sde_hw_reg_dma_v1.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. * Copyright (c) 2017-2021, The Linux Foundation. All rights reserved.
  5. */
  6. #include <linux/iopoll.h>
  7. #include "sde_hw_mdss.h"
  8. #include "sde_hw_ctl.h"
  9. #include "sde_hw_reg_dma_v1.h"
  10. #include "msm_drv.h"
  11. #include "msm_mmu.h"
  12. #include "sde_dbg.h"
  13. #include "sde_vbif.h"
  14. #define GUARD_BYTES (BIT(8) - 1)
  15. #define ALIGNED_OFFSET (U32_MAX & ~(GUARD_BYTES))
  16. #define ADDR_ALIGN BIT(8)
  17. #define MAX_RELATIVE_OFF (BIT(21) - 1)
  18. #define ABSOLUTE_RANGE BIT(27)
  19. #define DECODE_SEL_OP (BIT(HW_BLK_SELECT))
  20. #define REG_WRITE_OP ((BIT(REG_SINGLE_WRITE)) | (BIT(REG_BLK_WRITE_SINGLE)) | \
  21. (BIT(REG_BLK_WRITE_INC)) | (BIT(REG_BLK_WRITE_MULTIPLE)) | \
  22. (BIT(REG_SINGLE_MODIFY)) | (BIT(REG_BLK_LUT_WRITE)))
  23. #define REG_DMA_OPS (DECODE_SEL_OP | REG_WRITE_OP)
  24. #define IS_OP_ALLOWED(op, buf_op) (BIT(op) & buf_op)
  25. #define SET_UP_REG_DMA_REG(hw, reg_dma, i) \
  26. do { \
  27. if ((reg_dma)->caps->reg_dma_blks[(i)].valid == false) \
  28. break; \
  29. (hw).base_off = (reg_dma)->addr; \
  30. (hw).blk_off = (reg_dma)->caps->reg_dma_blks[(i)].base; \
  31. (hw).hw_rev = (reg_dma)->caps->version; \
  32. (hw).log_mask = SDE_DBG_MASK_REGDMA; \
  33. } while (0)
  34. #define SIZE_DWORD(x) ((x) / (sizeof(u32)))
  35. #define NOT_WORD_ALIGNED(x) ((x) & 0x3)
  36. #define GRP_VIG_HW_BLK_SELECT (VIG0 | VIG1 | VIG2 | VIG3)
  37. #define GRP_DMA_HW_BLK_SELECT (DMA0 | DMA1 | DMA2 | DMA3 | DMA4 | DMA5)
  38. #define GRP_DSPP_HW_BLK_SELECT (DSPP0 | DSPP1 | DSPP2 | DSPP3)
  39. #define GRP_LTM_HW_BLK_SELECT (LTM0 | LTM1 | LTM2 | LTM3)
  40. #define GRP_MDSS_HW_BLK_SELECT (MDSS)
  41. #define BUFFER_SPACE_LEFT(cfg) ((cfg)->dma_buf->buffer_size - \
  42. (cfg)->dma_buf->index)
  43. #define REL_ADDR_OPCODE (BIT(27))
  44. #define NO_OP_OPCODE (0)
  45. #define SINGLE_REG_WRITE_OPCODE (BIT(28))
  46. #define SINGLE_REG_MODIFY_OPCODE (BIT(29))
  47. #define HW_INDEX_REG_WRITE_OPCODE (BIT(28) | BIT(29))
  48. #define AUTO_INC_REG_WRITE_OPCODE (BIT(30))
  49. #define BLK_REG_WRITE_OPCODE (BIT(30) | BIT(28))
  50. #define LUTBUS_WRITE_OPCODE (BIT(30) | BIT(29))
  51. #define WRAP_MIN_SIZE 2
  52. #define WRAP_MAX_SIZE (BIT(4) - 1)
  53. #define MAX_DWORDS_SZ (BIT(14) - 1)
  54. #define REG_DMA_HEADERS_BUFFER_SZ (sizeof(u32) * 128)
  55. #define LUTBUS_TABLE_SEL_MASK 0x10000
  56. #define LUTBUS_BLOCK_SEL_MASK 0xffff
  57. #define LUTBUS_TRANS_SZ_MASK 0xff0000
  58. #define LUTBUS_LUT_SIZE_MASK 0x3fff
  59. #define PMU_CLK_CTRL 0x1F0
  60. static uint32_t reg_dma_register_count;
  61. static uint32_t reg_dma_decode_sel;
  62. static uint32_t reg_dma_opmode_offset;
  63. static uint32_t reg_dma_ctl0_queue0_cmd0_offset;
  64. static uint32_t reg_dma_ctl0_queue1_cmd0_offset;
  65. static uint32_t reg_dma_intr_0_status_offset[CTL_MAX][DMA_CTL_QUEUE_MAX];
  66. static uint32_t reg_dma_intr_0_clear_offset[CTL_MAX][DMA_CTL_QUEUE_MAX];
  67. static uint32_t reg_dma_intr_4_status_offset;
  68. static uint32_t reg_dma_intr_4_clear_offset;
  69. static uint32_t reg_dma_ctl_trigger_offset;
  70. static uint32_t reg_dma_ctl0_reset_offset[CTL_MAX][DMA_CTL_QUEUE_MAX];
  71. static uint32_t reg_dma_error_clear_mask;
  72. static uint32_t reg_dma_ctl_queue_off[CTL_MAX];
  73. static uint32_t reg_dma_ctl_queue1_off[CTL_MAX];
  74. typedef int (*reg_dma_internal_ops) (struct sde_reg_dma_setup_ops_cfg *cfg);
  75. static struct sde_hw_reg_dma *reg_dma;
  76. static u32 ops_mem_size[REG_DMA_SETUP_OPS_MAX] = {
  77. [REG_BLK_WRITE_SINGLE] = sizeof(u32) * 2,
  78. [REG_BLK_WRITE_INC] = sizeof(u32) * 2,
  79. [REG_BLK_WRITE_MULTIPLE] = sizeof(u32) * 2,
  80. [HW_BLK_SELECT] = sizeof(u32) * 2,
  81. [REG_SINGLE_WRITE] = sizeof(u32) * 2,
  82. [REG_SINGLE_MODIFY] = sizeof(u32) * 3,
  83. [REG_BLK_LUT_WRITE] = sizeof(u32) * 2,
  84. };
  85. static u32 queue_sel[DMA_CTL_QUEUE_MAX] = {
  86. [DMA_CTL_QUEUE0] = BIT(0),
  87. [DMA_CTL_QUEUE1] = BIT(4),
  88. };
  89. static u32 dspp_read_sel[DSPP_HIST_MAX] = {
  90. [DSPP0_HIST] = 0,
  91. [DSPP1_HIST] = 1,
  92. [DSPP2_HIST] = 2,
  93. [DSPP3_HIST] = 3,
  94. };
  95. static u32 v1_supported[REG_DMA_FEATURES_MAX] = {
  96. [GAMUT] = GRP_VIG_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT,
  97. [VLUT] = GRP_DSPP_HW_BLK_SELECT,
  98. [GC] = GRP_DSPP_HW_BLK_SELECT,
  99. [IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT,
  100. [PCC] = GRP_DSPP_HW_BLK_SELECT,
  101. };
  102. static u32 ctl_trigger_done_mask[CTL_MAX][DMA_CTL_QUEUE_MAX] = {
  103. [CTL_0][0] = BIT(16),
  104. [CTL_0][1] = BIT(21),
  105. [CTL_1][0] = BIT(17),
  106. [CTL_1][1] = BIT(22),
  107. [CTL_2][0] = BIT(18),
  108. [CTL_2][1] = BIT(23),
  109. [CTL_3][0] = BIT(19),
  110. [CTL_3][1] = BIT(24),
  111. [CTL_4][0] = BIT(25),
  112. [CTL_4][1] = BIT(27),
  113. [CTL_5][0] = BIT(26),
  114. [CTL_5][1] = BIT(28),
  115. };
  116. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg);
  117. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  118. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  119. static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg);
  120. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  121. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  122. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg);
  123. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  124. static int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg);
  125. static int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg);
  126. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  127. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg);
  128. static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg);
  129. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg);
  130. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf);
  131. static int check_support_v1(enum sde_reg_dma_features feature,
  132. enum sde_reg_dma_blk blk, bool *is_supported);
  133. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg);
  134. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg);
  135. static int reset_v1(struct sde_hw_ctl *ctl);
  136. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  137. enum sde_reg_dma_last_cmd_mode mode);
  138. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size);
  139. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *lut_buf);
  140. static void dump_regs_v1(void);
  141. static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  142. enum sde_reg_dma_last_cmd_mode mode);
  143. static reg_dma_internal_ops write_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  144. [HW_BLK_SELECT] = write_decode_sel,
  145. [REG_SINGLE_WRITE] = write_single_reg,
