msm_cvp_buf.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/pid.h>
  7. #include <linux/fdtable.h>
  8. #include <linux/rcupdate.h>
  9. #include <linux/fs.h>
  10. #include <linux/dma-buf.h>
  11. #include <linux/sched/task.h>
  12. #include <linux/version.h>
  13. #include "msm_cvp_common.h"
  14. #include "cvp_hfi_api.h"
  15. #include "msm_cvp_debug.h"
  16. #include "msm_cvp_core.h"
  17. #include "msm_cvp_dsp.h"
  18. #include "eva_shared_def.h"
  19. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 16, 0))
  20. #define eva_buf_map dma_buf_map
  21. #define _buf_map_set_vaddr dma_buf_map_set_vaddr
  22. #else
  23. #define eva_buf_map iosys_map
  24. #define _buf_map_set_vaddr iosys_map_set_vaddr
  25. #endif
  26. #define CLEAR_USE_BITMAP(idx, inst) \
  27. do { \
  28. clear_bit(idx, &inst->dma_cache.usage_bitmap); \
  29. dprintk(CVP_MEM, "clear %x bit %d dma_cache bitmap 0x%llx\n", \
  30. hash32_ptr(inst->session), smem->bitmap_index, \
  31. inst->dma_cache.usage_bitmap); \
  32. } while (0)
  33. #define SET_USE_BITMAP(idx, inst) \
  34. do { \
  35. set_bit(idx, &inst->dma_cache.usage_bitmap); \
  36. dprintk(CVP_MEM, "Set %x bit %d dma_cache bitmap 0x%llx\n", \
  37. hash32_ptr(inst->session), idx, \
  38. inst->dma_cache.usage_bitmap); \
  39. } while (0)
  40. struct cvp_oob_pool wncc_buf_pool;
  41. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst);
  42. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  43. struct eva_kmd_oob_wncc *wncc_oob,
  44. struct eva_kmd_wncc_metadata** wncc_metadata);
  45. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log);
  46. int print_smem(u32 tag, const char *str, struct msm_cvp_inst *inst,
  47. struct msm_cvp_smem *smem)
  48. {
  49. int i;
  50. char name[PKT_NAME_LEN] = "Unknown";
  51. if (!(tag & msm_cvp_debug))
  52. return 0;
  53. if (!inst || !smem) {
  54. dprintk(CVP_ERR, "Invalid inst 0x%llx or smem 0x%llx\n",
  55. inst, smem);
  56. return -EINVAL;
  57. }
  58. if (smem->dma_buf) {
  59. i = get_pkt_index_from_type(smem->pkt_type);
  60. if (i > 0)
  61. strlcpy(name, cvp_hfi_defs[i].name, PKT_NAME_LEN);
  62. if (!atomic_read(&smem->refcount))
  63. dprintk(tag,
  64. " UNUSED mapping %s: 0x%llx size %d iova %#x idx %d pkt_type %s buf_idx %#x fd %d\n",
  65. str, smem->dma_buf,
  66. smem->size, smem->device_addr, smem->bitmap_index, name, smem->buf_idx, smem->fd);
  67. else
  68. dprintk(tag,
  69. "%s: %x : 0x%llx size %d flags %#x iova %#x idx %d ref %d pkt_type %s buf_idx %#x fd %d\n",
  70. str, hash32_ptr(inst->session), smem->dma_buf,
  71. smem->size, smem->flags, smem->device_addr,
  72. smem->bitmap_index, atomic_read(&smem->refcount),
  73. name, smem->buf_idx, smem->fd);
  74. }
  75. return 0;
  76. }
  77. static void print_internal_buffer(u32 tag, const char *str,
  78. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf)
  79. {
  80. if (!(tag & msm_cvp_debug) || !inst || !cbuf)
  81. return;
  82. if (cbuf->smem->dma_buf) {
  83. dprintk(tag,
  84. "%s: %x : fd %d off %d 0x%llx %s size %d iova %#x\n",
  85. str, hash32_ptr(inst->session), cbuf->fd,
  86. cbuf->offset, cbuf->smem->dma_buf, cbuf->smem->dma_buf->name,
  87. cbuf->size, cbuf->smem->device_addr);
  88. } else {
  89. dprintk(tag,
  90. "%s: %x : idx %2d fd %d off %d size %d iova %#x\n",
  91. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  92. cbuf->offset, cbuf->size, cbuf->smem->device_addr);
  93. }
  94. }
  95. void print_cvp_buffer(u32 tag, const char *str, struct msm_cvp_inst *inst,
  96. struct cvp_internal_buf *cbuf)
  97. {
  98. if (!inst || !cbuf) {
  99. dprintk(CVP_ERR,
  100. "%s Invalid params inst %pK, cbuf %pK\n",
  101. str, inst, cbuf);
  102. return;
  103. }
  104. print_smem(tag, str, inst, cbuf->smem);
  105. }
  106. static void _log_smem(struct inst_snapshot *snapshot, struct msm_cvp_inst *inst,
  107. struct msm_cvp_smem *smem, bool logging)
  108. {
  109. if (print_smem(CVP_ERR, "bufdump", inst, smem))
  110. return;
  111. if (!logging || !snapshot)
  112. return;
  113. if (snapshot && snapshot->smem_index < MAX_ENTRIES) {
  114. struct smem_data *s;
  115. s = &snapshot->smem_log[snapshot->smem_index];
  116. snapshot->smem_index++;
  117. s->size = smem->size;
  118. s->flags = smem->flags;
  119. s->device_addr = smem->device_addr;
  120. s->bitmap_index = smem->bitmap_index;
  121. s->refcount = atomic_read(&smem->refcount);
  122. s->pkt_type = smem->pkt_type;
  123. s->buf_idx = smem->buf_idx;
  124. }
  125. }
  126. static void _log_buf(struct inst_snapshot *snapshot, enum smem_prop prop,
  127. struct msm_cvp_inst *inst, struct cvp_internal_buf *cbuf,
  128. bool logging)
  129. {
  130. struct cvp_buf_data *buf = NULL;
  131. u32 index;
  132. print_cvp_buffer(CVP_ERR, "bufdump", inst, cbuf);
  133. if (!logging)
  134. return;
  135. if (snapshot) {
  136. if (prop == SMEM_CDSP && snapshot->dsp_index < MAX_ENTRIES) {
  137. index = snapshot->dsp_index;
  138. buf = &snapshot->dsp_buf_log[index];
  139. snapshot->dsp_index++;
  140. } else if (prop == SMEM_PERSIST &&
  141. snapshot->persist_index < MAX_ENTRIES) {
  142. index = snapshot->persist_index;
  143. buf = &snapshot->persist_buf_log[index];
  144. snapshot->persist_index++;
  145. }
  146. if (buf) {
  147. buf->device_addr = cbuf->smem->device_addr;
  148. buf->size = cbuf->size;
  149. }
  150. }
  151. }
  152. void print_client_buffer(u32 tag, const char *str,
  153. struct msm_cvp_inst *inst, struct eva_kmd_buffer *cbuf)
  154. {
  155. if (!(tag & msm_cvp_debug) || !str || !inst || !cbuf)
  156. return;
  157. dprintk(tag,
  158. "%s: %x : idx %2d fd %d off %d size %d type %d flags 0x%x reserved[0] %u\n",
  159. str, hash32_ptr(inst->session), cbuf->index, cbuf->fd,
  160. cbuf->offset, cbuf->size, cbuf->type, cbuf->flags,
  161. cbuf->reserved[0]);
  162. }
  163. static bool __is_buf_valid(struct msm_cvp_inst *inst,
  164. struct eva_kmd_buffer *buf)
  165. {
  166. struct cvp_hal_session *session;
  167. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  168. bool found = false;
  169. if (!inst || !inst->core || !buf) {
  170. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  171. return false;
  172. }
  173. if (buf->fd < 0) {
  174. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  175. return false;
  176. }
  177. if (buf->offset) {
  178. dprintk(CVP_ERR,
  179. "%s: offset is deprecated, set to 0.\n",
  180. __func__);
  181. return false;
  182. }
  183. session = (struct cvp_hal_session *)inst->session;
  184. mutex_lock(&inst->cvpdspbufs.lock);
  185. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  186. if (cbuf->fd == buf->fd) {
  187. if (cbuf->size != buf->size) {
  188. dprintk(CVP_ERR, "%s: buf size mismatch\n",
  189. __func__);
  190. mutex_unlock(&inst->cvpdspbufs.lock);
  191. return false;
  192. }
  193. found = true;
  194. break;
  195. }
  196. }
  197. mutex_unlock(&inst->cvpdspbufs.lock);
  198. if (found) {
  199. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  200. return false;
  201. }
  202. return true;
  203. }
  204. static struct file *msm_cvp_fget(unsigned int fd, struct task_struct *task,
  205. fmode_t mask, unsigned int refs)
  206. {
  207. struct files_struct *files = task->files;
  208. struct file *file;
  209. if (!files)
  210. return NULL;
  211. rcu_read_lock();
  212. loop:
  213. #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 13, 0))
  214. file = fcheck_files(files, fd);
  215. #else
  216. file = files_lookup_fd_rcu(files, fd);
  217. #endif
  218. if (file) {
  219. /* File object ref couldn't be taken.
  220. * dup2() atomicity guarantee is the reason
  221. * we loop to catch the new file (or NULL pointer)
  222. */
  223. if (file->f_mode & mask)
  224. file = NULL;
  225. else if (!get_file_rcu(file))
  226. goto loop;
  227. }
  228. rcu_read_unlock();
  229. return file;
  230. }
  231. static struct dma_buf *cvp_dma_buf_get(struct file *file, int fd,
  232. struct task_struct *task)
  233. {
  234. if (file->f_op != gfa_cv.dmabuf_f_op) {
  235. dprintk(CVP_WARN, "fd doesn't refer to dma_buf\n");
  236. return ERR_PTR(-EINVAL);
  237. }
  238. return file->private_data;
  239. }
  240. int msm_cvp_map_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  241. {
  242. int rc = 0;
  243. struct cvp_internal_buf *cbuf = NULL;
  244. struct msm_cvp_smem *smem = NULL;
  245. struct dma_buf *dma_buf = NULL;
  246. struct file *file;
  247. if (!__is_buf_valid(inst, buf))
  248. return -EINVAL;
  249. if (!inst->task)
  250. return -EINVAL;
  251. file = msm_cvp_fget(buf->fd, inst->task, FMODE_PATH, 1);
  252. if (file == NULL) {
  253. dprintk(CVP_WARN, "%s fail to get file from fd %d %s\n", __func__, buf->fd, inst->proc_name);
  254. return -EINVAL;
  255. }
  256. dma_buf = cvp_dma_buf_get(
  257. file,
  258. buf->fd,
  259. inst->task);
  260. if (dma_buf == ERR_PTR(-EINVAL)) {
  261. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  262. rc = -EINVAL;
  263. goto exit;
  264. }
  265. if (dma_buf->size < buf->size) {
  266. dprintk(CVP_ERR, "%s DSP client buffer too large %d > %d\n",
  267. __func__, buf->size, dma_buf->size);
  268. rc = -EINVAL;
  269. goto exit;
  270. }
  271. dprintk(CVP_MEM, "dma_buf from internal %llu\n", dma_buf);
  272. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  273. if (!cbuf) {
  274. rc = -ENOMEM;
  275. goto exit;
  276. }
  277. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  278. if (!smem) {
  279. rc = -ENOMEM;
  280. goto exit;
  281. }
  282. smem->dma_buf = dma_buf;
  283. smem->bitmap_index = MAX_DMABUF_NUMS;
  284. smem->pkt_type = 0;
  285. smem->buf_idx = 0;
  286. smem->fd = buf->fd;
  287. dprintk(CVP_MEM, "%s: dma_buf = %llx\n", __func__, dma_buf);
  288. rc = msm_cvp_map_smem(inst, smem, "map dsp");
  289. if (rc) {
  290. print_client_buffer(CVP_ERR, "map failed", inst, buf);
  291. goto exit;
  292. }
  293. atomic_inc(&smem->refcount);
  294. cbuf->smem = smem;
  295. cbuf->fd = buf->fd;
  296. cbuf->size = buf->size;
  297. cbuf->offset = buf->offset;
  298. cbuf->ownership = CLIENT;
  299. cbuf->index = buf->index;
  300. buf->reserved[0] = (uint32_t)smem->device_addr;
  301. mutex_lock(&inst->cvpdspbufs.lock);
  302. list_add_tail(&cbuf->list, &inst->cvpdspbufs.list);
  303. mutex_unlock(&inst->cvpdspbufs.lock);
  304. return rc;
  305. exit:
  306. fput(file);
  307. if (smem) {
  308. if (smem->device_addr)
  309. msm_cvp_unmap_smem(inst, smem, "unmap dsp");
  310. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  311. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  312. }
  313. if (cbuf)
  314. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  315. return rc;
  316. }
  317. int msm_cvp_unmap_buf_dsp(struct msm_cvp_inst *inst, struct eva_kmd_buffer *buf)
  318. {
  319. int rc = 0;
  320. bool found;
  321. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  322. struct cvp_hal_session *session;
  323. if (!inst || !inst->core || !buf) {
  324. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  325. return -EINVAL;
  326. }
  327. session = (struct cvp_hal_session *)inst->session;
  328. if (!session) {
  329. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  330. return -EINVAL;
  331. }
  332. mutex_lock(&inst->cvpdspbufs.lock);
  333. found = false;
  334. list_for_each_entry(cbuf, &inst->cvpdspbufs.list, list) {
  335. if (cbuf->fd == buf->fd) {
  336. found = true;
  337. break;
  338. }
  339. }
  340. if (!found) {
  341. mutex_unlock(&inst->cvpdspbufs.lock);
  342. print_client_buffer(CVP_ERR, "invalid", inst, buf);
  343. return -EINVAL;
  344. }
  345. if (cbuf->smem->device_addr) {
  346. u64 idx = inst->unused_dsp_bufs.ktid;
  347. inst->unused_dsp_bufs.smem[idx] = *(cbuf->smem);
  348. inst->unused_dsp_bufs.nr++;
  349. inst->unused_dsp_bufs.nr =
  350. (inst->unused_dsp_bufs.nr > MAX_FRAME_BUFFER_NUMS)?
