dp_rx_defrag.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869
  1. /*
  2. * Copyright (c) 2017-2020 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #include "hal_hw_headers.h"
  19. #include "dp_types.h"
  20. #include "dp_rx.h"
  21. #include "dp_peer.h"
  22. #include "hal_api.h"
  23. #include "qdf_trace.h"
  24. #include "qdf_nbuf.h"
  25. #include "dp_internal.h"
  26. #include "dp_rx_defrag.h"
  27. #include <enet.h> /* LLC_SNAP_HDR_LEN */
  28. #include "dp_rx_defrag.h"
  29. #include "dp_ipa.h"
  30. const struct dp_rx_defrag_cipher dp_f_ccmp = {
  31. "AES-CCM",
  32. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  33. IEEE80211_WEP_MICLEN,
  34. 0,
  35. };
  36. const struct dp_rx_defrag_cipher dp_f_tkip = {
  37. "TKIP",
  38. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN + IEEE80211_WEP_EXTIVLEN,
  39. IEEE80211_WEP_CRCLEN,
  40. IEEE80211_WEP_MICLEN,
  41. };
  42. const struct dp_rx_defrag_cipher dp_f_wep = {
  43. "WEP",
  44. IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
  45. IEEE80211_WEP_CRCLEN,
  46. 0,
  47. };
  48. /*
  49. * dp_rx_defrag_frames_free(): Free fragment chain
  50. * @frames: Fragment chain
  51. *
  52. * Iterates through the fragment chain and frees them
  53. * Returns: None
  54. */
  55. static void dp_rx_defrag_frames_free(qdf_nbuf_t frames)
  56. {
  57. qdf_nbuf_t next, frag = frames;
  58. while (frag) {
  59. next = qdf_nbuf_next(frag);
  60. qdf_nbuf_free(frag);
  61. frag = next;
  62. }
  63. }
  64. /*
  65. * dp_rx_clear_saved_desc_info(): Clears descriptor info
  66. * @peer: Pointer to the peer data structure
  67. * @tid: Transmit ID (TID)
  68. *
  69. * Saves MPDU descriptor info and MSDU link pointer from REO
  70. * ring descriptor. The cache is created per peer, per TID
  71. *
  72. * Returns: None
  73. */
  74. static void dp_rx_clear_saved_desc_info(struct dp_peer *peer, unsigned tid)
  75. {
  76. if (peer->rx_tid[tid].dst_ring_desc)
  77. qdf_mem_free(peer->rx_tid[tid].dst_ring_desc);
  78. peer->rx_tid[tid].dst_ring_desc = NULL;
  79. peer->rx_tid[tid].head_frag_desc = NULL;
  80. }
  81. static void dp_rx_return_head_frag_desc(struct dp_peer *peer,
  82. unsigned int tid)
  83. {
  84. struct dp_soc *soc;
  85. struct dp_pdev *pdev;
  86. struct dp_srng *dp_rxdma_srng;
  87. struct rx_desc_pool *rx_desc_pool;
  88. union dp_rx_desc_list_elem_t *head = NULL;
  89. union dp_rx_desc_list_elem_t *tail = NULL;
  90. uint8_t pool_id;
  91. pdev = peer->vdev->pdev;
  92. soc = pdev->soc;
  93. if (peer->rx_tid[tid].head_frag_desc) {
  94. pool_id = peer->rx_tid[tid].head_frag_desc->pool_id;
  95. dp_rxdma_srng = &soc->rx_refill_buf_ring[pool_id];
  96. rx_desc_pool = &soc->rx_desc_buf[pool_id];
  97. dp_rx_add_to_free_desc_list(&head, &tail,
  98. peer->rx_tid[tid].head_frag_desc);
  99. dp_rx_buffers_replenish(soc, 0, dp_rxdma_srng, rx_desc_pool,
  100. 1, &head, &tail);
  101. }
  102. if (peer->rx_tid[tid].dst_ring_desc) {
  103. if (dp_rx_link_desc_return(soc,
  104. peer->rx_tid[tid].dst_ring_desc,
  105. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  106. QDF_STATUS_SUCCESS)
  107. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  108. "%s: Failed to return link desc", __func__);
  109. }
  110. }
  111. /*
  112. * dp_rx_reorder_flush_frag(): Flush the frag list
  113. * @peer: Pointer to the peer data structure
  114. * @tid: Transmit ID (TID)
  115. *
  116. * Flush the per-TID frag list
  117. *
  118. * Returns: None
  119. */
  120. void dp_rx_reorder_flush_frag(struct dp_peer *peer,
  121. unsigned int tid)
  122. {
  123. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
  124. FL("Flushing TID %d"), tid);
  125. if (!peer) {
  126. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  127. "%s: NULL peer", __func__);
  128. return;
  129. }
  130. dp_rx_return_head_frag_desc(peer, tid);
  131. dp_rx_defrag_cleanup(peer, tid);
  132. }
  133. /*
  134. * dp_rx_defrag_waitlist_flush(): Flush SOC defrag wait list
  135. * @soc: DP SOC
  136. *
  137. * Flush fragments of all waitlisted TID's
  138. *
  139. * Returns: None
  140. */
  141. void dp_rx_defrag_waitlist_flush(struct dp_soc *soc)
  142. {
  143. struct dp_rx_tid *rx_reorder = NULL;
  144. struct dp_rx_tid *tmp;
  145. uint32_t now_ms = qdf_system_ticks_to_msecs(qdf_system_ticks());
  146. TAILQ_HEAD(, dp_rx_tid) temp_list;
  147. TAILQ_INIT(&temp_list);
  148. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  149. FL("Current time %u"), now_ms);
  150. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  151. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  152. defrag_waitlist_elem, tmp) {
  153. uint32_t tid;
  154. if (rx_reorder->defrag_timeout_ms > now_ms)
  155. break;
  156. tid = rx_reorder->tid;
  157. if (tid >= DP_MAX_TIDS) {
  158. qdf_assert(0);
  159. continue;
  160. }
  161. TAILQ_REMOVE(&soc->rx.defrag.waitlist, rx_reorder,
  162. defrag_waitlist_elem);
  163. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  164. /* Move to temp list and clean-up later */
  165. TAILQ_INSERT_TAIL(&temp_list, rx_reorder,
  166. defrag_waitlist_elem);
  167. }
  168. if (rx_reorder) {
  169. soc->rx.defrag.next_flush_ms =
  170. rx_reorder->defrag_timeout_ms;
  171. } else {
  172. soc->rx.defrag.next_flush_ms =
  173. now_ms + soc->rx.defrag.timeout_ms;
  174. }
  175. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  176. TAILQ_FOREACH_SAFE(rx_reorder, &temp_list,
  177. defrag_waitlist_elem, tmp) {
  178. struct dp_peer *peer, *temp_peer = NULL;
  179. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  180. TAILQ_REMOVE(&temp_list, rx_reorder,
  181. defrag_waitlist_elem);
  182. /* get address of current peer */
  183. peer =
  184. container_of(rx_reorder, struct dp_peer,
  185. rx_tid[rx_reorder->tid]);
  186. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  187. temp_peer = dp_peer_find_by_id(soc, peer->peer_ids[0]);
  188. if (temp_peer == peer) {
  189. qdf_spin_lock_bh(&rx_reorder->tid_lock);
  190. dp_rx_reorder_flush_frag(peer, rx_reorder->tid);
  191. qdf_spin_unlock_bh(&rx_reorder->tid_lock);
  192. }
  193. if (temp_peer)
  194. dp_peer_unref_del_find_by_id(temp_peer);
  195. }
  196. }
  197. /*
  198. * dp_rx_defrag_waitlist_add(): Update per-PDEV defrag wait list
  199. * @peer: Pointer to the peer data structure
  200. * @tid: Transmit ID (TID)
  201. *
  202. * Appends per-tid fragments to global fragment wait list
  203. *
  204. * Returns: None
  205. */
  206. static void dp_rx_defrag_waitlist_add(struct dp_peer *peer, unsigned tid)
  207. {
  208. struct dp_soc *psoc = peer->vdev->pdev->soc;
  209. struct dp_rx_tid *rx_reorder = &peer->rx_tid[tid];
  210. dp_debug("Adding TID %u to waitlist for peer %pK at MAC address %pM",
  211. tid, peer, peer->mac_addr.raw);
  212. /* TODO: use LIST macros instead of TAIL macros */
  213. qdf_spin_lock_bh(&psoc->rx.defrag.defrag_lock);
  214. if (TAILQ_EMPTY(&psoc->rx.defrag.waitlist))
  215. psoc->rx.defrag.next_flush_ms = rx_reorder->defrag_timeout_ms;
  216. TAILQ_INSERT_TAIL(&psoc->rx.defrag.waitlist, rx_reorder,
  217. defrag_waitlist_elem);
  218. DP_STATS_INC(psoc, rx.rx_frag_wait, 1);
  219. qdf_spin_unlock_bh(&psoc->rx.defrag.defrag_lock);
  220. }
  221. /*
  222. * dp_rx_defrag_waitlist_remove(): Remove fragments from waitlist
  223. * @peer: Pointer to the peer data structure
  224. * @tid: Transmit ID (TID)
  225. *
  226. * Remove fragments from waitlist
  227. *
  228. * Returns: None
  229. */
  230. void dp_rx_defrag_waitlist_remove(struct dp_peer *peer, unsigned tid)
  231. {
  232. struct dp_pdev *pdev = peer->vdev->pdev;
  233. struct dp_soc *soc = pdev->soc;
  234. struct dp_rx_tid *rx_reorder;
  235. struct dp_rx_tid *tmp;
  236. dp_debug("Removing TID %u to waitlist for peer %pK at MAC address %pM",
  237. tid, peer, peer->mac_addr.raw);
  238. if (tid >= DP_MAX_TIDS) {
  239. dp_err("TID out of bounds: %d", tid);
  240. qdf_assert_always(0);
  241. }
  242. qdf_spin_lock_bh(&soc->rx.defrag.defrag_lock);
  243. TAILQ_FOREACH_SAFE(rx_reorder, &soc->rx.defrag.waitlist,
  244. defrag_waitlist_elem, tmp) {
  245. struct dp_peer *peer_on_waitlist;
  246. /* get address of current peer */
  247. peer_on_waitlist =
  248. container_of(rx_reorder, struct dp_peer,
  249. rx_tid[rx_reorder->tid]);
  250. /* Ensure it is TID for same peer */
  251. if (peer_on_waitlist == peer && rx_reorder->tid == tid) {
  252. TAILQ_REMOVE(&soc->rx.defrag.waitlist,
  253. rx_reorder, defrag_waitlist_elem);
  254. DP_STATS_DEC(soc, rx.rx_frag_wait, 1);
  255. }
  256. }
  257. qdf_spin_unlock_bh(&soc->rx.defrag.defrag_lock);
  258. }
  259. /*
  260. * dp_rx_defrag_fraglist_insert(): Create a per-sequence fragment list
  261. * @peer: Pointer to the peer data structure
  262. * @tid: Transmit ID (TID)
  263. * @head_addr: Pointer to head list
  264. * @tail_addr: Pointer to tail list
  265. * @frag: Incoming fragment
  266. * @all_frag_present: Flag to indicate whether all fragments are received
  267. *
  268. * Build a per-tid, per-sequence fragment list.
