msm_cvp_buf.c 48 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include <linux/version.h>
  12. #include "msm_cvp_common.h"
  13. #include "cvp_hfi_api.h"
  14. #include "msm_cvp_debug.h"
  15. #include "msm_cvp_core.h"
  16. #include "msm_cvp_dsp.h"
  17. #define CLEAR_USE_BITMAP(idx, inst) \
  18. do { \
  19. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  20. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  21. hash32_ptr(inst->session), smem->bitmap_index, \
  22. inst->dma_cache.usage_bitmap); \
  23. } while (0)
  24. #define SET_USE_BITMAP(idx, inst) \
  25. do { \
  26. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  27. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  28. hash32_ptr(inst->session), idx, \
  29. inst->dma_cache.usage_bitmap); \
  30. } while (0)
  31. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  32. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  33. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata);
  34. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  35. struct msm_cvp_smem *smem)
  36. {
  37. int i;
  38. char name[PKT_NAME_LEN] = "Unknown";
  39. if (!(tag & msm_cvp_debug))
  40. return 0;
  41. if (!inst || !smem) {
  42. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  43. inst, smem);
  44. return -EINVAL;
  45. }
  46. if (smem->dma_buf) {
  47. if (!atomic_read(&smem->refcount))
  48. return 0;
  49. i = get_pkt_index_from_type(smem->pkt_type);
  50. if (i > 0)
  51. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  52. dprintk(tag,
  53. "%s: %x : %pK size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x chksum %#x",
  54. str, hash32_ptr(inst->session), smem->dma_buf,
  55. smem->size, smem->flags, smem->device_addr,
  56. smem->bitmap_index, atomic_read(&smem->refcount),
  57. name, smem->buf_idx, smem->checksum);
  58. }
  59. return 0;
  60. }
  61. static void print_internal_buffer(u32 tag, const char *str,
  62. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  63. {
  64. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  65. return;
  66. if (cbuf->smem->dma_buf) {
  67. dprintk(tag,
  68. "%s: %x : fd %d off %d %pK size %d iova %#x",
  69. str, hash32_ptr(inst->session), cbuf->fd,
  70. cbuf->offset, cbuf->smem->dma_buf, cbuf->size,
  71. cbuf->smem->device_addr);
  72. } else {
  73. dprintk(tag,
  74. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  75. str, hash32_ptr(inst->session), cbuf->fd,
  76. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  77. }
  78. }
  79. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  80. struct cvp_internal_buf *cbuf)
  81. {
  82. if (!inst || !cbuf)
  83. dprintk(CVP_ERR,
  84. "%s Invalid params inst %pK, cbuf %pK\n", inst, cbuf);
  85. print_smem(tag, str, inst, cbuf->smem);
  86. }
  87. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  88. struct msm_cvp_smem *smem, bool logging)
  89. {
  90. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  91. return;
  92. if (!logging || !snapshot)
  93. return;
  94. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  95. struct smem_data *s;
  96. s = &snapshot->smem_log[snapshot->smem_index];
  97. snapshot->smem_index++;
  98. s->size = smem->size;
  99. s->flags = smem->flags;
  100. s->device_addr = smem->device_addr;
  101. s->bitmap_index = smem->bitmap_index;
  102. s->refcount = atomic_read(&smem->refcount);
  103. s->pkt_type = smem->pkt_type;
  104. s->buf_idx = smem->buf_idx;
  105. }
  106. }
  107. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  108. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  109. bool logging)
  110. {
  111. struct cvp_buf_data *buf = NULL;
  112. u32 index;
  113. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  114. if (!logging)
  115. return;
  116. if (snapshot) {
  117. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  118. index = snapshot->dsp_index;
  119. buf = &snapshot->dsp_buf_log[index];
  120. snapshot->dsp_index++;
  121. } else if (prop == SMEM_PERSIST &&
  122. snapshot->persist_index < MAX_ENTRIES) {
  123. index = snapshot->persist_index;
  124. buf = &snapshot->persist_buf_log[index];
  125. snapshot->persist_index++;
  126. }
  127. if (buf) {
  128. buf->device_addr = cbuf->smem->device_addr;
  129. buf->size = cbuf->size;
  130. }
  131. }
  132. }
  133. void print_client_buffer(u32 tag, const char *str,
  134. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  135. {
  136. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  137. return;
  138. dprintk(tag,
  139. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x"
  140. " reserved[0] %u\n",
  141. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  142. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  143. cbuf->reserved[0]);
  144. }
  145. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  146. struct eva_kmd_buffer *buf)
  147. {
  148. struct cvp_hal_session *session;
  149. struct cvp_internal_buf *cbuf = NULL;
  150. bool found = false;
  151. if (!inst || !inst->core || !buf) {
  152. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  153. return false;
  154. }
  155. if (buf->fd < 0) {
  156. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  157. return false;
  158. }
  159. if (buf->offset) {
  160. dprintk(CVP_ERR,
  161. "%s: offset is deprecated, set to 0.\n",
  162. __func__);
  163. return false;
  164. }
  165. session = (struct cvp_hal_session *)inst->session;
  166. mutex_lock(&inst->cvpdspbufs.lock);
  167. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  168. if (cbuf->fd == buf->fd) {
  169. if (cbuf->size != buf->size) {
  170. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  171. __func__);
  172. mutex_unlock(&inst->cvpdspbufs.lock);
  173. return false;
  174. }
  175. found = true;
  176. break;
  177. }
  178. }
  179. mutex_unlock(&inst->cvpdspbufs.lock);
  180. if (found) {
  181. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  182. return false;
  183. }
  184. return true;
  185. }
  186. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  187. fmode_t mask, unsigned int refs)
  188. {
  189. struct files_struct *files = task->files;
  190. struct file *file;
  191. if (!files)
  192. return NULL;
  193. rcu_read_lock();
  194. loop:
  195. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  196. file = fcheck_files(files, fd);
  197. #else
  198. file = files_lookup_fd_rcu(files, fd);
  199. #endif
  200. if (file) {
  201. /* File object ref couldn't be taken.