  146. [REG_BLK_WRITE_SINGLE] = write_multi_reg_inc,
  147. [REG_BLK_WRITE_INC] = write_multi_reg_index,
  148. [REG_BLK_WRITE_MULTIPLE] = write_multi_lut_reg,
  149. [REG_SINGLE_MODIFY] = write_single_modify,
  150. [REG_BLK_LUT_WRITE] = write_block_lut_reg,
  151. };
  152. static reg_dma_internal_ops validate_dma_op_params[REG_DMA_SETUP_OPS_MAX] = {
  153. [HW_BLK_SELECT] = validate_write_decode_sel,
  154. [REG_SINGLE_WRITE] = validate_write_reg,
  155. [REG_BLK_WRITE_SINGLE] = validate_write_reg,
  156. [REG_BLK_WRITE_INC] = validate_write_reg,
  157. [REG_BLK_WRITE_MULTIPLE] = validate_write_multi_lut_reg,
  158. [REG_SINGLE_MODIFY] = validate_write_reg,
  159. [REG_BLK_LUT_WRITE] = validate_blk_lut_write,
  160. };
  161. static struct sde_reg_dma_buffer *last_cmd_buf_db[CTL_MAX];
  162. static struct sde_reg_dma_buffer *last_cmd_buf_sb[CTL_MAX];
  163. static void get_decode_sel(unsigned long blk, u32 *decode_sel)
  164. {
  165. int i = 0;
  166. *decode_sel = 0;
  167. for_each_set_bit(i, &blk, REG_DMA_BLK_MAX) {
  168. switch (BIT(i)) {
  169. case VIG0:
  170. *decode_sel |= BIT(0);
  171. break;
  172. case VIG1:
  173. *decode_sel |= BIT(1);
  174. break;
  175. case VIG2:
  176. *decode_sel |= BIT(2);
  177. break;
  178. case VIG3:
  179. *decode_sel |= BIT(3);
  180. break;
  181. case DMA0:
  182. *decode_sel |= BIT(5);
  183. break;
  184. case DMA1:
  185. *decode_sel |= BIT(6);
  186. break;
  187. case DMA2:
  188. *decode_sel |= BIT(7);
  189. break;
  190. case DMA3:
  191. *decode_sel |= BIT(8);
  192. break;
  193. case DMA4:
  194. *decode_sel |= BIT(9);
  195. break;
  196. case DMA5:
  197. *decode_sel |= BIT(10);
  198. break;
  199. case DSPP0:
  200. *decode_sel |= BIT(17);
  201. break;
  202. case DSPP1:
  203. *decode_sel |= BIT(18);
  204. break;
  205. case DSPP2:
  206. *decode_sel |= BIT(19);
  207. break;
  208. case DSPP3:
  209. *decode_sel |= BIT(20);
  210. break;
  211. case SSPP_IGC:
  212. *decode_sel |= BIT(4);
  213. break;
  214. case DSPP_IGC:
  215. *decode_sel |= BIT(21);
  216. break;
  217. case LTM0:
  218. *decode_sel |= BIT(22);
  219. break;
  220. case LTM1:
  221. *decode_sel |= BIT(23);
  222. break;
  223. case LTM2:
  224. *decode_sel |= BIT(24);
  225. break;
  226. case LTM3:
  227. *decode_sel |= BIT(25);
  228. break;
  229. case MDSS:
  230. *decode_sel |= BIT(31);
  231. break;
  232. default:
  233. DRM_ERROR("block not supported %zx\n", (size_t)BIT(i));
  234. break;
  235. }
  236. }
  237. }
  238. static int write_multi_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  239. {
  240. u8 *loc = NULL;
  241. loc = (u8 *)cfg->dma_buf->vaddr + cfg->dma_buf->index;
  242. memcpy(loc, cfg->data, cfg->data_size);
  243. cfg->dma_buf->index += cfg->data_size;
  244. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  245. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  246. if (cfg->blk == MDSS)
  247. cfg->dma_buf->abs_write_cnt += SIZE_DWORD(cfg->data_size);
  248. return 0;
  249. }
  250. int write_multi_reg_index(struct sde_reg_dma_setup_ops_cfg *cfg)
  251. {
  252. u32 *loc = NULL;
  253. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  254. cfg->dma_buf->index);
  255. loc[0] = HW_INDEX_REG_WRITE_OPCODE;
  256. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  257. if (cfg->blk == MDSS)
  258. loc[0] |= ABSOLUTE_RANGE;
  259. loc[1] = SIZE_DWORD(cfg->data_size);
  260. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  261. return write_multi_reg(cfg);
  262. }
  263. int write_multi_reg_inc(struct sde_reg_dma_setup_ops_cfg *cfg)
  264. {
  265. u32 *loc = NULL;
  266. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  267. cfg->dma_buf->index);
  268. loc[0] = AUTO_INC_REG_WRITE_OPCODE;
  269. if (cfg->blk == MDSS)
  270. loc[0] |= ABSOLUTE_RANGE;
  271. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  272. loc[1] = SIZE_DWORD(cfg->data_size);
  273. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  274. return write_multi_reg(cfg);
  275. }
  276. static int write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  277. {
  278. u32 *loc = NULL;
  279. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  280. cfg->dma_buf->index);
  281. loc[0] = BLK_REG_WRITE_OPCODE;
  282. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  283. if (cfg->blk == MDSS)
  284. loc[0] |= ABSOLUTE_RANGE;
  285. loc[1] = (cfg->inc) ? 0 : BIT(31);
  286. loc[1] |= (cfg->wrap_size & WRAP_MAX_SIZE) << 16;
  287. loc[1] |= ((SIZE_DWORD(cfg->data_size)) & MAX_DWORDS_SZ);
  288. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  289. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  290. return write_multi_reg(cfg);
  291. }
  292. static int write_single_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  293. {
  294. u32 *loc = NULL;
  295. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  296. cfg->dma_buf->index);
  297. loc[0] = SINGLE_REG_WRITE_OPCODE;
  298. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  299. if (cfg->blk == MDSS) {
  300. loc[0] |= ABSOLUTE_RANGE;
  301. cfg->dma_buf->abs_write_cnt++;
  302. }
  303. loc[1] = *cfg->data;
  304. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  305. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  306. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  307. return 0;
  308. }
  309. static int write_single_modify(struct sde_reg_dma_setup_ops_cfg *cfg)
  310. {
  311. u32 *loc = NULL;
  312. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  313. cfg->dma_buf->index);
  314. loc[0] = SINGLE_REG_MODIFY_OPCODE;
  315. loc[0] |= (cfg->blk_offset & MAX_RELATIVE_OFF);
  316. if (cfg->blk == MDSS)
  317. loc[0] |= ABSOLUTE_RANGE;
  318. loc[1] = cfg->mask;
  319. loc[2] = *cfg->data;
  320. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  321. cfg->dma_buf->ops_completed |= REG_WRITE_OP;
  322. cfg->dma_buf->next_op_allowed = REG_WRITE_OP | DECODE_SEL_OP;
  323. return 0;
  324. }
  325. static int write_block_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  326. {
  327. u32 *loc = NULL;
  328. int rc = -EINVAL;
  329. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  330. cfg->dma_buf->index);
  331. loc[0] = LUTBUS_WRITE_OPCODE;
  332. loc[0] |= (cfg->table_sel << 16) & LUTBUS_TABLE_SEL_MASK;
  333. loc[0] |= (cfg->block_sel & LUTBUS_BLOCK_SEL_MASK);
  334. loc[1] = (cfg->trans_size << 16) & LUTBUS_TRANS_SZ_MASK;
  335. loc[1] |= (cfg->lut_size & LUTBUS_LUT_SIZE_MASK);
  336. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  337. rc = write_multi_reg(cfg);
  338. if (rc)
  339. return rc;
  340. /* adding 3 NO OPs as SW workaround for REG_BLK_LUT_WRITE
  341. * HW limitation that requires the residual data plus the
  342. * following opcode to exceed 4 DWORDs length.
