msm_cvp_buf.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/pid.h>
  6. #include <linux/fdtable.h>
  7. #include <linux/rcupdate.h>
  8. #include <linux/fs.h>
  9. #include <linux/dma-buf.h>
  10. #include <linux/sched/task.h>
  11. #include "msm_cvp_common.h"
  12. #include "cvp_hfi_api.h"
  13. #include "msm_cvp_debug.h"
  14. #include "msm_cvp_core.h"
  15. #include "msm_cvp_dsp.h"
  16. #define CLEAR_USE_BITMAP(idx, inst) \
  17. do { \
  18. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  19. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  20. hash32_ptr(inst->session), smem->bitmap_index, \
  21. inst->dma_cache.usage_bitmap); \
  22. } while (0)
  23. #define SET_USE_BITMAP(idx, inst) \
  24. do { \
  25. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  26. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  27. hash32_ptr(inst->session), idx, \
  28. inst->dma_cache.usage_bitmap); \
  29. } while (0)
  30. void print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  31. struct msm_cvp_smem *smem)
  32. {
  33. if (!(tag & msm_cvp_debug) || !inst || !smem)
  34. return;
  35. if (smem->dma_buf) {
  36. dprintk(tag,
  37. "%s: %x : %s size %d flags %#x iova %#x idx %d ref %d",
  38. str, hash32_ptr(inst->session), smem->dma_buf->name,
  39. smem->size, smem->flags, smem->device_addr,
  40. smem->bitmap_index, smem->refcount);
  41. }
  42. }
  43. static void print_internal_buffer(u32 tag, const char *str,
  44. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  45. {
  46. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  47. return;
  48. if (cbuf->smem->dma_buf) {
  49. dprintk(tag,
  50. "%s: %x : fd %d off %d %s size %d iova %#x",
  51. str, hash32_ptr(inst->session), cbuf->fd,
  52. cbuf->offset, cbuf->smem->dma_buf->name, cbuf->size,
  53. cbuf->smem->device_addr);
  54. } else {
  55. dprintk(tag,
  56. "%s: %x : idx %2d fd %d off %d size %d iova %#x",
  57. str, hash32_ptr(inst->session), cbuf->fd,
  58. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  59. }
  60. }
  61. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  62. struct cvp_internal_buf *cbuf)
  63. {
  64. dprintk(tag, "%s addr: %x size %u\n", str,
  65. cbuf->smem->device_addr, cbuf->size);
  66. }
  67. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  68. struct msm_cvp_smem *smem, bool logging)
  69. {
  70. print_smem(CVP_ERR, "bufdump", inst, smem);
  71. if (!logging || !snapshot)
  72. return;
  73. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  74. struct smem_data *s;
  75. s = &snapshot->smem_log[snapshot->smem_index];
  76. snapshot->smem_index++;
  77. s->size = smem->size;
  78. s->flags = smem->flags;
  79. s->device_addr = smem->device_addr;
  80. s->bitmap_index = smem->bitmap_index;
  81. s->refcount = atomic_read(&smem->refcount);
  82. }
  83. }
  84. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  85. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  86. bool logging)
  87. {
  88. struct cvp_buf_data *buf = NULL;
  89. u32 index;
  90. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  91. if (!logging)
  92. return;
  93. if (snapshot) {
  94. if (prop == SMEM_ADSP && snapshot->dsp_index < MAX_ENTRIES) {
  95. index = snapshot->dsp_index;
  96. buf = &snapshot->dsp_buf_log[index];
  97. snapshot->dsp_index++;
  98. } else if (prop == SMEM_PERSIST &&
  99. snapshot->persist_index < MAX_ENTRIES) {
  100. index = snapshot->persist_index;
  101. buf = &snapshot->persist_buf_log[index];
  102. snapshot->persist_index++;
  103. }
  104. if (buf) {
  105. buf->device_addr = cbuf->smem->device_addr;
  106. buf->size = cbuf->size;
  107. }
  108. }
  109. }
  110. void print_client_buffer(u32 tag, const char *str,
  111. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  112. {
  113. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  114. return;
  115. dprintk(tag,
  116. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x\n",
  117. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  118. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags);
  119. }
  120. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  121. struct eva_kmd_buffer *buf)
  122. {
  123. struct cvp_hal_session *session;
  124. struct cvp_internal_buf *cbuf = NULL;
  125. bool found = false;
  126. if (!inst || !inst->core || !buf) {
  127. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  128. return false;
  129. }
  130. if (buf->fd < 0) {
  131. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  132. return false;
  133. }
  134. if (buf->offset) {
  135. dprintk(CVP_ERR,
  136. "%s: offset is deprecated, set to 0.\n",
  137. __func__);
  138. return false;
  139. }
  140. session = (struct cvp_hal_session *)inst->session;
  141. mutex_lock(&inst->cvpdspbufs.lock);
  142. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  143. if (cbuf->fd == buf->fd) {
  144. if (cbuf->size != buf->size) {
  145. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  146. __func__);
  147. mutex_unlock(&inst->cvpdspbufs.lock);
  148. return false;
  149. }
  150. found = true;
  151. break;
  152. }
  153. }
  154. mutex_unlock(&inst->cvpdspbufs.lock);
  155. if (found) {
  156. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  157. return false;
  158. }
  159. return true;
  160. }
  161. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  162. fmode_t mask, unsigned int refs)
  163. {
  164. struct files_struct *files = task->files;
  165. struct file *file;
  166. if (!files)
  167. return NULL;
  168. rcu_read_lock();
  169. loop:
  170. file = fcheck_files(files, fd);
  171. if (file) {
  172. /* File object ref couldn't be taken.