  269. *
  270. * Returns: Success, if inserted
  271. */
  272. static QDF_STATUS dp_rx_defrag_fraglist_insert(struct dp_peer *peer, unsigned tid,
  273. qdf_nbuf_t *head_addr, qdf_nbuf_t *tail_addr, qdf_nbuf_t frag,
  274. uint8_t *all_frag_present)
  275. {
  276. qdf_nbuf_t next;
  277. qdf_nbuf_t prev = NULL;
  278. qdf_nbuf_t cur;
  279. uint16_t head_fragno, cur_fragno, next_fragno;
  280. uint8_t last_morefrag = 1, count = 0;
  281. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  282. uint8_t *rx_desc_info;
  283. qdf_assert(frag);
  284. qdf_assert(head_addr);
  285. qdf_assert(tail_addr);
  286. *all_frag_present = 0;
  287. rx_desc_info = qdf_nbuf_data(frag);
  288. cur_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  289. /* If this is the first fragment */
  290. if (!(*head_addr)) {
  291. *head_addr = *tail_addr = frag;
  292. qdf_nbuf_set_next(*tail_addr, NULL);
  293. rx_tid->curr_frag_num = cur_fragno;
  294. goto insert_done;
  295. }
  296. /* In sequence fragment */
  297. if (cur_fragno > rx_tid->curr_frag_num) {
  298. qdf_nbuf_set_next(*tail_addr, frag);
  299. *tail_addr = frag;
  300. qdf_nbuf_set_next(*tail_addr, NULL);
  301. rx_tid->curr_frag_num = cur_fragno;
  302. } else {
  303. /* Out of sequence fragment */
  304. cur = *head_addr;
  305. rx_desc_info = qdf_nbuf_data(cur);
  306. head_fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  307. if (cur_fragno == head_fragno) {
  308. qdf_nbuf_free(frag);
  309. goto insert_fail;
  310. } else if (head_fragno > cur_fragno) {
  311. qdf_nbuf_set_next(frag, cur);
  312. cur = frag;
  313. *head_addr = frag; /* head pointer to be updated */
  314. } else {
  315. while ((cur_fragno > head_fragno) && cur) {
  316. prev = cur;
  317. cur = qdf_nbuf_next(cur);
  318. rx_desc_info = qdf_nbuf_data(cur);
  319. head_fragno =
  320. dp_rx_frag_get_mpdu_frag_number(
  321. rx_desc_info);
  322. }
  323. if (cur_fragno == head_fragno) {
  324. qdf_nbuf_free(frag);
  325. goto insert_fail;
  326. }
  327. qdf_nbuf_set_next(prev, frag);
  328. qdf_nbuf_set_next(frag, cur);
  329. }
  330. }
  331. next = qdf_nbuf_next(*head_addr);
  332. rx_desc_info = qdf_nbuf_data(*tail_addr);
  333. last_morefrag = dp_rx_frag_get_more_frag_bit(rx_desc_info);
  334. /* TODO: optimize the loop */
  335. if (!last_morefrag) {
  336. /* Check if all fragments are present */
  337. do {
  338. rx_desc_info = qdf_nbuf_data(next);
  339. next_fragno =
  340. dp_rx_frag_get_mpdu_frag_number(rx_desc_info);
  341. count++;
  342. if (next_fragno != count)
  343. break;
  344. next = qdf_nbuf_next(next);
  345. } while (next);
  346. if (!next) {
  347. *all_frag_present = 1;
  348. return QDF_STATUS_SUCCESS;
  349. }
  350. }
  351. insert_done:
  352. return QDF_STATUS_SUCCESS;
  353. insert_fail:
  354. return QDF_STATUS_E_FAILURE;
  355. }
  356. /*
  357. * dp_rx_defrag_tkip_decap(): decap tkip encrypted fragment
  358. * @msdu: Pointer to the fragment
  359. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  360. *
  361. * decap tkip encrypted fragment
  362. *
  363. * Returns: QDF_STATUS
  364. */
  365. static QDF_STATUS dp_rx_defrag_tkip_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  366. {
  367. uint8_t *ivp, *orig_hdr;
  368. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  369. /* start of 802.11 header info */
  370. orig_hdr = (uint8_t *)(qdf_nbuf_data(msdu) + rx_desc_len);
  371. /* TKIP header is located post 802.11 header */
  372. ivp = orig_hdr + hdrlen;
  373. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)) {
  374. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  375. "IEEE80211_WEP_EXTIV is missing in TKIP fragment");
  376. return QDF_STATUS_E_DEFRAG_ERROR;
  377. }
  378. qdf_nbuf_trim_tail(msdu, dp_f_tkip.ic_trailer);
  379. return QDF_STATUS_SUCCESS;
  380. }
  381. /*
  382. * dp_rx_defrag_ccmp_demic(): Remove MIC information from CCMP fragment
  383. * @nbuf: Pointer to the fragment buffer
  384. * @hdrlen: 802.11 header length (mostly useful in 4 addr frames)
  385. *
  386. * Remove MIC information from CCMP fragment
  387. *
  388. * Returns: QDF_STATUS
  389. */
  390. static QDF_STATUS dp_rx_defrag_ccmp_demic(qdf_nbuf_t nbuf, uint16_t hdrlen)
  391. {
  392. uint8_t *ivp, *orig_hdr;
  393. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  394. /* start of the 802.11 header */
  395. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  396. /* CCMP header is located after 802.11 header */
  397. ivp = orig_hdr + hdrlen;
  398. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  399. return QDF_STATUS_E_DEFRAG_ERROR;
  400. qdf_nbuf_trim_tail(nbuf, dp_f_ccmp.ic_trailer);
  401. return QDF_STATUS_SUCCESS;
  402. }
  403. /*
  404. * dp_rx_defrag_ccmp_decap(): decap CCMP encrypted fragment
  405. * @nbuf: Pointer to the fragment
  406. * @hdrlen: length of the header information
  407. *
  408. * decap CCMP encrypted fragment
  409. *
  410. * Returns: QDF_STATUS
  411. */
  412. static QDF_STATUS dp_rx_defrag_ccmp_decap(qdf_nbuf_t nbuf, uint16_t hdrlen)
  413. {
  414. uint8_t *ivp, *origHdr;
  415. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  416. origHdr = (uint8_t *) (qdf_nbuf_data(nbuf) + rx_desc_len);
  417. ivp = origHdr + hdrlen;
  418. if (!(ivp[IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV))
  419. return QDF_STATUS_E_DEFRAG_ERROR;
  420. /* Let's pull the header later */
  421. return QDF_STATUS_SUCCESS;
  422. }
  423. /*
  424. * dp_rx_defrag_wep_decap(): decap WEP encrypted fragment
  425. * @msdu: Pointer to the fragment
  426. * @hdrlen: length of the header information
  427. *
  428. * decap WEP encrypted fragment
  429. *
  430. * Returns: QDF_STATUS
  431. */
  432. static QDF_STATUS dp_rx_defrag_wep_decap(qdf_nbuf_t msdu, uint16_t hdrlen)
  433. {
  434. uint8_t *origHdr;
  435. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  436. origHdr = (uint8_t *) (qdf_nbuf_data(msdu) + rx_desc_len);
  437. qdf_mem_move(origHdr + dp_f_wep.ic_header, origHdr, hdrlen);
  438. qdf_nbuf_trim_tail(msdu, dp_f_wep.ic_trailer);
  439. return QDF_STATUS_SUCCESS;
  440. }
  441. /*
  442. * dp_rx_defrag_hdrsize(): Calculate the header size of the received fragment
