msm_cvp_dsp.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/rpmsg.h>
  7. #include <linux/of_platform.h>
  8. #include <linux/of_fdt.h>
  9. #include <soc/qcom/secure_buffer.h>
  10. #include "msm_cvp_core.h"
  11. #include "msm_cvp.h"
  12. #include "cvp_hfi.h"
  13. #include "cvp_dump.h"
  14. struct cvp_dsp_apps gfa_cv;
  15. static int hlosVM[HLOS_VM_NUM] = {VMID_HLOS};
  16. static int dspVM[DSP_VM_NUM] = {VMID_HLOS, VMID_CDSP_Q6};
  17. static int dspVMperm[DSP_VM_NUM] = { PERM_READ | PERM_WRITE | PERM_EXEC,
  18. PERM_READ | PERM_WRITE | PERM_EXEC };
  19. static int hlosVMperm[HLOS_VM_NUM] = { PERM_READ | PERM_WRITE | PERM_EXEC };
  20. static int cvp_reinit_dsp(void);
  21. static int __fastrpc_driver_register(struct fastrpc_driver *driver)
  22. {
  23. #ifdef CVP_FASTRPC_ENABLED
  24. return fastrpc_driver_register(driver);
  25. #else
  26. return -ENODEV;
  27. #endif
  28. }
  29. static void __fastrpc_driver_unregister(struct fastrpc_driver *driver)
  30. {
  31. #ifdef CVP_FASTRPC_ENABLED
  32. return fastrpc_driver_unregister(driver);
  33. #endif
  34. }
  35. static int __fastrpc_driver_invoke(struct fastrpc_device *dev,
  36. enum fastrpc_driver_invoke_nums invoke_num,
  37. unsigned long invoke_param)
  38. {
  39. #ifdef CVP_FASTRPC_ENABLED
  40. return fastrpc_driver_invoke(dev, invoke_num, invoke_param);
  41. #else
  42. return -ENODEV;
  43. #endif
  44. }
  45. static int cvp_dsp_send_cmd(struct cvp_dsp_cmd_msg *cmd, uint32_t len)
  46. {
  47. int rc = 0;
  48. struct cvp_dsp_apps *me = &gfa_cv;
  49. dprintk(CVP_DSP, "%s: cmd = %d\n", __func__, cmd->type);
  50. if (IS_ERR_OR_NULL(me->chan)) {
  51. dprintk(CVP_ERR, "%s: DSP GLink is not ready\n", __func__);
  52. rc = -EINVAL;
  53. goto exit;
  54. }
  55. rc = rpmsg_send(me->chan->ept, cmd, len);
  56. if (rc) {
  57. dprintk(CVP_ERR, "%s: DSP rpmsg_send failed rc=%d\n",
  58. __func__, rc);
  59. goto exit;
  60. }
  61. exit:
  62. return rc;
  63. }
  64. static int cvp_dsp_send_cmd_sync(struct cvp_dsp_cmd_msg *cmd,
  65. uint32_t len, struct cvp_dsp_rsp_msg *rsp)
  66. {
  67. int rc = 0;
  68. struct cvp_dsp_apps *me = &gfa_cv;
  69. dprintk(CVP_DSP, "%s: cmd = %d\n", __func__, cmd->type);
  70. me->pending_dsp2cpu_rsp.type = cmd->type;
  71. rc = cvp_dsp_send_cmd(cmd, len);
  72. if (rc) {
  73. dprintk(CVP_ERR, "%s: cvp_dsp_send_cmd failed rc=%d\n",
  74. __func__, rc);
  75. goto exit;
  76. }
  77. if (!wait_for_completion_timeout(&me->completions[cmd->type],
  78. msecs_to_jiffies(CVP_DSP_RESPONSE_TIMEOUT))) {
  79. dprintk(CVP_ERR, "%s cmd %d timeout\n", __func__, cmd->type);
  80. rc = -ETIMEDOUT;
  81. goto exit;
  82. }
  83. exit:
  84. rsp->ret = me->pending_dsp2cpu_rsp.ret;
  85. rsp->dsp_state = me->pending_dsp2cpu_rsp.dsp_state;
  86. me->pending_dsp2cpu_rsp.type = CVP_INVALID_RPMSG_TYPE;
  87. return rc;
  88. }
  89. static int cvp_dsp_send_cmd_hfi_queue(phys_addr_t *phys_addr,
  90. uint32_t size_in_bytes,
  91. struct cvp_dsp_rsp_msg *rsp)
  92. {
  93. int rc = 0;
  94. struct cvp_dsp_cmd_msg cmd;
  95. cmd.type = CPU2DSP_SEND_HFI_QUEUE;
  96. cmd.msg_ptr = (uint64_t)phys_addr;
  97. cmd.msg_ptr_len = size_in_bytes;
  98. cmd.ddr_type = cvp_of_fdt_get_ddrtype();
  99. if (cmd.ddr_type < 0) {
  100. dprintk(CVP_WARN,
  101. "%s: Incorrect DDR type value %d, use default %d\n",
  102. __func__, cmd.ddr_type, DDR_TYPE_LPDDR5);
  103. /*return -EINVAL;*/
  104. cmd.ddr_type = DDR_TYPE_LPDDR5;
  105. }
  106. dprintk(CVP_DSP,
  107. "%s: address of buffer, PA=0x%pK size_buff=%d ddr_type=%d\n",
  108. __func__, phys_addr, size_in_bytes, cmd.ddr_type);
  109. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), rsp);
  110. if (rc) {
  111. dprintk(CVP_ERR,
  112. "%s: cvp_dsp_send_cmd failed rc = %d\n",
  113. __func__, rc);
  114. goto exit;
  115. }
  116. exit:
  117. return rc;
  118. }
  119. static int cvp_hyp_assign_to_dsp(uint64_t addr, uint32_t size)
  120. {
  121. int rc = 0;
  122. struct cvp_dsp_apps *me = &gfa_cv;
  123. if (!me->hyp_assigned) {
  124. rc = hyp_assign_phys(addr, size, hlosVM, HLOS_VM_NUM, dspVM,
  125. dspVMperm, DSP_VM_NUM);
  126. if (rc) {
  127. dprintk(CVP_ERR, "%s failed. rc=%d\n", __func__, rc);
  128. return rc;
  129. }
  130. me->addr = addr;
  131. me->size = size;
  132. me->hyp_assigned = true;
  133. }
  134. return rc;
  135. }
  136. static int cvp_hyp_assign_from_dsp(void)
  137. {
  138. int rc = 0;
  139. struct cvp_dsp_apps *me = &gfa_cv;
  140. if (me->hyp_assigned) {
  141. rc = hyp_assign_phys(me->addr, me->size, dspVM, DSP_VM_NUM,
  142. hlosVM, hlosVMperm, HLOS_VM_NUM);
  143. if (rc) {
  144. dprintk(CVP_ERR, "%s failed. rc=%d\n", __func__, rc);
  145. return rc;
  146. }
  147. me->addr = 0;
  148. me->size = 0;
  149. me->hyp_assigned = false;
  150. }
  151. return rc;
  152. }
  153. static int cvp_dsp_rpmsg_probe(struct rpmsg_device *rpdev)
  154. {
  155. struct cvp_dsp_apps *me = &gfa_cv;
  156. const char *edge_name = NULL;
  157. int ret = 0;
  158. ret = of_property_read_string(rpdev->dev.parent->of_node,
  159. "label", &edge_name);
  160. if (ret) {
  161. dprintk(CVP_ERR, "glink edge 'label' not found in node\n");
  162. return ret;
  163. }
  164. if (strcmp(edge_name, "cdsp")) {
  165. dprintk(CVP_ERR,
  166. "%s: Failed to probe rpmsg device.Node name:%s\n",
  167. __func__, edge_name);
  168. return -EINVAL;
  169. }
  170. mutex_lock(&me->tx_lock);
  171. me->chan = rpdev;
  172. me->state = DSP_PROBED;
  173. mutex_unlock(&me->tx_lock);
  174. complete(&me->completions[CPU2DSP_MAX_CMD]);
  175. return ret;
  176. }
  177. static int eva_fastrpc_dev_unmap_dma(
  178. struct fastrpc_device *frpc_device,
  179. struct cvp_internal_buf *buf);
  180. static int delete_dsp_session(struct msm_cvp_inst *inst,
  181. struct cvp_dsp_fastrpc_driver_entry *frpc_node)
  182. {
  183. struct msm_cvp_list *buf_list = NULL;
  184. struct list_head *ptr_dsp_buf = NULL, *next_dsp_buf = NULL;
  185. struct cvp_internal_buf *buf = NULL;
  186. struct task_struct *task = NULL;
  187. struct cvp_hfi_device *hdev;
  188. int rc;
  189. if (!inst)
  190. return -EINVAL;
  191. buf_list = &inst->cvpdspbufs;
  192. mutex_lock(&buf_list->lock);
  193. ptr_dsp_buf = &buf_list->list;
  194. list_for_each_safe(ptr_dsp_buf, next_dsp_buf, &buf_list->list) {
  195. buf = list_entry(ptr_dsp_buf, struct cvp_internal_buf, list);
  196. if (buf) {
  197. dprintk(CVP_DSP, "fd in list 0x%x\n", buf->fd);
  198. if (!buf->smem) {
  199. dprintk(CVP_DSP, "Empyt smem\n");
  200. continue;
  201. }
  202. dprintk(CVP_DSP, "%s find device addr 0x%x\n",
  203. __func__, buf->smem->device_addr);
  204. rc = eva_fastrpc_dev_unmap_dma(
  205. frpc_node->cvp_fastrpc_device,
  206. buf);
  207. if (rc)
  208. dprintk(CVP_WARN,
  209. "%s Failed to unmap buffer 0x%x\n",
  210. __func__, rc);
  211. rc = cvp_release_dsp_buffers(inst, buf);
  212. if (rc)
  213. dprintk(CVP_ERR,
  214. "%s Failed to free buffer 0x%x\n",
  215. __func__, rc);
  216. list_del(&buf->list);
  217. kmem_cache_free(cvp_driver->buf_cache, buf);
  218. }
  219. }
  220. mutex_unlock(&buf_list->lock);
  221. task = inst->task;
  222. spin_lock(&inst->core->resources.pm_qos.lock);
  223. if (inst->core->resources.pm_qos.off_vote_cnt > 0)
  224. inst->core->resources.pm_qos.off_vote_cnt--;
  225. else
  226. dprintk(CVP_WARN, "%s Unexpected pm_qos off vote %d\n",
  227. __func__,
  228. inst->core->resources.pm_qos.off_vote_cnt);
  229. spin_unlock(&inst->core->resources.pm_qos.lock);
  230. hdev = inst->core->device;
  231. call_hfi_op(hdev, pm_qos_update, hdev->hfi_device_data);
  232. rc = msm_cvp_close(inst);
  233. if (rc)
  234. dprintk(CVP_ERR, "Warning: Failed to close cvp instance\n");
  235. if (task)
  236. put_task_struct(task);
  237. dprintk(CVP_DSP, "%s DSP2CPU_DETELE_SESSION Done\n", __func__);
  238. return rc;
  239. }
  240. static int eva_fastrpc_driver_get_name(
