {
  3735. dev_err(&pdev->dev, "%s: ioremap failed for muxsel\n",
  3736. __func__);
  3737. return -ENOMEM;
  3738. }
  3739. rx_priv->rx_mclk_mode_muxsel = muxsel_io;
  3740. rx_priv->reset_swr = true;
  3741. INIT_WORK(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work,
  3742. lpass_cdc_rx_macro_add_child_devices);
  3743. rx_priv->swr_plat_data.handle = (void *) rx_priv;
  3744. rx_priv->swr_plat_data.read = NULL;
  3745. rx_priv->swr_plat_data.write = NULL;
  3746. rx_priv->swr_plat_data.bulk_write = NULL;
  3747. rx_priv->swr_plat_data.clk = rx_swrm_clock;
  3748. rx_priv->swr_plat_data.core_vote = lpass_cdc_rx_macro_core_vote;
  3749. rx_priv->swr_plat_data.handle_irq = NULL;
  3750. ret = of_property_read_u8_array(pdev->dev.of_node,
  3751. "qcom,rx-bcl-pmic-params", bcl_pmic_params,
  3752. sizeof(bcl_pmic_params));
  3753. if (ret) {
  3754. dev_dbg(&pdev->dev, "%s: could not find %s entry in dt\n",
  3755. __func__, "qcom,rx-bcl-pmic-params");
  3756. } else {
  3757. rx_priv->bcl_pmic_params.id = bcl_pmic_params[0];
  3758. rx_priv->bcl_pmic_params.sid = bcl_pmic_params[1];
  3759. rx_priv->bcl_pmic_params.ppid = bcl_pmic_params[2];
  3760. }
  3761. rx_priv->clk_id = default_clk_id;
  3762. rx_priv->default_clk_id = default_clk_id;
  3763. ops.clk_id_req = rx_priv->clk_id;
  3764. ops.default_clk_id = default_clk_id;
  3765. rx_priv->is_aux_hpf_on = 1;
  3766. dev_set_drvdata(&pdev->dev, rx_priv);
  3767. mutex_init(&rx_priv->mclk_lock);
  3768. mutex_init(&rx_priv->swr_clk_lock);
  3769. lpass_cdc_rx_macro_init_ops(&ops, rx_io_base);
  3770. ret = lpass_cdc_register_macro(&pdev->dev, RX_MACRO, &ops);
  3771. if (ret) {
  3772. dev_err(&pdev->dev,
  3773. "%s: register macro failed\n", __func__);
  3774. goto err_reg_macro;
  3775. }
  3776. schedule_work(&rx_priv->lpass_cdc_rx_macro_add_child_devices_work);
  3777. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  3778. pm_runtime_use_autosuspend(&pdev->dev);
  3779. pm_runtime_set_suspended(&pdev->dev);
  3780. pm_suspend_ignore_children(&pdev->dev, true);
  3781. pm_runtime_enable(&pdev->dev);
  3782. return 0;
  3783. err_reg_macro:
  3784. mutex_destroy(&rx_priv->mclk_lock);
  3785. mutex_destroy(&rx_priv->swr_clk_lock);
  3786. return ret;
  3787. }
  3788. static int lpass_cdc_rx_macro_remove(struct platform_device *pdev)
  3789. {
  3790. struct lpass_cdc_rx_macro_priv *rx_priv = NULL;
  3791. u16 count = 0;
  3792. rx_priv = dev_get_drvdata(&pdev->dev);
  3793. if (!rx_priv)
  3794. return -EINVAL;
  3795. for (count = 0; count < rx_priv->child_count &&
  3796. count < LPASS_CDC_RX_MACRO_CHILD_DEVICES_MAX; count++)
  3797. platform_device_unregister(rx_priv->pdev_child_devices[count]);
  3798. pm_runtime_disable(&pdev->dev);
  3799. pm_runtime_set_suspended(&pdev->dev);
  3800. lpass_cdc_unregister_macro(&pdev->dev, RX_MACRO);
  3801. mutex_destroy(&rx_priv->mclk_lock);
  3802. mutex_destroy(&rx_priv->swr_clk_lock);
  3803. kfree(rx_priv->swr_ctrl_data);
  3804. return 0;
  3805. }
  3806. static const struct of_device_id lpass_cdc_rx_macro_dt_match[] = {
  3807. {.compatible = "qcom,lpass-cdc-rx-macro"},
  3808. {}
  3809. };
  3810. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  3811. SET_SYSTEM_SLEEP_PM_OPS(
  3812. pm_runtime_force_suspend,
  3813. pm_runtime_force_resume
  3814. )
  3815. SET_RUNTIME_PM_OPS(
  3816. lpass_cdc_runtime_suspend,
  3817. lpass_cdc_runtime_resume,
  3818. NULL
  3819. )
  3820. };
  3821. static struct platform_driver lpass_cdc_rx_macro_driver = {
  3822. .driver = {
  3823. .name = "lpass_cdc_rx_macro",
  3824. .owner = THIS_MODULE,
  3825. .pm = &lpass_cdc_dev_pm_ops,
  3826. .of_match_table = lpass_cdc_rx_macro_dt_match,
  3827. .suppress_bind_attrs = true,
  3828. },
  3829. .probe = lpass_cdc_rx_macro_probe,
  3830. .remove = lpass_cdc_rx_macro_remove,
  3831. };
  3832. module_platform_driver(lpass_cdc_rx_macro_driver);
  3833. MODULE_DESCRIPTION("RX macro driver");
  3834. MODULE_LICENSE("GPL v2");