  351. MAX_FRAME_BUFFER_NUMS : inst->unused_dsp_bufs.nr;
  352. inst->unused_dsp_bufs.ktid = ++idx % MAX_FRAME_BUFFER_NUMS;
  353. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  354. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  355. atomic_dec(&cbuf->smem->refcount);
  356. }
  357. list_del(&cbuf->list);
  358. mutex_unlock(&inst->cvpdspbufs.lock);
  359. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  360. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  361. return rc;
  362. }
  363. int msm_cvp_map_buf_wncc(struct msm_cvp_inst *inst,
  364. struct eva_kmd_buffer *buf)
  365. {
  366. int rc = 0, i;
  367. bool found = false;
  368. struct cvp_internal_buf* cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  369. struct msm_cvp_smem* smem = NULL;
  370. struct dma_buf* dma_buf = NULL;
  371. if (!inst || !inst->core || !buf) {
  372. dprintk(CVP_ERR, "%s: invalid params", __func__);
  373. return -EINVAL;
  374. }
  375. if (!inst->session) {
  376. dprintk(CVP_ERR, "%s: invalid session", __func__);
  377. return -EINVAL;
  378. }
  379. if (buf->index) {
  380. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  381. __func__, buf->fd);
  382. return -EINVAL;
  383. }
  384. if (buf->fd < 0) {
  385. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  386. return -EINVAL;
  387. }
  388. if (buf->offset) {
  389. dprintk(CVP_ERR, "%s: offset is not supported, set to 0.",
  390. __func__);
  391. return -EINVAL;
  392. }
  393. mutex_lock(&inst->cvpwnccbufs.lock);
  394. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  395. if (cbuf->fd == buf->fd) {
  396. if (cbuf->size != buf->size) {
  397. dprintk(CVP_ERR, "%s: buf size mismatch",
  398. __func__);
  399. mutex_unlock(&inst->cvpwnccbufs.lock);
  400. return -EINVAL;
  401. }
  402. found = true;
  403. break;
  404. }
  405. }
  406. mutex_unlock(&inst->cvpwnccbufs.lock);
  407. if (found) {
  408. print_internal_buffer(CVP_ERR, "duplicate", inst, cbuf);
  409. return -EINVAL;
  410. }
  411. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  412. if (!dma_buf) {
  413. dprintk(CVP_ERR, "%s: invalid fd = %d", __func__, buf->fd);
  414. return -EINVAL;
  415. }
  416. cbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  417. if (!cbuf) {
  418. msm_cvp_smem_put_dma_buf(dma_buf);
  419. return -ENOMEM;
  420. }
  421. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  422. if (!smem) {
  423. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  424. msm_cvp_smem_put_dma_buf(dma_buf);
  425. return -ENOMEM;
  426. }
  427. smem->dma_buf = dma_buf;
  428. smem->bitmap_index = MAX_DMABUF_NUMS;
  429. smem->pkt_type = 0;
  430. smem->buf_idx = 0;
  431. smem->fd = buf->fd;
  432. dprintk(CVP_MEM, "%s: dma_buf = %llx", __func__, dma_buf);
  433. rc = msm_cvp_map_smem(inst, smem, "map wncc");
  434. if (rc) {
  435. dprintk(CVP_ERR, "%s: map failed", __func__);
  436. print_client_buffer(CVP_ERR, __func__, inst, buf);
  437. goto exit;
  438. }
  439. cbuf->smem = smem;
  440. cbuf->fd = buf->fd;
  441. cbuf->size = buf->size;
  442. cbuf->offset = buf->offset;
  443. cbuf->ownership = CLIENT;
  444. cbuf->index = buf->index;
  445. /* Added for PreSil/RUMI testing */
  446. #ifdef USE_PRESIL
  447. dprintk(CVP_DBG,
  448. "wncc buffer is %x for cam_presil_send_buffer"
  449. " with MAP_ADDR_OFFSET %x",
  450. (u64)(smem->device_addr) - MAP_ADDR_OFFSET, MAP_ADDR_OFFSET);
  451. cam_presil_send_buffer((u64)smem->dma_buf, 0,
  452. (u32)cbuf->offset, (u32)cbuf->size,
  453. (u64)(smem->device_addr) - MAP_ADDR_OFFSET);
  454. #endif
  455. mutex_lock(&inst->cvpwnccbufs.lock);
  456. if (inst->cvpwnccbufs_table == NULL) {
  457. inst->cvpwnccbufs_table =
  458. (struct msm_cvp_wncc_buffer*) kzalloc(
  459. sizeof(struct msm_cvp_wncc_buffer) *
  460. EVA_KMD_WNCC_MAX_SRC_BUFS,
  461. GFP_KERNEL);
  462. if (!inst->cvpwnccbufs_table) {
  463. mutex_unlock(&inst->cvpwnccbufs.lock);
  464. goto exit;
  465. }
  466. }
  467. list_add_tail(&cbuf->list, &inst->cvpwnccbufs.list);
  468. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS; i++)
  469. {
  470. if (inst->cvpwnccbufs_table[i].iova == 0)
  471. {
  472. inst->cvpwnccbufs_num++;
  473. inst->cvpwnccbufs_table[i].fd = buf->fd;
  474. inst->cvpwnccbufs_table[i].iova = smem->device_addr;
  475. inst->cvpwnccbufs_table[i].size = smem->size;
  476. /* buf reserved[0] used to store wncc src buf id */
  477. buf->reserved[0] = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  478. /* cbuf ktid used to store wncc src buf id */
  479. cbuf->ktid = i + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  480. dprintk(CVP_MEM, "%s: wncc buf iova: 0x%08X",
  481. __func__, inst->cvpwnccbufs_table[i].iova);
  482. break;
  483. }
  484. }
  485. if (i == EVA_KMD_WNCC_MAX_SRC_BUFS) {
  486. dprintk(CVP_ERR,
  487. "%s: wncc buf table full - max (%u) already registered",
  488. __func__, EVA_KMD_WNCC_MAX_SRC_BUFS);
  489. /* _wncc_print_cvpwnccbufs_table(inst); */
  490. mutex_unlock(&inst->cvpwnccbufs.lock);
  491. rc = -EDQUOT;
  492. goto exit;
  493. }
  494. mutex_unlock(&inst->cvpwnccbufs.lock);
  495. return rc;
  496. exit:
  497. if (smem->device_addr)
  498. msm_cvp_unmap_smem(inst, smem, "unmap wncc");
  499. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  500. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  501. cbuf = NULL;
  502. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  503. smem = NULL;
  504. return rc;
  505. }
  506. int msm_cvp_unmap_buf_wncc(struct msm_cvp_inst *inst,
  507. struct eva_kmd_buffer *buf)
  508. {
  509. int rc = 0;
  510. bool found;
  511. struct cvp_internal_buf *cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  512. uint32_t buf_id, buf_idx;
  513. if (!inst || !inst->core || !buf) {
  514. dprintk(CVP_ERR, "%s: invalid params", __func__);
  515. return -EINVAL;
  516. }
  517. if (!inst->session) {
  518. dprintk(CVP_ERR, "%s: invalid session", __func__);
  519. return -EINVAL;
  520. }
  521. if (buf->index) {
  522. dprintk(CVP_ERR, "%s: buf index is NOT 0 fd=%d",
  523. __func__, buf->fd);
  524. return -EINVAL;
  525. }
  526. buf_id = buf->reserved[0];
  527. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET || buf_id >=
  528. (EVA_KMD_WNCC_MAX_SRC_BUFS + EVA_KMD_WNCC_SRC_BUF_ID_OFFSET)) {
  529. dprintk(CVP_ERR, "%s: invalid buffer id %d",
  530. __func__, buf->reserved[0]);
  531. return -EINVAL;
  532. }
  533. mutex_lock(&inst->cvpwnccbufs.lock);
  534. if (inst->cvpwnccbufs_num == 0) {
  535. dprintk(CVP_ERR, "%s: no wncc buffers currently mapped", __func__);
  536. mutex_unlock(&inst->cvpwnccbufs.lock);
  537. return -EINVAL;
  538. }
  539. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  540. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  541. dprintk(CVP_ERR, "%s: buffer id %d not found",
  542. __func__, buf_id);
  543. mutex_unlock(&inst->cvpwnccbufs.lock);
  544. return -EINVAL;
  545. }
  546. buf->fd = inst->cvpwnccbufs_table[buf_idx].fd;
  547. found = false;
  548. list_for_each_entry(cbuf, &inst->cvpwnccbufs.list, list) {
  549. if (cbuf->fd == buf->fd) {
  550. found = true;
  551. break;
  552. }
  553. }
  554. if (!found) {
  555. dprintk(CVP_ERR, "%s: buffer id %d not found",
  556. __func__, buf_id);
  557. print_client_buffer(CVP_ERR, __func__, inst, buf);
  558. _wncc_print_cvpwnccbufs_table(inst);
  559. mutex_unlock(&inst->cvpwnccbufs.lock);
  560. return -EINVAL;
  561. }
  562. if (cbuf->smem->device_addr) {
  563. u64 idx = inst->unused_wncc_bufs.ktid;
  564. inst->unused_wncc_bufs.smem[idx] = *(cbuf->smem);
  565. inst->unused_wncc_bufs.nr++;
  566. inst->unused_wncc_bufs.nr =
  567. (inst->unused_wncc_bufs.nr > NUM_WNCC_BUFS)?