  202. * dup2() atomicity guarantee is the reason
  203. * we loop to catch the new file (or NULL pointer)
  204. */
  205. if (file->f_mode & mask)
  206. file = NULL;
  207. else if (!get_file_rcu_many(file, refs))
  208. goto loop;
  209. }
  210. rcu_read_unlock();
  211. return file;
  212. }
  213. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  214. struct task_struct *task)
  215. {
  216. if (file->f_op != gfa_cv.dmabuf_f_op) {
  217. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  218. return ERR_PTR(-EINVAL);
  219. }
  220. return file->private_data;
  221. }
  222. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  223. {
  224. int rc = 0;
  225. struct cvp_internal_buf *cbuf = NULL;
  226. struct msm_cvp_smem *smem = NULL;
  227. struct dma_buf *dma_buf = NULL;
  228. struct file *file;
  229. if (!__is_buf_valid(inst, buf))
  230. return -EINVAL;
  231. if (!inst->task)
  232. return -EINVAL;
  233. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  234. if (file == NULL) {
  235. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  236. return -EINVAL;
  237. }
  238. dma_buf = cvp_dma_buf_get(
  239. file,
  240. buf->fd,
  241. inst->task);
  242. if (dma_buf == ERR_PTR(-EINVAL)) {
  243. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  244. rc = -EINVAL;
  245. goto exit;
  246. }
  247. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  248. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  249. if (!cbuf) {
  250. rc = -ENOMEM;
  251. goto exit;
  252. }
  253. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  254. if (!smem) {
  255. rc = -ENOMEM;
  256. goto exit;
  257. }
  258. smem->dma_buf = dma_buf;
  259. smem->bitmap_index = MAX_DMABUF_NUMS;
  260. smem->pkt_type = 0;
  261. smem->buf_idx = 0;
  262. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  263. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  264. if (rc) {
  265. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  266. goto exit;
  267. }
  268. cbuf->smem = smem;
  269. cbuf->fd = buf->fd;
  270. cbuf->size = buf->size;
  271. cbuf->offset = buf->offset;
  272. cbuf->ownership = CLIENT;
  273. cbuf->index = buf->index;
  274. buf->reserved[0] = (uint32_t)smem->device_addr;
  275. mutex_lock(&inst->cvpdspbufs.lock);
  276. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  277. mutex_unlock(&inst->cvpdspbufs.lock);
  278. return rc;
  279. exit:
  280. fput(file);
  281. if (smem) {
  282. if (smem->device_addr)
  283. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  284. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  285. kmem_cache_free(cvp_driver->smem_cache, smem);
  286. }
  287. if (cbuf)
  288. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  289. return rc;
  290. }
  291. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  292. {
  293. int rc = 0;
  294. bool found;
  295. struct cvp_internal_buf *cbuf;
  296. struct cvp_hal_session *session;
  297. if (!inst || !inst->core || !buf) {
  298. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  299. return -EINVAL;
  300. }
  301. session = (struct cvp_hal_session *)inst->session;
  302. if (!session) {
  303. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  304. return -EINVAL;
  305. }
  306. mutex_lock(&inst->cvpdspbufs.lock);
  307. found = false;
  308. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  309. if (cbuf->fd == buf->fd) {
  310. found = true;
  311. break;
  312. }
  313. }
  314. mutex_unlock(&inst->cvpdspbufs.lock);
  315. if (!found) {
  316. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  317. return -EINVAL;
  318. }
  319. if (cbuf->smem->device_addr) {
  320. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  321. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  322. }
  323. mutex_lock(&inst->cvpdspbufs.lock);
  324. list_del(&cbuf->list);
  325. mutex_unlock(&inst->cvpdspbufs.lock);
  326. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  327. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  328. return rc;
  329. }
  330. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  331. struct eva_kmd_buffer *buf)
  332. {
  333. int rc = 0, i;
  334. bool found = false;
  335. struct cvp_internal_buf* cbuf;
  336. struct msm_cvp_smem* smem = NULL;
  337. struct dma_buf* dma_buf = NULL;
  338. if (!inst || !inst->core || !buf) {
  339. dprintk(CVP_ERR, "%s: invalid params", __func__);
  340. return -EINVAL;
  341. }
  342. if (!inst->session) {
  343. dprintk(CVP_ERR, "%s: invalid session", __func__);
  344. return -EINVAL;
  345. }
  346. if (buf->index) {
  347. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  348. __func__, buf->fd);
  349. return -EINVAL;
  350. }
  351. if (buf->fd < 0) {
  352. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  353. return -EINVAL;
  354. }
  355. if (buf->offset) {
  356. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  357. __func__);
  358. return -EINVAL;
  359. }
  360. mutex_lock(&inst->cvpwnccbufs.lock);
  361. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  362. if (cbuf->fd == buf->fd) {
  363. if (cbuf->size != buf->size) {
  364. dprintk(CVP_ERR, "%s: buf size mismatch",
  365. __func__);
  366. mutex_unlock(&inst->cvpwnccbufs.lock);
  367. return -EINVAL;
  368. }
  369. found = true;
  370. break;
  371. }
  372. }
  373. mutex_unlock(&inst->cvpwnccbufs.lock);
  374. if (found) {
  375. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  376. return -EINVAL;
  377. }
  378. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  379. if (!dma_buf) {
  380. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  381. return -EINVAL;
  382. }
  383. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  384. if (!cbuf) {
  385. msm_cvp_smem_put_dma_buf(dma_buf);
  386. return -ENOMEM;
  387. }
  388. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  389. if (!smem) {
  390. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  391. msm_cvp_smem_put_dma_buf(dma_buf);
  392. return -ENOMEM;
  393. }
  394. smem->dma_buf = dma_buf;
  395. smem->bitmap_index = MAX_DMABUF_NUMS;
  396. smem->pkt_type = 0;
  397. smem->buf_idx = 0;
  398. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  399. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  400. if (rc) {
  401. dprintk(CVP_ERR, "%s: map failed", __func__);
  402. print_client_buffer(CVP_ERR, __func__, inst, buf);
  403. goto exit;
  404. }
  405. cbuf->smem = smem;
  406. cbuf->fd = buf->fd;
  407. cbuf->size = buf->size;
  408. cbuf->offset = buf->offset;
  409. cbuf->ownership = CLIENT;
  410. cbuf->index = buf->index;
  411. /* Added for PreSil/RUMI testing */
  412. #ifdef USE_PRESIL
  413. dprintk(CVP_DBG,
  414. "wncc buffer is %x for cam_presil_send_buffer"
  415. " with MAP_ADDR_OFFSET %x",
  416. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  417. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  418. (u32)cbuf->offset, (u32)cbuf->size,
  419. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  420. #endif
  421. mutex_lock(&inst->cvpwnccbufs.lock);
  422. if (inst->cvpwnccbufs_table == NULL) {
  423. inst->cvpwnccbufs_table =
  424. (struct msm_cvp_wncc_buffer*) kzalloc(
  425. sizeof(struct msm_cvp_wncc_buffer) *
  426. EVA_KMD_WNCC_MAX_SRC_BUFS,
  427. GFP_KERNEL);