  343. */
  344. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  345. cfg->dma_buf->index);
  346. loc[0] = NO_OP_OPCODE;
  347. loc[1] = NO_OP_OPCODE;
  348. loc[2] = NO_OP_OPCODE;
  349. cfg->dma_buf->index += sizeof(u32) * 3;
  350. return 0;
  351. }
  352. static int write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  353. {
  354. u32 *loc = NULL;
  355. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  356. cfg->dma_buf->index);
  357. loc[0] = reg_dma_decode_sel;
  358. get_decode_sel(cfg->blk, &loc[1]);
  359. cfg->dma_buf->index += ops_mem_size[cfg->ops];
  360. cfg->dma_buf->ops_completed |= DECODE_SEL_OP;
  361. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  362. return 0;
  363. }
  364. static int validate_write_multi_lut_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  365. {
  366. int rc;
  367. rc = validate_write_reg(cfg);
  368. if (rc)
  369. return rc;
  370. if (cfg->wrap_size < WRAP_MIN_SIZE || cfg->wrap_size > WRAP_MAX_SIZE) {
  371. DRM_ERROR("invalid wrap sz %d min %d max %zd\n",
  372. cfg->wrap_size, WRAP_MIN_SIZE, (size_t)WRAP_MAX_SIZE);
  373. rc = -EINVAL;
  374. }
  375. return rc;
  376. }
  377. static int validate_blk_lut_write(struct sde_reg_dma_setup_ops_cfg *cfg)
  378. {
  379. int rc;
  380. rc = validate_write_reg(cfg);
  381. if (rc)
  382. return rc;
  383. if (cfg->table_sel >= LUTBUS_TABLE_SELECT_MAX ||
  384. cfg->block_sel >= LUTBUS_BLOCK_MAX ||
  385. (cfg->trans_size != LUTBUS_IGC_TRANS_SIZE &&
  386. cfg->trans_size != LUTBUS_GAMUT_TRANS_SIZE &&
  387. cfg->trans_size != LUTBUS_SIXZONE_TRANS_SIZE)) {
  388. DRM_ERROR("invalid table_sel %d block_sel %d trans_size %d\n",
  389. cfg->table_sel, cfg->block_sel,
  390. cfg->trans_size);
  391. rc = -EINVAL;
  392. }
  393. return rc;
  394. }
  395. static int validate_write_reg(struct sde_reg_dma_setup_ops_cfg *cfg)
  396. {
  397. u32 remain_len, write_len;
  398. remain_len = BUFFER_SPACE_LEFT(cfg);
  399. write_len = ops_mem_size[cfg->ops] + cfg->data_size;
  400. if (remain_len < write_len) {
  401. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  402. remain_len, write_len);
  403. return -EINVAL;
  404. }
  405. if (!cfg->data) {
  406. DRM_ERROR("invalid data %pK size %d exp sz %d\n", cfg->data,
  407. cfg->data_size, write_len);
  408. return -EINVAL;
  409. }
  410. if ((SIZE_DWORD(cfg->data_size)) > MAX_DWORDS_SZ ||
  411. NOT_WORD_ALIGNED(cfg->data_size)) {
  412. DRM_ERROR("Invalid data size %d max %zd align %x\n",
  413. cfg->data_size, (size_t)MAX_DWORDS_SZ,
  414. NOT_WORD_ALIGNED(cfg->data_size));
  415. return -EINVAL;
  416. }
  417. if (cfg->blk_offset > MAX_RELATIVE_OFF ||
  418. NOT_WORD_ALIGNED(cfg->blk_offset)) {
  419. DRM_ERROR("invalid offset %d max %zd align %x\n",
  420. cfg->blk_offset, (size_t)MAX_RELATIVE_OFF,
  421. NOT_WORD_ALIGNED(cfg->blk_offset));
  422. return -EINVAL;
  423. }
  424. return 0;
  425. }
  426. static int validate_write_decode_sel(struct sde_reg_dma_setup_ops_cfg *cfg)
  427. {
  428. u32 remain_len;
  429. bool vig_blk, dma_blk, dspp_blk, mdss_blk;
  430. remain_len = BUFFER_SPACE_LEFT(cfg);
  431. if (remain_len < ops_mem_size[HW_BLK_SELECT]) {
  432. DRM_ERROR("buffer is full needs %d bytes\n",
  433. ops_mem_size[HW_BLK_SELECT]);
  434. return -EINVAL;
  435. }
  436. if (!cfg->blk) {
  437. DRM_ERROR("blk set as 0\n");
  438. return -EINVAL;
  439. }
  440. vig_blk = (cfg->blk & GRP_VIG_HW_BLK_SELECT) ? true : false;
  441. dma_blk = (cfg->blk & GRP_DMA_HW_BLK_SELECT) ? true : false;
  442. dspp_blk = (cfg->blk & GRP_DSPP_HW_BLK_SELECT) ? true : false;
  443. mdss_blk = (cfg->blk & MDSS) ? true : false;
  444. if ((vig_blk && dspp_blk) || (dma_blk && dspp_blk) ||
  445. (vig_blk && dma_blk) ||
  446. (mdss_blk && (vig_blk | dma_blk | dspp_blk))) {
  447. DRM_ERROR("invalid blk combination %x\n", cfg->blk);
  448. return -EINVAL;
  449. }
  450. return 0;
  451. }
  452. static int validate_dma_cfg(struct sde_reg_dma_setup_ops_cfg *cfg)
  453. {
  454. int rc = 0;
  455. bool supported;
  456. if (!cfg || cfg->ops >= REG_DMA_SETUP_OPS_MAX || !cfg->dma_buf) {
  457. DRM_ERROR("invalid param cfg %pK ops %d dma_buf %pK\n",
  458. cfg, ((cfg) ? cfg->ops : REG_DMA_SETUP_OPS_MAX),
  459. ((cfg) ? cfg->dma_buf : NULL));
  460. return -EINVAL;
  461. }
  462. rc = check_support_v1(cfg->feature, cfg->blk, &supported);
  463. if (rc || !supported) {
  464. DRM_ERROR("check support failed rc %d supported %d\n",
  465. rc, supported);
  466. rc = -EINVAL;
  467. return rc;
  468. }
  469. if (cfg->dma_buf->index >= cfg->dma_buf->buffer_size ||
  470. NOT_WORD_ALIGNED(cfg->dma_buf->index)) {
  471. DRM_ERROR("Buf Overflow index %d max size %d align %x\n",
  472. cfg->dma_buf->index, cfg->dma_buf->buffer_size,
  473. NOT_WORD_ALIGNED(cfg->dma_buf->index));
  474. return -EINVAL;
  475. }
  476. if (cfg->dma_buf->iova & GUARD_BYTES || !cfg->dma_buf->vaddr) {
  477. DRM_ERROR("iova not aligned to %zx iova %llx kva %pK",
  478. (size_t)ADDR_ALIGN, cfg->dma_buf->iova,
  479. cfg->dma_buf->vaddr);
  480. return -EINVAL;
  481. }
  482. if (!IS_OP_ALLOWED(cfg->ops, cfg->dma_buf->next_op_allowed)) {
  483. DRM_ERROR("invalid op %x allowed %x\n", cfg->ops,
  484. cfg->dma_buf->next_op_allowed);
  485. return -EINVAL;
  486. }
  487. if (!validate_dma_op_params[cfg->ops] ||
  488. !write_dma_op_params[cfg->ops]) {
  489. DRM_ERROR("invalid op %d validate %pK write %pK\n", cfg->ops,
  490. validate_dma_op_params[cfg->ops],
  491. write_dma_op_params[cfg->ops]);