  568. NUM_WNCC_BUFS : inst->unused_wncc_bufs.nr;
  569. inst->unused_wncc_bufs.ktid = ++idx % NUM_WNCC_BUFS;
  570. }
  571. if (cbuf->smem->device_addr) {
  572. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap wncc");
  573. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  574. }
  575. list_del(&cbuf->list);
  576. inst->cvpwnccbufs_table[buf_idx].fd = 0;
  577. inst->cvpwnccbufs_table[buf_idx].iova = 0;
  578. inst->cvpwnccbufs_table[buf_idx].size = 0;
  579. inst->cvpwnccbufs_num--;
  580. if (inst->cvpwnccbufs_num == 0) {
  581. kfree(inst->cvpwnccbufs_table);
  582. inst->cvpwnccbufs_table = NULL;
  583. }
  584. mutex_unlock(&inst->cvpwnccbufs.lock);
  585. cvp_kmem_cache_free(&cvp_driver->smem_cache, cbuf->smem);
  586. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  587. return rc;
  588. }
  589. static void _wncc_print_oob(struct eva_kmd_oob_wncc* wncc_oob)
  590. {
  591. u32 i, j;
  592. if (!wncc_oob) {
  593. dprintk(CVP_ERR, "%s: invalid params", __func__);
  594. return;
  595. }
  596. dprintk(CVP_DBG, "%s: wncc OOB --", __func__);
  597. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, wncc_oob->num_layers);
  598. for (i = 0; i < wncc_oob->num_layers; i++) {
  599. dprintk(CVP_DBG, "%s: layers[%u].num_addrs: %u",
  600. __func__, i, wncc_oob->layers[i].num_addrs);
  601. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  602. dprintk(CVP_DBG,
  603. "%s: layers[%u].addrs[%u]: %04u 0x%08x",
  604. __func__, i, j,
  605. wncc_oob->layers[i].addrs[j].buffer_id,
  606. wncc_oob->layers[i].addrs[j].offset);
  607. }
  608. }
  609. }
  610. static void _wncc_print_cvpwnccbufs_table(struct msm_cvp_inst* inst)
  611. {
  612. u32 i, entries = 0;
  613. if (!inst) {
  614. dprintk(CVP_ERR, "%s: invalid params", __func__);
  615. return;
  616. }
  617. if (inst->cvpwnccbufs_num == 0) {
  618. dprintk(CVP_DBG, "%s: wncc buffer look-up table is empty",
  619. __func__);
  620. return;
  621. }
  622. if (!inst->cvpwnccbufs_table) {
  623. dprintk(CVP_ERR, "%s: invalid params", __func__);
  624. return;
  625. }
  626. dprintk(CVP_DBG, "%s: wncc buffer table:", __func__);
  627. for (i = 0; i < EVA_KMD_WNCC_MAX_SRC_BUFS &&
  628. entries < inst->cvpwnccbufs_num; i++) {
  629. if (inst->cvpwnccbufs_table[i].iova != 0) {
  630. dprintk(CVP_DBG,
  631. "%s: buf_idx=%04d --> "
  632. "fd=%03d, iova=0x%08x, size=%d",
  633. __func__, i,
  634. inst->cvpwnccbufs_table[i].fd,
  635. inst->cvpwnccbufs_table[i].iova,
  636. inst->cvpwnccbufs_table[i].size);
  637. entries++;
  638. }
  639. }
  640. }
  641. static void _wncc_print_metadata_buf(u32 num_layers, u32 num_addrs,
  642. struct eva_kmd_wncc_metadata** wncc_metadata)
  643. {
  644. u32 i, j, iova;
  645. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS ||
  646. !wncc_metadata) {
  647. dprintk(CVP_ERR, "%s: invalid params", __func__);
  648. return;
  649. }
  650. dprintk(CVP_DBG, "%s: wncc metadata buffers --", __func__);
  651. dprintk(CVP_DBG, "%s: num_layers: %u", __func__, num_layers);
  652. dprintk(CVP_DBG, "%s: num_addrs: %u", __func__, num_addrs);
  653. for (i = 0; i < num_layers; i++) {
  654. for (j = 0; j < num_addrs; j++) {
  655. iova = (wncc_metadata[i][j].iova_msb << 22) |
  656. wncc_metadata[i][j].iova_lsb;
  657. dprintk(CVP_DBG,
  658. "%s: wncc_metadata[%u][%u]: "
  659. "%4u %3u %4u %3u 0x%08x %1u %4d %4d %4d %4d",
  660. __func__, i, j,
  661. wncc_metadata[i][j].loc_x_dec,
  662. wncc_metadata[i][j].loc_x_frac,
  663. wncc_metadata[i][j].loc_y_dec,
  664. wncc_metadata[i][j].loc_y_frac,
  665. iova,
  666. wncc_metadata[i][j].scale_idx,
  667. wncc_metadata[i][j].aff_coeff_3,
  668. wncc_metadata[i][j].aff_coeff_2,
  669. wncc_metadata[i][j].aff_coeff_1,
  670. wncc_metadata[i][j].aff_coeff_0);
  671. }
  672. }
  673. }
  674. static int _wncc_copy_oob_from_user(struct eva_kmd_hfi_packet* in_pkt,
  675. struct eva_kmd_oob_wncc* wncc_oob)
  676. {
  677. int rc = 0;
  678. u32 oob_type = 0;
  679. struct eva_kmd_oob_buf* oob_buf_u;
  680. struct eva_kmd_oob_wncc* wncc_oob_u;
  681. struct eva_kmd_oob_wncc* wncc_oob_k;
  682. unsigned int i;
  683. u32 num_addrs;
  684. if (!in_pkt || !wncc_oob) {
  685. dprintk(CVP_ERR, "%s: invalid params", __func__);
  686. return -EINVAL;
  687. }
  688. oob_buf_u = in_pkt->oob_buf;
  689. if (!access_ok(oob_buf_u, sizeof(*oob_buf_u))) {
  690. dprintk(CVP_ERR, "%s: invalid OOB buf pointer", __func__);
  691. return -EINVAL;
  692. }
  693. if (!access_ok(&oob_buf_u->oob_type, sizeof(oob_buf_u->oob_type))) {
  694. dprintk(CVP_ERR,
  695. "%s: bad OOB buf pointer, oob_type inaccessible",
  696. __func__);
  697. return -EINVAL;
  698. }
  699. rc = get_user(oob_type, &oob_buf_u->oob_type);
  700. if (rc)
  701. return rc;
  702. if (oob_type != EVA_KMD_OOB_WNCC) {
  703. dprintk(CVP_ERR, "%s: incorrect OOB type (%d) for wncc",
  704. __func__, oob_type);
  705. return -EINVAL;
  706. }
  707. wncc_oob_u = &oob_buf_u->wncc;
  708. wncc_oob_k = wncc_oob;
  709. if (!access_ok(&wncc_oob_u->metadata_bufs_offset,
  710. sizeof(wncc_oob_u->metadata_bufs_offset))) {
  711. dprintk(CVP_ERR,
  712. "%s: bad OOB buf pointer, wncc.metadata_bufs_offset inaccessible",
  713. __func__);
  714. return -EINVAL;
  715. }
  716. rc = get_user(wncc_oob_k->metadata_bufs_offset,
  717. &wncc_oob_u->metadata_bufs_offset);
  718. if (rc)
  719. return rc;
  720. if (wncc_oob_k->metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  721. - sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  722. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  723. __func__);
  724. return -EINVAL;
  725. }
  726. if (!access_ok(&wncc_oob_u->num_layers,
  727. sizeof(wncc_oob_u->num_layers))) {
  728. dprintk(CVP_ERR,
  729. "%s: bad OOB buf pointer, wncc.num_layers inaccessible",
  730. __func__);
  731. return -EINVAL;
  732. }
  733. rc = get_user(wncc_oob_k->num_layers, &wncc_oob_u->num_layers);
  734. if (rc)
  735. return rc;
  736. if (wncc_oob_k->num_layers < 1 ||
  737. wncc_oob_k->num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  738. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  739. return -EINVAL;
  740. }
  741. for (i = 0; i < wncc_oob_k->num_layers; i++) {
  742. if (!access_ok(&wncc_oob_u->layers[i].num_addrs,
  743. sizeof(wncc_oob_u->layers[i].num_addrs))) {
  744. dprintk(CVP_ERR,
  745. "%s: bad OOB buf pointer, wncc.layers[%u].num_addrs inaccessible",
  746. __func__, i);
  747. return -EINVAL;
  748. }
  749. rc = get_user(wncc_oob_k->layers[i].num_addrs,
  750. &wncc_oob_u->layers[i].num_addrs);
  751. if (rc)
  752. break;
  753. num_addrs = wncc_oob_k->layers[i].num_addrs;
  754. if (num_addrs < 1 || num_addrs > EVA_KMD_WNCC_MAX_ADDRESSES) {
  755. dprintk(CVP_ERR,
  756. "%s: invalid wncc num addrs for layer %u",
  757. __func__, i);
  758. rc = -EINVAL;
  759. break;
  760. }
  761. if (!access_ok(wncc_oob_u->layers[i].addrs,
  762. num_addrs * sizeof(struct eva_kmd_wncc_addr)) ||
  763. !access_ok(&wncc_oob_u->layers[i].addrs[num_addrs - 1],
  764. sizeof(struct eva_kmd_wncc_addr))) {
  765. dprintk(CVP_ERR,
  766. "%s: bad OOB buf pointer, wncc.layers[%u].addrs inaccessible",
  767. __func__, i);
  768. return -EINVAL;
  769. }
  770. rc = copy_from_user(wncc_oob_k->layers[i].addrs,
  771. wncc_oob_u->layers[i].addrs,
  772. num_addrs * sizeof(struct eva_kmd_wncc_addr));
  773. if (rc)
  774. break;
  775. }
  776. if (false)
  777. _wncc_print_oob(wncc_oob);
  778. return rc;
  779. }
  780. static int _wncc_map_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  781. struct eva_kmd_oob_wncc *wncc_oob,
  782. struct eva_kmd_wncc_metadata** wncc_metadata)
  783. {
  784. int rc = 0, i;
  785. struct cvp_buf_type* wncc_metadata_bufs;
  786. struct dma_buf* dmabuf;
  787. struct eva_buf_map map;
  788. __u32 num_layers, metadata_bufs_offset;
  789. _buf_map_set_vaddr(&map, (void *)0xdeadbeaf);
  790. if (!in_pkt || !wncc_metadata || !wncc_oob) {
  791. dprintk(CVP_ERR, "%s: invalid params", __func__);
  792. return -EINVAL;
  793. }
  794. num_layers = wncc_oob->num_layers;
  795. metadata_bufs_offset = wncc_oob->metadata_bufs_offset;
  796. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  797. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  798. return -EINVAL;
  799. }
  800. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  801. - num_layers * sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  802. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  803. __func__);
  804. return -EINVAL;
  805. }
  806. wncc_metadata_bufs = (struct cvp_buf_type*)
  807. &in_pkt->pkt_data[metadata_bufs_offset];
  808. for (i = 0; i < num_layers; i++) {
  809. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  810. if (IS_ERR(dmabuf)) {
  811. rc = PTR_ERR(dmabuf);
  812. dprintk(CVP_ERR,
  813. "%s: dma_buf_get() failed for "
  814. "wncc_metadata_bufs[%d], rc %d",
  815. __func__, i, rc);
  816. break;
  817. }
  818. if (dmabuf->size < wncc_oob->layers[i].num_addrs *
  819. sizeof(struct eva_kmd_wncc_metadata)) {
  820. dprintk(CVP_ERR,
  821. "%s: wncc_metadata_bufs[%d] size insufficient for num addrs in oob",
  822. __func__, i);
  823. dma_buf_put(dmabuf);
  824. rc = -EINVAL;
  825. break;
  826. }
  827. rc = dma_buf_begin_cpu_access(dmabuf, DMA_TO_DEVICE);
  828. if (rc) {
  829. dprintk(CVP_ERR,
  830. "%s: dma_buf_begin_cpu_access() failed "
  831. "for wncc_metadata_bufs[%d], rc %d",
  832. __func__, i, rc);
  833. dma_buf_put(dmabuf);
  834. break;
  835. }
  836. rc = dma_buf_vmap(dmabuf, &map);
  837. if (rc) {
  838. dprintk(CVP_ERR,
  839. "%s: dma_buf_vmap() failed for "
  840. "wncc_metadata_bufs[%d]",
  841. __func__, i);
  842. dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  843. dma_buf_put(dmabuf);
  844. break;