  428. if (!inst->cvpwnccbufs_table) {
  429. mutex_unlock(&inst->cvpwnccbufs.lock);
  430. goto exit;
  431. }
  432. }
  433. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  434. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  435. {
  436. if (inst->cvpwnccbufs_table[i].iova == 0)
  437. {
  438. inst->cvpwnccbufs_num++;
  439. inst->cvpwnccbufs_table[i].fd = buf->fd;
  440. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  441. inst->cvpwnccbufs_table[i].size = smem->size;
  442. /* buf reserved[0] used to store wncc src buf id */
  443. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  444. /* cbuf ktid used to store wncc src buf id */
  445. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  446. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  447. __func__, inst->cvpwnccbufs_table[i].iova);
  448. break;
  449. }
  450. }
  451. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  452. dprintk(CVP_ERR,
  453. "%s: wncc buf table full - max (%u) already registered",
  454. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  455. /* _wncc_print_cvpwnccbufs_table(inst); */
  456. mutex_unlock(&inst->cvpwnccbufs.lock);
  457. rc = -EDQUOT;
  458. goto exit;
  459. }
  460. mutex_unlock(&inst->cvpwnccbufs.lock);
  461. return rc;
  462. exit:
  463. if (smem->device_addr)
  464. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  465. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  466. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  467. cbuf = NULL;
  468. kmem_cache_free(cvp_driver->smem_cache, smem);
  469. smem = NULL;
  470. return rc;
  471. }
  472. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  473. struct eva_kmd_buffer *buf)
  474. {
  475. int rc = 0;
  476. bool found;
  477. struct cvp_internal_buf *cbuf;
  478. uint32_t buf_id, buf_idx;
  479. if (!inst || !inst->core || !buf) {
  480. dprintk(CVP_ERR, "%s: invalid params", __func__);
  481. return -EINVAL;
  482. }
  483. if (!inst->session) {
  484. dprintk(CVP_ERR, "%s: invalid session", __func__);
  485. return -EINVAL;
  486. }
  487. if (buf->index) {
  488. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  489. __func__, buf->fd);
  490. return -EINVAL;
  491. }
  492. buf_id = buf->reserved[0];
  493. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  494. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  495. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  496. __func__, buf->reserved[0]);
  497. return -EINVAL;
  498. }
  499. mutex_lock(&inst->cvpwnccbufs.lock);
  500. if (inst->cvpwnccbufs_num == 0) {
  501. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  502. mutex_unlock(&inst->cvpwnccbufs.lock);
  503. return -EINVAL;
  504. }
  505. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  506. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  507. dprintk(CVP_ERR, "%s: buffer id %d not found",
  508. __func__, buf_id);
  509. mutex_unlock(&inst->cvpwnccbufs.lock);
  510. return -EINVAL;
  511. }
  512. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  513. found = false;
  514. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  515. if (cbuf->fd == buf->fd) {
  516. found = true;
  517. break;
  518. }
  519. }
  520. if (!found) {
  521. dprintk(CVP_ERR, "%s: buffer id %d not found",
  522. __func__, buf_id);
  523. print_client_buffer(CVP_ERR, __func__, inst, buf);
  524. _wncc_print_cvpwnccbufs_table(inst);
  525. mutex_unlock(&inst->cvpwnccbufs.lock);
  526. return -EINVAL;
  527. }
  528. mutex_unlock(&inst->cvpwnccbufs.lock);
  529. if (cbuf->smem->device_addr) {
  530. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  531. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  532. }
  533. mutex_lock(&inst->cvpwnccbufs.lock);
  534. list_del(&cbuf->list);
  535. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  536. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  537. inst->cvpwnccbufs_table[buf_idx].size = 0;
  538. inst->cvpwnccbufs_num--;
  539. if (inst->cvpwnccbufs_num == 0) {
  540. kfree(inst->cvpwnccbufs_table);
  541. inst->cvpwnccbufs_table = NULL;
  542. }
  543. mutex_unlock(&inst->cvpwnccbufs.lock);
  544. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  545. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  546. return rc;
  547. }
  548. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  549. {
  550. u32 i, j;
  551. if (!wncc_oob) {
  552. dprintk(CVP_ERR, "%s: invalid params", __func__);
  553. return;
  554. }
  555. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  556. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  557. for (i = 0; i < wncc_oob->num_layers; i++) {
  558. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  559. __func__, i, wncc_oob->layers[i].num_addrs);
  560. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  561. dprintk(CVP_DBG,
  562. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  563. __func__, i, j,
  564. wncc_oob->layers[i].addrs[j].buffer_id,
  565. wncc_oob->layers[i].addrs[j].offset);
  566. }
  567. }
  568. }
  569. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  570. {
  571. u32 i, entries = 0;
  572. if (!inst) {
  573. dprintk(CVP_ERR, "%s: invalid params", __func__);
  574. return;
  575. }
  576. if (inst->cvpwnccbufs_num == 0) {
  577. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  578. __func__);
  579. return;
  580. }
  581. if (!inst->cvpwnccbufs_table) {
  582. dprintk(CVP_ERR, "%s: invalid params", __func__);
  583. return;
  584. }
  585. dprintk(CVP_DBG, "%s: wncc buffer table:");
  586. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  587. entries < inst->cvpwnccbufs_num; i++) {
  588. if (inst->cvpwnccbufs_table[i].iova != 0) {
  589. dprintk(CVP_DBG,
  590. "%s: buf_idx=%04d --> "
  591. "fd=%03d, iova=0x%08x, size=%d",
  592. __func__, i,
  593. inst->cvpwnccbufs_table[i].fd,
  594. inst->cvpwnccbufs_table[i].iova,
  595. inst->cvpwnccbufs_table[i].size);
  596. entries++;
  597. }
  598. }
  599. }
  600. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  601. struct eva_kmd_wncc_metadata** wncc_metadata)
  602. {
  603. u32 i, j, iova;
  604. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  605. !wncc_metadata) {
  606. dprintk(CVP_ERR, "%s: invalid params", __func__);
  607. return;
  608. }
  609. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  610. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  611. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  612. for (i = 0; i < num_layers; i++) {
  613. for (j = 0; j < num_addrs; j++) {
  614. iova = (wncc_metadata[i][j].iova_msb << 22) |
  615. wncc_metadata[i][j].iova_lsb;
  616. dprintk(CVP_DBG,
  617. "%s: wncc_metadata[%u][%u]: "
  618. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  619. __func__, i, j,
  620. wncc_metadata[i][j].loc_x_dec,
  621. wncc_metadata[i][j].loc_x_frac,
  622. wncc_metadata[i][j].loc_y_dec,
  623. wncc_metadata[i][j].loc_y_frac,
  624. iova,
  625. wncc_metadata[i][j].scale_idx,
  626. wncc_metadata[i][j].aff_coeff_3,
  627. wncc_metadata[i][j].aff_coeff_2,
  628. wncc_metadata[i][j].aff_coeff_1,
  629. wncc_metadata[i][j].aff_coeff_0);
  630. }
  631. }
  632. }
  633. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  634. struct eva_kmd_oob_wncc* wncc_oob)
  635. {
  636. int rc = 0;