  173. * dup2() atomicity guarantee is the reason
  174. * we loop to catch the new file (or NULL pointer)
  175. */
  176. if (file->f_mode & mask)
  177. file = NULL;
  178. else if (!get_file_rcu_many(file, refs))
  179. goto loop;
  180. }
  181. rcu_read_unlock();
  182. return file;
  183. }
  184. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  185. struct task_struct *task)
  186. {
  187. if (file->f_op != gfa_cv.dmabuf_f_op) {
  188. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  189. return ERR_PTR(-EINVAL);
  190. }
  191. return file->private_data;
  192. }
  193. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  194. {
  195. int rc = 0;
  196. struct cvp_internal_buf *cbuf = NULL;
  197. struct msm_cvp_smem *smem = NULL;
  198. struct dma_buf *dma_buf = NULL;
  199. struct file *file;
  200. if (!__is_buf_valid(inst, buf))
  201. return -EINVAL;
  202. if (!inst->task)
  203. return -EINVAL;
  204. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  205. if (file == NULL) {
  206. dprintk(CVP_WARN, "%s fail to get file from fd\n", __func__);
  207. return -EINVAL;
  208. }
  209. dma_buf = cvp_dma_buf_get(
  210. file,
  211. buf->fd,
  212. inst->task);
  213. if (dma_buf == ERR_PTR(-EINVAL)) {
  214. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  215. rc = -EINVAL;
  216. goto exit;
  217. }
  218. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  219. cbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  220. if (!cbuf) {
  221. rc = -ENOMEM;
  222. goto exit;
  223. }
  224. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  225. if (!smem) {
  226. rc = -ENOMEM;
  227. goto exit;
  228. }
  229. smem->dma_buf = dma_buf;
  230. smem->bitmap_index = MAX_DMABUF_NUMS;
  231. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  232. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  233. if (rc) {
  234. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  235. goto exit;
  236. }
  237. cbuf->smem = smem;
  238. cbuf->fd = buf->fd;
  239. cbuf->size = buf->size;
  240. cbuf->offset = buf->offset;
  241. cbuf->ownership = CLIENT;
  242. cbuf->index = buf->index;
  243. buf->reserved[0] = (uint32_t)smem->device_addr;
  244. mutex_lock(&inst->cvpdspbufs.lock);
  245. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  246. mutex_unlock(&inst->cvpdspbufs.lock);
  247. return rc;
  248. exit:
  249. fput(file);
  250. if (smem) {
  251. if (smem->device_addr) {
  252. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  253. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  254. }
  255. kmem_cache_free(cvp_driver->smem_cache, smem);
  256. }
  257. if (cbuf)
  258. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  259. return rc;
  260. }
  261. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  262. {
  263. int rc = 0;
  264. bool found;
  265. struct cvp_internal_buf *cbuf;
  266. struct cvp_hal_session *session;
  267. if (!inst || !inst->core || !buf) {
  268. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  269. return -EINVAL;
  270. }
  271. session = (struct cvp_hal_session *)inst->session;
  272. if (!session) {
  273. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  274. return -EINVAL;
  275. }
  276. mutex_lock(&inst->cvpdspbufs.lock);
  277. found = false;
  278. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  279. if (cbuf->fd == buf->fd) {
  280. found = true;
  281. break;
  282. }
  283. }
  284. mutex_unlock(&inst->cvpdspbufs.lock);
  285. if (!found) {
  286. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  287. return -EINVAL;
  288. }
  289. if (cbuf->smem->device_addr) {
  290. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  291. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  292. }
  293. mutex_lock(&inst->cvpdspbufs.lock);
  294. list_del(&cbuf->list);
  295. mutex_unlock(&inst->cvpdspbufs.lock);
  296. kmem_cache_free(cvp_driver->smem_cache, cbuf->smem);
  297. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  298. return rc;
  299. }
  300. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  301. u32 offset, u32 size)
  302. {
  303. enum smem_cache_ops cache_op;
  304. if (msm_cvp_cacheop_disabled)
  305. return;
  306. if (!smem) {