  845. }
  846. dprintk(CVP_DBG,
  847. "%s: wncc_metadata_bufs[%d] map.is_iomem is %d",
  848. __func__, i, map.is_iomem);
  849. wncc_metadata[i] = (struct eva_kmd_wncc_metadata*)map.vaddr;
  850. dma_buf_put(dmabuf);
  851. }
  852. if (rc)
  853. _wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata);
  854. return rc;
  855. }
  856. static int _wncc_unmap_metadata_bufs(struct eva_kmd_hfi_packet* in_pkt,
  857. struct eva_kmd_oob_wncc *wncc_oob,
  858. struct eva_kmd_wncc_metadata** wncc_metadata)
  859. {
  860. int rc = 0, i;
  861. struct cvp_buf_type* wncc_metadata_bufs;
  862. struct dma_buf* dmabuf;
  863. struct eva_buf_map map;
  864. __u32 num_layers, metadata_bufs_offset;
  865. if (!in_pkt || !wncc_metadata || !wncc_oob) {
  866. dprintk(CVP_ERR, "%s: invalid params", __func__);
  867. return -EINVAL;
  868. }
  869. num_layers = wncc_oob->num_layers;
  870. metadata_bufs_offset = wncc_oob->metadata_bufs_offset;
  871. if (num_layers < 1 || num_layers > EVA_KMD_WNCC_MAX_LAYERS) {
  872. dprintk(CVP_ERR, "%s: invalid wncc num layers", __func__);
  873. return -EINVAL;
  874. }
  875. if (metadata_bufs_offset > ((sizeof(in_pkt->pkt_data)
  876. - num_layers * sizeof(struct cvp_buf_type)) / sizeof(__u32))) {
  877. dprintk(CVP_ERR, "%s: invalid wncc metadata bufs offset",
  878. __func__);
  879. return -EINVAL;
  880. }
  881. wncc_metadata_bufs = (struct cvp_buf_type*)
  882. &in_pkt->pkt_data[metadata_bufs_offset];
  883. for (i = 0; i < num_layers; i++) {
  884. if (!wncc_metadata[i]) {
  885. continue;
  886. }
  887. dmabuf = dma_buf_get(wncc_metadata_bufs[i].fd);
  888. if (IS_ERR(dmabuf)) {
  889. rc = -PTR_ERR(dmabuf);
  890. dprintk(CVP_ERR,
  891. "%s: dma_buf_get() failed for "
  892. "wncc_metadata_bufs[%d], rc %d",
  893. __func__, i, rc);
  894. break;
  895. }
  896. _buf_map_set_vaddr(&map, wncc_metadata[i]);
  897. dma_buf_vunmap(dmabuf, &map);
  898. wncc_metadata[i] = NULL;
  899. rc = dma_buf_end_cpu_access(dmabuf, DMA_TO_DEVICE);
  900. dma_buf_put(dmabuf);
  901. if (rc) {
  902. dprintk(CVP_ERR,
  903. "%s: dma_buf_end_cpu_access() failed "
  904. "for wncc_metadata_bufs[%d], rc %d",
  905. __func__, i, rc);
  906. break;
  907. }
  908. }
  909. return rc;
  910. }
  911. static int init_wncc_bufs(void)
  912. {
  913. int i;
  914. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  915. wncc_buf_pool.bufs[i] = (struct eva_kmd_oob_wncc*)kzalloc(
  916. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  917. if (!wncc_buf_pool.bufs[i]) {
  918. i--;
  919. goto exit_fail;
  920. }
  921. }
  922. wncc_buf_pool.used_bitmap = 0;
  923. wncc_buf_pool.allocated = true;
  924. return 0;
  925. exit_fail:
  926. while (i >= 0) {
  927. kfree(wncc_buf_pool.bufs[i]);
  928. i--;
  929. }
  930. return -ENOMEM;
  931. }
  932. static int alloc_wncc_buf(struct wncc_oob_buf *wob)
  933. {
  934. int rc, i;
  935. mutex_lock(&wncc_buf_pool.lock);
  936. if (!wncc_buf_pool.allocated) {
  937. rc = init_wncc_bufs();
  938. if (rc) {
  939. mutex_unlock(&wncc_buf_pool.lock);
  940. return rc;
  941. }
  942. }
  943. for (i = 0; i < NUM_WNCC_BUFS; i++) {
  944. if (!(wncc_buf_pool.used_bitmap & BIT(i))) {
  945. wncc_buf_pool.used_bitmap |= BIT(i);
  946. wob->bitmap_idx = i;
  947. wob->buf = wncc_buf_pool.bufs[i];
  948. mutex_unlock(&wncc_buf_pool.lock);
  949. return 0;
  950. }
  951. }
  952. mutex_unlock(&wncc_buf_pool.lock);
  953. wob->bitmap_idx = 0xff;
  954. wob->buf = (struct eva_kmd_oob_wncc*)kzalloc(
  955. sizeof(struct eva_kmd_oob_wncc), GFP_KERNEL);
  956. if (!wob->buf)
  957. rc = -ENOMEM;
  958. else
  959. rc = 0;
  960. return rc;
  961. }
  962. static void free_wncc_buf(struct wncc_oob_buf *wob)
  963. {
  964. if (!wob)
  965. return;
  966. if (wob->bitmap_idx == 0xff) {
  967. kfree(wob->buf);
  968. return;
  969. }
  970. if (wob->bitmap_idx < NUM_WNCC_BUFS) {
  971. mutex_lock(&wncc_buf_pool.lock);
  972. wncc_buf_pool.used_bitmap &= ~BIT(wob->bitmap_idx);
  973. memset(wob->buf, 0, sizeof(struct eva_kmd_oob_wncc));
  974. wob->buf = NULL;
  975. mutex_unlock(&wncc_buf_pool.lock);
  976. }
  977. }
  978. static int msm_cvp_proc_oob_wncc(struct msm_cvp_inst* inst,
  979. struct eva_kmd_hfi_packet* in_pkt)
  980. {
  981. int rc = 0;
  982. struct eva_kmd_oob_wncc* wncc_oob;
  983. struct wncc_oob_buf wob;
  984. struct eva_kmd_wncc_metadata* wncc_metadata[EVA_KMD_WNCC_MAX_LAYERS];
  985. unsigned int i, j;
  986. bool empty = false;
  987. u32 buf_id, buf_idx, buf_offset, iova;
  988. if (!inst || !inst->core || !in_pkt) {
  989. dprintk(CVP_ERR, "%s: invalid params", __func__);
  990. return -EINVAL;
  991. }
  992. rc = alloc_wncc_buf(&wob);
  993. if (rc)
  994. return -ENOMEM;
  995. wncc_oob = wob.buf;
  996. rc = _wncc_copy_oob_from_user(in_pkt, wncc_oob);
  997. if (rc) {
  998. dprintk(CVP_ERR, "%s: OOB buf copying failed", __func__);
  999. goto exit;
  1000. }
  1001. memset(wncc_metadata, 0,
  1002. sizeof(*wncc_metadata) * EVA_KMD_WNCC_MAX_LAYERS);
  1003. rc = _wncc_map_metadata_bufs(in_pkt, wncc_oob, wncc_metadata);
  1004. if (rc) {
  1005. dprintk(CVP_ERR, "%s: failed to map wncc metadata bufs",
  1006. __func__);
  1007. goto exit;
  1008. }
  1009. mutex_lock(&inst->cvpwnccbufs.lock);
  1010. if (inst->cvpwnccbufs_num == 0 || inst->cvpwnccbufs_table == NULL) {
  1011. dprintk(CVP_ERR, "%s: no wncc bufs currently mapped", __func__);
  1012. empty = true;
  1013. rc = -EINVAL;
  1014. }
  1015. for (i = 0; !empty && i < wncc_oob->num_layers; i++) {
  1016. for (j = 0; j < wncc_oob->layers[i].num_addrs; j++) {
  1017. buf_id = wncc_oob->layers[i].addrs[j].buffer_id;
  1018. if (buf_id < EVA_KMD_WNCC_SRC_BUF_ID_OFFSET ||
  1019. buf_id >= (EVA_KMD_WNCC_SRC_BUF_ID_OFFSET +
  1020. EVA_KMD_WNCC_MAX_SRC_BUFS)) {
  1021. dprintk(CVP_ERR,
  1022. "%s: invalid wncc buf id %u "
  1023. "in layer #%u address #%u",
  1024. __func__, buf_id, i, j);
  1025. rc = -EINVAL;
  1026. break;
  1027. }
  1028. buf_idx = buf_id - EVA_KMD_WNCC_SRC_BUF_ID_OFFSET;
  1029. if (inst->cvpwnccbufs_table[buf_idx].iova == 0) {
  1030. dprintk(CVP_ERR,
  1031. "%s: unmapped wncc buf id %u "
  1032. "in layer #%u address #%u",
  1033. __func__, buf_id, i, j);
  1034. /* _wncc_print_cvpwnccbufs_table(inst); */
  1035. rc = -EINVAL;
  1036. break;
  1037. }
  1038. buf_offset = wncc_oob->layers[i].addrs[j].offset;
  1039. if (buf_offset >=
  1040. inst->cvpwnccbufs_table[buf_idx].size) {
  1041. /* NOTE: This buffer offset validation is
  1042. * not comprehensive since wncc src image
  1043. * resolution information is not known to
  1044. * KMD. UMD is responsible for comprehensive
  1045. * validation.
  1046. */
  1047. dprintk(CVP_ERR,
  1048. "%s: invalid wncc buf offset %u "
  1049. "in layer #%u address #%u",
  1050. __func__, buf_offset, i, j);
  1051. rc = -EINVAL;
  1052. break;
  1053. }
  1054. iova = inst->cvpwnccbufs_table[buf_idx].iova +
  1055. buf_offset;
  1056. wncc_metadata[i][j].iova_lsb = iova;
  1057. wncc_metadata[i][j].iova_msb = iova >> 22;
  1058. }
  1059. }
  1060. mutex_unlock(&inst->cvpwnccbufs.lock);
  1061. if (false)
  1062. _wncc_print_metadata_buf(wncc_oob->num_layers,
  1063. wncc_oob->layers[0].num_addrs, wncc_metadata);
  1064. if (_wncc_unmap_metadata_bufs(in_pkt, wncc_oob, wncc_metadata)) {
  1065. dprintk(CVP_ERR, "%s: failed to unmap wncc metadata bufs",
  1066. __func__);
  1067. }
  1068. exit:
  1069. free_wncc_buf(&wob);
  1070. return rc;
  1071. }
  1072. int msm_cvp_proc_oob(struct msm_cvp_inst* inst,
  1073. struct eva_kmd_hfi_packet* in_pkt)
  1074. {
  1075. int rc = 0;
  1076. struct cvp_hfi_cmd_session_hdr* cmd_hdr =
  1077. (struct cvp_hfi_cmd_session_hdr*)in_pkt;
  1078. if (!inst || !inst->core || !in_pkt) {
  1079. dprintk(CVP_ERR, "%s: invalid params", __func__);
  1080. return -EINVAL;
  1081. }
  1082. switch (cmd_hdr->packet_type) {
  1083. case HFI_CMD_SESSION_CVP_WARP_NCC_FRAME:
  1084. rc = msm_cvp_proc_oob_wncc(inst, in_pkt);
  1085. break;
  1086. default:
  1087. break;
  1088. }
  1089. return rc;
  1090. }
  1091. void msm_cvp_cache_operations(struct msm_cvp_smem *smem, u32 type,
  1092. u32 offset, u32 size)
  1093. {
  1094. enum smem_cache_ops cache_op;
  1095. if (msm_cvp_cacheop_disabled)
  1096. return;
  1097. if (!smem) {
  1098. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1099. return;
  1100. }
  1101. switch (type) {
  1102. case EVA_KMD_BUFTYPE_INPUT:
  1103. cache_op = SMEM_CACHE_CLEAN;
  1104. break;
  1105. case EVA_KMD_BUFTYPE_OUTPUT:
  1106. cache_op = SMEM_CACHE_INVALIDATE;
  1107. break;
  1108. default:
  1109. cache_op = SMEM_CACHE_CLEAN_INVALIDATE;
  1110. }
  1111. dprintk(CVP_MEM,
  1112. "%s: cache operation enabled for dma_buf: %llx, cache_op: %d, offset: %d, size: %d\n",
  1113. __func__, smem->dma_buf, cache_op, offset, size);
  1114. msm_cvp_smem_cache_operations(smem->dma_buf, cache_op, offset, size);
  1115. }
  1116. static struct msm_cvp_smem *msm_cvp_session_find_smem(struct msm_cvp_inst *inst,
  1117. struct dma_buf *dma_buf,
  1118. u32 pkt_type)
  1119. {
  1120. struct msm_cvp_smem *smem;
  1121. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1122. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1123. int i;
  1124. if (inst->dma_cache.nr > MAX_DMABUF_NUMS)
  1125. return NULL;
  1126. mutex_lock(&inst->dma_cache.lock);
  1127. for (i = 0; i < inst->dma_cache.nr; i++)
  1128. if (inst->dma_cache.entries[i]->dma_buf == dma_buf) {
  1129. SET_USE_BITMAP(i, inst);
  1130. smem = inst->dma_cache.entries[i];
  1131. smem->bitmap_index = i;
  1132. smem->pkt_type = pkt_type;
  1133. atomic_inc(&smem->refcount);
  1134. /*
  1135. * If we find it, it means we already increased
  1136. * refcount before, so we put it to avoid double
  1137. * incremental.