  637. u32 oob_type;
  638. struct eva_kmd_oob_wncc* wncc_oob_u;
  639. struct eva_kmd_oob_wncc* wncc_oob_k;
  640. unsigned int i;
  641. u32 num_addrs;
  642. if (!in_pkt || !wncc_oob) {
  643. dprintk(CVP_ERR, "%s: invalid params", __func__);
  644. return -EINVAL;
  645. }
  646. if (!access_ok(in_pkt->oob_buf, sizeof(*in_pkt->oob_buf))) {
  647. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  648. return -EINVAL;
  649. }
  650. rc = get_user(oob_type, &in_pkt->oob_buf->oob_type);
  651. if (rc)
  652. return rc;
  653. if (oob_type != EVA_KMD_OOB_WNCC) {
  654. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  655. __func__, oob_type);
  656. return -EINVAL;
  657. }
  658. wncc_oob_u = &in_pkt->oob_buf->wncc;
  659. wncc_oob_k = wncc_oob;
  660. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  661. if (rc)
  662. return rc;
  663. if (wncc_oob_k->num_layers < 1 ||
  664. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  665. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  666. return -EINVAL;
  667. }
  668. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  669. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  670. &wncc_oob_u->layers[i].num_addrs);
  671. if (rc)
  672. break;
  673. num_addrs = wncc_oob_k->layers[i].num_addrs;
  674. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  675. dprintk(CVP_ERR,
  676. "%s: invalid wncc num addrs for layer %u",
  677. __func__, i);
  678. rc = -EINVAL;
  679. break;
  680. }
  681. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  682. wncc_oob_u->layers[i].addrs,
  683. wncc_oob_k->layers[i].num_addrs *
  684. sizeof(struct eva_kmd_wncc_addr));
  685. if (rc)
  686. break;
  687. }
  688. if (false)
  689. _wncc_print_oob(wncc_oob);
  690. return rc;
  691. }
  692. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  693. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  694. {
  695. int rc = 0, i;
  696. struct cvp_buf_type* wncc_metadata_bufs;
  697. struct dma_buf* dmabuf;
  698. struct dma_buf_map map;
  699. if (!in_pkt || !wncc_metadata ||
  700. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  701. dprintk(CVP_ERR, "%s: invalid params", __func__);
  702. return -EINVAL;
  703. }
  704. wncc_metadata_bufs = (struct cvp_buf_type*)
  705. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  706. for (i = 0; i < num_layers; i++) {
  707. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  708. if (IS_ERR(dmabuf)) {
  709. rc = PTR_ERR(dmabuf);
  710. dprintk(CVP_ERR,
  711. "%s: dma_buf_get() failed for "
  712. "wncc_metadata_bufs[%d], rc %d",
  713. __func__, i, rc);
  714. break;
  715. }
  716. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  717. if (rc) {
  718. dprintk(CVP_ERR,
  719. "%s: dma_buf_begin_cpu_access() failed "
  720. "for wncc_metadata_bufs[%d], rc %d",
  721. __func__, i, rc);
  722. dma_buf_put(dmabuf);
  723. break;
  724. }
  725. rc = dma_buf_vmap(dmabuf, &map);
  726. if (rc) {
  727. dprintk(CVP_ERR,
  728. "%s: dma_buf_vmap() failed for "
  729. "wncc_metadata_bufs[%d]",
  730. __func__, i);
  731. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  732. dma_buf_put(dmabuf);
  733. break;
  734. }
  735. dprintk(CVP_DBG,
  736. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  737. __func__, i, map.is_iomem);
  738. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  739. dma_buf_put(dmabuf);
  740. }
  741. if (rc)
  742. _wncc_unmap_metadata_bufs(in_pkt, i, wncc_metadata);
  743. return rc;
  744. }
  745. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  746. unsigned int num_layers, struct eva_kmd_wncc_metadata** wncc_metadata)
  747. {
  748. int rc = 0, i;
  749. struct cvp_buf_type* wncc_metadata_bufs;
  750. struct dma_buf* dmabuf;
  751. struct dma_buf_map map;
  752. if (!in_pkt || !wncc_metadata ||
  753. num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  754. dprintk(CVP_ERR, "%s: invalid params", __func__);
  755. return -EINVAL;
  756. }
  757. wncc_metadata_bufs = (struct cvp_buf_type*)
  758. &in_pkt->pkt_data[EVA_KMD_WNCC_HFI_METADATA_BUFS_OFFSET];
  759. for (i = 0; i < num_layers; i++) {
  760. if (!wncc_metadata[i]) {
  761. rc = -EINVAL;
  762. break;
  763. }
  764. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  765. if (IS_ERR(dmabuf)) {
  766. rc = -PTR_ERR(dmabuf);
  767. dprintk(CVP_ERR,
  768. "%s: dma_buf_get() failed for "
  769. "wncc_metadata_bufs[%d], rc %d",
  770. __func__, i, rc);
  771. break;
  772. }
  773. dma_buf_map_set_vaddr(&map, wncc_metadata[i]);
  774. dma_buf_vunmap(dmabuf, &map);
  775. wncc_metadata[i] = NULL;
  776. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  777. dma_buf_put(dmabuf);
  778. if (rc) {
  779. dprintk(CVP_ERR,
  780. "%s: dma_buf_end_cpu_access() failed "
  781. "for wncc_metadata_bufs[%d], rc %d",
  782. __func__, i, rc);
  783. break;
  784. }
  785. }
  786. return rc;
  787. }
  788. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  789. struct eva_kmd_hfi_packet* in_pkt)
  790. {
  791. int rc = 0;
  792. struct eva_kmd_oob_wncc* wncc_oob;
  793. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  794. unsigned int i, j;
  795. bool empty = false;
  796. u32 buf_id, buf_idx, buf_offset, iova;
  797. if (!inst || !inst->core || !in_pkt) {
  798. dprintk(CVP_ERR, "%s: invalid params", __func__);
  799. return -EINVAL;
  800. }
  801. wncc_oob = (struct eva_kmd_oob_wncc*)kzalloc(
  802. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  803. if (!wncc_oob)
  804. return -ENOMEM;
  805. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  806. if (rc) {
  807. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  808. goto exit;
  809. }
  810. rc = _wncc_map_metadata_bufs(in_pkt,
  811. wncc_oob->num_layers, wncc_metadata);
  812. if (rc) {
  813. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  814. __func__);
  815. goto exit;
  816. }
  817. mutex_lock(&inst->cvpwnccbufs.lock);
  818. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  819. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  820. empty = true;
  821. rc = -EINVAL;
  822. }
  823. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  824. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  825. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  826. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  827. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  828. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  829. dprintk(CVP_ERR,
  830. "%s: invalid wncc buf id %u "
  831. "in layer #%u address #%u",
  832. __func__, buf_id, i, j);
  833. rc = -EINVAL;
  834. break;
  835. }
  836. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  837. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  838. dprintk(CVP_ERR,
  839. "%s: unmapped wncc buf id %u "
  840. "in layer #%u address #%u",
  841. __func__, buf_id, i, j);
  842. /* _wncc_print_cvpwnccbufs_table(inst); */
  843. rc = -EINVAL;
  844. break;
  845. }
  846. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  847. if (buf_offset >=
  848. inst->cvpwnccbufs_table[buf_idx].size) {
  849. /* NOTE: This buffer offset validation is
  850. * not comprehensive since wncc src image
  851. * resolution information is not known to
  852. * KMD. UMD is responsible for comprehensive
  853. * validation.