  241. struct cvp_dsp_fastrpc_driver_entry *frpc_node)
  242. {
  243. int i = 0;
  244. struct cvp_dsp_apps *me = &gfa_cv;
  245. for (i = 0; i < MAX_FASTRPC_DRIVER_NUM; i++) {
  246. if (me->cvp_fastrpc_name[i].status == DRIVER_NAME_AVAILABLE) {
  247. frpc_node->driver_name_idx = i;
  248. frpc_node->cvp_fastrpc_driver.driver.name =
  249. me->cvp_fastrpc_name[i].name;
  250. me->cvp_fastrpc_name[i].status = DRIVER_NAME_USED;
  251. dprintk(CVP_DSP, "%s -> handle 0x%x get name %s\n",
  252. __func__, frpc_node->cvp_fastrpc_driver.handle,
  253. frpc_node->cvp_fastrpc_driver.driver.name);
  254. return 0;
  255. }
  256. }
  257. return -1;
  258. }
  259. static void eva_fastrpc_driver_release_name(
  260. struct cvp_dsp_fastrpc_driver_entry *frpc_node)
  261. {
  262. struct cvp_dsp_apps *me = &gfa_cv;
  263. me->cvp_fastrpc_name[frpc_node->driver_name_idx].status =
  264. DRIVER_NAME_AVAILABLE;
  265. }
  266. static struct cvp_dsp_fastrpc_driver_entry *dequeue_frpc_node(void)
  267. {
  268. struct cvp_dsp_apps *me = &gfa_cv;
  269. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  270. struct list_head *ptr = NULL, *next = NULL;
  271. ptr = &me->fastrpc_driver_list.list;
  272. mutex_lock(&me->fastrpc_driver_list.lock);
  273. list_for_each_safe(ptr, next, &me->fastrpc_driver_list.list) {
  274. frpc_node = list_entry(ptr,
  275. struct cvp_dsp_fastrpc_driver_entry, list);
  276. if (frpc_node) {
  277. list_del(&frpc_node->list);
  278. break;
  279. }
  280. }
  281. mutex_unlock(&me->fastrpc_driver_list.lock);
  282. return frpc_node;
  283. }
  284. static void cvp_dsp_rpmsg_remove(struct rpmsg_device *rpdev)
  285. {
  286. struct cvp_dsp_apps *me = &gfa_cv;
  287. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  288. struct msm_cvp_inst *inst = NULL;
  289. struct list_head *s = NULL, *next_s = NULL;
  290. u32 max_num_retries = 100;
  291. dprintk(CVP_WARN, "%s: CDSP SSR triggered\n", __func__);
  292. mutex_lock(&me->rx_lock);
  293. while (max_num_retries > 0) {
  294. if (me->pending_dsp2cpu_cmd.type !=
  295. CVP_INVALID_RPMSG_TYPE) {
  296. mutex_unlock(&me->rx_lock);
  297. usleep_range(1000, 5000);
  298. mutex_lock(&me->rx_lock);
  299. } else {
  300. break;
  301. }
  302. max_num_retries--;
  303. }
  304. if (!max_num_retries)
  305. dprintk(CVP_ERR, "stuck processing pending DSP cmds\n");
  306. mutex_lock(&me->tx_lock);
  307. cvp_hyp_assign_from_dsp();
  308. me->chan = NULL;
  309. me->state = DSP_UNINIT;
  310. mutex_unlock(&me->tx_lock);
  311. mutex_unlock(&me->rx_lock);
  312. while ((frpc_node = dequeue_frpc_node())) {
  313. s = &frpc_node->dsp_sessions.list;
  314. list_for_each_safe(s, next_s,
  315. &frpc_node->dsp_sessions.list) {
  316. inst = list_entry(s, struct msm_cvp_inst,
  317. dsp_list);
  318. if (inst) {
  319. delete_dsp_session(inst, frpc_node);
  320. mutex_lock(&frpc_node->dsp_sessions.lock);
  321. list_del(&inst->dsp_list);
  322. frpc_node->session_cnt--;
  323. mutex_unlock(&frpc_node->dsp_sessions.lock);
  324. }
  325. }
  326. dprintk(CVP_DSP, "%s DEINIT_MSM_CVP_LIST 0x%x\n",
  327. __func__, frpc_node->dsp_sessions);
  328. DEINIT_MSM_CVP_LIST(&frpc_node->dsp_sessions);
  329. dprintk(CVP_DSP, "%s list_del fastrpc node 0x%x\n",
  330. __func__, frpc_node);
  331. __fastrpc_driver_unregister(
  332. &frpc_node->cvp_fastrpc_driver);
  333. dprintk(CVP_DSP,
  334. "%s Unregistered fastrpc handle 0x%x\n",
  335. __func__, frpc_node->handle);
  336. mutex_lock(&me->driver_name_lock);
  337. eva_fastrpc_driver_release_name(frpc_node);
  338. mutex_unlock(&me->driver_name_lock);
  339. kfree(frpc_node);
  340. frpc_node = NULL;
  341. }
  342. dprintk(CVP_WARN, "%s: CDSP SSR handled\n", __func__);
  343. }
  344. static int cvp_dsp_rpmsg_callback(struct rpmsg_device *rpdev,
  345. void *data, int len, void *priv, u32 addr)
  346. {
  347. struct cvp_dsp_rsp_msg *rsp = (struct cvp_dsp_rsp_msg *)data;
  348. struct cvp_dsp_apps *me = &gfa_cv;
  349. dprintk(CVP_DSP, "%s: type = 0x%x ret = 0x%x len = 0x%x\n",
  350. __func__, rsp->type, rsp->ret, len);
  351. if (rsp->type < CPU2DSP_MAX_CMD && len == sizeof(*rsp)) {
  352. if (me->pending_dsp2cpu_rsp.type == rsp->type) {
  353. memcpy(&me->pending_dsp2cpu_rsp, rsp,
  354. sizeof(struct cvp_dsp_rsp_msg));
  355. complete(&me->completions[rsp->type]);
  356. } else {
  357. dprintk(CVP_ERR, "%s: CPU2DSP resp %d, pending %d\n",
  358. __func__, rsp->type,
  359. me->pending_dsp2cpu_rsp.type);
  360. goto exit;
  361. }
  362. } else if (rsp->type < CVP_DSP_MAX_CMD &&
  363. len == sizeof(struct cvp_dsp2cpu_cmd_msg)) {
  364. if (me->pending_dsp2cpu_cmd.type != CVP_INVALID_RPMSG_TYPE) {
  365. dprintk(CVP_ERR,
  366. "%s: DSP2CPU cmd:%d pending %d %d expect %d\n",
  367. __func__, rsp->type,
  368. me->pending_dsp2cpu_cmd.type, len,
  369. sizeof(struct cvp_dsp2cpu_cmd_msg));
  370. goto exit;
  371. }
  372. memcpy(&me->pending_dsp2cpu_cmd, rsp,
  373. sizeof(struct cvp_dsp2cpu_cmd_msg));
  374. complete(&me->completions[CPU2DSP_MAX_CMD]);
  375. } else {
  376. dprintk(CVP_ERR, "%s: Invalid type: %d\n", __func__, rsp->type);
  377. return 0;
  378. }
  379. return 0;
  380. exit:
  381. dprintk(CVP_ERR, "concurrent dsp cmd type = %d, rsp type = %d\n",
  382. me->pending_dsp2cpu_cmd.type,
  383. me->pending_dsp2cpu_rsp.type);
  384. return 0;
  385. }
  386. int cvp_dsp_suspend(uint32_t session_flag)
  387. {
  388. int rc = 0;
  389. struct cvp_dsp_cmd_msg cmd;
  390. struct cvp_dsp_apps *me = &gfa_cv;
  391. struct cvp_dsp_rsp_msg rsp;
  392. bool retried = false;
  393. cmd.type = CPU2DSP_SUSPEND;
  394. mutex_lock(&me->tx_lock);
  395. if (me->state != DSP_READY)
  396. goto exit;
  397. retry:
  398. /* Use cvp_dsp_send_cmd_sync after dsp driver is ready */
  399. rc = cvp_dsp_send_cmd_sync(&cmd,
  400. sizeof(struct cvp_dsp_cmd_msg),
  401. &rsp);
  402. if (rc) {
  403. dprintk(CVP_ERR,
  404. "%s: cvp_dsp_send_cmd failed rc = %d\n",
  405. __func__, rc);
  406. goto exit;
  407. }
  408. if (rsp.ret == CPU2DSP_EUNAVAILABLE)
  409. goto fatal_exit;
  410. if (rsp.ret == CPU2DSP_EFATAL) {
  411. dprintk(CVP_ERR, "%s: suspend dsp got EFATAL error\n",
  412. __func__);
  413. if (!retried) {
  414. mutex_unlock(&me->tx_lock);
  415. retried = true;
  416. rc = cvp_reinit_dsp();
  417. mutex_lock(&me->tx_lock);
  418. if (rc)
  419. goto fatal_exit;
  420. else
  421. goto retry;
  422. } else {
  423. goto fatal_exit;
  424. }
  425. }
  426. me->state = DSP_SUSPEND;
  427. goto exit;
  428. fatal_exit:
  429. me->state = DSP_INVALID;
  430. cvp_hyp_assign_from_dsp();
  431. rc = -ENOTSUPP;
  432. exit:
  433. mutex_unlock(&me->tx_lock);
  434. return rc;
  435. }
  436. int cvp_dsp_resume(uint32_t session_flag)
  437. {
  438. int rc = 0;
  439. struct cvp_dsp_cmd_msg cmd;
  440. struct cvp_dsp_apps *me = &gfa_cv;
  441. cmd.type = CPU2DSP_RESUME;
  442. /*
  443. * Deadlock against DSP2CPU_CREATE_SESSION in dsp_thread
  444. * Probably get rid of this entirely as discussed before
  445. */
  446. if (me->state != DSP_SUSPEND)
  447. dprintk(CVP_WARN, "%s DSP not in SUSPEND state\n", __func__);
  448. return rc;
  449. }
  450. static void cvp_remove_dsp_process_sess(
  451. struct cvp_dsp_fastrpc_driver_entry *frpc_node)
  452. {
  453. struct msm_cvp_inst *inst = NULL;
  454. struct list_head *s = NULL, *next_s = NULL;
  455. s = &frpc_node->dsp_sessions.list;
  456. list_for_each_safe(s, next_s, &frpc_node->dsp_sessions.list) {
  457. inst = list_entry(s, struct msm_cvp_inst, dsp_list);
  458. delete_dsp_session(inst, frpc_node);
  459. }
  460. }
  461. static void cvp_remove_dsp_sessions(void)
  462. {
  463. struct cvp_dsp_apps *me = &gfa_cv;
  464. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  465. struct list_head *ptr = NULL, *next = NULL;
  466. dprintk(CVP_WARN, "%s: EVA SSR triggered, clean cdsp eva sessions\n",
  467. __func__);
  468. ptr = &me->fastrpc_driver_list.list;