  1138. */
  1139. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1140. mutex_unlock(&inst->dma_cache.lock);
  1141. print_smem(CVP_MEM, "found in cache", inst, smem);
  1142. return smem;
  1143. }
  1144. mutex_unlock(&inst->dma_cache.lock);
  1145. /* earch persist list */
  1146. mutex_lock(&inst->persistbufs.lock);
  1147. list_for_each_entry(buf, &inst->persistbufs.list, list) {
  1148. smem = buf->smem;
  1149. if (smem && smem->dma_buf == dma_buf) {
  1150. atomic_inc(&smem->refcount);
  1151. mutex_unlock(&inst->persistbufs.lock);
  1152. print_smem(CVP_MEM, "found in persist", inst, smem);
  1153. return smem;
  1154. }
  1155. }
  1156. mutex_unlock(&inst->persistbufs.lock);
  1157. /* Search frame list */
  1158. mutex_lock(&inst->frames.lock);
  1159. list_for_each_entry(frame, &inst->frames.list, list) {
  1160. for (i = 0; i < frame->nr; i++) {
  1161. smem = frame->bufs[i].smem;
  1162. if (smem && smem->dma_buf == dma_buf) {
  1163. atomic_inc(&smem->refcount);
  1164. mutex_unlock(&inst->frames.lock);
  1165. print_smem(CVP_MEM, "found in frame",
  1166. inst, smem);
  1167. return smem;
  1168. }
  1169. }
  1170. }
  1171. mutex_unlock(&inst->frames.lock);
  1172. return NULL;
  1173. }
  1174. static int msm_cvp_session_add_smem(struct msm_cvp_inst *inst,
  1175. struct msm_cvp_smem *smem)
  1176. {
  1177. unsigned int i;
  1178. struct msm_cvp_smem *smem2;
  1179. mutex_lock(&inst->dma_cache.lock);
  1180. if (inst->dma_cache.nr < MAX_DMABUF_NUMS) {
  1181. inst->dma_cache.entries[inst->dma_cache.nr] = smem;
  1182. SET_USE_BITMAP(inst->dma_cache.nr, inst);
  1183. smem->bitmap_index = inst->dma_cache.nr;
  1184. inst->dma_cache.nr++;
  1185. i = smem->bitmap_index;
  1186. } else {
  1187. i = find_first_zero_bit(&inst->dma_cache.usage_bitmap,
  1188. MAX_DMABUF_NUMS);
  1189. if (i < MAX_DMABUF_NUMS) {
  1190. smem2 = inst->dma_cache.entries[i];
  1191. msm_cvp_unmap_smem(inst, smem2, "unmap cpu");
  1192. msm_cvp_smem_put_dma_buf(smem2->dma_buf);
  1193. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem2);
  1194. inst->dma_cache.entries[i] = smem;
  1195. smem->bitmap_index = i;
  1196. SET_USE_BITMAP(i, inst);
  1197. } else {
  1198. dprintk(CVP_WARN,
  1199. "%s: reached limit, fallback to buf mapping list\n"
  1200. , __func__);
  1201. atomic_inc(&smem->refcount);
  1202. mutex_unlock(&inst->dma_cache.lock);
  1203. return -ENOMEM;
  1204. }
  1205. }
  1206. atomic_inc(&smem->refcount);
  1207. mutex_unlock(&inst->dma_cache.lock);
  1208. dprintk(CVP_MEM, "Add entry %d into cache\n", i);
  1209. return 0;
  1210. }
  1211. static struct msm_cvp_smem *msm_cvp_session_get_smem(struct msm_cvp_inst *inst,
  1212. struct cvp_buf_type *buf,
  1213. bool is_persist,
  1214. u32 pkt_type)
  1215. {
  1216. int rc = 0, found = 1;
  1217. struct msm_cvp_smem *smem = NULL;
  1218. struct dma_buf *dma_buf = NULL;
  1219. if (buf->fd < 0) {
  1220. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1221. return NULL;
  1222. }
  1223. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1224. if (!dma_buf) {
  1225. dprintk(CVP_ERR, "%s: Invalid fd = %d", __func__, buf->fd);
  1226. return NULL;
  1227. }
  1228. if (is_persist) {
  1229. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1230. if (!smem)
  1231. return NULL;
  1232. smem->dma_buf = dma_buf;
  1233. smem->bitmap_index = MAX_DMABUF_NUMS;
  1234. smem->pkt_type = pkt_type;
  1235. smem->flags |= SMEM_PERSIST;
  1236. smem->fd = buf->fd;
  1237. atomic_inc(&smem->refcount);
  1238. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1239. if (rc)
  1240. goto exit;
  1241. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1242. dprintk(CVP_ERR,
  1243. "%s: invalid offset %d or size %d persist\n",
  1244. __func__, buf->offset, buf->size);
  1245. goto exit2;
  1246. }
  1247. return smem;
  1248. }
  1249. smem = msm_cvp_session_find_smem(inst, dma_buf, pkt_type);
  1250. if (!smem) {
  1251. found = 0;
  1252. smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1253. if (!smem)
  1254. return NULL;
  1255. smem->dma_buf = dma_buf;
  1256. smem->bitmap_index = MAX_DMABUF_NUMS;
  1257. smem->pkt_type = pkt_type;
  1258. smem->fd = buf->fd;
  1259. if (is_params_pkt(pkt_type))
  1260. smem->flags |= SMEM_PERSIST;
  1261. rc = msm_cvp_map_smem(inst, smem, "map cpu");
  1262. if (rc)
  1263. goto exit;
  1264. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1265. dprintk(CVP_ERR,
  1266. "%s: invalid buf %d %d fd %d dma 0x%llx %s %d type %#x\n",
  1267. __func__, buf->offset, buf->size, buf->fd,
  1268. dma_buf, dma_buf->name, dma_buf->size, pkt_type);
  1269. goto exit2;
  1270. }
  1271. rc = msm_cvp_session_add_smem(inst, smem);
  1272. if (rc && rc != -ENOMEM)
  1273. goto exit2;
  1274. return smem;
  1275. }
  1276. if (!IS_CVP_BUF_VALID(buf, smem)) {
  1277. dprintk(CVP_ERR, "%s: invalid offset %d or size %d found\n",
  1278. __func__, buf->offset, buf->size);
  1279. if (found) {
  1280. mutex_lock(&inst->dma_cache.lock);
  1281. atomic_dec(&smem->refcount);
  1282. mutex_unlock(&inst->dma_cache.lock);
  1283. return NULL;
  1284. }
  1285. goto exit2;
  1286. }
  1287. return smem;
  1288. exit2:
  1289. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1290. exit:
  1291. msm_cvp_smem_put_dma_buf(dma_buf);
  1292. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1293. smem = NULL;
  1294. return smem;
  1295. }
  1296. static int msm_cvp_unmap_user_persist_buf(struct msm_cvp_inst *inst,
  1297. struct cvp_buf_type *buf,
  1298. u32 pkt_type, u32 buf_idx, u32 *iova)
  1299. {
  1300. struct msm_cvp_smem *smem = NULL;
  1301. struct list_head *ptr;
  1302. struct list_head *next;
  1303. struct cvp_internal_buf *pbuf;
  1304. struct dma_buf *dma_buf;
  1305. if (!inst) {
  1306. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1307. return -EINVAL;
  1308. }
  1309. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1310. if (!dma_buf)
  1311. return -EINVAL;
  1312. mutex_lock(&inst->persistbufs.lock);
  1313. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1314. if (!ptr) {
  1315. mutex_unlock(&inst->persistbufs.lock);
  1316. return -EINVAL;
  1317. }
  1318. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1319. if (dma_buf == pbuf->smem->dma_buf && (pbuf->smem->flags & SMEM_PERSIST)) {
  1320. *iova = pbuf->smem->device_addr;
  1321. dprintk(CVP_MEM,
  1322. "Unmap persist fd %d, dma_buf %#llx iova %#x\n",
  1323. pbuf->fd, pbuf->smem->dma_buf, *iova);
  1324. list_del(&pbuf->list);
  1325. if (*iova) {
  1326. msm_cvp_unmap_smem(inst, pbuf->smem, "unmap user persist");
  1327. msm_cvp_smem_put_dma_buf(pbuf->smem->dma_buf);
  1328. pbuf->smem->device_addr = 0;
  1329. }
  1330. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1331. pbuf->smem = NULL;
  1332. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1333. mutex_unlock(&inst->persistbufs.lock);
  1334. dma_buf_put(dma_buf);
  1335. return 0;
  1336. }
  1337. }
  1338. mutex_unlock(&inst->persistbufs.lock);
  1339. dma_buf_put(dma_buf);
  1340. return -EINVAL;
  1341. }
  1342. static int msm_cvp_map_user_persist_buf(struct msm_cvp_inst *inst,
  1343. struct cvp_buf_type *buf,
  1344. u32 pkt_type, u32 buf_idx, u32 *iova)
  1345. {
  1346. struct msm_cvp_smem *smem = NULL;
  1347. struct list_head *ptr;
  1348. struct list_head *next;
  1349. struct cvp_internal_buf *pbuf;
  1350. struct dma_buf *dma_buf;
  1351. int ret;
  1352. if (!inst) {
  1353. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1354. return -EINVAL;
  1355. }
  1356. dma_buf = msm_cvp_smem_get_dma_buf(buf->fd);
  1357. if (!dma_buf)
  1358. return -EINVAL;
  1359. mutex_lock(&inst->persistbufs.lock);
  1360. if (!inst->persistbufs.list.next) {
  1361. mutex_unlock(&inst->persistbufs.lock);
  1362. return -EINVAL;
  1363. }
  1364. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1365. if (!ptr)
  1366. return -EINVAL;
  1367. pbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1368. if (dma_buf == pbuf->smem->dma_buf) {
  1369. pbuf->size =
  1370. (pbuf->size >= buf->size) ?