  307. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  308. return;
  309. }
  310. switch (type) {
  311. case EVA_KMD_BUFTYPE_INPUT:
  312. cache_op = SMEM_CACHE_CLEAN;
  313. break;
  314. case EVA_KMD_BUFTYPE_OUTPUT:
  315. cache_op = SMEM_CACHE_INVALIDATE;
  316. break;
  317. default:
  318. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  319. }
  320. dprintk(CVP_MEM,
  321. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  322. __func__, smem->dma_buf, cache_op, offset, size);
  323. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  324. }
  325. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  326. struct dma_buf *dma_buf)
  327. {
  328. struct msm_cvp_smem *smem;
  329. int i;
  330. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  331. return NULL;
  332. mutex_lock(&inst->dma_cache.lock);
  333. for (i = 0; i < inst->dma_cache.nr; i++)
  334. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  335. SET_USE_BITMAP(i, inst);
  336. smem = inst->dma_cache.entries[i];
  337. smem->bitmap_index = i;
  338. atomic_inc(&smem->refcount);
  339. /*
  340. * If we find it, it means we already increased
  341. * refcount before, so we put it to avoid double
  342. * incremental.
  343. */
  344. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  345. mutex_unlock(&inst->dma_cache.lock);
  346. print_smem(CVP_MEM, "found", inst, smem);
  347. return smem;
  348. }
  349. mutex_unlock(&inst->dma_cache.lock);
  350. return NULL;
  351. }
  352. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  353. struct msm_cvp_smem *smem)
  354. {
  355. unsigned int i;
  356. struct msm_cvp_smem *smem2;
  357. mutex_lock(&inst->dma_cache.lock);
  358. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  359. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  360. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  361. smem->bitmap_index = inst->dma_cache.nr;
  362. inst->dma_cache.nr++;
  363. i = smem->bitmap_index;
  364. } else {
  365. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  366. MAX_DMABUF_NUMS);
  367. if (i < MAX_DMABUF_NUMS) {
  368. smem2 = inst->dma_cache.entries[i];
  369. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  370. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  371. kmem_cache_free(cvp_driver->smem_cache, smem2);
  372. inst->dma_cache.entries[i] = smem;
  373. smem->bitmap_index = i;
  374. SET_USE_BITMAP(i, inst);
  375. } else {
  376. dprintk(CVP_WARN, "%s: not enough memory\n", __func__);
  377. mutex_unlock(&inst->dma_cache.lock);
  378. return -ENOMEM;
  379. }
  380. }
  381. atomic_inc(&smem->refcount);
  382. mutex_unlock(&inst->dma_cache.lock);
  383. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  384. return 0;
  385. }
  386. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  387. struct cvp_buf_type *buf)
  388. {
  389. int rc = 0, found = 1;
  390. struct msm_cvp_smem *smem = NULL;
  391. struct dma_buf *dma_buf = NULL;
  392. if (buf->fd < 0) {
  393. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  394. return NULL;
  395. }
  396. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  397. if (!dma_buf) {
  398. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  399. return NULL;
  400. }
  401. smem = msm_cvp_session_find_smem(inst, dma_buf);
  402. if (!smem) {
  403. found = 0;
  404. smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  405. if (!smem)
  406. return NULL;
  407. smem->dma_buf = dma_buf;
  408. smem->bitmap_index = MAX_DMABUF_NUMS;
  409. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  410. if (rc)
  411. goto exit;
  412. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  413. dprintk(CVP_ERR, "%s: invalid offset %d or size %d for a new entry\n",
  414. __func__, buf->offset, buf->size);
  415. goto exit2;
  416. }
  417. rc = msm_cvp_session_add_smem(inst, smem);
  418. if (rc && rc != -ENOMEM)
  419. goto exit2;
  420. }
  421. if (buf->size > smem->size || buf->size > smem->size - buf->offset) {
  422. dprintk(CVP_ERR, "%s: invalid offset %d or size %d\n",
  423. __func__, buf->offset, buf->size);
  424. if (found) {
  425. mutex_lock(&inst->dma_cache.lock);
  426. atomic_dec(&smem->refcount);
  427. mutex_unlock(&inst->dma_cache.lock);
  428. return NULL;
  429. }
  430. goto exit2;