  469. mutex_lock(&me->fastrpc_driver_list.lock);
  470. list_for_each_safe(ptr, next, &me->fastrpc_driver_list.list) {
  471. frpc_node = list_entry(ptr,
  472. struct cvp_dsp_fastrpc_driver_entry, list);
  473. if (frpc_node) {
  474. cvp_remove_dsp_process_sess(frpc_node);
  475. list_del(&frpc_node->list);
  476. __fastrpc_driver_unregister(&frpc_node->cvp_fastrpc_driver);
  477. mutex_lock(&me->driver_name_lock);
  478. eva_fastrpc_driver_release_name(frpc_node);
  479. mutex_unlock(&me->driver_name_lock);
  480. kfree(frpc_node);
  481. }
  482. }
  483. mutex_unlock(&me->fastrpc_driver_list.lock);
  484. dprintk(CVP_WARN, "%s: EVA SSR handled for CDSP\n", __func__);
  485. }
  486. int cvp_dsp_shutdown(uint32_t session_flag)
  487. {
  488. struct cvp_dsp_apps *me = &gfa_cv;
  489. int rc = 0;
  490. struct cvp_dsp_cmd_msg cmd;
  491. struct cvp_dsp_rsp_msg rsp;
  492. cmd.type = CPU2DSP_SHUTDOWN;
  493. mutex_lock(&me->tx_lock);
  494. if (me->state == DSP_INVALID)
  495. goto exit;
  496. me->state = DSP_INACTIVE;
  497. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  498. if (rc) {
  499. dprintk(CVP_ERR,
  500. "%s: cvp_dsp_send_cmd failed with rc = %d\n",
  501. __func__, rc);
  502. cvp_hyp_assign_from_dsp();
  503. goto exit;
  504. }
  505. rc = cvp_hyp_assign_from_dsp();
  506. exit:
  507. mutex_unlock(&me->tx_lock);
  508. return rc;
  509. }
  510. int cvp_dsp_register_buffer(uint32_t session_id, uint32_t buff_fd,
  511. uint32_t buff_fd_size, uint32_t buff_size,
  512. uint32_t buff_offset, uint32_t buff_index,
  513. uint32_t buff_fd_iova)
  514. {
  515. struct cvp_dsp_cmd_msg cmd;
  516. int rc;
  517. struct cvp_dsp_apps *me = &gfa_cv;
  518. struct cvp_dsp_rsp_msg rsp;
  519. bool retried = false;
  520. cmd.type = CPU2DSP_REGISTER_BUFFER;
  521. cmd.session_id = session_id;
  522. cmd.buff_fd = buff_fd;
  523. cmd.buff_fd_size = buff_fd_size;
  524. cmd.buff_size = buff_size;
  525. cmd.buff_offset = buff_offset;
  526. cmd.buff_index = buff_index;
  527. cmd.buff_fd_iova = buff_fd_iova;
  528. dprintk(CVP_DSP,
  529. "%s: type=0x%x, buff_fd_iova=0x%x buff_index=0x%x\n",
  530. __func__, cmd.type, buff_fd_iova,
  531. cmd.buff_index);
  532. dprintk(CVP_DSP, "%s: buff_size=0x%x session_id=0x%x\n",
  533. __func__, cmd.buff_size, cmd.session_id);
  534. mutex_lock(&me->tx_lock);
  535. retry:
  536. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  537. if (rc) {
  538. dprintk(CVP_ERR, "%s send failed rc = %d\n", __func__, rc);
  539. goto exit;
  540. }
  541. if (rsp.ret == CPU2DSP_EFAIL || rsp.ret == CPU2DSP_EUNSUPPORTED) {
  542. dprintk(CVP_WARN, "%s, DSP return err %d\n", __func__, rsp.ret);
  543. rc = -EINVAL;
  544. goto exit;
  545. }
  546. if (rsp.ret == CPU2DSP_EUNAVAILABLE)
  547. goto fatal_exit;
  548. if (rsp.ret == CPU2DSP_EFATAL) {
  549. if (!retried) {
  550. mutex_unlock(&me->tx_lock);
  551. retried = true;
  552. rc = cvp_reinit_dsp();
  553. mutex_lock(&me->tx_lock);
  554. if (rc)
  555. goto fatal_exit;
  556. else
  557. goto retry;
  558. } else {
  559. goto fatal_exit;
  560. }
  561. }
  562. goto exit;
  563. fatal_exit:
  564. me->state = DSP_INVALID;
  565. cvp_hyp_assign_from_dsp();
  566. rc = -ENOTSUPP;
  567. exit:
  568. mutex_unlock(&me->tx_lock);
  569. return rc;
  570. }
  571. int cvp_dsp_deregister_buffer(uint32_t session_id, uint32_t buff_fd,
  572. uint32_t buff_fd_size, uint32_t buff_size,
  573. uint32_t buff_offset, uint32_t buff_index,
  574. uint32_t buff_fd_iova)
  575. {
  576. struct cvp_dsp_cmd_msg cmd;
  577. int rc;
  578. struct cvp_dsp_apps *me = &gfa_cv;
  579. struct cvp_dsp_rsp_msg rsp;
  580. bool retried = false;
  581. cmd.type = CPU2DSP_DEREGISTER_BUFFER;
  582. cmd.session_id = session_id;
  583. cmd.buff_fd = buff_fd;
  584. cmd.buff_fd_size = buff_fd_size;
  585. cmd.buff_size = buff_size;
  586. cmd.buff_offset = buff_offset;
  587. cmd.buff_index = buff_index;
  588. cmd.buff_fd_iova = buff_fd_iova;
  589. dprintk(CVP_DSP,
  590. "%s: type=0x%x, buff_fd_iova=0x%x buff_index=0x%x\n",
  591. __func__, cmd.type, buff_fd_iova,
  592. cmd.buff_index);
  593. dprintk(CVP_DSP, "%s: buff_size=0x%x session_id=0x%x\n",
  594. __func__, cmd.buff_size, cmd.session_id);
  595. mutex_lock(&me->tx_lock);
  596. retry:
  597. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  598. if (rc) {
  599. dprintk(CVP_ERR, "%s send failed rc = %d\n", __func__, rc);
  600. goto exit;
  601. }
  602. if (rsp.ret == CPU2DSP_EFAIL || rsp.ret == CPU2DSP_EUNSUPPORTED) {
  603. dprintk(CVP_WARN, "%s, DSP return err %d\n", __func__, rsp.ret);
  604. rc = -EINVAL;
  605. goto exit;
  606. }
  607. if (rsp.ret == CPU2DSP_EUNAVAILABLE)
  608. goto fatal_exit;
  609. if (rsp.ret == CPU2DSP_EFATAL) {
  610. if (!retried) {
  611. mutex_unlock(&me->tx_lock);
  612. retried = true;
  613. rc = cvp_reinit_dsp();
  614. mutex_lock(&me->tx_lock);
  615. if (rc)
  616. goto fatal_exit;
  617. else
  618. goto retry;
  619. } else {
  620. goto fatal_exit;
  621. }
  622. }
  623. goto exit;
  624. fatal_exit:
  625. me->state = DSP_INVALID;
  626. cvp_hyp_assign_from_dsp();
  627. rc = -ENOTSUPP;
  628. exit:
  629. mutex_unlock(&me->tx_lock);
  630. return rc;
  631. }
  632. static const struct rpmsg_device_id cvp_dsp_rpmsg_match[] = {
  633. { CVP_APPS_DSP_GLINK_GUID },
  634. { },
  635. };
  636. static struct rpmsg_driver cvp_dsp_rpmsg_client = {
  637. .id_table = cvp_dsp_rpmsg_match,
  638. .probe = cvp_dsp_rpmsg_probe,
  639. .remove = cvp_dsp_rpmsg_remove,
  640. .callback = cvp_dsp_rpmsg_callback,
  641. .drv = {
  642. .name = "qcom,msm_cvp_dsp_rpmsg",
  643. },
  644. };
  645. static void cvp_dsp_set_queue_hdr_defaults(struct cvp_hfi_queue_header *q_hdr)
  646. {
  647. q_hdr->qhdr_status = 0x1;
  648. q_hdr->qhdr_type = CVP_IFACEQ_DFLT_QHDR;
  649. q_hdr->qhdr_q_size = CVP_IFACEQ_QUEUE_SIZE / 4;
  650. q_hdr->qhdr_pkt_size = 0;
  651. q_hdr->qhdr_rx_wm = 0x1;
  652. q_hdr->qhdr_tx_wm = 0x1;
  653. q_hdr->qhdr_rx_req = 0x1;
  654. q_hdr->qhdr_tx_req = 0x0;
  655. q_hdr->qhdr_rx_irq_status = 0x0;
  656. q_hdr->qhdr_tx_irq_status = 0x0;
  657. q_hdr->qhdr_read_idx = 0x0;
  658. q_hdr->qhdr_write_idx = 0x0;
  659. }
  660. void cvp_dsp_init_hfi_queue_hdr(struct iris_hfi_device *device)
  661. {
  662. u32 i;
  663. struct cvp_hfi_queue_table_header *q_tbl_hdr;
  664. struct cvp_hfi_queue_header *q_hdr;
  665. struct cvp_iface_q_info *iface_q;
  666. for (i = 0; i < CVP_IFACEQ_NUMQ; i++) {
  667. iface_q = &device->dsp_iface_queues[i];
  668. iface_q->q_hdr = CVP_IFACEQ_GET_QHDR_START_ADDR(
  669. device->dsp_iface_q_table.align_virtual_addr, i);
  670. cvp_dsp_set_queue_hdr_defaults(iface_q->q_hdr);
  671. }
  672. q_tbl_hdr = (struct cvp_hfi_queue_table_header *)
  673. device->dsp_iface_q_table.align_virtual_addr;
  674. q_tbl_hdr->qtbl_version = 0;
  675. q_tbl_hdr->device_addr = (void *)device;
  676. strlcpy(q_tbl_hdr->name, "msm_cvp", sizeof(q_tbl_hdr->name));
  677. q_tbl_hdr->qtbl_size = CVP_IFACEQ_TABLE_SIZE;
  678. q_tbl_hdr->qtbl_qhdr0_offset =
  679. sizeof(struct cvp_hfi_queue_table_header);
  680. q_tbl_hdr->qtbl_qhdr_size = sizeof(struct cvp_hfi_queue_header);
  681. q_tbl_hdr->qtbl_num_q = CVP_IFACEQ_NUMQ;
  682. q_tbl_hdr->qtbl_num_active_q = CVP_IFACEQ_NUMQ;
  683. iface_q = &device->dsp_iface_queues[CVP_IFACEQ_CMDQ_IDX];
  684. q_hdr = iface_q->q_hdr;
  685. q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
  686. q_hdr->qhdr_type |= HFI_Q_ID_HOST_TO_CTRL_CMD_Q;
  687. iface_q = &device->dsp_iface_queues[CVP_IFACEQ_MSGQ_IDX];
  688. q_hdr = iface_q->q_hdr;
  689. q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
  690. q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_MSG_Q;
  691. iface_q = &device->dsp_iface_queues[CVP_IFACEQ_DBGQ_IDX];
  692. q_hdr = iface_q->q_hdr;
  693. q_hdr->qhdr_start_addr = iface_q->q_array.align_device_addr;
  694. q_hdr->qhdr_type |= HFI_Q_ID_CTRL_TO_HOST_DEBUG_Q;