  492. return -EINVAL;
  493. }
  494. return rc;
  495. }
  496. static int validate_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  497. {
  498. if (!cfg || !cfg->ctl || !cfg->dma_buf ||
  499. cfg->dma_type >= REG_DMA_TYPE_MAX) {
  500. DRM_ERROR("invalid cfg %pK ctl %pK dma_buf %pK dma type %d\n",
  501. cfg, ((!cfg) ? NULL : cfg->ctl),
  502. ((!cfg) ? NULL : cfg->dma_buf),
  503. ((!cfg) ? 0 : cfg->dma_type));
  504. return -EINVAL;
  505. }
  506. if (reg_dma->caps->reg_dma_blks[cfg->dma_type].valid == false) {
  507. DRM_DEBUG("REG dma type %d is not supported\n", cfg->dma_type);
  508. return -EOPNOTSUPP;
  509. }
  510. if (cfg->ctl->idx < CTL_0 || cfg->ctl->idx >= CTL_MAX) {
  511. DRM_ERROR("invalid ctl idx %d\n", cfg->ctl->idx);
  512. return -EINVAL;
  513. }
  514. if (cfg->op >= REG_DMA_OP_MAX) {
  515. DRM_ERROR("invalid op %d\n", cfg->op);
  516. return -EINVAL;
  517. }
  518. if ((cfg->op == REG_DMA_WRITE) &&
  519. (!(cfg->dma_buf->ops_completed & DECODE_SEL_OP) ||
  520. !(cfg->dma_buf->ops_completed & REG_WRITE_OP))) {
  521. DRM_ERROR("incomplete write ops %x\n",
  522. cfg->dma_buf->ops_completed);
  523. return -EINVAL;
  524. }
  525. if (cfg->op == REG_DMA_READ && cfg->block_select >= DSPP_HIST_MAX) {
  526. DRM_ERROR("invalid block for read %d\n", cfg->block_select);
  527. return -EINVAL;
  528. }
  529. /* Only immediate triggers are supported now hence hardcode */
  530. cfg->trigger_mode = (cfg->op == REG_DMA_READ) ? (READ_TRIGGER) :
  531. (WRITE_TRIGGER);
  532. if (cfg->dma_buf->iova & GUARD_BYTES) {
  533. DRM_ERROR("Address is not aligned to %zx iova %llx",
  534. (size_t)ADDR_ALIGN, cfg->dma_buf->iova);
  535. return -EINVAL;
  536. }
  537. if (cfg->queue_select >= DMA_CTL_QUEUE_MAX) {
  538. DRM_ERROR("invalid queue selected %d\n", cfg->queue_select);
  539. return -EINVAL;
  540. }
  541. if (SIZE_DWORD(cfg->dma_buf->index) > MAX_DWORDS_SZ ||
  542. !cfg->dma_buf->index) {
  543. DRM_ERROR("invalid dword size %zd max %zd\n",
  544. (size_t)SIZE_DWORD(cfg->dma_buf->index),
  545. (size_t)MAX_DWORDS_SZ);
  546. return -EINVAL;
  547. }
  548. if (cfg->dma_type == REG_DMA_TYPE_SB &&
  549. (cfg->queue_select != DMA_CTL_QUEUE1 ||
  550. cfg->op == REG_DMA_READ)) {
  551. DRM_ERROR("invalid queue selected %d or op %d for SB LUTDMA\n",
  552. cfg->queue_select, cfg->op);
  553. return -EINVAL;
  554. }
  555. if ((cfg->dma_buf->abs_write_cnt % 2) != 0) {
  556. /* Touch up buffer to avoid HW issues with odd number of abs writes */
  557. u32 reg = 0;
  558. struct sde_reg_dma_setup_ops_cfg dma_write_cfg;
  559. dma_write_cfg.dma_buf = cfg->dma_buf;
  560. dma_write_cfg.blk = MDSS;
  561. dma_write_cfg.feature = REG_DMA_FEATURES_MAX;
  562. dma_write_cfg.ops = HW_BLK_SELECT;
  563. if (validate_write_decode_sel(&dma_write_cfg) || write_decode_sel(&dma_write_cfg)) {
  564. DRM_ERROR("Failed setting MDSS decode select for LUTDMA touch up\n");
  565. return -EINVAL;
  566. }
  567. /* Perform dummy write on LUTDMA RO version reg */
  568. dma_write_cfg.ops = REG_SINGLE_WRITE;
  569. dma_write_cfg.blk_offset = reg_dma->caps->base_off +
  570. reg_dma->caps->reg_dma_blks[cfg->dma_type].base;
  571. dma_write_cfg.data = &reg;
  572. dma_write_cfg.data_size = sizeof(uint32_t);
  573. if (validate_write_reg(&dma_write_cfg) || write_single_reg(&dma_write_cfg)) {
  574. DRM_ERROR("Failed to add touch up write to LUTDMA buffer\n");
  575. return -EINVAL;
  576. }
  577. }
  578. return 0;
  579. }
  580. static int write_kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  581. {
  582. u32 cmd1, mask = 0, val = 0;
  583. struct sde_hw_blk_reg_map hw;
  584. memset(&hw, 0, sizeof(hw));
  585. msm_gem_sync(cfg->dma_buf->buf);
  586. cmd1 = (cfg->op == REG_DMA_READ) ?
  587. (dspp_read_sel[cfg->block_select] << 30) : 0;
  588. cmd1 |= (cfg->last_command) ? BIT(24) : 0;
  589. cmd1 |= (cfg->op == REG_DMA_READ) ? (2 << 22) : 0;
  590. cmd1 |= (cfg->op == REG_DMA_WRITE) ? (BIT(22)) : 0;
  591. cmd1 |= (SIZE_DWORD(cfg->dma_buf->index) & MAX_DWORDS_SZ);
  592. if (cfg->dma_type == REG_DMA_TYPE_DB)
  593. SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_DB);
  594. else if (cfg->dma_type == REG_DMA_TYPE_SB)
  595. SET_UP_REG_DMA_REG(hw, reg_dma, REG_DMA_TYPE_SB);
  596. if (hw.hw_rev == 0) {
  597. DRM_ERROR("DMA type %d is unsupported\n", cfg->dma_type);
  598. return -EOPNOTSUPP;
  599. }
  600. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  601. val = SDE_REG_READ(&hw, reg_dma_intr_4_status_offset);
  602. if (val) {
  603. DRM_DEBUG("LUT dma status %x\n", val);
  604. mask = reg_dma_error_clear_mask;
  605. SDE_REG_WRITE(&hw, reg_dma_intr_4_clear_offset, mask);
  606. SDE_EVT32(val);
  607. }
  608. if (cfg->dma_type == REG_DMA_TYPE_DB) {
  609. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx],
  610. cfg->dma_buf->iova);
  611. SDE_REG_WRITE(&hw, reg_dma_ctl_queue_off[cfg->ctl->idx] + 0x4,
  612. cmd1);
  613. } else if (cfg->dma_type == REG_DMA_TYPE_SB) {
  614. SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx],
  615. cfg->dma_buf->iova);
  616. SDE_REG_WRITE(&hw, reg_dma_ctl_queue1_off[cfg->ctl->idx] + 0x4,
  617. cmd1);
  618. }
  619. if (cfg->last_command) {
  620. mask = ctl_trigger_done_mask[cfg->ctl->idx][cfg->queue_select];
  621. SDE_REG_WRITE(&hw, reg_dma_intr_0_clear_offset[cfg->ctl->idx][cfg->queue_select],
  622. mask);
  623. /* DB LUTDMA use SW trigger while SB LUTDMA uses DSPP_SB
  624. * flush as its trigger event.