  443. * @soc: soc handle
  444. * @nbuf: Pointer to the fragment
  445. *
  446. * Calculate the header size of the received fragment
  447. *
  448. * Returns: header size (uint16_t)
  449. */
  450. static uint16_t dp_rx_defrag_hdrsize(struct dp_soc *soc, qdf_nbuf_t nbuf)
  451. {
  452. uint8_t *rx_tlv_hdr = qdf_nbuf_data(nbuf);
  453. uint16_t size = sizeof(struct ieee80211_frame);
  454. uint16_t fc = 0;
  455. uint32_t to_ds, fr_ds;
  456. uint8_t frm_ctrl_valid;
  457. uint16_t frm_ctrl_field;
  458. to_ds = hal_rx_mpdu_get_to_ds(soc->hal_soc, rx_tlv_hdr);
  459. fr_ds = hal_rx_mpdu_get_fr_ds(soc->hal_soc, rx_tlv_hdr);
  460. frm_ctrl_valid =
  461. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  462. rx_tlv_hdr);
  463. frm_ctrl_field = hal_rx_get_frame_ctrl_field(rx_tlv_hdr);
  464. if (to_ds && fr_ds)
  465. size += QDF_MAC_ADDR_SIZE;
  466. if (frm_ctrl_valid) {
  467. fc = frm_ctrl_field;
  468. /* use 1-st byte for validation */
  469. if (DP_RX_DEFRAG_IEEE80211_QOS_HAS_SEQ(fc & 0xff)) {
  470. size += sizeof(uint16_t);
  471. /* use 2-nd byte for validation */
  472. if (((fc & 0xff00) >> 8) & IEEE80211_FC1_ORDER)
  473. size += sizeof(struct ieee80211_htc);
  474. }
  475. }
  476. return size;
  477. }
  478. /*
  479. * dp_rx_defrag_michdr(): Calculate a pseudo MIC header
  480. * @wh0: Pointer to the wireless header of the fragment
  481. * @hdr: Array to hold the pseudo header
  482. *
  483. * Calculate a pseudo MIC header
  484. *
  485. * Returns: None
  486. */
  487. static void dp_rx_defrag_michdr(const struct ieee80211_frame *wh0,
  488. uint8_t hdr[])
  489. {
  490. const struct ieee80211_frame_addr4 *wh =
  491. (const struct ieee80211_frame_addr4 *)wh0;
  492. switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
  493. case IEEE80211_FC1_DIR_NODS:
  494. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  495. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  496. wh->i_addr2);
  497. break;
  498. case IEEE80211_FC1_DIR_TODS:
  499. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  500. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  501. wh->i_addr2);
  502. break;
  503. case IEEE80211_FC1_DIR_FROMDS:
  504. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr1); /* DA */
  505. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  506. wh->i_addr3);
  507. break;
  508. case IEEE80211_FC1_DIR_DSTODS:
  509. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr, wh->i_addr3); /* DA */
  510. DP_RX_DEFRAG_IEEE80211_ADDR_COPY(hdr + QDF_MAC_ADDR_SIZE,
  511. wh->i_addr4);
  512. break;
  513. }
  514. /*
  515. * Bit 7 is QDF_IEEE80211_FC0_SUBTYPE_QOS for data frame, but
  516. * it could also be set for deauth, disassoc, action, etc. for
  517. * a mgt type frame. It comes into picture for MFP.
  518. */
  519. if (wh->i_fc[0] & QDF_IEEE80211_FC0_SUBTYPE_QOS) {
  520. if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) ==
  521. IEEE80211_FC1_DIR_DSTODS) {
  522. const struct ieee80211_qosframe_addr4 *qwh =
  523. (const struct ieee80211_qosframe_addr4 *)wh;
  524. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  525. } else {
  526. const struct ieee80211_qosframe *qwh =
  527. (const struct ieee80211_qosframe *)wh;
  528. hdr[12] = qwh->i_qos[0] & IEEE80211_QOS_TID;
  529. }
  530. } else {
  531. hdr[12] = 0;
  532. }
  533. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  534. }
  535. /*
  536. * dp_rx_defrag_mic(): Calculate MIC header
  537. * @key: Pointer to the key
  538. * @wbuf: fragment buffer
  539. * @off: Offset
  540. * @data_len: Data length
  541. * @mic: Array to hold MIC
  542. *
  543. * Calculate a pseudo MIC header
  544. *
  545. * Returns: QDF_STATUS
  546. */
  547. static QDF_STATUS dp_rx_defrag_mic(const uint8_t *key, qdf_nbuf_t wbuf,
  548. uint16_t off, uint16_t data_len, uint8_t mic[])
  549. {
  550. uint8_t hdr[16] = { 0, };
  551. uint32_t l, r;
  552. const uint8_t *data;
  553. uint32_t space;
  554. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  555. dp_rx_defrag_michdr((struct ieee80211_frame *)(qdf_nbuf_data(wbuf)
  556. + rx_desc_len), hdr);
  557. l = dp_rx_get_le32(key);
  558. r = dp_rx_get_le32(key + 4);
  559. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  560. l ^= dp_rx_get_le32(hdr);
  561. dp_rx_michael_block(l, r);
  562. l ^= dp_rx_get_le32(&hdr[4]);
  563. dp_rx_michael_block(l, r);
  564. l ^= dp_rx_get_le32(&hdr[8]);
  565. dp_rx_michael_block(l, r);
  566. l ^= dp_rx_get_le32(&hdr[12]);
  567. dp_rx_michael_block(l, r);
  568. /* first buffer has special handling */
  569. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  570. space = qdf_nbuf_len(wbuf) - off;
  571. for (;; ) {
  572. if (space > data_len)
  573. space = data_len;
  574. /* collect 32-bit blocks from current buffer */
  575. while (space >= sizeof(uint32_t)) {
  576. l ^= dp_rx_get_le32(data);
  577. dp_rx_michael_block(l, r);
  578. data += sizeof(uint32_t);
  579. space -= sizeof(uint32_t);
  580. data_len -= sizeof(uint32_t);
  581. }
  582. if (data_len < sizeof(uint32_t))
  583. break;
  584. wbuf = qdf_nbuf_next(wbuf);
  585. if (!wbuf)
  586. return QDF_STATUS_E_DEFRAG_ERROR;
  587. if (space != 0) {
  588. const uint8_t *data_next;
  589. /*
  590. * Block straddles buffers, split references.
  591. */
  592. data_next =
  593. (uint8_t *)qdf_nbuf_data(wbuf) + off;
  594. if ((qdf_nbuf_len(wbuf)) <
  595. sizeof(uint32_t) - space) {
  596. return QDF_STATUS_E_DEFRAG_ERROR;
  597. }
  598. switch (space) {
  599. case 1:
  600. l ^= dp_rx_get_le32_split(data[0],
  601. data_next[0], data_next[1],
  602. data_next[2]);
  603. data = data_next + 3;
  604. space = (qdf_nbuf_len(wbuf) - off) - 3;
  605. break;
  606. case 2:
  607. l ^= dp_rx_get_le32_split(data[0], data[1],
  608. data_next[0], data_next[1]);
  609. data = data_next + 2;
  610. space = (qdf_nbuf_len(wbuf) - off) - 2;
  611. break;
  612. case 3:
  613. l ^= dp_rx_get_le32_split(data[0], data[1],
  614. data[2], data_next[0]);
  615. data = data_next + 1;
  616. space = (qdf_nbuf_len(wbuf) - off) - 1;
  617. break;
  618. }
  619. dp_rx_michael_block(l, r);
  620. data_len -= sizeof(uint32_t);
  621. } else {
  622. /*
  623. * Setup for next buffer.