  1371. pbuf->size : buf->size;
  1372. *iova = pbuf->smem->device_addr + buf->offset;
  1373. mutex_unlock(&inst->persistbufs.lock);
  1374. atomic_inc(&pbuf->smem->refcount);
  1375. dma_buf_put(dma_buf);
  1376. dprintk(CVP_MEM,
  1377. "map persist Reuse fd %d, dma_buf %#llx\n",
  1378. pbuf->fd, pbuf->smem->dma_buf);
  1379. return 0;
  1380. }
  1381. }
  1382. mutex_unlock(&inst->persistbufs.lock);
  1383. dma_buf_put(dma_buf);
  1384. pbuf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1385. if (!pbuf) {
  1386. dprintk(CVP_ERR, "%s failed to allocate kmem obj\n",
  1387. __func__);
  1388. return -ENOMEM;
  1389. }
  1390. if (is_params_pkt(pkt_type))
  1391. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1392. else
  1393. smem = msm_cvp_session_get_smem(inst, buf, true, pkt_type);
  1394. if (!smem) {
  1395. ret = -ENOMEM;
  1396. goto exit;
  1397. }
  1398. smem->pkt_type = pkt_type;
  1399. smem->buf_idx = buf_idx;
  1400. smem->fd = buf->fd;
  1401. pbuf->smem = smem;
  1402. pbuf->fd = buf->fd;
  1403. pbuf->size = buf->size;
  1404. pbuf->offset = buf->offset;
  1405. pbuf->ownership = CLIENT;
  1406. mutex_lock(&inst->persistbufs.lock);
  1407. list_add_tail(&pbuf->list, &inst->persistbufs.list);
  1408. mutex_unlock(&inst->persistbufs.lock);
  1409. print_internal_buffer(CVP_MEM, "map persist", inst, pbuf);
  1410. *iova = smem->device_addr + buf->offset;
  1411. return 0;
  1412. exit:
  1413. cvp_kmem_cache_free(&cvp_driver->buf_cache, pbuf);
  1414. return ret;
  1415. }
  1416. static u32 msm_cvp_map_frame_buf(struct msm_cvp_inst *inst,
  1417. struct cvp_buf_type *buf,
  1418. struct msm_cvp_frame *frame,
  1419. u32 pkt_type, u32 buf_idx)
  1420. {
  1421. u32 iova = 0;
  1422. struct msm_cvp_smem *smem = NULL;
  1423. u32 nr;
  1424. u32 type;
  1425. if (!inst || !frame) {
  1426. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1427. return 0;
  1428. }
  1429. nr = frame->nr;
  1430. if (nr == MAX_FRAME_BUFFER_NUMS) {
  1431. dprintk(CVP_ERR, "%s: max frame buffer reached\n", __func__);
  1432. return 0;
  1433. }
  1434. smem = msm_cvp_session_get_smem(inst, buf, false, pkt_type);
  1435. if (!smem)
  1436. return 0;
  1437. smem->buf_idx = buf_idx;
  1438. frame->bufs[nr].fd = buf->fd;
  1439. frame->bufs[nr].smem = smem;
  1440. frame->bufs[nr].size = buf->size;
  1441. frame->bufs[nr].offset = buf->offset;
  1442. print_internal_buffer(CVP_MEM, "map cpu", inst, &frame->bufs[nr]);
  1443. frame->nr++;
  1444. type = EVA_KMD_BUFTYPE_INPUT | EVA_KMD_BUFTYPE_OUTPUT;
  1445. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1446. iova = smem->device_addr + buf->offset;
  1447. return iova;
  1448. }
  1449. static void msm_cvp_unmap_frame_buf(struct msm_cvp_inst *inst,
  1450. struct msm_cvp_frame *frame)
  1451. {
  1452. u32 i;
  1453. u32 type;
  1454. struct msm_cvp_smem *smem = NULL;
  1455. struct cvp_internal_buf *buf;
  1456. type = EVA_KMD_BUFTYPE_OUTPUT;
  1457. for (i = 0; i < frame->nr; ++i) {
  1458. buf = &frame->bufs[i];
  1459. smem = buf->smem;
  1460. msm_cvp_cache_operations(smem, type, buf->offset, buf->size);
  1461. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1462. /* smem not in dmamap cache */
  1463. if (atomic_dec_and_test(&smem->refcount)) {
  1464. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1465. dma_heap_buffer_free(smem->dma_buf);
  1466. smem->buf_idx |= 0xdead0000;
  1467. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1468. buf->smem = NULL;
  1469. }
  1470. } else {
  1471. mutex_lock(&inst->dma_cache.lock);
  1472. if (atomic_dec_and_test(&smem->refcount)) {
  1473. CLEAR_USE_BITMAP(smem->bitmap_index, inst);
  1474. print_smem(CVP_MEM, "Map dereference",
  1475. inst, smem);
  1476. smem->buf_idx |= 0x10000000;
  1477. }
  1478. mutex_unlock(&inst->dma_cache.lock);
  1479. }
  1480. }
  1481. cvp_kmem_cache_free(&cvp_driver->frame_cache, frame);
  1482. }
  1483. static void backup_frame_buffers(struct msm_cvp_inst *inst,
  1484. struct msm_cvp_frame *frame)
  1485. {
  1486. /* Save frame buffers before unmap them */
  1487. int i = frame->nr;
  1488. if (i == 0 || i > MAX_FRAME_BUFFER_NUMS)
  1489. return;
  1490. inst->last_frame.ktid = frame->ktid;
  1491. inst->last_frame.nr = frame->nr;
  1492. do {
  1493. i--;
  1494. if (frame->bufs[i].smem->bitmap_index < MAX_DMABUF_NUMS) {
  1495. /*
  1496. * Frame buffer info can be found in dma_cache table,
  1497. * Skip saving
  1498. */
  1499. inst->last_frame.nr = 0;
  1500. return;
  1501. }
  1502. inst->last_frame.smem[i] = *(frame->bufs[i].smem);
  1503. } while (i);
  1504. }
  1505. void msm_cvp_unmap_frame(struct msm_cvp_inst *inst, u64 ktid)
  1506. {
  1507. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1508. bool found;
  1509. if (!inst) {
  1510. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  1511. return;
  1512. }
  1513. ktid &= (FENCE_BIT - 1);
  1514. dprintk(CVP_MEM, "%s: (%#x) unmap frame %llu\n",
  1515. __func__, hash32_ptr(inst->session), ktid);
  1516. found = false;
  1517. mutex_lock(&inst->frames.lock);
  1518. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1519. if (frame->ktid == ktid) {
  1520. found = true;
  1521. list_del(&frame->list);
  1522. dprintk(CVP_CMD, "%s: "
  1523. "pkt_type %08x sess_id %08x trans_id <> ktid %llu\n",
  1524. __func__, frame->pkt_type,
  1525. hash32_ptr(inst->session),
  1526. frame->ktid);
  1527. /* Save the previous frame mappings for debug */
  1528. backup_frame_buffers(inst, frame);
  1529. msm_cvp_unmap_frame_buf(inst, frame);
  1530. break;
  1531. }
  1532. }
  1533. mutex_unlock(&inst->frames.lock);
  1534. if (!found)
  1535. dprintk(CVP_WARN, "%s frame %llu not found!\n", __func__, ktid);
  1536. }
  1537. /*
  1538. * Unmap persistent buffer before sending RELEASE_PERSIST_BUFFERS to FW
  1539. * This packet is sent after SESSION_STOP. The assumption is FW/HW will
  1540. * NOT access any of the 3 persist buffer.
  1541. */
  1542. int msm_cvp_unmap_user_persist(struct msm_cvp_inst *inst,
  1543. struct eva_kmd_hfi_packet *in_pkt,
  1544. unsigned int offset, unsigned int buf_num)
  1545. {
  1546. struct cvp_buf_type *buf;
  1547. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1548. int i, ret;
  1549. u32 iova;
  1550. if (!offset || !buf_num)
  1551. return 0;
  1552. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1553. for (i = 0; i < buf_num; i++) {
  1554. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1555. offset += sizeof(*buf) >> 2;
  1556. if (buf->fd < 0 || !buf->size)
  1557. continue;
  1558. ret = msm_cvp_unmap_user_persist_buf(inst, buf,
  1559. cmd_hdr->packet_type, i, &iova);
  1560. if (ret) {
  1561. dprintk(CVP_ERR,
  1562. "%s: buf %d unmap failed.\n",
  1563. __func__, i);
  1564. return ret;
  1565. }
  1566. buf->fd = iova;
  1567. }
  1568. return 0;
  1569. }
  1570. int msm_cvp_map_user_persist(struct msm_cvp_inst *inst,
  1571. struct eva_kmd_hfi_packet *in_pkt,
  1572. unsigned int offset, unsigned int buf_num)
  1573. {
  1574. struct cvp_buf_type *buf;
  1575. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1576. int i, ret;
  1577. u32 iova;
  1578. if (!offset || !buf_num)
  1579. return 0;
  1580. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1581. for (i = 0; i < buf_num; i++) {
  1582. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1583. offset += sizeof(*buf) >> 2;
  1584. if (buf->fd < 0 || !buf->size)
  1585. continue;
  1586. ret = msm_cvp_map_user_persist_buf(inst, buf,
  1587. cmd_hdr->packet_type, i, &iova);
  1588. if (ret) {
  1589. dprintk(CVP_ERR,
  1590. "%s: buf %d map failed.\n",
  1591. __func__, i);
  1592. return ret;
  1593. }
  1594. buf->fd = iova;
  1595. }
  1596. return 0;
  1597. }
  1598. int msm_cvp_map_frame(struct msm_cvp_inst *inst,
  1599. struct eva_kmd_hfi_packet *in_pkt,
  1600. unsigned int offset, unsigned int buf_num)
  1601. {
  1602. struct cvp_buf_type *buf;
  1603. int i;
  1604. u32 iova;
  1605. u64 ktid;
  1606. struct msm_cvp_frame *frame;
  1607. struct cvp_hfi_cmd_session_hdr *cmd_hdr;
  1608. struct msm_cvp_inst *instance = (struct msm_cvp_inst *)0xdeadbeef;
  1609. struct msm_cvp_core *core = NULL;
  1610. core = cvp_driver->cvp_core;
  1611. if (!core)
  1612. return -EINVAL;
  1613. if (!offset || !buf_num)
  1614. return 0;
  1615. cmd_hdr = (struct cvp_hfi_cmd_session_hdr *)in_pkt;
  1616. ktid = atomic64_inc_return(&inst->core->kernel_trans_id);
  1617. ktid &= (FENCE_BIT - 1);
  1618. cmd_hdr->client_data.kdata = ktid;
  1619. dprintk(CVP_CMD, "%s: "
  1620. "pkt_type %08x sess_id %08x trans_id %u ktid %llu\n",
  1621. __func__, cmd_hdr->packet_type,
  1622. cmd_hdr->session_id,
  1623. cmd_hdr->client_data.transaction_id,
  1624. cmd_hdr->client_data.kdata & (FENCE_BIT - 1));
  1625. frame = cvp_kmem_cache_zalloc(&cvp_driver->frame_cache, GFP_KERNEL);
  1626. if (!frame)
  1627. return -ENOMEM;
  1628. frame->ktid = ktid;
  1629. frame->nr = 0;
  1630. frame->pkt_type = cmd_hdr->packet_type;
  1631. for (i = 0; i < buf_num; i++) {
  1632. buf = (struct cvp_buf_type *)&in_pkt->pkt_data[offset];
  1633. offset += sizeof(*buf) >> 2;
  1634. if (buf->fd < 0 || !buf->size) {
  1635. buf->fd = 0;
  1636. buf->size = 0;
  1637. continue;
  1638. }
  1639. iova = msm_cvp_map_frame_buf(inst, buf, frame, cmd_hdr->packet_type, i);
  1640. if (!iova) {
  1641. dprintk(CVP_ERR,