  854. */
  855. dprintk(CVP_ERR,
  856. "%s: invalid wncc buf offset %u "
  857. "in layer #%u address #%u",
  858. __func__, buf_offset, i, j);
  859. rc = -EINVAL;
  860. break;
  861. }
  862. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  863. buf_offset;
  864. wncc_metadata[i][j].iova_lsb = iova;
  865. wncc_metadata[i][j].iova_msb = iova >> 22;
  866. }
  867. }
  868. mutex_unlock(&inst->cvpwnccbufs.lock);
  869. if (false)
  870. _wncc_print_metadata_buf(wncc_oob->num_layers,
  871. wncc_oob->layers[0].num_addrs, wncc_metadata);
  872. if (_wncc_unmap_metadata_bufs(in_pkt,
  873. wncc_oob->num_layers, wncc_metadata)) {
  874. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  875. __func__);
  876. }
  877. exit:
  878. kfree(wncc_oob);
  879. return rc;
  880. }
  881. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  882. struct eva_kmd_hfi_packet* in_pkt)
  883. {
  884. int rc = 0;
  885. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  886. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  887. if (!inst || !inst->core || !in_pkt) {
  888. dprintk(CVP_ERR, "%s: invalid params", __func__);
  889. return -EINVAL;
  890. }
  891. switch (cmd_hdr->packet_type) {
  892. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  893. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  894. break;
  895. default:
  896. break;
  897. }
  898. return rc;
  899. }
  900. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  901. u32 offset, u32 size)
  902. {
  903. enum smem_cache_ops cache_op;
  904. if (msm_cvp_cacheop_disabled)
  905. return;
  906. if (!smem) {
  907. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  908. return;
  909. }
  910. switch (type) {
  911. case EVA_KMD_BUFTYPE_INPUT:
  912. cache_op = SMEM_CACHE_CLEAN;
  913. break;
  914. case EVA_KMD_BUFTYPE_OUTPUT:
  915. cache_op = SMEM_CACHE_INVALIDATE;
  916. break;
  917. default:
  918. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  919. }
  920. dprintk(CVP_MEM,
  921. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  922. __func__, smem->dma_buf, cache_op, offset, size);
  923. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  924. }
  925. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  926. struct dma_buf *dma_buf)
  927. {
  928. struct msm_cvp_smem *smem;
  929. int i;
  930. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  931. return NULL;
  932. mutex_lock(&inst->dma_cache.lock);
  933. for (i = 0; i < inst->dma_cache.nr; i++)
  934. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  935. SET_USE_BITMAP(i, inst);
  936. smem = inst->dma_cache.entries[i];
  937. smem->bitmap_index = i;
  938. atomic_inc(&smem->refcount);
  939. /*
  940. * If we find it, it means we already increased
  941. * refcount before, so we put it to avoid double
  942. * incremental.
  943. */
  944. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  945. mutex_unlock(&inst->dma_cache.lock);
  946. print_smem(CVP_MEM, "found", inst, smem);
  947. return smem;
  948. }
  949. mutex_unlock(&inst->dma_cache.lock);
  950. return NULL;
  951. }
  952. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  953. struct msm_cvp_smem *smem)
  954. {
  955. unsigned int i;
  956. struct msm_cvp_smem *smem2;
  957. mutex_lock(&inst->dma_cache.lock);
  958. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  959. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  960. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  961. smem->bitmap_index = inst->dma_cache.nr;
  962. inst->dma_cache.nr++;
  963. i = smem->bitmap_index;
  964. } else {
  965. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  966. MAX_DMABUF_NUMS);
  967. if (i < MAX_DMABUF_NUMS) {
  968. smem2 = inst->dma_cache.entries[i];
  969. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  970. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  971. kmem_cache_free(cvp_driver->smem_cache, smem2);
  972. inst->dma_cache.entries[i] = smem;
  973. smem->bitmap_index = i;
  974. SET_USE_BITMAP(i, inst);
  975. } else {
  976. dprintk(CVP_WARN,
  977. "%s: reached limit, fallback to frame mapping list\n"
  978. , __func__);
  979. mutex_unlock(&inst->dma_cache.lock);
  980. return -ENOMEM;
  981. }
  982. }
  983. atomic_inc(&smem->refcount);
  984. mutex_unlock(&inst->dma_cache.lock);
  985. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  986. return 0;
  987. }
  988. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  989. struct cvp_buf_type *buf,
  990. bool is_persist,
  991. u32 pkt_type)
  992. {
  993. int rc = 0, found = 1;
  994. struct msm_cvp_smem *smem = NULL;
  995. struct dma_buf *dma_buf = NULL;
  996. if (buf->fd < 0) {
  997. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  998. return NULL;
  999. }
  1000. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1001. if (!dma_buf) {
  1002. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1003. return NULL;
  1004. }
  1005. if (is_persist) {
  1006. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1007. if (!smem)
  1008. return NULL;
  1009. smem->dma_buf = dma_buf;
  1010. smem->bitmap_index = MAX_DMABUF_NUMS;
  1011. smem->pkt_type = pkt_type;
  1012. smem->flags |= SMEM_PERSIST;
  1013. atomic_inc(&smem->refcount);
  1014. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1015. if (rc)
  1016. goto exit;
  1017. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1018. dprintk(CVP_ERR,
  1019. "%s: invalid offset %d or size %d persist\n",
  1020. __func__, buf->offset, buf->size);
  1021. goto exit2;
  1022. }
  1023. return smem;
  1024. }
  1025. smem = msm_cvp_session_find_smem(inst, dma_buf);
  1026. if (!smem) {
  1027. found = 0;
  1028. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1029. if (!smem)
  1030. return NULL;
  1031. smem->dma_buf = dma_buf;
  1032. smem->bitmap_index = MAX_DMABUF_NUMS;
  1033. smem->pkt_type = pkt_type;
  1034. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1035. if (rc)
  1036. goto exit;
  1037. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1038. dprintk(CVP_ERR,
  1039. "%s: invalid offset %d or size %d new entry\n",
  1040. __func__, buf->offset, buf->size);
  1041. goto exit2;
  1042. }
  1043. rc = msm_cvp_session_add_smem(inst, smem);
  1044. if (rc && rc != -ENOMEM)
  1045. goto exit2;
  1046. return smem;
  1047. }
  1048. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1049. dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
  1050. __func__, buf->offset, buf->size);
  1051. if (found) {
  1052. mutex_lock(&inst->dma_cache.lock);
  1053. atomic_dec(&smem->refcount);
  1054. mutex_unlock(&inst->dma_cache.lock);
  1055. return NULL;
  1056. }
  1057. goto exit2;
  1058. }
  1059. return smem;
  1060. exit2:
  1061. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1062. exit:
  1063. msm_cvp_smem_put_dma_buf(dma_buf);
  1064. kmem_cache_free(cvp_driver->smem_cache, smem);
  1065. smem = NULL;
  1066. return smem;
  1067. }
  1068. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1069. struct cvp_buf_type *buf,
  1070. u32 pkt_type, u32 buf_idx)
  1071. {
  1072. u32 iova = 0;
  1073. struct msm_cvp_smem *smem = NULL;
  1074. struct list_head *ptr, *next;
  1075. struct cvp_internal_buf *pbuf;
  1076. struct dma_buf *dma_buf;
  1077. if (!inst) {
  1078. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1079. return -EINVAL;
  1080. }
  1081. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1082. if (!dma_buf)
  1083. return -EINVAL;
  1084. mutex_lock(&inst->persistbufs.lock);
  1085. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1086. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1087. if (dma_buf == pbuf->smem->dma_buf) {
  1088. pbuf->size =
  1089. (pbuf->size >= buf->size) ?