  431. }
  432. return smem;
  433. exit2:
  434. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  435. exit:
  436. msm_cvp_smem_put_dma_buf(dma_buf);
  437. kmem_cache_free(cvp_driver->smem_cache, smem);
  438. smem = NULL;
  439. return smem;
  440. }
  441. static u32 msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  442. struct cvp_buf_type *buf)
  443. {
  444. u32 iova = 0;
  445. struct msm_cvp_smem *smem = NULL;
  446. struct cvp_internal_buf *pbuf;
  447. if (!inst) {
  448. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  449. return -EINVAL;
  450. }
  451. pbuf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  452. if (!pbuf)
  453. return 0;
  454. smem = msm_cvp_session_get_smem(inst, buf);
  455. if (!smem)
  456. goto exit;
  457. smem->flags |= SMEM_PERSIST;
  458. pbuf->smem = smem;
  459. pbuf->fd = buf->fd;
  460. pbuf->size = buf->size;
  461. pbuf->offset = buf->offset;
  462. pbuf->ownership = CLIENT;
  463. mutex_lock(&inst->persistbufs.lock);
  464. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  465. mutex_unlock(&inst->persistbufs.lock);
  466. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  467. iova = smem->device_addr + buf->offset;
  468. return iova;
  469. exit:
  470. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  471. return 0;
  472. }
  473. u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  474. struct cvp_buf_type *buf,
  475. struct msm_cvp_frame *frame)
  476. {
  477. u32 iova = 0;
  478. struct msm_cvp_smem *smem = NULL;
  479. u32 nr;
  480. u32 type;
  481. if (!inst || !frame) {
  482. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  483. return 0;
  484. }
  485. nr = frame->nr;
  486. if (nr == MAX_FRAME_BUFFER_NUMS) {
  487. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  488. return 0;
  489. }
  490. smem = msm_cvp_session_get_smem(inst, buf);
  491. if (!smem)
  492. return 0;
  493. frame->bufs[nr].fd = buf->fd;
  494. frame->bufs[nr].smem = smem;
  495. frame->bufs[nr].size = buf->size;
  496. frame->bufs[nr].offset = buf->offset;
  497. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  498. frame->nr++;
  499. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  500. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  501. iova = smem->device_addr + buf->offset;
  502. return iova;
  503. }
  504. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  505. struct msm_cvp_frame *frame)
  506. {
  507. u32 i;
  508. u32 type;
  509. struct msm_cvp_smem *smem = NULL;
  510. struct cvp_internal_buf *buf;
  511. type = EVA_KMD_BUFTYPE_OUTPUT;
  512. for (i = 0; i < frame->nr; ++i) {
  513. buf = &frame->bufs[i];
  514. smem = buf->smem;
  515. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  516. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  517. /* smem not in dmamap cache */
  518. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  519. dma_heap_buffer_free(smem->dma_buf);
  520. kmem_cache_free(cvp_driver->smem_cache, smem);
  521. buf->smem = NULL;
  522. } else {
  523. mutex_lock(&inst->dma_cache.lock);
  524. if (atomic_dec_and_test(&smem->refcount)) {
  525. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  526. print_smem(CVP_MEM, "Map dereference",
  527. inst, smem);
  528. }
  529. mutex_unlock(&inst->dma_cache.lock);
  530. }
  531. }
  532. kmem_cache_free(cvp_driver->frame_cache, frame);
  533. }
  534. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  535. {
  536. struct msm_cvp_frame *frame, *dummy1;
  537. bool found;
  538. if (!inst) {
  539. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  540. return;
  541. }
  542. ktid &= (FENCE_BIT - 1);
  543. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  544. __func__, hash32_ptr(inst->session), ktid);
  545. found = false;
  546. mutex_lock(&inst->frames.lock);
  547. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  548. if (frame->ktid == ktid) {
  549. found = true;
  550. list_del(&frame->list);
  551. break;
  552. }
  553. }
  554. mutex_unlock(&inst->frames.lock);
  555. if (found)
  556. msm_cvp_unmap_frame_buf(inst, frame);
  557. else
  558. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  559. }
  560. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  561. struct eva_kmd_hfi_packet *in_pkt,