  624. */
  625. data = (uint8_t *)qdf_nbuf_data(wbuf) + off;
  626. space = qdf_nbuf_len(wbuf) - off;
  627. }
  628. }
  629. /* Last block and padding (0x5a, 4..7 x 0) */
  630. switch (data_len) {
  631. case 0:
  632. l ^= dp_rx_get_le32_split(0x5a, 0, 0, 0);
  633. break;
  634. case 1:
  635. l ^= dp_rx_get_le32_split(data[0], 0x5a, 0, 0);
  636. break;
  637. case 2:
  638. l ^= dp_rx_get_le32_split(data[0], data[1], 0x5a, 0);
  639. break;
  640. case 3:
  641. l ^= dp_rx_get_le32_split(data[0], data[1], data[2], 0x5a);
  642. break;
  643. }
  644. dp_rx_michael_block(l, r);
  645. dp_rx_michael_block(l, r);
  646. dp_rx_put_le32(mic, l);
  647. dp_rx_put_le32(mic + 4, r);
  648. return QDF_STATUS_SUCCESS;
  649. }
  650. /*
  651. * dp_rx_defrag_tkip_demic(): Remove MIC header from the TKIP frame
  652. * @key: Pointer to the key
  653. * @msdu: fragment buffer
  654. * @hdrlen: Length of the header information
  655. *
  656. * Remove MIC information from the TKIP frame
  657. *
  658. * Returns: QDF_STATUS
  659. */
  660. static QDF_STATUS dp_rx_defrag_tkip_demic(const uint8_t *key,
  661. qdf_nbuf_t msdu, uint16_t hdrlen)
  662. {
  663. QDF_STATUS status;
  664. uint32_t pktlen = 0;
  665. uint8_t mic[IEEE80211_WEP_MICLEN];
  666. uint8_t mic0[IEEE80211_WEP_MICLEN];
  667. qdf_nbuf_t prev = NULL, next;
  668. next = msdu;
  669. while (next) {
  670. pktlen += (qdf_nbuf_len(next) - hdrlen);
  671. prev = next;
  672. dp_debug("%s pktlen %u", __func__,
  673. (uint32_t)(qdf_nbuf_len(next) - hdrlen));
  674. next = qdf_nbuf_next(next);
  675. }
  676. if (!prev) {
  677. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  678. "%s Defrag chaining failed !\n", __func__);
  679. return QDF_STATUS_E_DEFRAG_ERROR;
  680. }
  681. qdf_nbuf_copy_bits(prev, qdf_nbuf_len(prev) - dp_f_tkip.ic_miclen,
  682. dp_f_tkip.ic_miclen, (caddr_t)mic0);
  683. qdf_nbuf_trim_tail(prev, dp_f_tkip.ic_miclen);
  684. pktlen -= dp_f_tkip.ic_miclen;
  685. status = dp_rx_defrag_mic(key, msdu, hdrlen,
  686. pktlen, mic);
  687. if (QDF_IS_STATUS_ERROR(status))
  688. return status;
  689. if (qdf_mem_cmp(mic, mic0, dp_f_tkip.ic_miclen))
  690. return QDF_STATUS_E_DEFRAG_ERROR;
  691. return QDF_STATUS_SUCCESS;
  692. }
  693. /*
  694. * dp_rx_frag_pull_hdr(): Pulls the RXTLV & the 802.11 headers
  695. * @nbuf: buffer pointer
  696. * @hdrsize: size of the header to be pulled
  697. *
  698. * Pull the RXTLV & the 802.11 headers
  699. *
  700. * Returns: None
  701. */
  702. static void dp_rx_frag_pull_hdr(qdf_nbuf_t nbuf, uint16_t hdrsize)
  703. {
  704. qdf_nbuf_pull_head(nbuf,
  705. RX_PKT_TLVS_LEN + hdrsize);
  706. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  707. "%s: final pktlen %d .11len %d",
  708. __func__, (uint32_t)qdf_nbuf_len(nbuf), hdrsize);
  709. }
  710. /*
  711. * dp_rx_construct_fraglist(): Construct a nbuf fraglist
  712. * @peer: Pointer to the peer
  713. * @head: Pointer to list of fragments
  714. * @hdrsize: Size of the header to be pulled
  715. *
  716. * Construct a nbuf fraglist
  717. *
  718. * Returns: None
  719. */
  720. static void
  721. dp_rx_construct_fraglist(struct dp_peer *peer,
  722. qdf_nbuf_t head, uint16_t hdrsize)
  723. {
  724. qdf_nbuf_t msdu = qdf_nbuf_next(head);
  725. qdf_nbuf_t rx_nbuf = msdu;
  726. uint32_t len = 0;
  727. while (msdu) {
  728. dp_rx_frag_pull_hdr(msdu, hdrsize);
  729. len += qdf_nbuf_len(msdu);
  730. msdu = qdf_nbuf_next(msdu);
  731. }
  732. qdf_nbuf_append_ext_list(head, rx_nbuf, len);
  733. qdf_nbuf_set_next(head, NULL);
  734. qdf_nbuf_set_is_frag(head, 1);
  735. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  736. "%s: head len %d ext len %d data len %d ",
  737. __func__,
  738. (uint32_t)qdf_nbuf_len(head),
  739. (uint32_t)qdf_nbuf_len(rx_nbuf),
  740. (uint32_t)(head->data_len));
  741. }
  742. /**
  743. * dp_rx_defrag_err() - rx err handler
  744. * @pdev: handle to pdev object
  745. * @vdev_id: vdev id
  746. * @peer_mac_addr: peer mac address
  747. * @tid: TID
  748. * @tsf32: TSF
  749. * @err_type: error type
  750. * @rx_frame: rx frame
  751. * @pn: PN Number
  752. * @key_id: key id
  753. *
  754. * This function handles rx error and send MIC error notification
  755. *
  756. * Return: None
  757. */
  758. static void dp_rx_defrag_err(struct dp_vdev *vdev, qdf_nbuf_t nbuf)
  759. {
  760. struct ol_if_ops *tops = NULL;
  761. struct dp_pdev *pdev = vdev->pdev;
  762. int rx_desc_len = SIZE_OF_DATA_RX_TLV;
  763. uint8_t *orig_hdr;
  764. struct ieee80211_frame *wh;
  765. struct cdp_rx_mic_err_info mic_failure_info;
  766. orig_hdr = (uint8_t *)(qdf_nbuf_data(nbuf) + rx_desc_len);
  767. wh = (struct ieee80211_frame *)orig_hdr;
  768. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.da_mac_addr,
  769. (struct qdf_mac_addr *)&wh->i_addr1);
  770. qdf_copy_macaddr((struct qdf_mac_addr *)&mic_failure_info.ta_mac_addr,
  771. (struct qdf_mac_addr *)&wh->i_addr2);
  772. mic_failure_info.key_id = 0;
  773. mic_failure_info.multicast =
  774. IEEE80211_IS_MULTICAST(wh->i_addr1);
  775. qdf_mem_zero(mic_failure_info.tsc, MIC_SEQ_CTR_SIZE);
  776. mic_failure_info.frame_type = cdp_rx_frame_type_802_11;
  777. mic_failure_info.data = (uint8_t *)wh;
  778. mic_failure_info.vdev_id = vdev->vdev_id;
  779. tops = pdev->soc->cdp_soc.ol_ops;
  780. if (tops->rx_mic_error)
  781. tops->rx_mic_error(pdev->soc->ctrl_psoc, pdev->pdev_id,
  782. &mic_failure_info);
  783. }
  784. /*
  785. * dp_rx_defrag_nwifi_to_8023(): Transcap 802.11 to 802.3
  786. * @soc: dp soc handle
  787. * @nbuf: Pointer to the fragment buffer
  788. * @hdrsize: Size of headers
  789. *
  790. * Transcap the fragment from 802.11 to 802.3
  791. *
  792. * Returns: None
  793. */
  794. static void
  795. dp_rx_defrag_nwifi_to_8023(struct dp_soc *soc,
  796. qdf_nbuf_t nbuf, uint16_t hdrsize)
  797. {
  798. struct llc_snap_hdr_t *llchdr;
  799. struct ethernet_hdr_t *eth_hdr;
  800. uint8_t ether_type[2];
  801. uint16_t fc = 0;
  802. union dp_align_mac_addr mac_addr;
  803. uint8_t *rx_desc_info = qdf_mem_malloc(RX_PKT_TLVS_LEN);
  804. if (!rx_desc_info) {
  805. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  806. "%s: Memory alloc failed ! ", __func__);
  807. QDF_ASSERT(0);
  808. return;
  809. }
  810. qdf_mem_copy(rx_desc_info, qdf_nbuf_data(nbuf), RX_PKT_TLVS_LEN);
  811. llchdr = (struct llc_snap_hdr_t *)(qdf_nbuf_data(nbuf) +
  812. RX_PKT_TLVS_LEN + hdrsize);
  813. qdf_mem_copy(ether_type, llchdr->ethertype, 2);
  814. qdf_nbuf_pull_head(nbuf, (RX_PKT_TLVS_LEN + hdrsize +
  815. sizeof(struct llc_snap_hdr_t) -
  816. sizeof(struct ethernet_hdr_t)));
  817. eth_hdr = (struct ethernet_hdr_t *)(qdf_nbuf_data(nbuf));
  818. if (hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  819. rx_desc_info))
  820. fc = hal_rx_get_frame_ctrl_field(rx_desc_info);
  821. dp_debug("%s: frame control type: 0x%x", __func__, fc);
  822. switch (((fc & 0xff00) >> 8) & IEEE80211_FC1_DIR_MASK) {
  823. case IEEE80211_FC1_DIR_NODS:
  824. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  825. &mac_addr.raw[0]);
  826. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  827. QDF_MAC_ADDR_SIZE);
  828. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  829. &mac_addr.raw[0]);
  830. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  831. QDF_MAC_ADDR_SIZE);
  832. break;
  833. case IEEE80211_FC1_DIR_TODS:
  834. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  835. &mac_addr.raw[0]);
  836. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  837. QDF_MAC_ADDR_SIZE);
  838. hal_rx_mpdu_get_addr2(soc->hal_soc, rx_desc_info,
  839. &mac_addr.raw[0]);
  840. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  841. QDF_MAC_ADDR_SIZE);
  842. break;
  843. case IEEE80211_FC1_DIR_FROMDS:
  844. hal_rx_mpdu_get_addr1(soc->hal_soc, rx_desc_info,
  845. &mac_addr.raw[0]);
  846. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  847. QDF_MAC_ADDR_SIZE);
  848. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  849. &mac_addr.raw[0]);
  850. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  851. QDF_MAC_ADDR_SIZE);
  852. break;
  853. case IEEE80211_FC1_DIR_DSTODS:
  854. hal_rx_mpdu_get_addr3(soc->hal_soc, rx_desc_info,