  1090. pbuf->size : buf->size;
  1091. iova = pbuf->smem->device_addr + buf->offset;
  1092. mutex_unlock(&inst->persistbufs.lock);
  1093. atomic_inc(&pbuf->smem->refcount);
  1094. dma_buf_put(dma_buf);
  1095. dprintk(CVP_MEM,
  1096. "map persist Reuse fd %d, dma_buf %#llx\n",
  1097. pbuf->fd, pbuf->smem->dma_buf);
  1098. return iova;
  1099. }
  1100. }
  1101. mutex_unlock(&inst->persistbufs.lock);
  1102. dma_buf_put(dma_buf);
  1103. pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1104. if (!pbuf) {
  1105. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1106. __func__);
  1107. return 0;
  1108. }
  1109. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1110. if (!smem)
  1111. goto exit;
  1112. smem->pkt_type = pkt_type;
  1113. smem->buf_idx = buf_idx;
  1114. pbuf->smem = smem;
  1115. pbuf->fd = buf->fd;
  1116. pbuf->size = buf->size;
  1117. pbuf->offset = buf->offset;
  1118. pbuf->ownership = CLIENT;
  1119. mutex_lock(&inst->persistbufs.lock);
  1120. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1121. mutex_unlock(&inst->persistbufs.lock);
  1122. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1123. iova = smem->device_addr + buf->offset;
  1124. return iova;
  1125. exit:
  1126. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  1127. return 0;
  1128. }
  1129. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1130. struct cvp_buf_type *buf,
  1131. struct msm_cvp_frame *frame,
  1132. u32 pkt_type, u32 buf_idx)
  1133. {
  1134. u32 iova = 0;
  1135. struct msm_cvp_smem *smem = NULL;
  1136. u32 nr;
  1137. u32 type;
  1138. if (!inst || !frame) {
  1139. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1140. return 0;
  1141. }
  1142. nr = frame->nr;
  1143. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1144. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1145. return 0;
  1146. }
  1147. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1148. if (!smem)
  1149. return 0;
  1150. smem->buf_idx = buf_idx;
  1151. frame->bufs[nr].fd = buf->fd;
  1152. frame->bufs[nr].smem = smem;
  1153. frame->bufs[nr].size = buf->size;
  1154. frame->bufs[nr].offset = buf->offset;
  1155. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1156. frame->nr++;
  1157. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1158. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1159. iova = smem->device_addr + buf->offset;
  1160. return iova;
  1161. }
  1162. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1163. struct msm_cvp_frame *frame)
  1164. {
  1165. u32 i;
  1166. u32 type;
  1167. struct msm_cvp_smem *smem = NULL;
  1168. struct cvp_internal_buf *buf;
  1169. type = EVA_KMD_BUFTYPE_OUTPUT;
  1170. for (i = 0; i < frame->nr; ++i) {
  1171. buf = &frame->bufs[i];
  1172. smem = buf->smem;
  1173. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1174. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1175. /* smem not in dmamap cache */
  1176. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1177. dma_heap_buffer_free(smem->dma_buf);
  1178. smem->pkt_type = smem->buf_idx = 0;
  1179. kmem_cache_free(cvp_driver->smem_cache, smem);
  1180. buf->smem = NULL;
  1181. } else {
  1182. mutex_lock(&inst->dma_cache.lock);
  1183. if (atomic_dec_and_test(&smem->refcount)) {
  1184. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1185. print_smem(CVP_MEM, "Map dereference",
  1186. inst, smem);
  1187. smem->pkt_type = smem->buf_idx = 0;
  1188. }
  1189. mutex_unlock(&inst->dma_cache.lock);
  1190. }
  1191. }
  1192. kmem_cache_free(cvp_driver->frame_cache, frame);
  1193. }
  1194. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1195. {
  1196. struct msm_cvp_frame *frame, *dummy1;
  1197. bool found;
  1198. if (!inst) {
  1199. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1200. return;
  1201. }
  1202. ktid &= (FENCE_BIT - 1);
  1203. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1204. __func__, hash32_ptr(inst->session), ktid);
  1205. found = false;
  1206. mutex_lock(&inst->frames.lock);
  1207. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1208. if (frame->ktid == ktid) {
  1209. found = true;
  1210. list_del(&frame->list);
  1211. break;
  1212. }
  1213. }
  1214. mutex_unlock(&inst->frames.lock);
  1215. if (found)
  1216. msm_cvp_unmap_frame_buf(inst, frame);
  1217. else
  1218. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1219. }
  1220. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  1221. struct eva_kmd_hfi_packet *in_pkt,
  1222. unsigned int offset, unsigned int buf_num)
  1223. {
  1224. dprintk(CVP_ERR, "Unexpected user persistent buffer release\n");
  1225. return 0;
  1226. }
  1227. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1228. struct eva_kmd_hfi_packet *in_pkt,
  1229. unsigned int offset, unsigned int buf_num)
  1230. {
  1231. struct cvp_buf_type *buf;
  1232. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1233. int i;
  1234. u32 iova;
  1235. if (!offset || !buf_num)
  1236. return 0;
  1237. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1238. for (i = 0; i < buf_num; i++) {
  1239. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1240. offset += sizeof(*buf) >> 2;
  1241. if (buf->fd < 0 || !buf->size)
  1242. continue;
  1243. iova = msm_cvp_map_user_persist_buf(inst, buf,
  1244. cmd_hdr->packet_type, i);
  1245. if (!iova) {
  1246. dprintk(CVP_ERR,
  1247. "%s: buf %d register failed.\n",
  1248. __func__, i);
  1249. return -EINVAL;
  1250. }
  1251. buf->fd = iova;
  1252. }
  1253. return 0;
  1254. }
  1255. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1256. struct eva_kmd_hfi_packet *in_pkt,
  1257. unsigned int offset, unsigned int buf_num)
  1258. {
  1259. struct cvp_buf_type *buf;
  1260. int i;
  1261. u32 iova;
  1262. u64 ktid;
  1263. struct msm_cvp_frame *frame;
  1264. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1265. if (!offset || !buf_num)
  1266. return 0;
  1267. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1268. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1269. ktid &= (FENCE_BIT - 1);
  1270. cmd_hdr->client_data.kdata = ktid;
  1271. frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
  1272. if (!frame)
  1273. return -ENOMEM;
  1274. frame->ktid = ktid;
  1275. frame->nr = 0;
  1276. frame->pkt_type = cmd_hdr->packet_type;
  1277. for (i = 0; i < buf_num; i++) {
  1278. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1279. offset += sizeof(*buf) >> 2;
  1280. if (buf->fd < 0 || !buf->size)
  1281. continue;
  1282. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1283. if (!iova) {
  1284. dprintk(CVP_ERR,
  1285. "%s: buf %d register failed.\n",
  1286. __func__, i);
  1287. msm_cvp_unmap_frame_buf(inst, frame);
  1288. return -EINVAL;
  1289. }
  1290. buf->fd = iova;
  1291. }