  562. unsigned int offset, unsigned int buf_num)
  563. {
  564. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  565. struct cvp_internal_buf *pbuf, *dummy;
  566. u64 ktid;
  567. int rc = 0;
  568. struct msm_cvp_smem *smem = NULL;
  569. if (!offset || !buf_num)
  570. return rc;
  571. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  572. ktid = cmd_hdr->client_data.kdata & (FENCE_BIT - 1);
  573. mutex_lock(&inst->persistbufs.lock);
  574. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list, list) {
  575. if (pbuf->ktid == ktid && pbuf->ownership == CLIENT) {
  576. list_del(&pbuf->list);
  577. smem = pbuf->smem;
  578. dprintk(CVP_MEM, "unmap persist: %x %d %d %#x",
  579. hash32_ptr(inst->session), pbuf->fd,
  580. pbuf->size, smem->device_addr);
  581. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  582. /* smem not in dmamap cache */
  583. msm_cvp_unmap_smem(inst, smem,
  584. "unmap cpu");
  585. dma_heap_buffer_free(smem->dma_buf);
  586. kmem_cache_free(
  587. cvp_driver->smem_cache,
  588. smem);
  589. pbuf->smem = NULL;
  590. } else {
  591. mutex_lock(&inst->dma_cache.lock);
  592. if (atomic_dec_and_test(&smem->refcount))
  593. CLEAR_USE_BITMAP(
  594. smem->bitmap_index,
  595. inst);
  596. mutex_unlock(&inst->dma_cache.lock);
  597. }
  598. kmem_cache_free(cvp_driver->buf_cache, pbuf);
  599. }
  600. }
  601. mutex_unlock(&inst->persistbufs.lock);
  602. return rc;
  603. }
  604. int msm_cvp_mark_user_persist(struct msm_cvp_inst *inst,
  605. struct eva_kmd_hfi_packet *in_pkt,
  606. unsigned int offset, unsigned int buf_num)
  607. {
  608. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  609. struct cvp_internal_buf *pbuf, *dummy;
  610. u64 ktid;
  611. struct cvp_buf_type *buf;
  612. int i, rc = 0;
  613. if (!offset || !buf_num)
  614. return 0;
  615. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  616. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  617. ktid &= (FENCE_BIT - 1);
  618. cmd_hdr->client_data.kdata = ktid;
  619. for (i = 0; i < buf_num; i++) {
  620. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  621. offset += sizeof(*buf) >> 2;
  622. if (buf->fd < 0 || !buf->size)
  623. continue;
  624. mutex_lock(&inst->persistbufs.lock);
  625. list_for_each_entry_safe(pbuf, dummy, &inst->persistbufs.list,
  626. list) {
  627. if (pbuf->ownership == CLIENT) {
  628. if (pbuf->fd == buf->fd &&
  629. pbuf->size == buf->size)
  630. buf->fd = pbuf->smem->device_addr;
  631. rc = 1;
  632. break;
  633. }
  634. }
  635. mutex_unlock(&inst->persistbufs.lock);
  636. if (!rc) {
  637. dprintk(CVP_ERR, "%s No persist buf %d found\n",
  638. __func__, buf->fd);
  639. rc = -EFAULT;
  640. break;
  641. }
  642. pbuf->ktid = ktid;
  643. rc = 0;
  644. }
  645. return rc;
  646. }
  647. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  648. struct eva_kmd_hfi_packet *in_pkt,
  649. unsigned int offset, unsigned int buf_num)
  650. {
  651. struct cvp_buf_type *buf;
  652. int i;
  653. u32 iova;
  654. if (!offset || !buf_num)
  655. return 0;
  656. for (i = 0; i < buf_num; i++) {
  657. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  658. offset += sizeof(*buf) >> 2;
  659. if (buf->fd < 0 || !buf->size)
  660. continue;
  661. iova = msm_cvp_map_user_persist_buf(inst, buf);
  662. if (!iova) {
  663. dprintk(CVP_ERR,
  664. "%s: buf %d register failed.\n",
  665. __func__, i);
  666. return -EINVAL;
  667. }
  668. buf->fd = iova;
  669. }
  670. return 0;
  671. }
  672. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  673. struct eva_kmd_hfi_packet *in_pkt,
  674. unsigned int offset, unsigned int buf_num)
  675. {
  676. struct cvp_buf_type *buf;
  677. int i;
  678. u32 iova;
  679. u64 ktid;
  680. struct msm_cvp_frame *frame;
  681. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  682. if (!offset || !buf_num)
  683. return 0;
  684. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  685. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  686. ktid &= (FENCE_BIT - 1);
  687. cmd_hdr->client_data.kdata = ktid;
  688. frame = kmem_cache_zalloc(cvp_driver->frame_cache, GFP_KERNEL);
  689. if (!frame)
  690. return -ENOMEM;
  691. frame->ktid = ktid;