  855. &mac_addr.raw[0]);
  856. qdf_mem_copy(eth_hdr->dest_addr, &mac_addr.raw[0],
  857. QDF_MAC_ADDR_SIZE);
  858. hal_rx_mpdu_get_addr4(soc->hal_soc, rx_desc_info,
  859. &mac_addr.raw[0]);
  860. qdf_mem_copy(eth_hdr->src_addr, &mac_addr.raw[0],
  861. QDF_MAC_ADDR_SIZE);
  862. break;
  863. default:
  864. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  865. "%s: Unknown frame control type: 0x%x", __func__, fc);
  866. }
  867. qdf_mem_copy(eth_hdr->ethertype, ether_type,
  868. sizeof(ether_type));
  869. qdf_nbuf_push_head(nbuf, RX_PKT_TLVS_LEN);
  870. qdf_mem_copy(qdf_nbuf_data(nbuf), rx_desc_info, RX_PKT_TLVS_LEN);
  871. qdf_mem_free(rx_desc_info);
  872. }
  873. /*
  874. * dp_rx_defrag_reo_reinject(): Reinject the fragment chain back into REO
  875. * @peer: Pointer to the peer
  876. * @tid: Transmit Identifier
  877. * @head: Buffer to be reinjected back
  878. *
  879. * Reinject the fragment chain back into REO
  880. *
  881. * Returns: QDF_STATUS
  882. */
  883. static QDF_STATUS dp_rx_defrag_reo_reinject(struct dp_peer *peer,
  884. unsigned int tid, qdf_nbuf_t head)
  885. {
  886. struct dp_pdev *pdev = peer->vdev->pdev;
  887. struct dp_soc *soc = pdev->soc;
  888. struct hal_buf_info buf_info;
  889. void *link_desc_va;
  890. void *msdu0, *msdu_desc_info;
  891. void *ent_ring_desc, *ent_mpdu_desc_info, *ent_qdesc_addr;
  892. void *dst_mpdu_desc_info, *dst_qdesc_addr;
  893. qdf_dma_addr_t paddr;
  894. uint32_t nbuf_len, seq_no, dst_ind;
  895. uint32_t *mpdu_wrd;
  896. uint32_t ret, cookie;
  897. hal_ring_desc_t dst_ring_desc =
  898. peer->rx_tid[tid].dst_ring_desc;
  899. hal_ring_handle_t hal_srng = soc->reo_reinject_ring.hal_srng;
  900. struct dp_rx_desc *rx_desc = peer->rx_tid[tid].head_frag_desc;
  901. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  902. peer->rx_tid[tid].array;
  903. qdf_nbuf_t nbuf_head;
  904. struct rx_desc_pool *rx_desc_pool = NULL;
  905. nbuf_head = dp_ipa_handle_rx_reo_reinject(soc, head);
  906. if (qdf_unlikely(!nbuf_head)) {
  907. dp_err_rl("IPA RX REO reinject failed");
  908. return QDF_STATUS_E_FAILURE;
  909. }
  910. /* update new allocated skb in case IPA is enabled */
  911. if (nbuf_head != head) {
  912. head = nbuf_head;
  913. rx_desc->nbuf = head;
  914. rx_reorder_array_elem->head = head;
  915. }
  916. ent_ring_desc = hal_srng_src_get_next(soc->hal_soc, hal_srng);
  917. if (!ent_ring_desc) {
  918. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  919. "HAL src ring next entry NULL");
  920. return QDF_STATUS_E_FAILURE;
  921. }
  922. hal_rx_reo_buf_paddr_get(dst_ring_desc, &buf_info);
  923. link_desc_va = dp_rx_cookie_2_link_desc_va(soc, &buf_info);
  924. qdf_assert_always(link_desc_va);
  925. msdu0 = hal_rx_msdu0_buffer_addr_lsb(soc->hal_soc, link_desc_va);
  926. nbuf_len = qdf_nbuf_len(head) - RX_PKT_TLVS_LEN;
  927. HAL_RX_UNIFORM_HDR_SET(link_desc_va, OWNER, UNI_DESC_OWNER_SW);
  928. HAL_RX_UNIFORM_HDR_SET(link_desc_va, BUFFER_TYPE,
  929. UNI_DESC_BUF_TYPE_RX_MSDU_LINK);
  930. /* msdu reconfig */
  931. msdu_desc_info = hal_rx_msdu_desc_info_ptr_get(soc->hal_soc, msdu0);
  932. dst_ind = hal_rx_msdu_reo_dst_ind_get(soc->hal_soc, link_desc_va);
  933. qdf_mem_zero(msdu_desc_info, sizeof(struct rx_msdu_desc_info));
  934. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  935. FIRST_MSDU_IN_MPDU_FLAG, 1);
  936. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  937. LAST_MSDU_IN_MPDU_FLAG, 1);
  938. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  939. MSDU_CONTINUATION, 0x0);
  940. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  941. REO_DESTINATION_INDICATION, dst_ind);
  942. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  943. MSDU_LENGTH, nbuf_len);
  944. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  945. SA_IS_VALID, 1);
  946. HAL_RX_MSDU_DESC_INFO_SET(msdu_desc_info,
  947. DA_IS_VALID, 1);
  948. /* change RX TLV's */
  949. hal_rx_msdu_start_msdu_len_set(
  950. qdf_nbuf_data(head), nbuf_len);
  951. cookie = HAL_RX_BUF_COOKIE_GET(msdu0);
  952. /* map the nbuf before reinject it into HW */
  953. ret = qdf_nbuf_map_single(soc->osdev, head,
  954. QDF_DMA_FROM_DEVICE);
  955. if (qdf_unlikely(ret == QDF_STATUS_E_FAILURE)) {
  956. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  957. "%s: nbuf map failed !", __func__);
  958. return QDF_STATUS_E_FAILURE;
  959. }
  960. /*
  961. * As part of rx frag handler bufffer was unmapped and rx desc
  962. * unmapped is set to 1. So again for defrag reinject frame reset
  963. * it back to 0.
  964. */
  965. rx_desc->unmapped = 0;
  966. dp_ipa_handle_rx_buf_smmu_mapping(soc, head, true);
  967. paddr = qdf_nbuf_get_frag_paddr(head, 0);
  968. rx_desc_pool = &soc->rx_desc_buf[pdev->lmac_id];
  969. ret = check_x86_paddr(soc, &head, &paddr, rx_desc_pool);
  970. if (ret == QDF_STATUS_E_FAILURE) {
  971. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  972. "%s: x86 check failed !", __func__);
  973. return QDF_STATUS_E_FAILURE;
  974. }
  975. hal_rxdma_buff_addr_info_set(msdu0, paddr, cookie, DP_DEFRAG_RBM);
  976. /* Lets fill entrance ring now !!! */
  977. if (qdf_unlikely(hal_srng_access_start(soc->hal_soc, hal_srng))) {
  978. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  979. "HAL RING Access For REO entrance SRNG Failed: %pK",
  980. hal_srng);
  981. return QDF_STATUS_E_FAILURE;
  982. }
  983. paddr = (uint64_t)buf_info.paddr;
  984. /* buf addr */
  985. hal_rxdma_buff_addr_info_set(ent_ring_desc, paddr,
  986. buf_info.sw_cookie,
  987. HAL_RX_BUF_RBM_WBM_IDLE_DESC_LIST);
  988. /* mpdu desc info */
  989. ent_mpdu_desc_info = hal_ent_mpdu_desc_info(soc->hal_soc,
  990. ent_ring_desc);
  991. dst_mpdu_desc_info = hal_dst_mpdu_desc_info(soc->hal_soc,
  992. dst_ring_desc);
  993. qdf_mem_copy(ent_mpdu_desc_info, dst_mpdu_desc_info,
  994. sizeof(struct rx_mpdu_desc_info));
  995. qdf_mem_zero(ent_mpdu_desc_info, sizeof(uint32_t));
  996. mpdu_wrd = (uint32_t *)dst_mpdu_desc_info;
  997. seq_no = HAL_RX_MPDU_SEQUENCE_NUMBER_GET(mpdu_wrd);
  998. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  999. MSDU_COUNT, 0x1);
  1000. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1001. MPDU_SEQUENCE_NUMBER, seq_no);
  1002. /* unset frag bit */
  1003. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1004. FRAGMENT_FLAG, 0x0);
  1005. /* set sa/da valid bits */
  1006. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1007. SA_IS_VALID, 0x1);
  1008. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1009. DA_IS_VALID, 0x1);
  1010. HAL_RX_MPDU_DESC_INFO_SET(ent_mpdu_desc_info,
  1011. RAW_MPDU, 0x0);
  1012. /* qdesc addr */
  1013. ent_qdesc_addr = (uint8_t *)ent_ring_desc +
  1014. REO_ENTRANCE_RING_4_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1015. dst_qdesc_addr = (uint8_t *)dst_ring_desc +
  1016. REO_DESTINATION_RING_6_RX_REO_QUEUE_DESC_ADDR_31_0_OFFSET;
  1017. qdf_mem_copy(ent_qdesc_addr, dst_qdesc_addr, 8);
  1018. HAL_RX_FLD_SET(ent_ring_desc, REO_ENTRANCE_RING_5,
  1019. REO_DESTINATION_INDICATION, dst_ind);
  1020. hal_srng_access_end(soc->hal_soc, hal_srng);
  1021. DP_STATS_INC(soc, rx.reo_reinject, 1);
  1022. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1023. "%s: reinjection done !", __func__);
  1024. return QDF_STATUS_SUCCESS;
  1025. }
  1026. /*
  1027. * dp_rx_defrag(): Defragment the fragment chain
  1028. * @peer: Pointer to the peer
  1029. * @tid: Transmit Identifier
  1030. * @frag_list_head: Pointer to head list
  1031. * @frag_list_tail: Pointer to tail list
  1032. *
  1033. * Defragment the fragment chain
  1034. *
  1035. * Returns: QDF_STATUS
  1036. */
  1037. static QDF_STATUS dp_rx_defrag(struct dp_peer *peer, unsigned tid,
  1038. qdf_nbuf_t frag_list_head, qdf_nbuf_t frag_list_tail)
  1039. {
  1040. qdf_nbuf_t tmp_next, prev;
  1041. qdf_nbuf_t cur = frag_list_head, msdu;
  1042. uint32_t index, tkip_demic = 0;
  1043. uint16_t hdr_space;
  1044. uint8_t key[DEFRAG_IEEE80211_KEY_LEN];
  1045. struct dp_vdev *vdev = peer->vdev;
  1046. struct dp_soc *soc = vdev->pdev->soc;
  1047. uint8_t status = 0;
  1048. hdr_space = dp_rx_defrag_hdrsize(soc, cur);
  1049. index = hal_rx_msdu_is_wlan_mcast(cur) ?