  695. /*
  696. * Set receive request to zero on debug queue as there is no
  697. * need of interrupt from cvp hardware for debug messages
  698. */
  699. q_hdr->qhdr_rx_req = 0;
  700. }
  701. static int __reinit_dsp(void)
  702. {
  703. int rc;
  704. uint32_t flag = 0;
  705. uint64_t addr;
  706. uint32_t size;
  707. struct cvp_dsp_apps *me = &gfa_cv;
  708. struct cvp_dsp_rsp_msg rsp;
  709. struct msm_cvp_core *core;
  710. struct iris_hfi_device *device;
  711. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  712. if (core && core->device)
  713. device = core->device->hfi_device_data;
  714. else
  715. return -EINVAL;
  716. if (!device) {
  717. dprintk(CVP_ERR, "%s: NULL device\n", __func__);
  718. return -EINVAL;
  719. }
  720. /* Force shutdown DSP */
  721. rc = cvp_dsp_shutdown(flag);
  722. if (rc)
  723. return rc;
  724. /*
  725. * Workaround to force delete DSP session resources
  726. * To be removed after DSP optimization ready
  727. */
  728. cvp_remove_dsp_sessions();
  729. /* Resend HFI queue */
  730. mutex_lock(&me->tx_lock);
  731. if (!device->dsp_iface_q_table.align_virtual_addr) {
  732. dprintk(CVP_ERR, "%s: DSP HFI queue released\n", __func__);
  733. rc = -EINVAL;
  734. goto exit;
  735. }
  736. addr = (uint64_t)device->dsp_iface_q_table.mem_data.dma_handle;
  737. size = device->dsp_iface_q_table.mem_data.size;
  738. if (!addr || !size) {
  739. dprintk(CVP_DSP, "%s: HFI queue is not ready\n", __func__);
  740. goto exit;
  741. }
  742. rc = cvp_hyp_assign_to_dsp(addr, size);
  743. if (rc) {
  744. dprintk(CVP_ERR, "%s: cvp_hyp_assign_to_dsp. rc=%d\n",
  745. __func__, rc);
  746. goto exit;
  747. }
  748. rc = cvp_dsp_send_cmd_hfi_queue((phys_addr_t *)addr, size, &rsp);
  749. if (rc) {
  750. dprintk(CVP_WARN, "%s: Send HFI Queue failed rc = %d\n",
  751. __func__, rc);
  752. goto exit;
  753. }
  754. if (rsp.ret) {
  755. dprintk(CVP_ERR, "%s: DSP error %d %d\n", __func__,
  756. rsp.ret, rsp.dsp_state);
  757. rc = -ENODEV;
  758. }
  759. exit:
  760. mutex_unlock(&me->tx_lock);
  761. return rc;
  762. }
  763. static int cvp_reinit_dsp(void)
  764. {
  765. int rc;
  766. struct cvp_dsp_apps *me = &gfa_cv;
  767. rc = __reinit_dsp();
  768. if (rc) {
  769. mutex_lock(&me->tx_lock);
  770. me->state = DSP_INVALID;
  771. cvp_hyp_assign_from_dsp();
  772. mutex_unlock(&me->tx_lock);
  773. }
  774. return rc;
  775. }
  776. static struct cvp_dsp_fastrpc_driver_entry *cvp_find_fastrpc_node_with_handle(
  777. uint32_t handle)
  778. {
  779. struct cvp_dsp_apps *me = &gfa_cv;
  780. struct list_head *ptr = NULL, *next = NULL;
  781. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL, *tmp_node = NULL;
  782. mutex_lock(&me->fastrpc_driver_list.lock);
  783. list_for_each_safe(ptr, next, &me->fastrpc_driver_list.list) {
  784. tmp_node = list_entry(ptr,
  785. struct cvp_dsp_fastrpc_driver_entry, list);
  786. if (handle == tmp_node->handle) {
  787. frpc_node = tmp_node;
  788. dprintk(CVP_DSP, "Find tmp_node with handle 0x%x\n",
  789. handle);
  790. break;
  791. }
  792. }
  793. mutex_unlock(&me->fastrpc_driver_list.lock);
  794. dprintk(CVP_DSP, "%s found fastrpc probe handle %pK pid 0x%x\n",
  795. __func__, frpc_node, handle);
  796. return frpc_node;
  797. }
  798. static void eva_fastrpc_driver_unregister(uint32_t handle, bool force_exit);
  799. static int cvp_fastrpc_probe(struct fastrpc_device *rpc_dev)
  800. {
  801. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  802. dprintk(CVP_DSP, "%s fastrpc probe handle 0x%x\n",
  803. __func__, rpc_dev->handle);
  804. frpc_node = cvp_find_fastrpc_node_with_handle(rpc_dev->handle);
  805. if (frpc_node) {
  806. frpc_node->cvp_fastrpc_device = rpc_dev;
  807. // static structure with signal and pid
  808. complete(&frpc_node->fastrpc_probe_completion);
  809. }
  810. return 0;
  811. }
  812. static int cvp_fastrpc_callback(struct fastrpc_device *rpc_dev,
  813. enum fastrpc_driver_status fastrpc_proc_num)
  814. {
  815. dprintk(CVP_DSP, "%s handle 0x%x, proc %d\n", __func__,
  816. rpc_dev->handle, fastrpc_proc_num);
  817. /* fastrpc drive down when process gone
  818. * any handling can happen here, such as
  819. * eva_fastrpc_driver_unregister(rpc_dev->handle, true);
  820. */
  821. eva_fastrpc_driver_unregister(rpc_dev->handle, true);
  822. return 0;
  823. }
  824. static struct fastrpc_driver cvp_fastrpc_client = {
  825. .probe = cvp_fastrpc_probe,
  826. .callback = cvp_fastrpc_callback,
  827. };
  828. static int eva_fastrpc_dev_map_dma(struct fastrpc_device *frpc_device,
  829. struct cvp_internal_buf *buf,
  830. uint32_t dsp_remote_map,
  831. uint64_t *v_dsp_addr)
  832. {
  833. struct fastrpc_dev_map_dma frpc_map_buf = {0};
  834. int rc = 0;
  835. if (dsp_remote_map == 1) {
  836. frpc_map_buf.buf = buf->smem->dma_buf;
  837. frpc_map_buf.size = buf->smem->size;
  838. frpc_map_buf.attrs = 0;
  839. dprintk(CVP_DSP,
  840. "%s frpc_map_buf size %d, dma_buf %pK, map %pK, 0x%x\n",
  841. __func__, frpc_map_buf.size, frpc_map_buf.buf,
  842. &frpc_map_buf, (unsigned long)&frpc_map_buf);
  843. rc = __fastrpc_driver_invoke(frpc_device, FASTRPC_DEV_MAP_DMA,
  844. (unsigned long)(&frpc_map_buf));
  845. if (rc) {
  846. dprintk(CVP_ERR,
  847. "%s Failed to map buffer 0x%x\n", __func__, rc);
  848. return rc;
  849. }
  850. buf->fd = (s32)frpc_map_buf.v_dsp_addr;
  851. *v_dsp_addr = frpc_map_buf.v_dsp_addr;
  852. } else {
  853. dprintk(CVP_DSP, "%s Buffer not mapped to dsp\n", __func__);
  854. buf->fd = 0;
  855. }
  856. return rc;
  857. }
  858. static int eva_fastrpc_dev_unmap_dma(struct fastrpc_device *frpc_device,
  859. struct cvp_internal_buf *buf)
  860. {
  861. struct fastrpc_dev_unmap_dma frpc_unmap_buf = {0};
  862. int rc = 0;
  863. /* Only if buffer is mapped to dsp */
  864. if (buf->fd != 0) {
  865. frpc_unmap_buf.buf = buf->smem->dma_buf;
  866. rc = __fastrpc_driver_invoke(frpc_device, FASTRPC_DEV_UNMAP_DMA,
  867. (unsigned long)(&frpc_unmap_buf));
  868. if (rc) {
  869. dprintk(CVP_ERR, "%s Failed to unmap buffer 0x%x\n",
  870. __func__, rc);
  871. return rc;
  872. }
  873. } else {
  874. dprintk(CVP_DSP, "%s buffer not mapped to dsp\n", __func__);
  875. }
  876. return rc;
  877. }
  878. static void eva_fastrpc_driver_add_sess(
  879. struct cvp_dsp_fastrpc_driver_entry *frpc,
  880. struct msm_cvp_inst *inst)
  881. {
  882. mutex_lock(&frpc->dsp_sessions.lock);
  883. if (inst)
  884. list_add_tail(&inst->dsp_list, &frpc->dsp_sessions.list);
  885. else
  886. dprintk(CVP_ERR, "%s incorrect input %pK\n", __func__, inst);
  887. frpc->session_cnt++;
  888. mutex_unlock(&frpc->dsp_sessions.lock);
  889. dprintk(CVP_DSP, "add dsp sess %pK fastrpc_driver %pK\n", inst, frpc);
  890. }
  891. int cvp_dsp_fastrpc_unmap(uint32_t process_id, struct cvp_internal_buf *buf)
  892. {
  893. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  894. struct fastrpc_device *frpc_device = NULL;
  895. int rc = 0;
  896. frpc_node = cvp_find_fastrpc_node_with_handle(process_id);
  897. if (!frpc_node) {
  898. dprintk(CVP_ERR, "%s no frpc node for process id %d\n",
  899. __func__, process_id);
  900. return -EINVAL;
  901. }
  902. frpc_device = frpc_node->cvp_fastrpc_device;
  903. rc = eva_fastrpc_dev_unmap_dma(frpc_device, buf);
  904. if (rc) {
  905. dprintk(CVP_ERR,
  906. "%s Fail to unmap buffer 0x%x\n",
  907. __func__, rc);
  908. return rc;
  909. }
  910. return rc;
  911. }
  912. int cvp_dsp_del_sess(uint32_t process_id, struct msm_cvp_inst *inst)
  913. {
  914. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  915. struct list_head *ptr = NULL, *next = NULL;
  916. struct msm_cvp_inst *sess;
  917. bool found = false;
  918. frpc_node = cvp_find_fastrpc_node_with_handle(process_id);
  919. if (!frpc_node) {
  920. dprintk(CVP_ERR, "%s no frpc node for process id %d\n",
  921. __func__, process_id);
  922. return -EINVAL;