  692. frame->nr = 0;
  693. frame->pkt_type = cmd_hdr->packet_type;
  694. for (i = 0; i < buf_num; i++) {
  695. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  696. offset += sizeof(*buf) >> 2;
  697. if (buf->fd < 0 || !buf->size)
  698. continue;
  699. iova = msm_cvp_map_frame_buf(inst, buf, frame);
  700. if (!iova) {
  701. dprintk(CVP_ERR,
  702. "%s: buf %d register failed.\n",
  703. __func__, i);
  704. msm_cvp_unmap_frame_buf(inst, frame);
  705. return -EINVAL;
  706. }
  707. buf->fd = iova;
  708. }
  709. mutex_lock(&inst->frames.lock);
  710. list_add_tail(&frame->list, &inst->frames.list);
  711. mutex_unlock(&inst->frames.lock);
  712. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  713. return 0;
  714. }
  715. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  716. {
  717. int rc = 0, i;
  718. struct cvp_internal_buf *cbuf, *dummy;
  719. struct msm_cvp_frame *frame, *dummy1;
  720. struct msm_cvp_smem *smem;
  721. struct cvp_hal_session *session;
  722. session = (struct cvp_hal_session *)inst->session;
  723. mutex_lock(&inst->frames.lock);
  724. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  725. list_del(&frame->list);
  726. msm_cvp_unmap_frame_buf(inst, frame);
  727. }
  728. mutex_unlock(&inst->frames.lock);
  729. mutex_lock(&inst->dma_cache.lock);
  730. for (i = 0; i < inst->dma_cache.nr; i++) {
  731. smem = inst->dma_cache.entries[i];
  732. if (atomic_read(&smem->refcount) == 0) {
  733. print_smem(CVP_MEM, "free", inst, smem);
  734. } else if (!(smem->flags & SMEM_PERSIST)) {
  735. print_smem(CVP_WARN, "in use", inst, smem);
  736. }
  737. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  738. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  739. kmem_cache_free(cvp_driver->smem_cache, smem);
  740. inst->dma_cache.entries[i] = NULL;
  741. }
  742. mutex_unlock(&inst->dma_cache.lock);
  743. mutex_lock(&inst->cvpdspbufs.lock);
  744. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  745. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  746. if (cbuf->ownership == CLIENT) {
  747. rc = cvp_dsp_deregister_buffer(hash32_ptr(session),
  748. cbuf->fd, cbuf->smem->dma_buf->size, cbuf->size,
  749. cbuf->offset, cbuf->index,
  750. (uint32_t)cbuf->smem->device_addr);
  751. if (rc)
  752. dprintk(CVP_ERR,
  753. "%s: failed dsp deregistration fd=%d rc=%d",
  754. __func__, cbuf->fd, rc);
  755. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  756. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  757. } else if (cbuf->ownership == DSP) {
  758. rc = cvp_dsp_fastrpc_unmap(inst->process_id, cbuf);
  759. if (rc)
  760. dprintk(CVP_ERR,
  761. "%s: failed to unmap buf from DSP\n",
  762. __func__);
  763. rc = cvp_release_dsp_buffers(inst, cbuf);
  764. if (rc)
  765. dprintk(CVP_ERR,
  766. "%s Fail to free buffer 0x%x\n",
  767. __func__, rc);
  768. }
  769. list_del(&cbuf->list);
  770. kmem_cache_free(cvp_driver->buf_cache, cbuf);
  771. }
  772. mutex_unlock(&inst->cvpdspbufs.lock);
  773. return rc;
  774. }
  775. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  776. {
  777. struct cvp_internal_buf *buf;
  778. struct msm_cvp_core *core;
  779. struct inst_snapshot *snap = NULL;
  780. int i;
  781. core = list_first_entry(&cvp_driver->cores, struct msm_cvp_core, list);
  782. if (log && core->log.snapshot_index < 16) {
  783. snap = &core->log.snapshot[core->log.snapshot_index];
  784. snap->session = inst->session;
  785. core->log.snapshot_index++;
  786. }
  787. if (!inst) {
  788. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  789. __func__, inst);
  790. return;
  791. }
  792. dprintk(CVP_ERR, "active session cmd %d\n", inst->cur_cmd_type);
  793. dprintk(CVP_ERR,
  794. "---Buffer details for inst: %pK of type: %d---\n",
  795. inst, inst->session_type);
  796. mutex_lock(&inst->dma_cache.lock);
  797. dprintk(CVP_ERR, "dma cache:\n");
  798. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  799. for (i = 0; i < inst->dma_cache.nr; i++)
  800. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  801. mutex_unlock(&inst->dma_cache.lock);
  802. mutex_lock(&inst->cvpdspbufs.lock);
  803. dprintk(CVP_ERR, "dsp buffer list:\n");
  804. list_for_each_entry(buf, &inst->cvpdspbufs.list, list)