  1050. dp_sec_mcast : dp_sec_ucast;
  1051. /* Remove FCS from all fragments */
  1052. while (cur) {
  1053. tmp_next = qdf_nbuf_next(cur);
  1054. qdf_nbuf_set_next(cur, NULL);
  1055. qdf_nbuf_trim_tail(cur, DEFRAG_IEEE80211_FCS_LEN);
  1056. prev = cur;
  1057. qdf_nbuf_set_next(cur, tmp_next);
  1058. cur = tmp_next;
  1059. }
  1060. cur = frag_list_head;
  1061. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1062. "%s: index %d Security type: %d", __func__,
  1063. index, peer->security[index].sec_type);
  1064. switch (peer->security[index].sec_type) {
  1065. case cdp_sec_type_tkip:
  1066. tkip_demic = 1;
  1067. case cdp_sec_type_tkip_nomic:
  1068. while (cur) {
  1069. tmp_next = qdf_nbuf_next(cur);
  1070. if (dp_rx_defrag_tkip_decap(cur, hdr_space)) {
  1071. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1072. QDF_TRACE_LEVEL_ERROR,
  1073. "dp_rx_defrag: TKIP decap failed");
  1074. return QDF_STATUS_E_DEFRAG_ERROR;
  1075. }
  1076. cur = tmp_next;
  1077. }
  1078. /* If success, increment header to be stripped later */
  1079. hdr_space += dp_f_tkip.ic_header;
  1080. break;
  1081. case cdp_sec_type_aes_ccmp:
  1082. while (cur) {
  1083. tmp_next = qdf_nbuf_next(cur);
  1084. if (dp_rx_defrag_ccmp_demic(cur, hdr_space)) {
  1085. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1086. QDF_TRACE_LEVEL_ERROR,
  1087. "dp_rx_defrag: CCMP demic failed");
  1088. return QDF_STATUS_E_DEFRAG_ERROR;
  1089. }
  1090. if (dp_rx_defrag_ccmp_decap(cur, hdr_space)) {
  1091. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1092. QDF_TRACE_LEVEL_ERROR,
  1093. "dp_rx_defrag: CCMP decap failed");
  1094. return QDF_STATUS_E_DEFRAG_ERROR;
  1095. }
  1096. cur = tmp_next;
  1097. }
  1098. /* If success, increment header to be stripped later */
  1099. hdr_space += dp_f_ccmp.ic_header;
  1100. break;
  1101. case cdp_sec_type_wep40:
  1102. case cdp_sec_type_wep104:
  1103. case cdp_sec_type_wep128:
  1104. while (cur) {
  1105. tmp_next = qdf_nbuf_next(cur);
  1106. if (dp_rx_defrag_wep_decap(cur, hdr_space)) {
  1107. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1108. QDF_TRACE_LEVEL_ERROR,
  1109. "dp_rx_defrag: WEP decap failed");
  1110. return QDF_STATUS_E_DEFRAG_ERROR;
  1111. }
  1112. cur = tmp_next;
  1113. }
  1114. /* If success, increment header to be stripped later */
  1115. hdr_space += dp_f_wep.ic_header;
  1116. break;
  1117. default:
  1118. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1119. QDF_TRACE_LEVEL_ERROR,
  1120. "dp_rx_defrag: Did not match any security type");
  1121. break;
  1122. }
  1123. if (tkip_demic) {
  1124. msdu = frag_list_head;
  1125. qdf_mem_copy(key,
  1126. &peer->security[index].michael_key[0],
  1127. IEEE80211_WEP_MICLEN);
  1128. status = dp_rx_defrag_tkip_demic(key, msdu,
  1129. RX_PKT_TLVS_LEN +
  1130. hdr_space);
  1131. if (status) {
  1132. dp_rx_defrag_err(vdev, frag_list_head);
  1133. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1134. QDF_TRACE_LEVEL_ERROR,
  1135. "%s: TKIP demic failed status %d",
  1136. __func__, status);
  1137. return QDF_STATUS_E_DEFRAG_ERROR;
  1138. }
  1139. }
  1140. /* Convert the header to 802.3 header */
  1141. dp_rx_defrag_nwifi_to_8023(soc, frag_list_head, hdr_space);
  1142. dp_rx_construct_fraglist(peer, frag_list_head, hdr_space);
  1143. return QDF_STATUS_SUCCESS;
  1144. }
  1145. /*
  1146. * dp_rx_defrag_cleanup(): Clean up activities
  1147. * @peer: Pointer to the peer
  1148. * @tid: Transmit Identifier
  1149. *
  1150. * Returns: None
  1151. */
  1152. void dp_rx_defrag_cleanup(struct dp_peer *peer, unsigned tid)
  1153. {
  1154. struct dp_rx_reorder_array_elem *rx_reorder_array_elem =
  1155. peer->rx_tid[tid].array;
  1156. if (rx_reorder_array_elem) {
  1157. /* Free up nbufs */
  1158. dp_rx_defrag_frames_free(rx_reorder_array_elem->head);
  1159. rx_reorder_array_elem->head = NULL;
  1160. rx_reorder_array_elem->tail = NULL;
  1161. } else {
  1162. dp_info("Cleanup self peer %pK and TID %u at MAC address %pM",
  1163. peer, tid, peer->mac_addr.raw);
  1164. }
  1165. /* Free up saved ring descriptors */
  1166. dp_rx_clear_saved_desc_info(peer, tid);
  1167. peer->rx_tid[tid].defrag_timeout_ms = 0;
  1168. peer->rx_tid[tid].curr_frag_num = 0;
  1169. peer->rx_tid[tid].curr_seq_num = 0;
  1170. }
  1171. /*
  1172. * dp_rx_defrag_save_info_from_ring_desc(): Save info from REO ring descriptor
  1173. * @ring_desc: Pointer to the dst ring descriptor
  1174. * @peer: Pointer to the peer
  1175. * @tid: Transmit Identifier
  1176. *
  1177. * Returns: None
  1178. */
  1179. static QDF_STATUS
  1180. dp_rx_defrag_save_info_from_ring_desc(hal_ring_desc_t ring_desc,
  1181. struct dp_rx_desc *rx_desc,
  1182. struct dp_peer *peer,
  1183. unsigned int tid)
  1184. {
  1185. void *dst_ring_desc = qdf_mem_malloc(
  1186. sizeof(struct reo_destination_ring));
  1187. if (!dst_ring_desc) {
  1188. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1189. "%s: Memory alloc failed !", __func__);
  1190. QDF_ASSERT(0);
  1191. return QDF_STATUS_E_NOMEM;
  1192. }
  1193. qdf_mem_copy(dst_ring_desc, ring_desc,
  1194. sizeof(struct reo_destination_ring));
  1195. peer->rx_tid[tid].dst_ring_desc = dst_ring_desc;
  1196. peer->rx_tid[tid].head_frag_desc = rx_desc;
  1197. return QDF_STATUS_SUCCESS;
  1198. }
  1199. /*
  1200. * dp_rx_defrag_store_fragment(): Store incoming fragments
  1201. * @soc: Pointer to the SOC data structure
  1202. * @ring_desc: Pointer to the ring descriptor
  1203. * @mpdu_desc_info: MPDU descriptor info
  1204. * @tid: Traffic Identifier
  1205. * @rx_desc: Pointer to rx descriptor
  1206. * @rx_bfs: Number of bfs consumed
  1207. *
  1208. * Returns: QDF_STATUS
  1209. */
  1210. static QDF_STATUS
  1211. dp_rx_defrag_store_fragment(struct dp_soc *soc,
  1212. hal_ring_desc_t ring_desc,
  1213. union dp_rx_desc_list_elem_t **head,
  1214. union dp_rx_desc_list_elem_t **tail,
  1215. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1216. unsigned int tid, struct dp_rx_desc *rx_desc,
  1217. uint32_t *rx_bfs)
  1218. {
  1219. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1220. struct dp_pdev *pdev;
  1221. struct dp_peer *peer = NULL;
  1222. uint16_t peer_id;
  1223. uint8_t fragno, more_frag, all_frag_present = 0;
  1224. uint16_t rxseq = mpdu_desc_info->mpdu_seq;
  1225. QDF_STATUS status;
  1226. struct dp_rx_tid *rx_tid;
  1227. uint8_t mpdu_sequence_control_valid;
  1228. uint8_t mpdu_frame_control_valid;
  1229. qdf_nbuf_t frag = rx_desc->nbuf;
  1230. uint32_t msdu_len;
  1231. if (qdf_nbuf_len(frag) > 0) {
  1232. dp_info("Dropping unexpected packet with skb_len: %d,"
  1233. "data len: %d, cookie: %d",
  1234. (uint32_t)qdf_nbuf_len(frag), frag->data_len,
  1235. rx_desc->cookie);
  1236. DP_STATS_INC(soc, rx.rx_frag_err_len_error, 1);
  1237. goto discard_frag;
  1238. }
  1239. msdu_len = hal_rx_msdu_start_msdu_len_get(rx_desc->rx_buf_start);
  1240. qdf_nbuf_set_pktlen(frag, (msdu_len + RX_PKT_TLVS_LEN));
  1241. qdf_nbuf_append_ext_list(frag, NULL, 0);
  1242. /* Check if the packet is from a valid peer */
  1243. peer_id = DP_PEER_METADATA_PEER_ID_GET(
  1244. mpdu_desc_info->peer_meta_data);
  1245. peer = dp_peer_find_by_id(soc, peer_id);
  1246. if (!peer) {
  1247. /* We should not receive anything from unknown peer
  1248. * however, that might happen while we are in the monitor mode.