  923. }
  924. mutex_lock(&frpc_node->dsp_sessions.lock);
  925. list_for_each_safe(ptr, next, &frpc_node->dsp_sessions.list) {
  926. sess = list_entry(ptr, struct msm_cvp_inst, dsp_list);
  927. if (sess == inst) {
  928. dprintk(CVP_DSP, "%s Find sess %pK to be deleted\n",
  929. __func__, inst);
  930. found = true;
  931. break;
  932. }
  933. }
  934. if (found) {
  935. list_del(&inst->dsp_list);
  936. frpc_node->session_cnt--;
  937. }
  938. mutex_unlock(&frpc_node->dsp_sessions.lock);
  939. return 0;
  940. }
  941. static int eva_fastrpc_driver_register(uint32_t handle)
  942. {
  943. struct cvp_dsp_apps *me = &gfa_cv;
  944. int rc = 0;
  945. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  946. bool skip_deregister = true;
  947. dprintk(CVP_DSP, "%s -> cvp_find_fastrpc_node_with_handle pid 0x%x\n",
  948. __func__, handle);
  949. frpc_node = cvp_find_fastrpc_node_with_handle(handle);
  950. if (frpc_node == NULL) {
  951. dprintk(CVP_DSP, "%s new fastrpc node pid 0x%x\n",
  952. __func__, handle);
  953. frpc_node = kzalloc(sizeof(*frpc_node), GFP_KERNEL);
  954. if (!frpc_node) {
  955. dprintk(CVP_DSP, "%s allocate frpc node fail\n",
  956. __func__);
  957. return -EINVAL;
  958. }
  959. memset(frpc_node, 0, sizeof(*frpc_node));
  960. /* Setup fastrpc_node */
  961. frpc_node->handle = handle;
  962. frpc_node->cvp_fastrpc_driver = cvp_fastrpc_client;
  963. frpc_node->cvp_fastrpc_driver.handle = handle;
  964. mutex_lock(&me->driver_name_lock);
  965. rc = eva_fastrpc_driver_get_name(frpc_node);
  966. mutex_unlock(&me->driver_name_lock);
  967. if (rc) {
  968. dprintk(CVP_ERR, "%s fastrpc get name fail err %d\n",
  969. __func__, rc);
  970. goto fail_fastrpc_driver_get_name;
  971. }
  972. /* Init completion */
  973. init_completion(&frpc_node->fastrpc_probe_completion);
  974. mutex_lock(&me->fastrpc_driver_list.lock);
  975. dprintk(CVP_DSP, "Add frpc node 0x%x to list\n", frpc_node);
  976. list_add_tail(&frpc_node->list, &me->fastrpc_driver_list.list);
  977. mutex_unlock(&me->fastrpc_driver_list.lock);
  978. INIT_MSM_CVP_LIST(&frpc_node->dsp_sessions);
  979. /* register fastrpc device to this session */
  980. rc = __fastrpc_driver_register(&frpc_node->cvp_fastrpc_driver);
  981. if (rc) {
  982. dprintk(CVP_ERR, "%s fastrpc driver reg fail err %d\n",
  983. __func__, rc);
  984. skip_deregister = true;
  985. goto fail_fastrpc_driver_register;
  986. }
  987. /* signal wait reuse dsp timeout setup for now */
  988. if (!wait_for_completion_timeout(
  989. &frpc_node->fastrpc_probe_completion,
  990. msecs_to_jiffies(CVP_DSP_RESPONSE_TIMEOUT))) {
  991. dprintk(CVP_ERR, "%s fastrpc driver_register timeout %#x\n",
  992. __func__, frpc_node->handle);
  993. skip_deregister = false;
  994. goto fail_fastrpc_driver_register;
  995. }
  996. } else {
  997. dprintk(CVP_DSP, "%s fastrpc probe hndl %pK pid 0x%x\n",
  998. __func__, frpc_node, handle);
  999. }
  1000. return rc;
  1001. fail_fastrpc_driver_register:
  1002. /* remove list if this is the last session */
  1003. mutex_lock(&me->fastrpc_driver_list.lock);
  1004. list_del(&frpc_node->list);
  1005. mutex_unlock(&me->fastrpc_driver_list.lock);
  1006. if (!skip_deregister)
  1007. __fastrpc_driver_unregister(&frpc_node->cvp_fastrpc_driver);
  1008. mutex_lock(&me->driver_name_lock);
  1009. eva_fastrpc_driver_release_name(frpc_node);
  1010. mutex_unlock(&me->driver_name_lock);
  1011. fail_fastrpc_driver_get_name:
  1012. kfree(frpc_node);
  1013. return -EINVAL;
  1014. }
  1015. static void eva_fastrpc_driver_unregister(uint32_t handle, bool force_exit)
  1016. {
  1017. struct cvp_dsp_apps *me = &gfa_cv;
  1018. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1019. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1020. dprintk(CVP_DSP, "%s Unregister fastrpc driver handle 0x%x, force %d\n",
  1021. __func__, handle, (uint32_t)force_exit);
  1022. /* Foundd fastrpc node */
  1023. frpc_node = cvp_find_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1024. if (frpc_node == NULL) {
  1025. dprintk(CVP_DSP, "%s fastrpc handle 0x%x unregistered\n",
  1026. __func__, handle);
  1027. return;
  1028. }
  1029. if ((frpc_node->session_cnt == 0) || force_exit) {
  1030. dprintk(CVP_DSP, "%s session cnt %d, force %d\n",
  1031. __func__, frpc_node->session_cnt, (uint32_t)force_exit);
  1032. DEINIT_MSM_CVP_LIST(&frpc_node->dsp_sessions);
  1033. /* remove list if this is the last session */
  1034. mutex_lock(&me->fastrpc_driver_list.lock);
  1035. list_del(&frpc_node->list);
  1036. mutex_unlock(&me->fastrpc_driver_list.lock);
  1037. __fastrpc_driver_unregister(&frpc_node->cvp_fastrpc_driver);
  1038. mutex_lock(&me->driver_name_lock);
  1039. eva_fastrpc_driver_release_name(frpc_node);
  1040. mutex_unlock(&me->driver_name_lock);
  1041. kfree(frpc_node);
  1042. }
  1043. }
  1044. void cvp_dsp_send_debug_mask(void)
  1045. {
  1046. struct cvp_dsp_cmd_msg cmd;
  1047. struct cvp_dsp_apps *me = &gfa_cv;
  1048. struct cvp_dsp_rsp_msg rsp;
  1049. int rc;
  1050. cmd.type = CPU2DSP_SET_DEBUG_LEVEL;
  1051. cmd.eva_dsp_debug_mask = me->debug_mask;
  1052. dprintk(CVP_DSP,
  1053. "%s: debug mask 0x%x\n",
  1054. __func__, cmd.eva_dsp_debug_mask);
  1055. rc = cvp_dsp_send_cmd_sync(&cmd, sizeof(struct cvp_dsp_cmd_msg), &rsp);
  1056. if (rc)
  1057. dprintk(CVP_ERR,
  1058. "%s: cvp_dsp_send_cmd failed rc = %d\n",
  1059. __func__, rc);
  1060. }
  1061. void cvp_dsp_send_hfi_queue(void)
  1062. {
  1063. struct msm_cvp_core *core;
  1064. struct iris_hfi_device *device;
  1065. struct cvp_dsp_apps *me = &gfa_cv;
  1066. struct cvp_dsp_rsp_msg rsp = {0};
  1067. uint64_t addr;
  1068. uint32_t size;
  1069. int rc;
  1070. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1071. if (core && core->device)
  1072. device = core->device->hfi_device_data;
  1073. else
  1074. return;
  1075. if (!device) {
  1076. dprintk(CVP_ERR, "%s: NULL device\n", __func__);
  1077. return;
  1078. }
  1079. dprintk(CVP_DSP, "Entering %s\n", __func__);
  1080. mutex_lock(&device->lock);
  1081. mutex_lock(&me->tx_lock);
  1082. if (!device->dsp_iface_q_table.align_virtual_addr) {
  1083. dprintk(CVP_ERR, "%s: DSP HFI queue released\n", __func__);
  1084. goto exit;
  1085. }
  1086. addr = (uint64_t)device->dsp_iface_q_table.mem_data.dma_handle;
  1087. size = device->dsp_iface_q_table.mem_data.size;
  1088. if (!addr || !size) {
  1089. dprintk(CVP_DSP, "%s: HFI queue is not ready\n", __func__);
  1090. goto exit;
  1091. }
  1092. if (me->state != DSP_PROBED && me->state != DSP_INACTIVE)
  1093. goto exit;
  1094. rc = cvp_hyp_assign_to_dsp(addr, size);
  1095. if (rc) {
  1096. dprintk(CVP_ERR, "%s: cvp_hyp_assign_to_dsp. rc=%d\n",
  1097. __func__, rc);
  1098. goto exit;
  1099. }
  1100. if (me->state == DSP_PROBED) {
  1101. cvp_dsp_init_hfi_queue_hdr(device);
  1102. dprintk(CVP_WARN,
  1103. "%s: Done init of HFI queue headers\n", __func__);
  1104. }
  1105. rc = cvp_dsp_send_cmd_hfi_queue((phys_addr_t *)addr, size, &rsp);
  1106. if (rc) {
  1107. dprintk(CVP_WARN, "%s: Send HFI Queue failed rc = %d\n",
  1108. __func__, rc);
  1109. goto exit;
  1110. }
  1111. if (rsp.ret == CPU2DSP_EUNSUPPORTED) {
  1112. dprintk(CVP_WARN, "%s unsupported cmd %d\n",
  1113. __func__, rsp.type);
  1114. goto exit;
  1115. }
  1116. if (rsp.ret == CPU2DSP_EFATAL || rsp.ret == CPU2DSP_EUNAVAILABLE) {
  1117. dprintk(CVP_ERR, "%s fatal error returned %d\n",
  1118. __func__, rsp.dsp_state);
  1119. me->state = DSP_INVALID;
  1120. cvp_hyp_assign_from_dsp();
  1121. goto exit;
  1122. } else if (rsp.ret == CPU2DSP_EINVALSTATE) {
  1123. dprintk(CVP_ERR, "%s dsp invalid state %d\n",
  1124. __func__, rsp.dsp_state);
  1125. mutex_unlock(&me->tx_lock);
  1126. if (cvp_reinit_dsp()) {
  1127. dprintk(CVP_ERR, "%s reinit dsp fail\n", __func__);
  1128. mutex_unlock(&device->lock);
  1129. return;
  1130. }