  1292. mutex_lock(&inst->frames.lock);
  1293. list_add_tail(&frame->list, &inst->frames.list);
  1294. mutex_unlock(&inst->frames.lock);
  1295. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1296. return 0;
  1297. }
  1298. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1299. {
  1300. int rc = 0, i;
  1301. struct cvp_internal_buf *cbuf, *dummy;
  1302. struct msm_cvp_frame *frame, *dummy1;
  1303. struct msm_cvp_smem *smem;
  1304. struct cvp_hal_session *session;
  1305. struct eva_kmd_buffer buf;
  1306. session = (struct cvp_hal_session *)inst->session;
  1307. mutex_lock(&inst->frames.lock);
  1308. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1309. list_del(&frame->list);
  1310. msm_cvp_unmap_frame_buf(inst, frame);
  1311. }
  1312. mutex_unlock(&inst->frames.lock);
  1313. mutex_lock(&inst->dma_cache.lock);
  1314. for (i = 0; i < inst->dma_cache.nr; i++) {
  1315. smem = inst->dma_cache.entries[i];
  1316. if (atomic_read(&smem->refcount) == 0) {
  1317. print_smem(CVP_MEM, "free", inst, smem);
  1318. } else if (!(smem->flags & SMEM_PERSIST)) {
  1319. print_smem(CVP_WARN, "in use", inst, smem);
  1320. }
  1321. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1322. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1323. kmem_cache_free(cvp_driver->smem_cache, smem);
  1324. inst->dma_cache.entries[i] = NULL;
  1325. }
  1326. mutex_unlock(&inst->dma_cache.lock);
  1327. mutex_lock(&inst->cvpdspbufs.lock);
  1328. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1329. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1330. if (cbuf->ownership == CLIENT) {
  1331. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  1332. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  1333. cbuf->offset, cbuf->index,
  1334. (uint32_t)cbuf->smem->device_addr);
  1335. if (rc)
  1336. dprintk(CVP_ERR,
  1337. "%s: failed dsp deregistration fd=%d rc=%d",
  1338. __func__, cbuf->fd, rc);
  1339. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1340. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1341. } else if (cbuf->ownership == DSP) {
  1342. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  1343. if (rc)
  1344. dprintk(CVP_ERR,
  1345. "%s: failed to unmap buf from DSP\n",
  1346. __func__);
  1347. rc = cvp_release_dsp_buffers(inst, cbuf);
  1348. if (rc)
  1349. dprintk(CVP_ERR,
  1350. "%s Fail to free buffer 0x%x\n",
  1351. __func__, rc);
  1352. }
  1353. list_del(&cbuf->list);
  1354. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  1355. }
  1356. mutex_unlock(&inst->cvpdspbufs.lock);
  1357. mutex_lock(&inst->cvpwnccbufs.lock);
  1358. if (inst->cvpwnccbufs_num != 0)
  1359. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1360. __func__, inst->cvpwnccbufs_num);
  1361. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1362. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1363. buf.fd = cbuf->fd;
  1364. buf.reserved[0] = cbuf->ktid;
  1365. mutex_unlock(&inst->cvpwnccbufs.lock);
  1366. msm_cvp_unmap_buf_wncc(inst, &buf);
  1367. mutex_lock(&inst->cvpwnccbufs.lock);
  1368. }
  1369. mutex_unlock(&inst->cvpwnccbufs.lock);
  1370. return rc;
  1371. }
  1372. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1373. {
  1374. struct cvp_internal_buf *buf;
  1375. struct msm_cvp_core *core;
  1376. struct inst_snapshot *snap = NULL;
  1377. int i;
  1378. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  1379. if (log && core->log.snapshot_index < 16) {
  1380. snap = &core->log.snapshot[core->log.snapshot_index];
  1381. snap->session = inst->session;
  1382. core->log.snapshot_index++;
  1383. }
  1384. if (!inst) {
  1385. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1386. __func__, inst);
  1387. return;
  1388. }
  1389. dprintk(CVP_ERR,
  1390. "---Buffer details for inst: %pK of type: %d---\n",
  1391. inst, inst->session_type);
  1392. mutex_lock(&inst->dma_cache.lock);
  1393. dprintk(CVP_ERR, "dma cache: %d\n", inst->dma_cache.nr);
  1394. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1395. for (i = 0; i < inst->dma_cache.nr; i++)
  1396. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1397. mutex_unlock(&inst->dma_cache.lock);
  1398. mutex_lock(&inst->cvpdspbufs.lock);
  1399. dprintk(CVP_ERR, "dsp buffer list:\n");
  1400. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  1401. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  1402. mutex_unlock(&inst->cvpdspbufs.lock);
  1403. mutex_lock(&inst->cvpwnccbufs.lock);
  1404. dprintk(CVP_ERR, "wncc buffer list:\n");
  1405. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1406. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1407. mutex_unlock(&inst->cvpwnccbufs.lock);
  1408. mutex_lock(&inst->persistbufs.lock);
  1409. dprintk(CVP_ERR, "persist buffer list:\n");
  1410. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1411. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1412. mutex_unlock(&inst->persistbufs.lock);
  1413. }
  1414. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1415. u32 buffer_size)
  1416. {
  1417. struct cvp_internal_buf *buf;
  1418. struct msm_cvp_list *buf_list;
  1419. u32 smem_flags = SMEM_UNCACHED;
  1420. int rc = 0;
  1421. if (!inst) {
  1422. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1423. return NULL;
  1424. }
  1425. buf_list = &inst->persistbufs;
  1426. if (!buffer_size)
  1427. return NULL;
  1428. /* PERSIST buffer requires secure mapping
  1429. * Disable and wait for hyp_assign available
  1430. */
  1431. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1432. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  1433. if (!buf) {
  1434. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1435. goto fail_kzalloc;
  1436. }
  1437. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1438. if (!buf->smem) {
  1439. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1440. goto fail_kzalloc;
  1441. }
  1442. buf->smem->flags = smem_flags;
  1443. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1444. &(inst->core->resources), buf->smem);
  1445. if (rc) {
  1446. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1447. goto err_no_mem;
  1448. }
  1449. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1450. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1451. atomic_inc(&buf->smem->refcount);
  1452. buf->size = buf->smem->size;
  1453. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1454. buf->ownership = DRIVER;
  1455. mutex_lock(&buf_list->lock);
  1456. list_add_tail(&buf->list, &buf_list->list);
  1457. mutex_unlock(&buf_list->lock);
  1458. return buf;
  1459. err_no_mem:
  1460. kmem_cache_free(cvp_driver->buf_cache, buf);
  1461. fail_kzalloc:
  1462. return NULL;
  1463. }
  1464. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1465. {
  1466. struct msm_cvp_smem *smem;