  625. */
  626. if (cfg->dma_type == REG_DMA_TYPE_DB) {
  627. SDE_REG_WRITE(&cfg->ctl->hw, reg_dma_ctl_trigger_offset,
  628. queue_sel[cfg->queue_select]);
  629. }
  630. }
  631. SDE_EVT32(cfg->feature, cfg->dma_type,
  632. ((uint64_t)cfg->dma_buf) >> 32,
  633. ((uint64_t)cfg->dma_buf) & 0xFFFFFFFF,
  634. (cfg->dma_buf->iova) >> 32,
  635. (cfg->dma_buf->iova) & 0xFFFFFFFF,
  636. cfg->op,
  637. cfg->queue_select, cfg->ctl->idx,
  638. SIZE_DWORD(cfg->dma_buf->index));
  639. return 0;
  640. }
  641. static bool setup_clk_force_ctrl(struct sde_hw_blk_reg_map *hw,
  642. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  643. {
  644. u32 reg_val, new_val;
  645. if (!hw)
  646. return false;
  647. if (!SDE_CLK_CTRL_LUTDMA_VALID(clk_ctrl))
  648. return false;
  649. reg_val = SDE_REG_READ(hw, PMU_CLK_CTRL);
  650. if (enable)
  651. new_val = reg_val | (BIT(0) | BIT(16));
  652. else
  653. new_val = reg_val & ~(BIT(0) | BIT(16));
  654. SDE_REG_WRITE(hw, PMU_CLK_CTRL, new_val);
  655. wmb(); /* ensure write finished before progressing */
  656. return !(reg_val & (BIT(0) | BIT(16)));
  657. }
  658. int init_v1(struct sde_hw_reg_dma *cfg)
  659. {
  660. int i = 0, rc = 0;
  661. if (!cfg)
  662. return -EINVAL;
  663. reg_dma = cfg;
  664. for (i = CTL_0; i < CTL_MAX; i++) {
  665. if (!last_cmd_buf_db[i]) {
  666. last_cmd_buf_db[i] =
  667. alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
  668. if (IS_ERR_OR_NULL(last_cmd_buf_db[i])) {
  669. /*
  670. * This will allow reg dma to fall back to
  671. * AHB domain
  672. */
  673. pr_info("Failed to allocate reg dma, ret:%lu\n",
  674. PTR_ERR(last_cmd_buf_db[i]));
  675. return 0;
  676. }
  677. }
  678. if (!last_cmd_buf_sb[i]) {
  679. last_cmd_buf_sb[i] =
  680. alloc_reg_dma_buf_v1(REG_DMA_HEADERS_BUFFER_SZ);
  681. if (IS_ERR_OR_NULL(last_cmd_buf_sb[i])) {
  682. /*
  683. * This will allow reg dma to fall back to
  684. * AHB domain
  685. */
  686. pr_info("Failed to allocate reg dma, ret:%lu\n",
  687. PTR_ERR(last_cmd_buf_sb[i]));
  688. return 0;
  689. }
  690. }
  691. }
  692. if (rc) {
  693. for (i = 0; i < CTL_MAX; i++) {
  694. if (!last_cmd_buf_db[i])
  695. continue;
  696. dealloc_reg_dma_v1(last_cmd_buf_db[i]);
  697. last_cmd_buf_db[i] = NULL;
  698. }
  699. for (i = 0; i < CTL_MAX; i++) {
  700. if (!last_cmd_buf_sb[i])
  701. continue;
  702. dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
  703. last_cmd_buf_sb[i] = NULL;
  704. }
  705. return rc;
  706. }
  707. reg_dma->ops.check_support = check_support_v1;
  708. reg_dma->ops.setup_payload = setup_payload_v1;
  709. reg_dma->ops.kick_off = kick_off_v1;
  710. reg_dma->ops.reset = reset_v1;
  711. reg_dma->ops.alloc_reg_dma_buf = alloc_reg_dma_buf_v1;
  712. reg_dma->ops.dealloc_reg_dma = dealloc_reg_dma_v1;
  713. reg_dma->ops.reset_reg_dma_buf = reset_reg_dma_buffer_v1;
  714. reg_dma->ops.last_command = last_cmd_v1;
  715. reg_dma->ops.dump_regs = dump_regs_v1;
  716. reg_dma_register_count = 60;
  717. reg_dma_decode_sel = 0x180ac060;
  718. reg_dma_opmode_offset = 0x4;
  719. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  720. reg_dma_intr_4_status_offset = 0xa0;
  721. reg_dma_ctl_trigger_offset = 0xd4;
  722. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16);
  723. reg_dma_intr_4_clear_offset = 0xc0;
  724. for (i = 0; i < CTL_MAX; i++) {
  725. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE0] = 0x90;
  726. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE1] = 0x90;
  727. reg_dma_intr_0_clear_offset[i][DMA_CTL_QUEUE0] = 0xb0;
  728. reg_dma_intr_0_clear_offset[i][DMA_CTL_QUEUE1] = 0xb0;
  729. reg_dma_ctl0_reset_offset[i][DMA_CTL_QUEUE0] = 0xe4 + i * 4;
  730. reg_dma_ctl0_reset_offset[i][DMA_CTL_QUEUE1] = 0xe4 + i * 4;
  731. }
  732. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  733. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  734. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  735. (sizeof(u32) * 4);
  736. return 0;
  737. }
  738. int init_v11(struct sde_hw_reg_dma *cfg)
  739. {
  740. int ret = 0, i = 0;
  741. ret = init_v1(cfg);
  742. if (ret) {
  743. DRM_ERROR("failed to initialize v1: ret %d\n", ret);
  744. return -EINVAL;
  745. }
  746. /* initialize register offsets and v1_supported based on version */
  747. reg_dma_register_count = 133;
  748. reg_dma_decode_sel = 0x180ac114;
  749. reg_dma_opmode_offset = 0x4;
  750. reg_dma_ctl0_queue0_cmd0_offset = 0x14;
  751. reg_dma_intr_4_status_offset = 0x170;
  752. reg_dma_ctl_trigger_offset = 0xd4;
  753. reg_dma_intr_4_clear_offset = 0x1b0;
  754. reg_dma_error_clear_mask = BIT(0) | BIT(1) | BIT(2) | BIT(16) |
  755. BIT(17) | BIT(18);
  756. reg_dma_ctl_queue_off[CTL_0] = reg_dma_ctl0_queue0_cmd0_offset;
  757. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  758. reg_dma_ctl_queue_off[i] = reg_dma_ctl_queue_off[i - 1] +
  759. (sizeof(u32) * 4);
  760. for (i = 0; i < CTL_MAX; i++) {
  761. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE0] = 0x160;
  762. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE1] = 0x160;
  763. reg_dma_intr_0_clear_offset[i][DMA_CTL_QUEUE0] = 0x1a0;
  764. reg_dma_intr_0_clear_offset[i][DMA_CTL_QUEUE1] = 0x1a0;
  765. reg_dma_ctl0_reset_offset[i][DMA_CTL_QUEUE0] = 0x200 + i * 4;
  766. reg_dma_ctl0_reset_offset[i][DMA_CTL_QUEUE1] = 0x200 + i * 4;
  767. }
  768. v1_supported[IGC] = DSPP_IGC | GRP_DSPP_HW_BLK_SELECT |
  769. GRP_VIG_HW_BLK_SELECT | GRP_DMA_HW_BLK_SELECT;
  770. v1_supported[GC] = GRP_DMA_HW_BLK_SELECT | GRP_DSPP_HW_BLK_SELECT;