  1131. mutex_lock(&me->tx_lock);
  1132. }
  1133. dprintk(CVP_DSP, "%s: dsp initialized\n", __func__);
  1134. me->state = DSP_READY;
  1135. exit:
  1136. mutex_unlock(&me->tx_lock);
  1137. mutex_unlock(&device->lock);
  1138. }
  1139. /* 32 or 64 bit CPU Side Ptr <-> 2 32 bit DSP Pointers. Dirty Fix. */
  1140. static void *ptr_dsp2cpu(uint32_t session_cpu_high, uint32_t session_cpu_low)
  1141. {
  1142. void *inst;
  1143. if ((session_cpu_high == 0) && (sizeof(void *) == BITPTRSIZE32)) {
  1144. inst = (void *)((uintptr_t)session_cpu_low);
  1145. } else if ((session_cpu_high != 0) && (sizeof(void *) == BITPTRSIZE64)) {
  1146. inst = (void *)((uintptr_t)(((uint64_t)session_cpu_high) << 32
  1147. | session_cpu_low));
  1148. } else {
  1149. dprintk(CVP_ERR,
  1150. "%s Invalid _cpu_high = 0x%x _cpu_low = 0x%x\n",
  1151. __func__, session_cpu_high, session_cpu_low);
  1152. inst = NULL;
  1153. }
  1154. return inst;
  1155. }
  1156. static void print_power(const struct eva_power_req *pwr_req)
  1157. {
  1158. if (pwr_req) {
  1159. dprintk(CVP_DSP, "Clock: Fdu %d Ica %d Od %d Mpu %d Fw %d",
  1160. pwr_req->clock_fdu, pwr_req->clock_ica,
  1161. pwr_req->clock_od, pwr_req->clock_mpu,
  1162. pwr_req->clock_fw);
  1163. dprintk(CVP_DSP, "OpClock: Fdu %d Ica %d Od %d Mpu %d Fw %d",
  1164. pwr_req->op_clock_fdu, pwr_req->op_clock_ica,
  1165. pwr_req->op_clock_od, pwr_req->op_clock_mpu,
  1166. pwr_req->op_clock_fw);
  1167. dprintk(CVP_DSP, "Actual Bw: Ddr %d, SysCache %d",
  1168. pwr_req->bw_ddr, pwr_req->bw_sys_cache);
  1169. dprintk(CVP_DSP, "OpBw: Ddr %d, SysCache %d",
  1170. pwr_req->op_bw_ddr, pwr_req->op_bw_sys_cache);
  1171. }
  1172. }
  1173. static void __dsp_cvp_sess_create(struct cvp_dsp_cmd_msg *cmd)
  1174. {
  1175. struct cvp_dsp_apps *me = &gfa_cv;
  1176. struct msm_cvp_inst *inst = NULL;
  1177. uint64_t inst_handle = 0;
  1178. int rc = 0;
  1179. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1180. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1181. struct pid *pid_s = NULL;
  1182. struct task_struct *task = NULL;
  1183. struct cvp_hfi_device *hdev;
  1184. cmd->ret = 0;
  1185. dprintk(CVP_DSP,
  1186. "%s sess Type %d Mask %d Prio %d Sec %d pid 0x%x\n",
  1187. __func__, dsp2cpu_cmd->session_type,
  1188. dsp2cpu_cmd->kernel_mask,
  1189. dsp2cpu_cmd->session_prio,
  1190. dsp2cpu_cmd->is_secure,
  1191. dsp2cpu_cmd->pid);
  1192. pid_s = find_get_pid(dsp2cpu_cmd->pid);
  1193. if (pid_s == NULL) {
  1194. dprintk(CVP_WARN, "%s incorrect pid\n", __func__);
  1195. cmd->ret = -1;
  1196. return;
  1197. }
  1198. dprintk(CVP_DSP, "%s get pid_s 0x%x from pidA 0x%x\n", __func__,
  1199. pid_s, dsp2cpu_cmd->pid);
  1200. task = get_pid_task(pid_s, PIDTYPE_TGID);
  1201. if (!task) {
  1202. dprintk(CVP_WARN, "%s task doesn't exist\n", __func__);
  1203. cmd->ret = -1;
  1204. return;
  1205. }
  1206. rc = eva_fastrpc_driver_register(dsp2cpu_cmd->pid);
  1207. if (rc) {
  1208. dprintk(CVP_ERR, "%s Register fastrpc driver fail\n", __func__);
  1209. put_task_struct(task);
  1210. cmd->ret = -1;
  1211. return;
  1212. }
  1213. inst = msm_cvp_open(MSM_CORE_CVP, MSM_CVP_DSP, task);
  1214. if (!inst) {
  1215. dprintk(CVP_ERR, "%s Failed create instance\n", __func__);
  1216. goto fail_msm_cvp_open;
  1217. }
  1218. inst->process_id = dsp2cpu_cmd->pid;
  1219. inst->prop.kernel_mask = dsp2cpu_cmd->kernel_mask;
  1220. inst->prop.type = dsp2cpu_cmd->session_type;
  1221. inst->prop.priority = dsp2cpu_cmd->session_prio;
  1222. inst->prop.is_secure = dsp2cpu_cmd->is_secure;
  1223. inst->prop.dsp_mask = dsp2cpu_cmd->dsp_access_mask;
  1224. rc = msm_cvp_session_create(inst);
  1225. if (rc) {
  1226. dprintk(CVP_ERR, "Warning: send Session Create failed\n");
  1227. goto fail_session_create;
  1228. } else {
  1229. dprintk(CVP_DSP, "%s DSP Session Create done\n", __func__);
  1230. }
  1231. /* Get session id */
  1232. rc = msm_cvp_get_session_info(inst, &cmd->session_id);
  1233. if (rc) {
  1234. dprintk(CVP_ERR, "Warning: get session index failed %d\n", rc);
  1235. goto fail_get_session_info;
  1236. }
  1237. inst_handle = (uint64_t)inst;
  1238. cmd->session_cpu_high = (uint32_t)((inst_handle & HIGH32) >> 32);
  1239. cmd->session_cpu_low = (uint32_t)(inst_handle & LOW32);
  1240. frpc_node = cvp_find_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1241. if (frpc_node)
  1242. eva_fastrpc_driver_add_sess(frpc_node, inst);
  1243. inst->task = task;
  1244. dprintk(CVP_DSP,
  1245. "%s CREATE_SESS id 0x%x, cpu_low 0x%x, cpu_high 0x%x\n",
  1246. __func__, cmd->session_id, cmd->session_cpu_low,
  1247. cmd->session_cpu_high);
  1248. spin_lock(&inst->core->resources.pm_qos.lock);
  1249. inst->core->resources.pm_qos.off_vote_cnt++;
  1250. spin_unlock(&inst->core->resources.pm_qos.lock);
  1251. hdev = inst->core->device;
  1252. call_hfi_op(hdev, pm_qos_update, hdev->hfi_device_data);
  1253. return;
  1254. fail_get_session_info:
  1255. fail_session_create:
  1256. msm_cvp_close(inst);
  1257. fail_msm_cvp_open:
  1258. /* unregister fastrpc driver */
  1259. eva_fastrpc_driver_unregister(dsp2cpu_cmd->pid, false);
  1260. put_task_struct(task);
  1261. cmd->ret = -1;
  1262. }
  1263. static void __dsp_cvp_sess_delete(struct cvp_dsp_cmd_msg *cmd)
  1264. {
  1265. struct cvp_dsp_apps *me = &gfa_cv;
  1266. struct msm_cvp_inst *inst;
  1267. int rc;
  1268. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1269. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1270. struct task_struct *task = NULL;
  1271. struct cvp_hfi_device *hdev;
  1272. cmd->ret = 0;
  1273. dprintk(CVP_DSP,
  1274. "%s sess id 0x%x low 0x%x high 0x%x, pid 0x%x\n",
  1275. __func__, dsp2cpu_cmd->session_id,
  1276. dsp2cpu_cmd->session_cpu_low,
  1277. dsp2cpu_cmd->session_cpu_high,
  1278. dsp2cpu_cmd->pid);
  1279. frpc_node = cvp_find_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1280. if (!frpc_node) {
  1281. dprintk(CVP_ERR, "%s pid 0x%x not registered with fastrpc\n",
  1282. __func__, dsp2cpu_cmd->pid);
  1283. cmd->ret = -1;
  1284. return;
  1285. }
  1286. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1287. dsp2cpu_cmd->session_cpu_high,
  1288. dsp2cpu_cmd->session_cpu_low);
  1289. if (!inst || !is_cvp_inst_valid(inst)) {
  1290. dprintk(CVP_ERR, "%s incorrect session ID\n", __func__);
  1291. cmd->ret = -1;
  1292. goto dsp_fail_delete;
  1293. }
  1294. task = inst->task;
  1295. spin_lock(&inst->core->resources.pm_qos.lock);
  1296. if (inst->core->resources.pm_qos.off_vote_cnt > 0)
  1297. inst->core->resources.pm_qos.off_vote_cnt--;
  1298. else
  1299. dprintk(CVP_WARN, "%s Unexpected pm_qos off vote %d\n",
  1300. __func__,
  1301. inst->core->resources.pm_qos.off_vote_cnt);
  1302. spin_unlock(&inst->core->resources.pm_qos.lock);
  1303. hdev = inst->core->device;
  1304. call_hfi_op(hdev, pm_qos_update, hdev->hfi_device_data);
  1305. rc = msm_cvp_close(inst);
  1306. if (rc) {
  1307. dprintk(CVP_ERR, "Warning: Failed to close cvp instance\n");
  1308. cmd->ret = -1;
  1309. goto dsp_fail_delete;
  1310. }
  1311. /* unregister fastrpc driver */
  1312. eva_fastrpc_driver_unregister(dsp2cpu_cmd->pid, false);
  1313. if (task)
  1314. put_task_struct(task);
  1315. dprintk(CVP_DSP, "%s DSP2CPU_DETELE_SESSION Done\n", __func__);
  1316. dsp_fail_delete:
  1317. return;
  1318. }
  1319. static void __dsp_cvp_power_req(struct cvp_dsp_cmd_msg *cmd)
  1320. {
  1321. struct cvp_dsp_apps *me = &gfa_cv;
  1322. struct msm_cvp_inst *inst;
  1323. int rc;
  1324. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1325. cmd->ret = 0;
  1326. dprintk(CVP_DSP,
  1327. "%s sess id 0x%x, low 0x%x, high 0x%x\n",
  1328. __func__, dsp2cpu_cmd->session_id,
  1329. dsp2cpu_cmd->session_cpu_low,
  1330. dsp2cpu_cmd->session_cpu_high);
  1331. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1332. dsp2cpu_cmd->session_cpu_high,