  805. _log_buf(snap, SMEM_ADSP, inst, buf, log);
  806. mutex_unlock(&inst->cvpdspbufs.lock);
  807. mutex_lock(&inst->persistbufs.lock);
  808. dprintk(CVP_ERR, "persist buffer list:\n");
  809. list_for_each_entry(buf, &inst->persistbufs.list, list)
  810. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  811. mutex_unlock(&inst->persistbufs.lock);
  812. }
  813. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  814. u32 buffer_size)
  815. {
  816. struct cvp_internal_buf *buf;
  817. struct msm_cvp_list *buf_list;
  818. u32 smem_flags = SMEM_UNCACHED;
  819. int rc = 0;
  820. if (!inst) {
  821. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  822. return NULL;
  823. }
  824. buf_list = &inst->persistbufs;
  825. if (!buffer_size)
  826. return NULL;
  827. /* PERSIST buffer requires secure mapping
  828. * Disable and wait for hyp_assign available
  829. */
  830. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  831. buf = kmem_cache_zalloc(cvp_driver->buf_cache, GFP_KERNEL);
  832. if (!buf) {
  833. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  834. goto fail_kzalloc;
  835. }
  836. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  837. if (!buf->smem) {
  838. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  839. goto fail_kzalloc;
  840. }
  841. buf->smem->flags = smem_flags;
  842. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  843. &(inst->core->resources), buf->smem);
  844. if (rc) {
  845. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  846. goto err_no_mem;
  847. }
  848. buf->size = buf->smem->size;
  849. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  850. buf->ownership = DRIVER;
  851. mutex_lock(&buf_list->lock);
  852. list_add_tail(&buf->list, &buf_list->list);
  853. mutex_unlock(&buf_list->lock);
  854. return buf;
  855. err_no_mem:
  856. kmem_cache_free(cvp_driver->buf_cache, buf);
  857. fail_kzalloc:
  858. return NULL;
  859. }
  860. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  861. {
  862. struct msm_cvp_smem *smem;
  863. struct list_head *ptr, *next;
  864. struct cvp_internal_buf *buf;
  865. int rc = 0;
  866. struct msm_cvp_core *core;
  867. struct cvp_hfi_device *hdev;
  868. if (!inst) {
  869. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  870. return -EINVAL;
  871. }
  872. core = inst->core;
  873. if (!core) {
  874. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  875. return -EINVAL;
  876. }
  877. hdev = core->device;
  878. if (!hdev) {
  879. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", hdev);
  880. return -EINVAL;
  881. }
  882. dprintk(CVP_MEM, "release persist buffer!\n");
  883. mutex_lock(&inst->persistbufs.lock);
  884. /* Workaround for FW: release buffer means release all */
  885. if (inst->state <= MSM_CVP_CLOSE_DONE) {
  886. rc = call_hfi_op(hdev, session_release_buffers,
  887. (void *)inst->session);
  888. if (!rc) {
  889. mutex_unlock(&inst->persistbufs.lock);
  890. rc = wait_for_sess_signal_receipt(inst,
  891. HAL_SESSION_RELEASE_BUFFER_DONE);
  892. if (rc)
  893. dprintk(CVP_WARN,
  894. "%s: wait for signal failed, rc %d\n",
  895. __func__, rc);
  896. mutex_lock(&inst->persistbufs.lock);
  897. } else {
  898. dprintk(CVP_WARN, "Fail to send Rel prst buf\n");
  899. }
  900. }
  901. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  902. buf = list_entry(ptr, struct cvp_internal_buf, list);
  903. smem = buf->smem;
  904. if (!smem) {
  905. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  906. mutex_unlock(&inst->persistbufs.lock);
  907. return -EINVAL;
  908. }
  909. list_del(&buf->list);
  910. if (buf->ownership == DRIVER) {
  911. dprintk(CVP_MEM,
  912. "%s: %x : fd %d %s size %d",
  913. "free arp", hash32_ptr(inst->session), buf->fd,
  914. smem->dma_buf->name, buf->size);
  915. msm_cvp_smem_free(smem);
  916. kmem_cache_free(cvp_driver->smem_cache, smem);
  917. }
  918. buf->smem = NULL;
  919. kmem_cache_free(cvp_driver->buf_cache, buf);
  920. }
  921. mutex_unlock(&inst->persistbufs.lock);
  922. return rc;
  923. }
  924. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  925. struct cvp_internal_buf *buf,
  926. u32 buffer_size,
  927. u32 secure_type)
  928. {
  929. u32 smem_flags = SMEM_UNCACHED;