  1642. "%s: buf %d register failed.\n",
  1643. __func__, i);
  1644. dprintk(CVP_ERR, "smem_leak_count %d\n", core->smem_leak_count);
  1645. mutex_lock(&core->lock);
  1646. list_for_each_entry(instance, &core->instances, list) {
  1647. msm_cvp_print_inst_bufs(instance, false);
  1648. }
  1649. mutex_unlock(&core->lock);
  1650. msm_cvp_unmap_frame_buf(inst, frame);
  1651. return -EINVAL;
  1652. }
  1653. buf->fd = iova;
  1654. }
  1655. mutex_lock(&inst->frames.lock);
  1656. list_add_tail(&frame->list, &inst->frames.list);
  1657. mutex_unlock(&inst->frames.lock);
  1658. dprintk(CVP_MEM, "%s: map frame %llu\n", __func__, ktid);
  1659. return 0;
  1660. }
  1661. int msm_cvp_session_deinit_buffers(struct msm_cvp_inst *inst)
  1662. {
  1663. int rc = 0, i;
  1664. struct cvp_internal_buf *cbuf, *dummy;
  1665. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef, *dummy1;
  1666. struct msm_cvp_smem *smem;
  1667. struct cvp_hal_session *session;
  1668. struct eva_kmd_buffer buf;
  1669. struct list_head *ptr = (struct list_head *)0xdead;
  1670. struct list_head *next = (struct list_head *)0xdead;
  1671. session = (struct cvp_hal_session *)inst->session;
  1672. mutex_lock(&inst->frames.lock);
  1673. list_for_each_entry_safe(frame, dummy1, &inst->frames.list, list) {
  1674. list_del(&frame->list);
  1675. msm_cvp_unmap_frame_buf(inst, frame);
  1676. }
  1677. mutex_unlock(&inst->frames.lock);
  1678. mutex_lock(&inst->persistbufs.lock);
  1679. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1680. if (!ptr)
  1681. return -EINVAL;
  1682. cbuf = list_entry(ptr, struct cvp_internal_buf, list);
  1683. smem = cbuf->smem;
  1684. if (!smem) {
  1685. dprintk(CVP_ERR, "%s invalid persist smem\n", __func__);
  1686. mutex_unlock(&inst->persistbufs.lock);
  1687. return -EINVAL;
  1688. }
  1689. if (cbuf->ownership != DRIVER) {
  1690. dprintk(CVP_MEM,
  1691. "%s: %x : fd %d %pK size %d",
  1692. "free user persistent", hash32_ptr(inst->session), cbuf->fd,
  1693. smem->dma_buf, cbuf->size);
  1694. list_del(&cbuf->list);
  1695. if (smem->bitmap_index >= MAX_DMABUF_NUMS) {
  1696. /*
  1697. * don't care refcount, has to remove mapping
  1698. * this is user persistent buffer
  1699. */
  1700. if (smem->device_addr) {
  1701. msm_cvp_unmap_smem(inst, smem,
  1702. "unmap persist");
  1703. msm_cvp_smem_put_dma_buf(
  1704. cbuf->smem->dma_buf);
  1705. smem->device_addr = 0;
  1706. }
  1707. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1708. cbuf->smem = NULL;
  1709. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1710. } else {
  1711. /*
  1712. * DMM_PARAMS and WAP_NCC_PARAMS cases
  1713. * Leave dma_cache cleanup to unmap
  1714. */
  1715. cbuf->smem = NULL;
  1716. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1717. }
  1718. }
  1719. }
  1720. mutex_unlock(&inst->persistbufs.lock);
  1721. mutex_lock(&inst->dma_cache.lock);
  1722. for (i = 0; i < inst->dma_cache.nr; i++) {
  1723. smem = inst->dma_cache.entries[i];
  1724. if (atomic_read(&smem->refcount) == 0) {
  1725. print_smem(CVP_MEM, "free", inst, smem);
  1726. } else if (!(smem->flags & SMEM_PERSIST)) {
  1727. print_smem(CVP_WARN, "in use", inst, smem);
  1728. }
  1729. msm_cvp_unmap_smem(inst, smem, "unmap cpu");
  1730. msm_cvp_smem_put_dma_buf(smem->dma_buf);
  1731. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1732. inst->dma_cache.entries[i] = NULL;
  1733. }
  1734. mutex_unlock(&inst->dma_cache.lock);
  1735. cbuf = (struct cvp_internal_buf *)0xdeadbeef;
  1736. mutex_lock(&inst->cvpdspbufs.lock);
  1737. list_for_each_entry_safe(cbuf, dummy, &inst->cvpdspbufs.list, list) {
  1738. print_internal_buffer(CVP_MEM, "remove dspbufs", inst, cbuf);
  1739. if (cbuf->ownership == CLIENT) {
  1740. msm_cvp_unmap_smem(inst, cbuf->smem, "unmap dsp");
  1741. msm_cvp_smem_put_dma_buf(cbuf->smem->dma_buf);
  1742. } else if (cbuf->ownership == DSP) {
  1743. rc = cvp_dsp_fastrpc_unmap(inst->dsp_handle, cbuf);
  1744. if (rc)
  1745. dprintk(CVP_ERR,
  1746. "%s: failed to unmap buf from DSP\n",
  1747. __func__);
  1748. rc = cvp_release_dsp_buffers(inst, cbuf);
  1749. if (rc)
  1750. dprintk(CVP_ERR,
  1751. "%s Fail to free buffer 0x%x\n",
  1752. __func__, rc);
  1753. }
  1754. list_del(&cbuf->list);
  1755. cvp_kmem_cache_free(&cvp_driver->buf_cache, cbuf);
  1756. }
  1757. mutex_unlock(&inst->cvpdspbufs.lock);
  1758. mutex_lock(&inst->cvpwnccbufs.lock);
  1759. if (inst->cvpwnccbufs_num != 0)
  1760. dprintk(CVP_WARN, "%s: cvpwnccbufs not empty, contains %d bufs",
  1761. __func__, inst->cvpwnccbufs_num);
  1762. list_for_each_entry_safe(cbuf, dummy, &inst->cvpwnccbufs.list, list) {
  1763. print_internal_buffer(CVP_MEM, "remove wnccbufs", inst, cbuf);
  1764. buf.fd = cbuf->fd;
  1765. buf.reserved[0] = cbuf->ktid;
  1766. mutex_unlock(&inst->cvpwnccbufs.lock);
  1767. msm_cvp_unmap_buf_wncc(inst, &buf);
  1768. mutex_lock(&inst->cvpwnccbufs.lock);
  1769. }
  1770. mutex_unlock(&inst->cvpwnccbufs.lock);
  1771. return rc;
  1772. }
  1773. void msm_cvp_populate_dsp_buf_info(struct cvp_internal_buf *buf,
  1774. struct cvp_hal_session *session,
  1775. u32 session_id,
  1776. struct msm_cvp_core *core)
  1777. {
  1778. struct cvp_hfi_ops *dev_ops = (struct cvp_hfi_ops *) core->dev_ops;
  1779. struct iris_hfi_device *cvp_device = (struct iris_hfi_device *) dev_ops->hfi_device_data;
  1780. struct cvp_iface_q_info dsp_debugQ_info = cvp_device->dsp_iface_queues[DEBUG_Q];
  1781. struct cvp_dsp_trace_buf *trace_buf;
  1782. struct cvp_dsp_trace *dsp_debug_trace;
  1783. dsp_debug_trace = (struct cvp_dsp_trace *) dsp_debugQ_info.q_array.align_virtual_addr;
  1784. if (!dsp_debug_trace) {
  1785. dprintk(CVP_ERR, "dsp trace is NULL\n");
  1786. return;
  1787. }
  1788. for (int session_idx = 0; session_idx < EVA_TRACE_MAX_SESSION_NUM; session_idx++) {
  1789. if (dsp_debug_trace->sessions[session_idx].session_id == session_id) {
  1790. u32 buf_cnt = dsp_debug_trace->sessions[session_idx].buf_cnt;
  1791. for (int buf_idx = 0; buf_idx < buf_cnt; buf_idx++) {
  1792. trace_buf = &dsp_debug_trace->sessions[session_idx].buf[buf_idx];
  1793. if (buf->smem->device_addr == trace_buf->iova) {
  1794. buf->smem->buf_idx = trace_buf->buf_idx;
  1795. buf->smem->pkt_type = trace_buf->pkt_type;
  1796. buf->smem->fd = trace_buf->fd;
  1797. return;
  1798. }
  1799. }
  1800. }
  1801. }
  1802. }
  1803. #define MAX_NUM_FRAMES_DUMP 4
  1804. void msm_cvp_print_inst_bufs(struct msm_cvp_inst *inst, bool log)
  1805. {
  1806. struct cvp_internal_buf *buf = (struct cvp_internal_buf *)0xdeadbeef;
  1807. struct msm_cvp_frame *frame = (struct msm_cvp_frame *)0xdeadbeef;
  1808. struct msm_cvp_core *core;
  1809. struct inst_snapshot *snap = NULL;
  1810. int i = 0, c = 0;
  1811. // DSP trace related variables
  1812. struct cvp_hal_session *session;
  1813. u32 session_id;
  1814. session = (struct cvp_hal_session *)inst->session;
  1815. session_id = hash32_ptr(session);
  1816. core = cvp_driver->cvp_core;
  1817. if (log && core->log.snapshot_index < 16) {
  1818. snap = &core->log.snapshot[core->log.snapshot_index];
  1819. snap->session = inst->session;
  1820. core->log.snapshot_index++;
  1821. }
  1822. if (!inst) {
  1823. dprintk(CVP_ERR, "%s - invalid param %pK\n",
  1824. __func__, inst);
  1825. return;
  1826. }
  1827. dprintk(CVP_ERR,
  1828. "---Buffer details for inst: %pK %s of type: %d---\n",
  1829. inst, inst->proc_name, inst->session_type);
  1830. dprintk(CVP_ERR, "dma_cache entries %d\n", inst->dma_cache.nr);
  1831. mutex_lock(&inst->dma_cache.lock);
  1832. if (inst->dma_cache.nr <= MAX_DMABUF_NUMS)
  1833. for (i = 0; i < inst->dma_cache.nr; i++)
  1834. _log_smem(snap, inst, inst->dma_cache.entries[i], log);
  1835. mutex_unlock(&inst->dma_cache.lock);
  1836. i = 0;
  1837. dprintk(CVP_ERR, "frame buffer list\n");
  1838. mutex_lock(&inst->frames.lock);
  1839. list_for_each_entry(frame, &inst->frames.list, list) {
  1840. i++;
  1841. if (i <= MAX_NUM_FRAMES_DUMP) {
  1842. dprintk(CVP_ERR, "frame no %d tid %llx bufs\n",
  1843. i, frame->ktid);
  1844. for (c = 0; c < frame->nr; c++)
  1845. _log_smem(snap, inst, frame->bufs[c].smem,
  1846. log);
  1847. }
  1848. }
  1849. if (i > MAX_NUM_FRAMES_DUMP)
  1850. dprintk(CVP_ERR, "Skipped %d frames' buffers\n",
  1851. (i - MAX_NUM_FRAMES_DUMP));
  1852. mutex_unlock(&inst->frames.lock);
  1853. mutex_lock(&inst->cvpdspbufs.lock);
  1854. dprintk(CVP_ERR, "dsp buffer list:\n");
  1855. list_for_each_entry(buf, &inst->cvpdspbufs.list, list) {
  1856. // Populate DSP buffer info from debug queue to kernel instance
  1857. msm_cvp_populate_dsp_buf_info(buf, session, session_id, core);
  1858. // Log print buffer info
  1859. _log_buf(snap, SMEM_CDSP, inst, buf, log);
  1860. }
  1861. mutex_unlock(&inst->cvpdspbufs.lock);
  1862. mutex_lock(&inst->cvpwnccbufs.lock);
  1863. dprintk(CVP_ERR, "wncc buffer list:\n");
  1864. list_for_each_entry(buf, &inst->cvpwnccbufs.list, list)
  1865. print_cvp_buffer(CVP_ERR, "bufdump", inst, buf);
  1866. mutex_unlock(&inst->cvpwnccbufs.lock);
  1867. mutex_lock(&inst->persistbufs.lock);
  1868. dprintk(CVP_ERR, "persist buffer list:\n");
  1869. list_for_each_entry(buf, &inst->persistbufs.list, list)
  1870. _log_buf(snap, SMEM_PERSIST, inst, buf, log);
  1871. mutex_unlock(&inst->persistbufs.lock);
  1872. dprintk(CVP_ERR, "last frame ktid %llx\n", inst->last_frame.ktid);