  771. v1_supported[HSIC] = GRP_DSPP_HW_BLK_SELECT;
  772. v1_supported[SIX_ZONE] = GRP_DSPP_HW_BLK_SELECT;
  773. v1_supported[MEMC_SKIN] = GRP_DSPP_HW_BLK_SELECT;
  774. v1_supported[MEMC_SKY] = GRP_DSPP_HW_BLK_SELECT;
  775. v1_supported[MEMC_FOLIAGE] = GRP_DSPP_HW_BLK_SELECT;
  776. v1_supported[MEMC_PROT] = GRP_DSPP_HW_BLK_SELECT;
  777. v1_supported[QSEED] = GRP_VIG_HW_BLK_SELECT;
  778. return 0;
  779. }
  780. int init_v12(struct sde_hw_reg_dma *cfg)
  781. {
  782. int ret = 0;
  783. ret = init_v11(cfg);
  784. if (ret) {
  785. DRM_ERROR("failed to initialize v11: ret %d\n", ret);
  786. return ret;
  787. }
  788. v1_supported[LTM_INIT] = GRP_LTM_HW_BLK_SELECT;
  789. v1_supported[LTM_ROI] = GRP_LTM_HW_BLK_SELECT;
  790. v1_supported[LTM_VLUT] = GRP_LTM_HW_BLK_SELECT;
  791. v1_supported[RC_DATA] = (GRP_DSPP_HW_BLK_SELECT |
  792. GRP_MDSS_HW_BLK_SELECT);
  793. v1_supported[SPR_INIT] = (GRP_DSPP_HW_BLK_SELECT |
  794. GRP_MDSS_HW_BLK_SELECT);
  795. v1_supported[SPR_PU_CFG] = (GRP_DSPP_HW_BLK_SELECT |
  796. GRP_MDSS_HW_BLK_SELECT);
  797. v1_supported[DEMURA_CFG] = MDSS | DSPP0 | DSPP1;
  798. return 0;
  799. }
  800. static int init_reg_dma_vbif(struct sde_hw_reg_dma *cfg)
  801. {
  802. int ret = 0;
  803. struct sde_hw_blk_reg_map *hw;
  804. struct sde_vbif_clk_client clk_client;
  805. struct msm_drm_private *priv = cfg->drm_dev->dev_private;
  806. struct msm_kms *kms = priv->kms;
  807. struct sde_kms *sde_kms = to_sde_kms(kms);
  808. if (cfg->caps->clk_ctrl != SDE_CLK_CTRL_LUTDMA) {
  809. SDE_ERROR("invalid lutdma clk ctrl type %d\n", cfg->caps->clk_ctrl);
  810. return -EINVAL;
  811. }
  812. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  813. if (!hw) {
  814. SDE_ERROR("failed to create hw block\n");
  815. return -ENOMEM;
  816. }
  817. hw->base_off = cfg->addr;
  818. hw->blk_off = cfg->caps->reg_dma_blks[REG_DMA_TYPE_DB].base;
  819. clk_client.hw = hw;
  820. clk_client.clk_ctrl = cfg->caps->clk_ctrl;
  821. clk_client.ops.setup_clk_force_ctrl = setup_clk_force_ctrl;
  822. ret = sde_vbif_clk_register(sde_kms, &clk_client);
  823. if (ret) {
  824. SDE_ERROR("failed to register vbif client %d\n", cfg->caps->clk_ctrl);
  825. kfree(hw);
  826. }
  827. return ret;
  828. }
  829. int init_v2(struct sde_hw_reg_dma *cfg)
  830. {
  831. int ret = 0, i = 0;
  832. ret = init_v12(cfg);
  833. if (ret) {
  834. DRM_ERROR("failed to initialize v12: ret %d\n", ret);
  835. return ret;
  836. }
  837. /* initialize register offsets based on version delta */
  838. reg_dma_register_count = 0x91;
  839. reg_dma_ctl0_queue1_cmd0_offset = 0x1c;
  840. reg_dma_error_clear_mask |= BIT(19);
  841. reg_dma_ctl_queue1_off[CTL_0] = reg_dma_ctl0_queue1_cmd0_offset;
  842. for (i = CTL_1; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++)
  843. reg_dma_ctl_queue1_off[i] = reg_dma_ctl_queue1_off[i - 1] +
  844. (sizeof(u32) * 4);
  845. v1_supported[IGC] = GRP_DSPP_HW_BLK_SELECT | GRP_VIG_HW_BLK_SELECT |
  846. GRP_DMA_HW_BLK_SELECT;
  847. if (cfg->caps->reg_dma_blks[REG_DMA_TYPE_SB].valid == true)
  848. reg_dma->ops.last_command_sb = last_cmd_sb_v2;
  849. if (cfg->caps->split_vbif_supported)
  850. ret = init_reg_dma_vbif(cfg);
  851. return ret;
  852. }
  853. int init_v3(struct sde_hw_reg_dma *cfg)
  854. {
  855. int ret = 0, i;
  856. ret = init_v2(cfg);
  857. if (ret) {
  858. DRM_ERROR("failed to initialize v12: ret %d\n", ret);
  859. return ret;
  860. }
  861. reg_dma_register_count = 0x7000;
  862. reg_dma_decode_sel = 0x18180114;
  863. reg_dma_ctl0_queue0_cmd0_offset = 0x1000;
  864. reg_dma_ctl0_queue1_cmd0_offset = 0x1000;
  865. for (i = CTL_0; i < ARRAY_SIZE(reg_dma_ctl_queue_off); i++) {
  866. reg_dma_ctl_queue_off[i] = reg_dma_ctl0_queue0_cmd0_offset * i;
  867. reg_dma_ctl_queue1_off[i] = reg_dma_ctl0_queue1_cmd0_offset * i + 8;
  868. }
  869. for (i = CTL_0; i < CTL_MAX; i++) {
  870. ctl_trigger_done_mask[i][DMA_CTL_QUEUE0] = BIT(3);
  871. ctl_trigger_done_mask[i][DMA_CTL_QUEUE1] = BIT(4);
  872. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE0] = 4096 * i + 0x44;
  873. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE1] = 4096 * i + 0x44;
  874. reg_dma_intr_0_clear_offset[i][DMA_CTL_QUEUE0] =
  875. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE0] + 4;
  876. reg_dma_intr_0_clear_offset[i][DMA_CTL_QUEUE1] =
  877. reg_dma_intr_0_status_offset[i][DMA_CTL_QUEUE1] + 4;
  878. reg_dma_ctl0_reset_offset[i][DMA_CTL_QUEUE0] = 4096 * i + 0x54;
  879. reg_dma_ctl0_reset_offset[i][DMA_CTL_QUEUE1] = 4096 * i + 0x54;
  880. }
  881. return 0;
  882. }
  883. static int check_support_v1(enum sde_reg_dma_features feature,
  884. enum sde_reg_dma_blk blk,
  885. bool *is_supported)
  886. {
  887. int ret = 0;
  888. if (!is_supported)
  889. return -EINVAL;
  890. if (feature >= REG_DMA_FEATURES_MAX
  891. || blk >= BIT_ULL(REG_DMA_BLK_MAX)) {
  892. *is_supported = false;
  893. return ret;
  894. }
  895. *is_supported = (blk & v1_supported[feature]) ? true : false;
  896. return ret;
  897. }
  898. static int setup_payload_v1(struct sde_reg_dma_setup_ops_cfg *cfg)
  899. {
  900. int rc = 0;
  901. rc = validate_dma_cfg(cfg);
  902. if (!rc)
  903. rc = validate_dma_op_params[cfg->ops](cfg);
  904. if (!rc)
  905. rc = write_dma_op_params[cfg->ops](cfg);
  906. return rc;
  907. }
  908. static int kick_off_v1(struct sde_reg_dma_kickoff_cfg *cfg)
  909. {
  910. int rc = 0;
  911. rc = validate_kick_off_v1(cfg);
  912. if (rc)
  913. return rc;
  914. rc = write_kick_off_v1(cfg);
  915. return rc;