  1467. struct list_head *ptr, *next;
  1468. struct cvp_internal_buf *buf;
  1469. int rc = 0;
  1470. struct msm_cvp_core *core;
  1471. struct cvp_hfi_device *hdev;
  1472. if (!inst) {
  1473. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1474. return -EINVAL;
  1475. }
  1476. core = inst->core;
  1477. if (!core) {
  1478. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1479. return -EINVAL;
  1480. }
  1481. hdev = core->device;
  1482. if (!hdev) {
  1483. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  1484. return -EINVAL;
  1485. }
  1486. dprintk(CVP_MEM, "release persist buffer!\n");
  1487. mutex_lock(&inst->persistbufs.lock);
  1488. /* Workaround for FW: release buffer means release all */
  1489. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  1490. rc = call_hfi_op(hdev, session_release_buffers,
  1491. (void *)inst->session);
  1492. if (!rc) {
  1493. mutex_unlock(&inst->persistbufs.lock);
  1494. rc = wait_for_sess_signal_receipt(inst,
  1495. HAL_SESSION_RELEASE_BUFFER_DONE);
  1496. if (rc)
  1497. dprintk(CVP_WARN,
  1498. "%s: wait for signal failed, rc %d\n",
  1499. __func__, rc);
  1500. mutex_lock(&inst->persistbufs.lock);
  1501. } else {
  1502. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  1503. }
  1504. }
  1505. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1506. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1507. smem = buf->smem;
  1508. if (!smem) {
  1509. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1510. mutex_unlock(&inst->persistbufs.lock);
  1511. return -EINVAL;
  1512. }
  1513. list_del(&buf->list);
  1514. if (buf->ownership == DRIVER)
  1515. dprintk(CVP_MEM,
  1516. "%s: %x : fd %d %pK size %d",
  1517. "free arp", hash32_ptr(inst->session), buf->fd,
  1518. smem->dma_buf, buf->size);
  1519. else
  1520. dprintk(CVP_MEM,
  1521. "%s: %x : fd %d %pK size %d",
  1522. "free user persistent", hash32_ptr(inst->session), buf->fd,
  1523. smem->dma_buf, buf->size);
  1524. atomic_dec(&smem->refcount);
  1525. msm_cvp_smem_free(smem);
  1526. kmem_cache_free(cvp_driver->smem_cache, smem);
  1527. buf->smem = NULL;
  1528. kmem_cache_free(cvp_driver->buf_cache, buf);
  1529. }
  1530. mutex_unlock(&inst->persistbufs.lock);
  1531. return rc;
  1532. }
  1533. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  1534. struct cvp_internal_buf *buf,
  1535. u32 buffer_size,
  1536. u32 secure_type)
  1537. {
  1538. u32 smem_flags = SMEM_UNCACHED;
  1539. int rc = 0;
  1540. if (!inst) {
  1541. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1542. return -EINVAL;
  1543. }
  1544. if (!buf)
  1545. return -EINVAL;
  1546. if (!buffer_size)
  1547. return -EINVAL;
  1548. switch (secure_type) {
  1549. case 0:
  1550. break;
  1551. case 1:
  1552. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  1553. break;
  1554. case 2:
  1555. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1556. break;
  1557. default:
  1558. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  1559. __func__, secure_type);
  1560. return -EINVAL;
  1561. }
  1562. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  1563. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  1564. if (!buf->smem) {
  1565. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1566. goto fail_kzalloc_smem_cache;
  1567. }
  1568. buf->smem->flags = smem_flags;
  1569. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  1570. &(inst->core->resources), buf->smem);
  1571. if (rc) {
  1572. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1573. goto err_no_mem;
  1574. }
  1575. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1576. atomic_inc(&buf->smem->refcount);
  1577. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  1578. buf->size = buf->smem->size;
  1579. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1580. buf->ownership = DSP;
  1581. return rc;
  1582. err_no_mem:
  1583. kmem_cache_free(cvp_driver->smem_cache, buf->smem);
  1584. fail_kzalloc_smem_cache:
  1585. return rc;
  1586. }
  1587. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  1588. struct cvp_internal_buf *buf)
  1589. {
  1590. struct msm_cvp_smem *smem;
  1591. int rc = 0;
  1592. if (!inst) {
  1593. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1594. return -EINVAL;
  1595. }
  1596. if (!buf) {
  1597. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  1598. return -EINVAL;
  1599. }
  1600. smem = buf->smem;
  1601. if (!smem) {
  1602. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1603. return -EINVAL;
  1604. }
  1605. if (buf->ownership == DSP) {
  1606. dprintk(CVP_MEM,
  1607. "%s: %x : fd %x %s size %d",
  1608. __func__, hash32_ptr(inst->session), buf->fd,
  1609. smem->dma_buf->name, buf->size);
  1610. atomic_dec(&smem->refcount);
  1611. msm_cvp_smem_free(smem);
  1612. kmem_cache_free(cvp_driver->smem_cache, smem);
  1613. } else {
  1614. dprintk(CVP_ERR,
  1615. "%s: wrong owner %d %x : fd %x %s size %d",
  1616. __func__, buf->ownership, hash32_ptr(inst->session),
  1617. buf->fd, smem->dma_buf->name, buf->size);
  1618. }
  1619. return rc;
  1620. }
  1621. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1622. struct eva_kmd_buffer *buf)
  1623. {
  1624. struct cvp_hfi_device *hdev;
  1625. struct cvp_hal_session *session;
  1626. struct msm_cvp_inst *s;
  1627. int rc = 0;
  1628. if (!inst || !inst->core || !buf) {
  1629. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1630. return -EINVAL;
  1631. }
  1632. s = cvp_get_inst_validate(inst->core, inst);
  1633. if (!s)
  1634. return -ECONNRESET;
  1635. session = (struct cvp_hal_session *)inst->session;
  1636. if (!session) {
  1637. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1638. rc = -EINVAL;
  1639. goto exit;
  1640. }
  1641. hdev = inst->core->device;
  1642. print_client_buffer(CVP_HFI, "register", inst, buf);
  1643. if (buf->index)
  1644. rc = msm_cvp_map_buf_dsp(inst, buf);
  1645. else
  1646. rc = msm_cvp_map_buf_wncc(inst, buf);
  1647. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1648. buf->fd, buf->reserved[0]);
  1649. exit:
  1650. cvp_put_inst(s);
  1651. return rc;
  1652. }
  1653. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1654. struct eva_kmd_buffer *buf)
  1655. {
  1656. struct msm_cvp_inst *s;
  1657. int rc = 0;
  1658. if (!inst || !inst->core || !buf) {
  1659. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1660. return -EINVAL;
  1661. }
  1662. s = cvp_get_inst_validate(inst->core, inst);
  1663. if (!s)
  1664. return -ECONNRESET;
  1665. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1666. if (buf->index)
  1667. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1668. else
  1669. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  1670. cvp_put_inst(s);
  1671. return rc;
  1672. }