  1873. for (i = 0; i < inst->last_frame.nr; i++)
  1874. _log_smem(snap, inst, &inst->last_frame.smem[i], log);
  1875. dprintk(CVP_ERR, "unmapped wncc bufs\n");
  1876. for (i = 0; i < inst->unused_wncc_bufs.nr; i++)
  1877. _log_smem(snap, inst, &inst->unused_wncc_bufs.smem[i], log);
  1878. dprintk(CVP_ERR, "unmapped dsp bufs\n");
  1879. for (i = 0; i < inst->unused_dsp_bufs.nr; i++)
  1880. _log_smem(snap, inst, &inst->unused_dsp_bufs.smem[i], log);
  1881. }
  1882. struct cvp_internal_buf *cvp_allocate_arp_bufs(struct msm_cvp_inst *inst,
  1883. u32 buffer_size)
  1884. {
  1885. struct cvp_internal_buf *buf;
  1886. struct msm_cvp_list *buf_list;
  1887. u32 smem_flags = SMEM_UNCACHED;
  1888. int rc = 0;
  1889. if (!inst) {
  1890. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  1891. return NULL;
  1892. }
  1893. buf_list = &inst->persistbufs;
  1894. if (!buffer_size)
  1895. return NULL;
  1896. /* If PERSIST buffer requires secure mapping, uncomment
  1897. * below flags setting
  1898. * smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  1899. */
  1900. buf = cvp_kmem_cache_zalloc(&cvp_driver->buf_cache, GFP_KERNEL);
  1901. if (!buf) {
  1902. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1903. goto fail_kzalloc;
  1904. }
  1905. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  1906. if (!buf->smem) {
  1907. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  1908. goto err_no_smem;
  1909. }
  1910. buf->smem->flags = smem_flags;
  1911. rc = msm_cvp_smem_alloc(buffer_size, 1, 0, /* 0: no mapping in kernel space */
  1912. &(inst->core->resources), buf->smem);
  1913. if (rc) {
  1914. dprintk(CVP_ERR, "Failed to allocate ARP memory\n");
  1915. goto err_no_mem;
  1916. }
  1917. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  1918. atomic_inc(&buf->smem->refcount);
  1919. buf->size = buf->smem->size;
  1920. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  1921. buf->ownership = DRIVER;
  1922. mutex_lock(&buf_list->lock);
  1923. list_add_tail(&buf->list, &buf_list->list);
  1924. mutex_unlock(&buf_list->lock);
  1925. return buf;
  1926. err_no_mem:
  1927. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  1928. err_no_smem:
  1929. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1930. fail_kzalloc:
  1931. return NULL;
  1932. }
  1933. int cvp_release_arp_buffers(struct msm_cvp_inst *inst)
  1934. {
  1935. struct msm_cvp_smem *smem;
  1936. struct list_head *ptr = (struct list_head *)0xdead;
  1937. struct list_head *next = (struct list_head *)0xdead;
  1938. struct cvp_internal_buf *buf;
  1939. int rc = 0;
  1940. struct msm_cvp_core *core;
  1941. struct cvp_hfi_ops *ops_tbl;
  1942. if (!inst) {
  1943. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  1944. return -EINVAL;
  1945. }
  1946. core = inst->core;
  1947. if (!core) {
  1948. dprintk(CVP_ERR, "Invalid core pointer = %pK\n", core);
  1949. return -EINVAL;
  1950. }
  1951. ops_tbl = core->dev_ops;
  1952. if (!ops_tbl) {
  1953. dprintk(CVP_ERR, "Invalid device pointer = %pK\n", ops_tbl);
  1954. return -EINVAL;
  1955. }
  1956. dprintk(CVP_MEM, "release persist buffer!\n");
  1957. mutex_lock(&inst->persistbufs.lock);
  1958. /* Workaround for FW: release buffer means release all */
  1959. if (inst->state > MSM_CVP_CORE_INIT_DONE && inst->state <= MSM_CVP_CLOSE_DONE) {
  1960. rc = call_hfi_op(ops_tbl, session_release_buffers,
  1961. (void *)inst->session);
  1962. if (!rc) {
  1963. mutex_unlock(&inst->persistbufs.lock);
  1964. rc = wait_for_sess_signal_receipt(inst,
  1965. HAL_SESSION_RELEASE_BUFFER_DONE);
  1966. if (rc)
  1967. dprintk(CVP_WARN,
  1968. "%s: wait release_arp signal failed, rc %d\n",
  1969. __func__, rc);
  1970. mutex_lock(&inst->persistbufs.lock);
  1971. } else {
  1972. dprintk_rl(CVP_WARN, "Fail to send Rel prst buf\n");
  1973. }
  1974. }
  1975. list_for_each_safe(ptr, next, &inst->persistbufs.list) {
  1976. if (!ptr)
  1977. return -EINVAL;
  1978. buf = list_entry(ptr, struct cvp_internal_buf, list);
  1979. smem = buf->smem;
  1980. if (!smem) {
  1981. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  1982. mutex_unlock(&inst->persistbufs.lock);
  1983. return -EINVAL;
  1984. }
  1985. if (buf->ownership == DRIVER) {
  1986. dprintk(CVP_MEM,
  1987. "%s: %x : fd %d %pK size %d",
  1988. "free arp", hash32_ptr(inst->session), buf->fd,
  1989. smem->dma_buf, buf->size);
  1990. list_del(&buf->list);
  1991. atomic_dec(&smem->refcount);
  1992. msm_cvp_smem_free(smem);
  1993. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  1994. buf->smem = NULL;
  1995. cvp_kmem_cache_free(&cvp_driver->buf_cache, buf);
  1996. }
  1997. }
  1998. mutex_unlock(&inst->persistbufs.lock);
  1999. return rc;
  2000. }
  2001. int cvp_allocate_dsp_bufs(struct msm_cvp_inst *inst,
  2002. struct cvp_internal_buf *buf,
  2003. u32 buffer_size,
  2004. u32 secure_type)
  2005. {
  2006. u32 smem_flags = SMEM_UNCACHED;
  2007. int rc = 0;
  2008. if (!inst) {
  2009. dprintk(CVP_ERR, "%s Invalid input\n", __func__);
  2010. return -EINVAL;
  2011. }
  2012. if (!buf)
  2013. return -EINVAL;
  2014. if (!buffer_size)
  2015. return -EINVAL;
  2016. switch (secure_type) {
  2017. case 0:
  2018. break;
  2019. case 1:
  2020. smem_flags |= SMEM_SECURE | SMEM_PIXEL;
  2021. break;
  2022. case 2:
  2023. smem_flags |= SMEM_SECURE | SMEM_NON_PIXEL;
  2024. break;
  2025. default:
  2026. dprintk(CVP_ERR, "%s Invalid secure_type %d\n",
  2027. __func__, secure_type);
  2028. return -EINVAL;
  2029. }
  2030. dprintk(CVP_MEM, "%s smem_flags 0x%x\n", __func__, smem_flags);
  2031. buf->smem = cvp_kmem_cache_zalloc(&cvp_driver->smem_cache, GFP_KERNEL);
  2032. if (!buf->smem) {
  2033. dprintk(CVP_ERR, "%s Out of memory\n", __func__);
  2034. goto fail_kzalloc_smem_cache;
  2035. }
  2036. buf->smem->flags = smem_flags;
  2037. rc = msm_cvp_smem_alloc(buffer_size, 1, 0,
  2038. &(inst->core->resources), buf->smem);
  2039. if (rc) {
  2040. dprintk(CVP_ERR, "Failed to allocate DSP buf\n");
  2041. goto err_no_mem;
  2042. }
  2043. buf->smem->pkt_type = buf->smem->buf_idx = 0;
  2044. atomic_inc(&buf->smem->refcount);
  2045. dprintk(CVP_MEM, "%s dma_buf %pK\n", __func__, buf->smem->dma_buf);
  2046. buf->size = buf->smem->size;
  2047. buf->type = HFI_BUFFER_INTERNAL_PERSIST_1;
  2048. buf->ownership = DSP;
  2049. return rc;
  2050. err_no_mem:
  2051. cvp_kmem_cache_free(&cvp_driver->smem_cache, buf->smem);
  2052. fail_kzalloc_smem_cache:
  2053. return rc;
  2054. }
  2055. int cvp_release_dsp_buffers(struct msm_cvp_inst *inst,
  2056. struct cvp_internal_buf *buf)
  2057. {
  2058. struct msm_cvp_smem *smem;
  2059. int rc = 0;
  2060. if (!inst) {
  2061. dprintk(CVP_ERR, "Invalid instance pointer = %pK\n", inst);
  2062. return -EINVAL;
  2063. }
  2064. if (!buf) {
  2065. dprintk(CVP_ERR, "Invalid buffer pointer = %pK\n", inst);
  2066. return -EINVAL;
  2067. }
  2068. smem = buf->smem;
  2069. if (!smem) {
  2070. dprintk(CVP_ERR, "%s invalid smem\n", __func__);
  2071. return -EINVAL;
  2072. }
  2073. if (buf->ownership == DSP) {
  2074. dprintk(CVP_MEM,
  2075. "%s: %x : fd %x %s size %d",
  2076. __func__, hash32_ptr(inst->session), buf->fd,
  2077. smem->dma_buf->name, buf->size);
  2078. if (atomic_dec_and_test(&smem->refcount)) {
  2079. msm_cvp_smem_free(smem);
  2080. cvp_kmem_cache_free(&cvp_driver->smem_cache, smem);
  2081. }
  2082. } else {
  2083. dprintk(CVP_ERR,
  2084. "%s: wrong owner %d %x : fd %x %s size %d",
  2085. __func__, buf->ownership, hash32_ptr(inst->session),
  2086. buf->fd, smem->dma_buf->name, buf->size);
  2087. }
  2088. return rc;
  2089. }
  2090. int msm_cvp_register_buffer(struct msm_cvp_inst *inst,
  2091. struct eva_kmd_buffer *buf)
  2092. {
  2093. struct cvp_hfi_ops *ops_tbl;
  2094. struct cvp_hal_session *session;
  2095. struct msm_cvp_inst *s;
  2096. int rc = 0;
  2097. if (!inst || !inst->core || !buf) {
  2098. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2099. return -EINVAL;
  2100. }
  2101. s = cvp_get_inst_validate(inst->core, inst);
  2102. if (!s)
  2103. return -ECONNRESET;
  2104. session = (struct cvp_hal_session *)inst->session;
  2105. if (!session) {
  2106. dprintk(CVP_ERR, "%s: invalid session\n", __func__);
  2107. rc = -EINVAL;
  2108. goto exit;
  2109. }
  2110. ops_tbl = inst->core->dev_ops;
  2111. print_client_buffer(CVP_HFI, "register", inst, buf);
  2112. if (buf->index)
  2113. rc = msm_cvp_map_buf_dsp(inst, buf);
  2114. else
  2115. rc = msm_cvp_map_buf_wncc(inst, buf);
  2116. dprintk(CVP_DSP, "%s: fd %d, iova 0x%x\n", __func__,
  2117. buf->fd, buf->reserved[0]);
  2118. exit:
  2119. cvp_put_inst(s);
  2120. return rc;
  2121. }
  2122. int msm_cvp_unregister_buffer(struct msm_cvp_inst *inst,
  2123. struct eva_kmd_buffer *buf)
  2124. {
  2125. struct msm_cvp_inst *s;
  2126. int rc = 0;
  2127. if (!inst || !inst->core || !buf) {
  2128. dprintk(CVP_ERR, "%s: invalid params\n", __func__);
  2129. return -EINVAL;
  2130. }
  2131. s = cvp_get_inst_validate(inst->core, inst);
  2132. if (!s)
  2133. return -ECONNRESET;
  2134. print_client_buffer(CVP_HFI, "unregister", inst, buf);
  2135. if (buf->index)
  2136. rc = msm_cvp_unmap_buf_dsp(inst, buf);
  2137. else
  2138. rc = msm_cvp_unmap_buf_wncc(inst, buf);
  2139. cvp_put_inst(s);
  2140. return rc;
  2141. }