  1333. dsp2cpu_cmd->session_cpu_low);
  1334. if (!inst) {
  1335. cmd->ret = -1;
  1336. goto dsp_fail_power_req;
  1337. }
  1338. print_power(&dsp2cpu_cmd->power_req);
  1339. inst->prop.fdu_cycles = dsp2cpu_cmd->power_req.clock_fdu;
  1340. inst->prop.ica_cycles = dsp2cpu_cmd->power_req.clock_ica;
  1341. inst->prop.od_cycles = dsp2cpu_cmd->power_req.clock_od;
  1342. inst->prop.mpu_cycles = dsp2cpu_cmd->power_req.clock_mpu;
  1343. inst->prop.fw_cycles = dsp2cpu_cmd->power_req.clock_fw;
  1344. inst->prop.ddr_bw = dsp2cpu_cmd->power_req.bw_ddr;
  1345. inst->prop.ddr_cache = dsp2cpu_cmd->power_req.bw_sys_cache;
  1346. inst->prop.fdu_op_cycles = dsp2cpu_cmd->power_req.op_clock_fdu;
  1347. inst->prop.ica_op_cycles = dsp2cpu_cmd->power_req.op_clock_ica;
  1348. inst->prop.od_op_cycles = dsp2cpu_cmd->power_req.op_clock_od;
  1349. inst->prop.mpu_op_cycles = dsp2cpu_cmd->power_req.op_clock_mpu;
  1350. inst->prop.fw_op_cycles = dsp2cpu_cmd->power_req.op_clock_fw;
  1351. inst->prop.ddr_op_bw = dsp2cpu_cmd->power_req.op_bw_ddr;
  1352. inst->prop.ddr_op_cache = dsp2cpu_cmd->power_req.op_bw_sys_cache;
  1353. rc = msm_cvp_update_power(inst);
  1354. if (rc) {
  1355. /*
  1356. *May need to define more error types
  1357. * Check UMD implementation
  1358. */
  1359. dprintk(CVP_ERR, "%s Failed update power\n", __func__);
  1360. cmd->ret = -1;
  1361. goto dsp_fail_power_req;
  1362. }
  1363. dprintk(CVP_DSP, "%s DSP2CPU_POWER_REQUEST Done\n", __func__);
  1364. dsp_fail_power_req:
  1365. return;
  1366. }
  1367. static void __dsp_cvp_buf_register(struct cvp_dsp_cmd_msg *cmd)
  1368. {
  1369. struct cvp_dsp_apps *me = &gfa_cv;
  1370. struct msm_cvp_inst *inst;
  1371. struct eva_kmd_arg *kmd;
  1372. struct eva_kmd_buffer *kmd_buf;
  1373. int rc;
  1374. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1375. cmd->ret = 0;
  1376. dprintk(CVP_DSP,
  1377. "%s sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1378. __func__, dsp2cpu_cmd->session_id,
  1379. dsp2cpu_cmd->session_cpu_low,
  1380. dsp2cpu_cmd->session_cpu_high,
  1381. dsp2cpu_cmd->pid);
  1382. kmd = kzalloc(sizeof(*kmd), GFP_KERNEL);
  1383. if (!kmd) {
  1384. dprintk(CVP_ERR, "%s kzalloc failure\n", __func__);
  1385. cmd->ret = -1;
  1386. return;
  1387. }
  1388. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1389. dsp2cpu_cmd->session_cpu_high,
  1390. dsp2cpu_cmd->session_cpu_low);
  1391. kmd->type = EVA_KMD_REGISTER_BUFFER;
  1392. kmd_buf = (struct eva_kmd_buffer *)&(kmd->data.regbuf);
  1393. kmd_buf->type = EVA_KMD_BUFTYPE_INPUT;
  1394. kmd_buf->index = dsp2cpu_cmd->sbuf.index;
  1395. kmd_buf->fd = dsp2cpu_cmd->sbuf.fd;
  1396. kmd_buf->size = dsp2cpu_cmd->sbuf.size;
  1397. kmd_buf->offset = dsp2cpu_cmd->sbuf.offset;
  1398. kmd_buf->pixelformat = 0;
  1399. kmd_buf->flags = EVA_KMD_FLAG_UNSECURE;
  1400. rc = msm_cvp_register_buffer(inst, kmd_buf);
  1401. if (rc) {
  1402. dprintk(CVP_ERR, "%s Failed to register buffer\n", __func__);
  1403. cmd->ret = -1;
  1404. goto dsp_fail_buf_reg;
  1405. }
  1406. dprintk(CVP_DSP, "%s register buffer done\n", __func__);
  1407. cmd->sbuf.iova = kmd_buf->reserved[0];
  1408. cmd->sbuf.size = kmd_buf->size;
  1409. cmd->sbuf.fd = kmd_buf->fd;
  1410. cmd->sbuf.index = kmd_buf->index;
  1411. cmd->sbuf.offset = kmd_buf->offset;
  1412. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1413. cmd->sbuf.fd, cmd->sbuf.iova);
  1414. dsp_fail_buf_reg:
  1415. kfree(kmd);
  1416. }
  1417. static void __dsp_cvp_buf_deregister(struct cvp_dsp_cmd_msg *cmd)
  1418. {
  1419. struct cvp_dsp_apps *me = &gfa_cv;
  1420. struct msm_cvp_inst *inst;
  1421. struct eva_kmd_arg *kmd;
  1422. struct eva_kmd_buffer *kmd_buf;
  1423. int rc;
  1424. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1425. cmd->ret = 0;
  1426. dprintk(CVP_DSP,
  1427. "%s : sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1428. __func__, dsp2cpu_cmd->session_id,
  1429. dsp2cpu_cmd->session_cpu_low,
  1430. dsp2cpu_cmd->session_cpu_high,
  1431. dsp2cpu_cmd->pid);
  1432. kmd = kzalloc(sizeof(*kmd), GFP_KERNEL);
  1433. if (!kmd) {
  1434. dprintk(CVP_ERR, "%s kzalloc failure\n", __func__);
  1435. cmd->ret = -1;
  1436. return;
  1437. }
  1438. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1439. dsp2cpu_cmd->session_cpu_high,
  1440. dsp2cpu_cmd->session_cpu_low);
  1441. kmd->type = EVA_KMD_UNREGISTER_BUFFER;
  1442. kmd_buf = (struct eva_kmd_buffer *)&(kmd->data.regbuf);
  1443. kmd_buf->type = EVA_KMD_UNREGISTER_BUFFER;
  1444. kmd_buf->type = EVA_KMD_BUFTYPE_INPUT;
  1445. kmd_buf->index = dsp2cpu_cmd->sbuf.index;
  1446. kmd_buf->fd = dsp2cpu_cmd->sbuf.fd;
  1447. kmd_buf->size = dsp2cpu_cmd->sbuf.size;
  1448. kmd_buf->offset = dsp2cpu_cmd->sbuf.offset;
  1449. kmd_buf->pixelformat = 0;
  1450. kmd_buf->flags = EVA_KMD_FLAG_UNSECURE;
  1451. rc = msm_cvp_unregister_buffer(inst, kmd_buf);
  1452. if (rc) {
  1453. dprintk(CVP_ERR, "%s Failed to deregister buffer\n", __func__);
  1454. cmd->ret = -1;
  1455. goto fail_dsp_buf_dereg;
  1456. }
  1457. dprintk(CVP_DSP, "%s deregister buffer done\n", __func__);
  1458. fail_dsp_buf_dereg:
  1459. kfree(kmd);
  1460. }
  1461. static void __dsp_cvp_mem_alloc(struct cvp_dsp_cmd_msg *cmd)
  1462. {
  1463. struct cvp_dsp_apps *me = &gfa_cv;
  1464. struct msm_cvp_inst *inst;
  1465. int rc;
  1466. struct cvp_internal_buf *buf = NULL;
  1467. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1468. uint64_t v_dsp_addr = 0;
  1469. struct fastrpc_device *frpc_device = NULL;
  1470. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1471. cmd->ret = 0;
  1472. dprintk(CVP_DSP,
  1473. "%s sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1474. __func__, dsp2cpu_cmd->session_id,
  1475. dsp2cpu_cmd->session_cpu_low,
  1476. dsp2cpu_cmd->session_cpu_high,
  1477. dsp2cpu_cmd->pid);
  1478. frpc_node = cvp_find_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1479. if (!frpc_node) {
  1480. dprintk(CVP_ERR, "%s Failed to find fastrpc node 0x%x\n",
  1481. __func__, dsp2cpu_cmd->pid);
  1482. goto fail_fastrpc_node;
  1483. }
  1484. frpc_device = frpc_node->cvp_fastrpc_device;
  1485. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1486. dsp2cpu_cmd->session_cpu_high,
  1487. dsp2cpu_cmd->session_cpu_low);
  1488. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1489. if (!buf)
  1490. goto fail_kzalloc_buf;
  1491. rc = cvp_allocate_dsp_bufs(inst, buf,
  1492. dsp2cpu_cmd->sbuf.size,
  1493. dsp2cpu_cmd->sbuf.type);
  1494. if (rc)
  1495. goto fail_allocate_dsp_buf;
  1496. rc = eva_fastrpc_dev_map_dma(frpc_device, buf,
  1497. dsp2cpu_cmd->sbuf.dsp_remote_map,
  1498. &v_dsp_addr);
  1499. if (rc) {
  1500. dprintk(CVP_ERR, "%s Failed to map buffer 0x%x\n", __func__,
  1501. rc);
  1502. goto fail_fastrpc_dev_map_dma;
  1503. }
  1504. mutex_lock(&inst->cvpdspbufs.lock);
  1505. list_add_tail(&buf->list, &inst->cvpdspbufs.list);
  1506. mutex_unlock(&inst->cvpdspbufs.lock);
  1507. dprintk(CVP_DSP, "%s allocate buffer done, addr 0x%llx\n",
  1508. __func__, v_dsp_addr);
  1509. cmd->sbuf.size = buf->smem->size;
  1510. cmd->sbuf.fd = buf->fd;
  1511. cmd->sbuf.offset = 0;
  1512. cmd->sbuf.iova = buf->smem->device_addr;
  1513. cmd->sbuf.v_dsp_addr = v_dsp_addr;
  1514. dprintk(CVP_DSP, "%s: size %d, iova 0x%x, v_dsp_addr 0x%llx\n",
  1515. __func__, cmd->sbuf.size, cmd->sbuf.iova,
  1516. cmd->sbuf.v_dsp_addr);
  1517. return;
  1518. fail_fastrpc_dev_map_dma:
  1519. cvp_release_dsp_buffers(inst, buf);
  1520. fail_allocate_dsp_buf:
  1521. kmem_cache_free(cvp_driver->buf_cache, buf);
  1522. fail_kzalloc_buf:
  1523. fail_fastrpc_node:
  1524. cmd->ret = -1;
  1525. return;
  1526. }
  1527. static void __dsp_cvp_mem_free(struct cvp_dsp_cmd_msg *cmd)
  1528. {
  1529. struct cvp_dsp_apps *me = &gfa_cv;
  1530. struct msm_cvp_inst *inst;
  1531. int rc;
  1532. struct cvp_internal_buf *buf = NULL;
  1533. struct list_head *ptr = NULL, *next = NULL;