  1249. * We don't need to handle that here
  1250. */
  1251. dp_info_rl("Unknown peer with peer_id %d, dropping fragment",
  1252. peer_id);
  1253. DP_STATS_INC(soc, rx.rx_frag_err_no_peer, 1);
  1254. goto discard_frag;
  1255. }
  1256. if (tid >= DP_MAX_TIDS) {
  1257. dp_info("TID out of bounds: %d", tid);
  1258. qdf_assert_always(0);
  1259. }
  1260. pdev = peer->vdev->pdev;
  1261. rx_tid = &peer->rx_tid[tid];
  1262. mpdu_sequence_control_valid =
  1263. hal_rx_get_mpdu_sequence_control_valid(soc->hal_soc,
  1264. rx_desc->rx_buf_start);
  1265. /* Invalid MPDU sequence control field, MPDU is of no use */
  1266. if (!mpdu_sequence_control_valid) {
  1267. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1268. "Invalid MPDU seq control field, dropping MPDU");
  1269. qdf_assert(0);
  1270. goto discard_frag;
  1271. }
  1272. mpdu_frame_control_valid =
  1273. hal_rx_get_mpdu_frame_control_valid(soc->hal_soc,
  1274. rx_desc->rx_buf_start);
  1275. /* Invalid frame control field */
  1276. if (!mpdu_frame_control_valid) {
  1277. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1278. "Invalid frame control field, dropping MPDU");
  1279. qdf_assert(0);
  1280. goto discard_frag;
  1281. }
  1282. /* Current mpdu sequence */
  1283. more_frag = dp_rx_frag_get_more_frag_bit(rx_desc->rx_buf_start);
  1284. /* HW does not populate the fragment number as of now
  1285. * need to get from the 802.11 header
  1286. */
  1287. fragno = dp_rx_frag_get_mpdu_frag_number(rx_desc->rx_buf_start);
  1288. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1289. if (!rx_reorder_array_elem) {
  1290. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1291. "Rcvd Fragmented pkt before peer_tid is setup");
  1292. goto discard_frag;
  1293. }
  1294. /*
  1295. * !more_frag: no more fragments to be delivered
  1296. * !frag_no: packet is not fragmented
  1297. * !rx_reorder_array_elem->head: no saved fragments so far
  1298. */
  1299. if ((!more_frag) && (!fragno) && (!rx_reorder_array_elem->head)) {
  1300. /* We should not get into this situation here.
  1301. * It means an unfragmented packet with fragment flag
  1302. * is delivered over the REO exception ring.
  1303. * Typically it follows normal rx path.
  1304. */
  1305. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1306. "Rcvd unfragmented pkt on REO Err srng, dropping");
  1307. qdf_assert(0);
  1308. goto discard_frag;
  1309. }
  1310. /* Check if the fragment is for the same sequence or a different one */
  1311. if (rx_reorder_array_elem->head) {
  1312. if (rxseq != rx_tid->curr_seq_num) {
  1313. /* Drop stored fragments if out of sequence
  1314. * fragment is received
  1315. */
  1316. dp_rx_reorder_flush_frag(peer, tid);
  1317. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1318. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1319. "%s mismatch, dropping earlier sequence ",
  1320. (rxseq == rx_tid->curr_seq_num)
  1321. ? "address"
  1322. : "seq number");
  1323. /*
  1324. * The sequence number for this fragment becomes the
  1325. * new sequence number to be processed
  1326. */
  1327. rx_tid->curr_seq_num = rxseq;
  1328. }
  1329. } else {
  1330. /* Start of a new sequence */
  1331. dp_rx_defrag_cleanup(peer, tid);
  1332. rx_tid->curr_seq_num = rxseq;
  1333. }
  1334. /*
  1335. * If the earlier sequence was dropped, this will be the fresh start.
  1336. * Else, continue with next fragment in a given sequence
  1337. */
  1338. status = dp_rx_defrag_fraglist_insert(peer, tid, &rx_reorder_array_elem->head,
  1339. &rx_reorder_array_elem->tail, frag,
  1340. &all_frag_present);
  1341. /*
  1342. * Currently, we can have only 6 MSDUs per-MPDU, if the current
  1343. * packet sequence has more than 6 MSDUs for some reason, we will
  1344. * have to use the next MSDU link descriptor and chain them together
  1345. * before reinjection
  1346. */
  1347. if ((fragno == 0) && (status == QDF_STATUS_SUCCESS) &&
  1348. (rx_reorder_array_elem->head == frag)) {
  1349. qdf_assert_always(ring_desc);
  1350. status = dp_rx_defrag_save_info_from_ring_desc(ring_desc,
  1351. rx_desc, peer, tid);
  1352. if (status != QDF_STATUS_SUCCESS) {
  1353. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1354. "%s: Unable to store ring desc !", __func__);
  1355. goto discard_frag;
  1356. }
  1357. } else {
  1358. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1359. (*rx_bfs)++;
  1360. /* Return the non-head link desc */
  1361. if (ring_desc &&
  1362. dp_rx_link_desc_return(soc, ring_desc,
  1363. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1364. QDF_STATUS_SUCCESS)
  1365. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1366. "%s: Failed to return link desc", __func__);
  1367. }
  1368. if (pdev->soc->rx.flags.defrag_timeout_check)
  1369. dp_rx_defrag_waitlist_remove(peer, tid);
  1370. /* Yet to receive more fragments for this sequence number */
  1371. if (!all_frag_present) {
  1372. uint32_t now_ms =
  1373. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1374. peer->rx_tid[tid].defrag_timeout_ms =
  1375. now_ms + pdev->soc->rx.defrag.timeout_ms;
  1376. dp_rx_defrag_waitlist_add(peer, tid);
  1377. dp_peer_unref_del_find_by_id(peer);
  1378. return QDF_STATUS_SUCCESS;
  1379. }
  1380. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1381. "All fragments received for sequence: %d", rxseq);
  1382. /* Process the fragments */
  1383. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1384. rx_reorder_array_elem->tail);
  1385. if (QDF_IS_STATUS_ERROR(status)) {
  1386. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1387. "Fragment processing failed");
  1388. dp_rx_add_to_free_desc_list(head, tail,
  1389. peer->rx_tid[tid].head_frag_desc);
  1390. (*rx_bfs)++;
  1391. if (dp_rx_link_desc_return(soc,
  1392. peer->rx_tid[tid].dst_ring_desc,
  1393. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1394. QDF_STATUS_SUCCESS)
  1395. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1396. "%s: Failed to return link desc",
  1397. __func__);
  1398. dp_rx_defrag_cleanup(peer, tid);
  1399. goto end;
  1400. }
  1401. /* Re-inject the fragments back to REO for further processing */
  1402. status = dp_rx_defrag_reo_reinject(peer, tid,
  1403. rx_reorder_array_elem->head);
  1404. if (QDF_IS_STATUS_SUCCESS(status)) {
  1405. rx_reorder_array_elem->head = NULL;
  1406. rx_reorder_array_elem->tail = NULL;
  1407. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
  1408. "Fragmented sequence successfully reinjected");
  1409. } else {
  1410. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1411. "Fragmented sequence reinjection failed");
  1412. dp_rx_return_head_frag_desc(peer, tid);
  1413. }
  1414. dp_rx_defrag_cleanup(peer, tid);
  1415. dp_peer_unref_del_find_by_id(peer);
  1416. return QDF_STATUS_SUCCESS;
  1417. discard_frag:
  1418. qdf_nbuf_free(frag);
  1419. dp_rx_add_to_free_desc_list(head, tail, rx_desc);
  1420. if (dp_rx_link_desc_return(soc, ring_desc,
  1421. HAL_BM_ACTION_PUT_IN_IDLE_LIST) !=
  1422. QDF_STATUS_SUCCESS)
  1423. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1424. "%s: Failed to return link desc", __func__);
  1425. (*rx_bfs)++;
  1426. end:
  1427. if (peer)
  1428. dp_peer_unref_del_find_by_id(peer);
  1429. DP_STATS_INC(soc, rx.rx_frag_err, 1);
  1430. return QDF_STATUS_E_DEFRAG_ERROR;
  1431. }
  1432. /**
  1433. * dp_rx_frag_handle() - Handles fragmented Rx frames
  1434. *
  1435. * @soc: core txrx main context
  1436. * @ring_desc: opaque pointer to the REO error ring descriptor
  1437. * @mpdu_desc_info: MPDU descriptor information from ring descriptor
  1438. * @head: head of the local descriptor free-list
  1439. * @tail: tail of the local descriptor free-list
  1440. * @quota: No. of units (packets) that can be serviced in one shot.