  930. int rc = 0;
  931. if (!inst) {
  932. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  933. return -EINVAL;
  934. }
  935. if (!buf)
  936. return -EINVAL;
  937. if (!buffer_size)
  938. return -EINVAL;
  939. switch (secure_type) {
  940. case 0:
  941. break;
  942. case 1:
  943. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  944. break;
  945. case 2:
  946. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  947. break;
  948. default:
  949. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  950. __func__, secure_type);
  951. return -EINVAL;
  952. }
  953. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  954. buf->smem = kmem_cache_zalloc(cvp_driver->smem_cache, GFP_KERNEL);
  955. if (!buf->smem) {
  956. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  957. goto fail_kzalloc_smem_cache;
  958. }
  959. buf->smem->flags = smem_flags;
  960. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  961. &(inst->core->resources), buf->smem);
  962. if (rc) {
  963. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  964. goto err_no_mem;
  965. }
  966. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  967. buf->size = buf->smem->size;
  968. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  969. buf->ownership = DSP;
  970. return rc;
  971. err_no_mem:
  972. kmem_cache_free(cvp_driver->smem_cache, buf->smem);
  973. fail_kzalloc_smem_cache:
  974. return rc;
  975. }
  976. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  977. struct cvp_internal_buf *buf)
  978. {
  979. struct msm_cvp_smem *smem;
  980. int rc = 0;
  981. if (!inst) {
  982. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  983. return -EINVAL;
  984. }
  985. if (!buf) {
  986. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  987. return -EINVAL;
  988. }
  989. smem = buf->smem;
  990. if (!smem) {
  991. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  992. return -EINVAL;
  993. }
  994. if (buf->ownership == DSP) {
  995. dprintk(CVP_MEM,
  996. "%s: %x : fd %x %s size %d",
  997. __func__, hash32_ptr(inst->session), buf->fd,
  998. smem->dma_buf->name, buf->size);
  999. msm_cvp_smem_free(smem);
  1000. kmem_cache_free(cvp_driver->smem_cache, smem);
  1001. } else {
  1002. dprintk(CVP_ERR,
  1003. "%s: wrong owner %d %x : fd %x %s size %d",
  1004. __func__, buf->ownership, hash32_ptr(inst->session),
  1005. buf->fd, smem->dma_buf->name, buf->size);
  1006. }
  1007. return rc;
  1008. }
  1009. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  1010. struct eva_kmd_buffer *buf)
  1011. {
  1012. struct cvp_hfi_device *hdev;
  1013. struct cvp_hal_session *session;
  1014. struct msm_cvp_inst *s;
  1015. int rc = 0;
  1016. if (!inst || !inst->core || !buf) {
  1017. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1018. return -EINVAL;
  1019. }
  1020. if (!buf->index)
  1021. return 0;
  1022. s = cvp_get_inst_validate(inst->core, inst);
  1023. if (!s)
  1024. return -ECONNRESET;
  1025. inst->cur_cmd_type = EVA_KMD_REGISTER_BUFFER;
  1026. session = (struct cvp_hal_session *)inst->session;
  1027. if (!session) {
  1028. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  1029. rc = -EINVAL;
  1030. goto exit;
  1031. }
  1032. hdev = inst->core->device;
  1033. print_client_buffer(CVP_HFI, "register", inst, buf);
  1034. rc = msm_cvp_map_buf_dsp(inst, buf);
  1035. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  1036. buf->fd, buf->reserved[0]);
  1037. exit:
  1038. inst->cur_cmd_type = 0;
  1039. cvp_put_inst(s);
  1040. return rc;
  1041. }
  1042. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  1043. struct eva_kmd_buffer *buf)
  1044. {
  1045. struct msm_cvp_inst *s;
  1046. int rc = 0;
  1047. if (!inst || !inst->core || !buf) {
  1048. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1049. return -EINVAL;
  1050. }
  1051. if (!buf->index)
  1052. return 0;
  1053. s = cvp_get_inst_validate(inst->core, inst);
  1054. if (!s)
  1055. return -ECONNRESET;
  1056. inst->cur_cmd_type = EVA_KMD_UNREGISTER_BUFFER;
  1057. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  1058. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  1059. inst->cur_cmd_type = 0;
  1060. cvp_put_inst(s);
  1061. return rc;
  1062. }