  1534. struct msm_cvp_list *buf_list = NULL;
  1535. struct cvp_dsp2cpu_cmd_msg *dsp2cpu_cmd = &me->pending_dsp2cpu_cmd;
  1536. struct fastrpc_device *frpc_device = NULL;
  1537. struct cvp_dsp_fastrpc_driver_entry *frpc_node = NULL;
  1538. cmd->ret = 0;
  1539. dprintk(CVP_DSP,
  1540. "%s sess id 0x%x, low 0x%x, high 0x%x, pid 0x%x\n",
  1541. __func__, dsp2cpu_cmd->session_id,
  1542. dsp2cpu_cmd->session_cpu_low,
  1543. dsp2cpu_cmd->session_cpu_high,
  1544. dsp2cpu_cmd->pid);
  1545. inst = (struct msm_cvp_inst *)ptr_dsp2cpu(
  1546. dsp2cpu_cmd->session_cpu_high,
  1547. dsp2cpu_cmd->session_cpu_low);
  1548. if (!inst) {
  1549. dprintk(CVP_ERR, "%s Failed to get inst\n",
  1550. __func__);
  1551. cmd->ret = -1;
  1552. return;
  1553. }
  1554. frpc_node = cvp_find_fastrpc_node_with_handle(dsp2cpu_cmd->pid);
  1555. if (!frpc_node) {
  1556. dprintk(CVP_ERR, "%s Failed to find fastrpc node 0x%x\n",
  1557. __func__, dsp2cpu_cmd->pid);
  1558. cmd->ret = -1;
  1559. return;
  1560. }
  1561. frpc_device = frpc_node->cvp_fastrpc_device;
  1562. buf_list = &inst->cvpdspbufs;
  1563. mutex_lock(&buf_list->lock);
  1564. list_for_each_safe(ptr, next, &buf_list->list) {
  1565. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1566. if (!buf->smem) {
  1567. dprintk(CVP_DSP, "Empyt smem\n");
  1568. continue;
  1569. }
  1570. /* Verify with device addr */
  1571. if (buf->smem->device_addr == dsp2cpu_cmd->sbuf.iova) {
  1572. dprintk(CVP_DSP, "%s find device addr 0x%x\n",
  1573. __func__, buf->smem->device_addr);
  1574. dprintk(CVP_DSP, "fd in list 0x%x, fd from dsp 0x%x\n",
  1575. buf->fd, dsp2cpu_cmd->sbuf.fd);
  1576. rc = eva_fastrpc_dev_unmap_dma(frpc_device, buf);
  1577. if (rc) {
  1578. dprintk(CVP_ERR,
  1579. "%s Failed to unmap buffer 0x%x\n",
  1580. __func__, rc);
  1581. cmd->ret = -1;
  1582. goto fail_fastrpc_dev_unmap_dma;
  1583. }
  1584. rc = cvp_release_dsp_buffers(inst, buf);
  1585. if (rc) {
  1586. dprintk(CVP_ERR,
  1587. "%s Failed to free buffer 0x%x\n",
  1588. __func__, rc);
  1589. cmd->ret = -1;
  1590. goto fail_release_buf;
  1591. }
  1592. list_del(&buf->list);
  1593. kmem_cache_free(cvp_driver->buf_cache, buf);
  1594. break;
  1595. }
  1596. }
  1597. fail_release_buf:
  1598. fail_fastrpc_dev_unmap_dma:
  1599. mutex_unlock(&buf_list->lock);
  1600. }
  1601. static int cvp_dsp_thread(void *data)
  1602. {
  1603. int rc = 0, old_state;
  1604. struct cvp_dsp_apps *me = &gfa_cv;
  1605. struct cvp_dsp_cmd_msg cmd;
  1606. struct cvp_hfi_device *hdev;
  1607. struct msm_cvp_core *core;
  1608. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1609. if (!core) {
  1610. dprintk(CVP_ERR, "%s: Failed to find core\n", __func__);
  1611. rc = -EINVAL;
  1612. goto exit;
  1613. }
  1614. hdev = (struct cvp_hfi_device *)core->device;
  1615. if (!hdev) {
  1616. dprintk(CVP_ERR, "%s Invalid device handle\n", __func__);
  1617. rc = -EINVAL;
  1618. goto exit;
  1619. }
  1620. wait_dsp:
  1621. rc = wait_for_completion_interruptible(
  1622. &me->completions[CPU2DSP_MAX_CMD]);
  1623. if (me->state == DSP_INVALID)
  1624. goto exit;
  1625. if (me->state == DSP_UNINIT)
  1626. goto wait_dsp;
  1627. if (me->state == DSP_PROBED) {
  1628. cvp_dsp_send_hfi_queue();
  1629. goto wait_dsp;
  1630. }
  1631. cmd.type = me->pending_dsp2cpu_cmd.type;
  1632. if (rc == -ERESTARTSYS) {
  1633. dprintk(CVP_WARN, "%s received interrupt signal\n", __func__);
  1634. } else {
  1635. mutex_lock(&me->rx_lock);
  1636. if (me->state == DSP_UNINIT) {
  1637. /* DSP SSR may have happened */
  1638. mutex_unlock(&me->rx_lock);
  1639. goto wait_dsp;
  1640. }
  1641. switch (me->pending_dsp2cpu_cmd.type) {
  1642. case DSP2CPU_POWERON:
  1643. {
  1644. if (me->state == DSP_READY) {
  1645. cmd.ret = 0;
  1646. break;
  1647. }
  1648. mutex_lock(&me->tx_lock);
  1649. old_state = me->state;
  1650. me->state = DSP_READY;
  1651. rc = call_hfi_op(hdev, resume, hdev->hfi_device_data);
  1652. if (rc) {
  1653. dprintk(CVP_WARN, "%s Failed to resume cvp\n",
  1654. __func__);
  1655. me->state = old_state;
  1656. mutex_unlock(&me->tx_lock);
  1657. cmd.ret = 1;
  1658. break;
  1659. }
  1660. mutex_unlock(&me->tx_lock);
  1661. cmd.ret = 0;
  1662. break;
  1663. }
  1664. case DSP2CPU_POWEROFF:
  1665. {
  1666. me->state = DSP_SUSPEND;
  1667. cmd.ret = 0;
  1668. break;
  1669. }
  1670. case DSP2CPU_CREATE_SESSION:
  1671. {
  1672. __dsp_cvp_sess_create(&cmd);
  1673. break;
  1674. }
  1675. case DSP2CPU_DETELE_SESSION:
  1676. {
  1677. __dsp_cvp_sess_delete(&cmd);
  1678. break;
  1679. }
  1680. case DSP2CPU_POWER_REQUEST:
  1681. {
  1682. __dsp_cvp_power_req(&cmd);
  1683. break;
  1684. }
  1685. case DSP2CPU_REGISTER_BUFFER:
  1686. {
  1687. __dsp_cvp_buf_register(&cmd);
  1688. break;
  1689. }
  1690. case DSP2CPU_DEREGISTER_BUFFER:
  1691. {
  1692. __dsp_cvp_buf_deregister(&cmd);
  1693. break;
  1694. }
  1695. case DSP2CPU_MEM_ALLOC:
  1696. {
  1697. __dsp_cvp_mem_alloc(&cmd);
  1698. break;
  1699. }
  1700. case DSP2CPU_MEM_FREE:
  1701. {
  1702. __dsp_cvp_mem_free(&cmd);
  1703. break;
  1704. }
  1705. default:
  1706. dprintk(CVP_ERR, "unrecognaized dsp cmds: %d\n",
  1707. me->pending_dsp2cpu_cmd.type);
  1708. break;
  1709. }
  1710. me->pending_dsp2cpu_cmd.type = CVP_INVALID_RPMSG_TYPE;
  1711. mutex_unlock(&me->rx_lock);
  1712. }
  1713. /* Responds to DSP */
  1714. rc = cvp_dsp_send_cmd(&cmd, sizeof(struct cvp_dsp_cmd_msg));
  1715. if (rc)
  1716. dprintk(CVP_ERR,
  1717. "%s: cvp_dsp_send_cmd failed rc = %d cmd type=%d\n",
  1718. __func__, rc, cmd.type);
  1719. goto wait_dsp;
  1720. exit:
  1721. dprintk(CVP_DBG, "dsp thread exit\n");
  1722. do_exit(rc);
  1723. return rc;
  1724. }
  1725. int cvp_dsp_device_init(void)
  1726. {
  1727. struct cvp_dsp_apps *me = &gfa_cv;
  1728. char tname[16];
  1729. int rc;
  1730. int i;
  1731. char name[CVP_FASTRPC_DRIVER_NAME_SIZE] = "qcom,fastcv0\0";
  1732. add_va_node_to_list(CVP_DBG_DUMP, &gfa_cv, sizeof(struct cvp_dsp_apps),
  1733. "cvp_dsp_apps-gfa_cv", false);
  1734. mutex_init(&me->tx_lock);
  1735. mutex_init(&me->rx_lock);
  1736. me->state = DSP_INVALID;
  1737. me->hyp_assigned = false;
  1738. for (i = 0; i <= CPU2DSP_MAX_CMD; i++)
  1739. init_completion(&me->completions[i]);
  1740. me->pending_dsp2cpu_cmd.type = CVP_INVALID_RPMSG_TYPE;
  1741. me->pending_dsp2cpu_rsp.type = CVP_INVALID_RPMSG_TYPE;
  1742. INIT_MSM_CVP_LIST(&me->fastrpc_driver_list);
  1743. mutex_init(&me->driver_name_lock);
  1744. for (i = 0; i < MAX_FASTRPC_DRIVER_NUM; i++) {
  1745. me->cvp_fastrpc_name[i].status = DRIVER_NAME_AVAILABLE;
  1746. snprintf(me->cvp_fastrpc_name[i].name, sizeof(name), name);
  1747. name[11]++;
  1748. }
  1749. rc = register_rpmsg_driver(&cvp_dsp_rpmsg_client);
  1750. if (rc) {
  1751. dprintk(CVP_ERR,
  1752. "%s : register_rpmsg_driver failed rc = %d\n",
  1753. __func__, rc);
  1754. goto register_bail;
  1755. }
  1756. snprintf(tname, sizeof(tname), "cvp-dsp-thread");
  1757. me->state = DSP_UNINIT;
  1758. me->dsp_thread = kthread_run(cvp_dsp_thread, me, tname);
  1759. if (!me->dsp_thread) {
  1760. dprintk(CVP_ERR, "%s create %s fail", __func__, tname);
  1761. rc = -ECHILD;
  1762. me->state = DSP_INVALID;
  1763. goto register_bail;
  1764. }
  1765. return 0;
  1766. register_bail:
  1767. return rc;
  1768. }
  1769. void cvp_dsp_device_exit(void)
  1770. {
  1771. struct cvp_dsp_apps *me = &gfa_cv;
  1772. int i;
  1773. mutex_lock(&me->tx_lock);
  1774. me->state = DSP_INVALID;
  1775. mutex_unlock(&me->tx_lock);
  1776. DEINIT_MSM_CVP_LIST(&me->fastrpc_driver_list);
  1777. for (i = 0; i <= CPU2DSP_MAX_CMD; i++)
  1778. complete_all(&me->completions[i]);
  1779. mutex_destroy(&me->tx_lock);
  1780. mutex_destroy(&me->rx_lock);
  1781. mutex_destroy(&me->driver_name_lock);
  1782. unregister_rpmsg_driver(&cvp_dsp_rpmsg_client);
  1783. }