  1441. *
  1442. * This function implements RX 802.11 fragmentation handling
  1443. * The handling is mostly same as legacy fragmentation handling.
  1444. * If required, this function can re-inject the frames back to
  1445. * REO ring (with proper setting to by-pass fragmentation check
  1446. * but use duplicate detection / re-ordering and routing these frames
  1447. * to a different core.
  1448. *
  1449. * Return: uint32_t: No. of elements processed
  1450. */
  1451. uint32_t dp_rx_frag_handle(struct dp_soc *soc, hal_ring_desc_t ring_desc,
  1452. struct hal_rx_mpdu_desc_info *mpdu_desc_info,
  1453. struct dp_rx_desc *rx_desc,
  1454. uint8_t *mac_id,
  1455. uint32_t quota)
  1456. {
  1457. uint32_t rx_bufs_used = 0;
  1458. qdf_nbuf_t msdu = NULL;
  1459. uint32_t tid;
  1460. uint32_t rx_bfs = 0;
  1461. struct dp_pdev *pdev;
  1462. QDF_STATUS status = QDF_STATUS_SUCCESS;
  1463. struct rx_desc_pool *rx_desc_pool;
  1464. qdf_assert(soc);
  1465. qdf_assert(mpdu_desc_info);
  1466. qdf_assert(rx_desc);
  1467. dp_debug("Number of MSDUs to process, num_msdus: %d",
  1468. mpdu_desc_info->msdu_count);
  1469. if (qdf_unlikely(mpdu_desc_info->msdu_count == 0)) {
  1470. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1471. "Not sufficient MSDUs to process");
  1472. return rx_bufs_used;
  1473. }
  1474. /* all buffers in MSDU link belong to same pdev */
  1475. pdev = dp_get_pdev_for_lmac_id(soc, rx_desc->pool_id);
  1476. if (!pdev) {
  1477. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  1478. "pdev is null for pool_id = %d", rx_desc->pool_id);
  1479. return rx_bufs_used;
  1480. }
  1481. *mac_id = rx_desc->pool_id;
  1482. msdu = rx_desc->nbuf;
  1483. rx_desc_pool = &soc->rx_desc_buf[rx_desc->pool_id];
  1484. qdf_nbuf_unmap_nbytes_single(soc->osdev, rx_desc->nbuf,
  1485. QDF_DMA_FROM_DEVICE,
  1486. rx_desc_pool->buf_size);
  1487. rx_desc->unmapped = 1;
  1488. rx_desc->rx_buf_start = qdf_nbuf_data(msdu);
  1489. tid = hal_rx_mpdu_start_tid_get(soc->hal_soc, rx_desc->rx_buf_start);
  1490. /* Process fragment-by-fragment */
  1491. status = dp_rx_defrag_store_fragment(soc, ring_desc,
  1492. &pdev->free_list_head,
  1493. &pdev->free_list_tail,
  1494. mpdu_desc_info,
  1495. tid, rx_desc, &rx_bfs);
  1496. if (rx_bfs)
  1497. rx_bufs_used += rx_bfs;
  1498. if (!QDF_IS_STATUS_SUCCESS(status))
  1499. dp_info_rl("Rx Defrag err seq#:0x%x msdu_count:%d flags:%d",
  1500. mpdu_desc_info->mpdu_seq,
  1501. mpdu_desc_info->msdu_count,
  1502. mpdu_desc_info->mpdu_flags);
  1503. return rx_bufs_used;
  1504. }
  1505. QDF_STATUS dp_rx_defrag_add_last_frag(struct dp_soc *soc,
  1506. struct dp_peer *peer, uint16_t tid,
  1507. uint16_t rxseq, qdf_nbuf_t nbuf)
  1508. {
  1509. struct dp_rx_tid *rx_tid = &peer->rx_tid[tid];
  1510. struct dp_rx_reorder_array_elem *rx_reorder_array_elem;
  1511. uint8_t all_frag_present;
  1512. uint32_t msdu_len;
  1513. QDF_STATUS status;
  1514. rx_reorder_array_elem = peer->rx_tid[tid].array;
  1515. /*
  1516. * HW may fill in unexpected peer_id in RX PKT TLV,
  1517. * if this peer_id related peer is valid by coincidence,
  1518. * but actually this peer won't do dp_peer_rx_init(like SAP vdev
  1519. * self peer), then invalid access to rx_reorder_array_elem happened.
  1520. */
  1521. if (!rx_reorder_array_elem) {
  1522. dp_verbose_debug(
  1523. "peer id:%d mac: %pM drop rx frame!",
  1524. peer->peer_ids[0],
  1525. peer->mac_addr.raw);
  1526. DP_STATS_INC(soc, rx.err.defrag_peer_uninit, 1);
  1527. qdf_nbuf_free(nbuf);
  1528. goto fail;
  1529. }
  1530. if (rx_reorder_array_elem->head &&
  1531. rxseq != rx_tid->curr_seq_num) {
  1532. /* Drop stored fragments if out of sequence
  1533. * fragment is received
  1534. */
  1535. dp_rx_reorder_flush_frag(peer, tid);
  1536. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
  1537. "%s: No list found for TID %d Seq# %d",
  1538. __func__, tid, rxseq);
  1539. qdf_nbuf_free(nbuf);
  1540. goto fail;
  1541. }
  1542. msdu_len = hal_rx_msdu_start_msdu_len_get(qdf_nbuf_data(nbuf));
  1543. qdf_nbuf_set_pktlen(nbuf, (msdu_len + RX_PKT_TLVS_LEN));
  1544. status = dp_rx_defrag_fraglist_insert(peer, tid,
  1545. &rx_reorder_array_elem->head,
  1546. &rx_reorder_array_elem->tail, nbuf,
  1547. &all_frag_present);
  1548. if (QDF_IS_STATUS_ERROR(status)) {
  1549. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1550. "%s Fragment insert failed", __func__);
  1551. goto fail;
  1552. }
  1553. if (soc->rx.flags.defrag_timeout_check)
  1554. dp_rx_defrag_waitlist_remove(peer, tid);
  1555. if (!all_frag_present) {
  1556. uint32_t now_ms =
  1557. qdf_system_ticks_to_msecs(qdf_system_ticks());
  1558. peer->rx_tid[tid].defrag_timeout_ms =
  1559. now_ms + soc->rx.defrag.timeout_ms;
  1560. dp_rx_defrag_waitlist_add(peer, tid);
  1561. return QDF_STATUS_SUCCESS;
  1562. }
  1563. status = dp_rx_defrag(peer, tid, rx_reorder_array_elem->head,
  1564. rx_reorder_array_elem->tail);
  1565. if (QDF_IS_STATUS_ERROR(status)) {
  1566. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1567. "%s Fragment processing failed", __func__);
  1568. dp_rx_return_head_frag_desc(peer, tid);
  1569. dp_rx_defrag_cleanup(peer, tid);
  1570. goto fail;
  1571. }
  1572. /* Re-inject the fragments back to REO for further processing */
  1573. status = dp_rx_defrag_reo_reinject(peer, tid,
  1574. rx_reorder_array_elem->head);
  1575. if (QDF_IS_STATUS_SUCCESS(status)) {
  1576. rx_reorder_array_elem->head = NULL;
  1577. rx_reorder_array_elem->tail = NULL;
  1578. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  1579. "%s: Frag seq successfully reinjected",
  1580. __func__);
  1581. } else {
  1582. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  1583. "%s: Frag seq reinjection failed", __func__);
  1584. dp_rx_return_head_frag_desc(peer, tid);
  1585. }
  1586. dp_rx_defrag_cleanup(peer, tid);
  1587. return QDF_STATUS_SUCCESS;
  1588. fail:
  1589. return QDF_STATUS_E_DEFRAG_ERROR;
  1590. }