  916. }
  917. int reset_v1(struct sde_hw_ctl *ctl)
  918. {
  919. struct sde_hw_blk_reg_map hw;
  920. u32 val, i = 0, k = 0;
  921. if (!ctl || ctl->idx > CTL_MAX) {
  922. DRM_ERROR("invalid ctl %pK ctl idx %d\n",
  923. ctl, ((ctl) ? ctl->idx : 0));
  924. return -EINVAL;
  925. }
  926. for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
  927. memset(&hw, 0, sizeof(hw));
  928. SET_UP_REG_DMA_REG(hw, reg_dma, k);
  929. if (hw.hw_rev == 0)
  930. continue;
  931. SDE_REG_WRITE(&hw, reg_dma_opmode_offset, BIT(0));
  932. SDE_REG_WRITE(&hw, reg_dma_ctl0_reset_offset[ctl->idx][k], BIT(0));
  933. i = 0;
  934. do {
  935. udelay(1000);
  936. i++;
  937. val = SDE_REG_READ(&hw, reg_dma_ctl0_reset_offset[ctl->idx][k]);
  938. } while (i < 2 && val);
  939. }
  940. return 0;
  941. }
  942. static void sde_reg_dma_aspace_cb_locked(void *cb_data, bool is_detach)
  943. {
  944. struct sde_reg_dma_buffer *dma_buf = NULL;
  945. struct msm_gem_address_space *aspace = NULL;
  946. u32 iova_aligned, offset;
  947. int rc;
  948. if (!cb_data) {
  949. DRM_ERROR("aspace cb called with invalid dma_buf\n");
  950. return;
  951. }
  952. dma_buf = (struct sde_reg_dma_buffer *)cb_data;
  953. aspace = dma_buf->aspace;
  954. if (is_detach) {
  955. /* invalidate the stored iova */
  956. dma_buf->iova = 0;
  957. /* return the virtual address mapping */
  958. msm_gem_put_vaddr(dma_buf->buf);
  959. msm_gem_vunmap(dma_buf->buf, OBJ_LOCK_NORMAL);
  960. } else {
  961. rc = msm_gem_get_iova(dma_buf->buf, aspace,
  962. &dma_buf->iova);
  963. if (rc) {
  964. DRM_ERROR("failed to get the iova rc %d\n", rc);
  965. return;
  966. }
  967. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  968. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  969. DRM_ERROR("failed to get va rc %d\n", rc);
  970. return;
  971. }
  972. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  973. offset = iova_aligned - dma_buf->iova;
  974. dma_buf->iova = dma_buf->iova + offset;
  975. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  976. dma_buf->next_op_allowed = DECODE_SEL_OP;
  977. }
  978. }
  979. static struct sde_reg_dma_buffer *alloc_reg_dma_buf_v1(u32 size)
  980. {
  981. struct sde_reg_dma_buffer *dma_buf = NULL;
  982. u32 iova_aligned, offset;
  983. u32 rsize = size + GUARD_BYTES;
  984. struct msm_gem_address_space *aspace = NULL;
  985. int rc = 0;
  986. if (!size || SIZE_DWORD(size) > MAX_DWORDS_SZ) {
  987. DRM_ERROR("invalid buffer size %lu, max %lu\n",
  988. SIZE_DWORD(size), MAX_DWORDS_SZ);
  989. return ERR_PTR(-EINVAL);
  990. }
  991. dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
  992. if (!dma_buf)
  993. return ERR_PTR(-ENOMEM);
  994. dma_buf->buf = msm_gem_new(reg_dma->drm_dev,
  995. rsize, MSM_BO_UNCACHED);
  996. if (IS_ERR_OR_NULL(dma_buf->buf)) {
  997. rc = -EINVAL;
  998. goto fail;
  999. }
  1000. aspace = msm_gem_smmu_address_space_get(reg_dma->drm_dev,
  1001. MSM_SMMU_DOMAIN_UNSECURE);
  1002. if (PTR_ERR(aspace) == -ENODEV) {
  1003. aspace = NULL;
  1004. DRM_DEBUG("IOMMU not present, relying on VRAM\n");
  1005. } else if (IS_ERR_OR_NULL(aspace)) {
  1006. rc = PTR_ERR(aspace);
  1007. aspace = NULL;
  1008. DRM_ERROR("failed to get aspace %d", rc);
  1009. goto free_gem;
  1010. } else if (aspace) {
  1011. /* register to aspace */
  1012. rc = msm_gem_address_space_register_cb(aspace,
  1013. sde_reg_dma_aspace_cb_locked,
  1014. (void *)dma_buf);
  1015. if (rc) {
  1016. DRM_ERROR("failed to register callback %d", rc);
  1017. goto free_gem;
  1018. }
  1019. }
  1020. dma_buf->aspace = aspace;
  1021. rc = msm_gem_get_iova(dma_buf->buf, aspace, &dma_buf->iova);
  1022. if (rc) {
  1023. DRM_ERROR("failed to get the iova rc %d\n", rc);
  1024. goto free_aspace_cb;
  1025. }
  1026. dma_buf->vaddr = msm_gem_get_vaddr(dma_buf->buf);
  1027. if (IS_ERR_OR_NULL(dma_buf->vaddr)) {
  1028. DRM_ERROR("failed to get va rc %d\n", rc);
  1029. rc = -EINVAL;
  1030. goto put_iova;
  1031. }
  1032. dma_buf->buffer_size = size;
  1033. iova_aligned = (dma_buf->iova + GUARD_BYTES) & ALIGNED_OFFSET;
  1034. offset = iova_aligned - dma_buf->iova;
  1035. dma_buf->iova = dma_buf->iova + offset;
  1036. dma_buf->vaddr = (void *)(((u8 *)dma_buf->vaddr) + offset);
  1037. dma_buf->next_op_allowed = DECODE_SEL_OP;
  1038. return dma_buf;
  1039. put_iova:
  1040. msm_gem_put_iova(dma_buf->buf, aspace);
  1041. free_aspace_cb:
  1042. msm_gem_address_space_unregister_cb(aspace,
  1043. sde_reg_dma_aspace_cb_locked, dma_buf);
  1044. free_gem:
  1045. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  1046. msm_gem_free_object(dma_buf->buf);
  1047. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  1048. fail:
  1049. kfree(dma_buf);
  1050. return ERR_PTR(rc);
  1051. }
  1052. static int dealloc_reg_dma_v1(struct sde_reg_dma_buffer *dma_buf)
  1053. {
  1054. if (!dma_buf) {
  1055. DRM_ERROR("invalid param reg_buf %pK\n", dma_buf);
  1056. return -EINVAL;
  1057. }
  1058. if (dma_buf->buf) {
  1059. msm_gem_put_iova(dma_buf->buf, 0);
  1060. msm_gem_address_space_unregister_cb(dma_buf->aspace,
  1061. sde_reg_dma_aspace_cb_locked, dma_buf);
  1062. mutex_lock(&reg_dma->drm_dev->struct_mutex);
  1063. msm_gem_free_object(dma_buf->buf);
  1064. mutex_unlock(&reg_dma->drm_dev->struct_mutex);
  1065. }
  1066. kfree(dma_buf);
  1067. return 0;
  1068. }
  1069. static int reset_reg_dma_buffer_v1(struct sde_reg_dma_buffer *lut_buf)
  1070. {
  1071. if (!lut_buf)
  1072. return -EINVAL;
  1073. lut_buf->index = 0;
  1074. lut_buf->ops_completed = 0;
  1075. lut_buf->next_op_allowed = DECODE_SEL_OP;
  1076. lut_buf->abs_write_cnt = 0;
  1077. return 0;
  1078. }
  1079. static int validate_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  1080. {
  1081. u32 remain_len, write_len;
  1082. remain_len = BUFFER_SPACE_LEFT(cfg);
  1083. write_len = sizeof(u32);
  1084. if (remain_len < write_len) {
  1085. DRM_ERROR("buffer is full sz %d needs %d bytes\n",
  1086. remain_len, write_len);
  1087. return -EINVAL;
  1088. }
  1089. return 0;
  1090. }
  1091. static int write_last_cmd(struct sde_reg_dma_setup_ops_cfg *cfg)
  1092. {
  1093. u32 *loc = NULL;
  1094. loc = (u32 *)((u8 *)cfg->dma_buf->vaddr +
  1095. cfg->dma_buf->index);
  1096. loc[0] = reg_dma_decode_sel;
  1097. loc[1] = 0;
  1098. cfg->dma_buf->index = sizeof(u32) * 2;
  1099. cfg->dma_buf->ops_completed = REG_WRITE_OP | DECODE_SEL_OP;
  1100. cfg->dma_buf->next_op_allowed = REG_WRITE_OP;
  1101. return 0;
  1102. }
  1103. static int last_cmd_v1(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  1104. enum sde_reg_dma_last_cmd_mode mode)
  1105. {
  1106. struct sde_reg_dma_setup_ops_cfg cfg;
  1107. struct sde_reg_dma_kickoff_cfg kick_off;
  1108. struct sde_hw_blk_reg_map hw;
  1109. u32 val;
  1110. int rc;
  1111. if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
  1112. DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
  1113. ((ctl) ? ctl->idx : -1));
  1114. return -EINVAL;
  1115. }
  1116. if (!last_cmd_buf_db[ctl->idx] || !last_cmd_buf_db[ctl->idx]->iova) {
  1117. DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
  1118. return -EINVAL;
  1119. }
  1120. cfg.dma_buf = last_cmd_buf_db[ctl->idx];
  1121. reset_reg_dma_buffer_v1(last_cmd_buf_db[ctl->idx]);
  1122. if (validate_last_cmd(&cfg)) {
  1123. DRM_ERROR("validate buf failed\n");
  1124. return -EINVAL;
  1125. }
  1126. if (write_last_cmd(&cfg)) {
  1127. DRM_ERROR("write buf failed\n");
  1128. return -EINVAL;
  1129. }
  1130. kick_off.ctl = ctl;
  1131. kick_off.queue_select = q;
  1132. kick_off.trigger_mode = WRITE_IMMEDIATE;
  1133. kick_off.last_command = 1;
  1134. kick_off.op = REG_DMA_WRITE;
  1135. kick_off.dma_type = REG_DMA_TYPE_DB;
  1136. kick_off.dma_buf = last_cmd_buf_db[ctl->idx];
  1137. kick_off.feature = REG_DMA_FEATURES_MAX;
  1138. rc = kick_off_v1(&kick_off);
  1139. if (rc) {
  1140. DRM_ERROR("kick off last cmd failed\n");
  1141. return rc;
  1142. }
  1143. //Lack of block support will be caught by kick_off
  1144. memset(&hw, 0, sizeof(hw));
  1145. SET_UP_REG_DMA_REG(hw, reg_dma, kick_off.dma_type);
  1146. SDE_EVT32(SDE_EVTLOG_FUNC_ENTRY, mode, ctl->idx, kick_off.queue_select,
  1147. kick_off.dma_type, kick_off.op);
  1148. if (mode == REG_DMA_WAIT4_COMP) {
  1149. rc = read_poll_timeout(sde_reg_read, val,
  1150. (val & ctl_trigger_done_mask[ctl->idx][q]), 10, false, 20000,
  1151. &hw, reg_dma_intr_0_status_offset[ctl->idx][q]);
  1152. if (rc)
  1153. DRM_ERROR("poll wait failed %d val %x mask %x\n",
  1154. rc, val, ctl_trigger_done_mask[ctl->idx][q]);
  1155. SDE_EVT32(SDE_EVTLOG_FUNC_EXIT, mode);
  1156. }
  1157. return rc;
  1158. }
  1159. void deinit_v1(void)
  1160. {
  1161. int i = 0;
  1162. for (i = CTL_0; i < CTL_MAX; i++) {
  1163. if (last_cmd_buf_db[i])
  1164. dealloc_reg_dma_v1(last_cmd_buf_db[i]);
  1165. last_cmd_buf_db[i] = NULL;
  1166. if (last_cmd_buf_sb[i])
  1167. dealloc_reg_dma_v1(last_cmd_buf_sb[i]);
  1168. last_cmd_buf_sb[i] = NULL;
  1169. }
  1170. }
  1171. static void dump_regs_v1(void)
  1172. {
  1173. uint32_t i = 0, k = 0;
  1174. u32 val;
  1175. struct sde_hw_blk_reg_map hw;
  1176. for (k = 0; k < REG_DMA_TYPE_MAX; k++) {
  1177. memset(&hw, 0, sizeof(hw));
  1178. SET_UP_REG_DMA_REG(hw, reg_dma, k);
  1179. if (hw.hw_rev == 0)
  1180. continue;
  1181. for (i = 0; i < reg_dma_register_count; i++) {
  1182. val = SDE_REG_READ(&hw, i * sizeof(u32));
  1183. DRM_ERROR("offset %x val %x\n", (u32)(i * sizeof(u32)),
  1184. val);
  1185. }
  1186. }
  1187. }
  1188. static int last_cmd_sb_v2(struct sde_hw_ctl *ctl, enum sde_reg_dma_queue q,
  1189. enum sde_reg_dma_last_cmd_mode mode)
  1190. {
  1191. struct sde_reg_dma_setup_ops_cfg cfg;
  1192. struct sde_reg_dma_kickoff_cfg kick_off;
  1193. int rc = 0;
  1194. if (!ctl || ctl->idx >= CTL_MAX || q >= DMA_CTL_QUEUE_MAX) {
  1195. DRM_ERROR("ctl %pK q %d index %d\n", ctl, q,
  1196. ((ctl) ? ctl->idx : -1));
  1197. return -EINVAL;
  1198. }
  1199. if (!last_cmd_buf_sb[ctl->idx] || !last_cmd_buf_sb[ctl->idx]->iova) {
  1200. DRM_ERROR("invalid last cmd buf for idx %d\n", ctl->idx);
  1201. return -EINVAL;
  1202. }
  1203. cfg.dma_buf = last_cmd_buf_sb[ctl->idx];
  1204. reset_reg_dma_buffer_v1(last_cmd_buf_sb[ctl->idx]);
  1205. if (validate_last_cmd(&cfg)) {
  1206. DRM_ERROR("validate buf failed\n");
  1207. return -EINVAL;
  1208. }
  1209. if (write_last_cmd(&cfg)) {
  1210. DRM_ERROR("write buf failed\n");
  1211. return -EINVAL;
  1212. }
  1213. kick_off.ctl = ctl;
  1214. kick_off.trigger_mode = WRITE_IMMEDIATE;
  1215. kick_off.last_command = 1;
  1216. kick_off.op = REG_DMA_WRITE;
  1217. kick_off.dma_type = REG_DMA_TYPE_SB;
  1218. kick_off.queue_select = DMA_CTL_QUEUE1;
  1219. kick_off.dma_buf = last_cmd_buf_sb[ctl->idx];
  1220. kick_off.feature = REG_DMA_FEATURES_MAX;
  1221. rc = kick_off_v1(&kick_off);
  1222. if (rc)
  1223. DRM_ERROR("kick off last cmd failed\n");
  1224. SDE_EVT32(ctl->idx, kick_off.queue_select, kick_off.dma_type,
  1225. kick_off.op);
  1226. return rc;
  1227. }