lpass-cdc-wsa-macro.c 125 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2018-2021, The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/init.h>
  7. #include <linux/io.h>
  8. #include <linux/platform_device.h>
  9. #include <linux/clk.h>
  10. #include <linux/thermal.h>
  11. #include <linux/pm_runtime.h>
  12. #include <sound/soc.h>
  13. #include <sound/soc-dapm.h>
  14. #include <sound/pcm_params.h>
  15. #include <sound/tlv.h>
  16. #include <soc/swr-common.h>
  17. #include <soc/swr-wcd.h>
  18. #include <asoc/msm-cdc-pinctrl.h>
  19. #include "lpass-cdc.h"
  20. #include "lpass-cdc-comp.h"
  21. #include "lpass-cdc-registers.h"
  22. #include "lpass-cdc-wsa-macro.h"
  23. #include "lpass-cdc-clk-rsc.h"
  24. #define AUTO_SUSPEND_DELAY 50 /* delay in msec */
  25. #define LPASS_CDC_WSA_MACRO_MAX_OFFSET 0x1000
  26. #define LPASS_CDC_WSA_MACRO_RX_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  27. SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000 |\
  28. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  29. #define LPASS_CDC_WSA_MACRO_RX_MIX_RATES (SNDRV_PCM_RATE_48000 |\
  30. SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_192000)
  31. #define LPASS_CDC_WSA_MACRO_RX_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  32. SNDRV_PCM_FMTBIT_S24_LE |\
  33. SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
  34. #define LPASS_CDC_WSA_MACRO_ECHO_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
  35. SNDRV_PCM_RATE_48000)
  36. #define LPASS_CDC_WSA_MACRO_ECHO_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
  37. SNDRV_PCM_FMTBIT_S24_LE |\
  38. SNDRV_PCM_FMTBIT_S24_3LE)
  39. #define LPASS_CDC_WSA_MACRO_CPS_RATES (48000)
  40. #define LPASS_CDC_WSA_MACRO_CPS_FORMATS (SNDRV_PCM_FMTBIT_S32_LE)
  41. #define NUM_INTERPOLATORS 2
  42. #define LPASS_CDC_WSA_MACRO_MUX_INP_SHFT 0x3
  43. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK1 0x07
  44. #define LPASS_CDC_WSA_MACRO_MUX_INP_MASK2 0x38
  45. #define LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET 0x8
  46. #define LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET 0x4
  47. #define LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET \
  48. (LPASS_CDC_WSA_COMPANDER1_CTL0 - LPASS_CDC_WSA_COMPANDER0_CTL0)
  49. #define LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET \
  50. (LPASS_CDC_WSA_SOFTCLIP1_CRC - LPASS_CDC_WSA_SOFTCLIP0_CRC)
  51. #define LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET \
  52. (LPASS_CDC_WSA_RX1_RX_PATH_CTL - LPASS_CDC_WSA_RX0_RX_PATH_CTL)
  53. #define LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET 0x10
  54. #define LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET 0x4C
  55. #define LPASS_CDC_WSA_MACRO_FS_RATE_MASK 0x0F
  56. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK 0x03
  57. #define LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK 0x18
  58. #define LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT 0x2
  59. #define LPASS_CDC_WSA_MACRO_THERMAL_MAX_STATE 11
  60. enum {
  61. LPASS_CDC_WSA_MACRO_RX0 = 0,
  62. LPASS_CDC_WSA_MACRO_RX1,
  63. LPASS_CDC_WSA_MACRO_RX_MIX,
  64. LPASS_CDC_WSA_MACRO_RX_MIX0 = LPASS_CDC_WSA_MACRO_RX_MIX,
  65. LPASS_CDC_WSA_MACRO_RX_MIX1,
  66. LPASS_CDC_WSA_MACRO_RX4,
  67. LPASS_CDC_WSA_MACRO_RX5,
  68. LPASS_CDC_WSA_MACRO_RX6,
  69. LPASS_CDC_WSA_MACRO_RX7,
  70. LPASS_CDC_WSA_MACRO_RX8,
  71. LPASS_CDC_WSA_MACRO_RX_MAX,
  72. };
  73. enum {
  74. LPASS_CDC_WSA_MACRO_TX0 = 0,
  75. LPASS_CDC_WSA_MACRO_TX1,
  76. LPASS_CDC_WSA_MACRO_TX_MAX,
  77. };
  78. enum {
  79. LPASS_CDC_WSA_MACRO_EC0_MUX = 0,
  80. LPASS_CDC_WSA_MACRO_EC1_MUX,
  81. LPASS_CDC_WSA_MACRO_EC_MUX_MAX,
  82. };
  83. enum {
  84. LPASS_CDC_WSA_MACRO_COMP1, /* SPK_L */
  85. LPASS_CDC_WSA_MACRO_COMP2, /* SPK_R */
  86. LPASS_CDC_WSA_MACRO_COMP_MAX
  87. };
  88. enum {
  89. LPASS_CDC_WSA_MACRO_SOFTCLIP0, /* RX0 */
  90. LPASS_CDC_WSA_MACRO_SOFTCLIP1, /* RX1 */
  91. LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX
  92. };
  93. enum {
  94. INTn_1_INP_SEL_ZERO = 0,
  95. INTn_1_INP_SEL_RX0,
  96. INTn_1_INP_SEL_RX1,
  97. INTn_1_INP_SEL_RX2,
  98. INTn_1_INP_SEL_RX3,
  99. INTn_1_INP_SEL_RX4,
  100. INTn_1_INP_SEL_RX5,
  101. INTn_1_INP_SEL_RX6,
  102. INTn_1_INP_SEL_RX7,
  103. INTn_1_INP_SEL_RX8,
  104. INTn_1_INP_SEL_DEC0,
  105. INTn_1_INP_SEL_DEC1,
  106. };
  107. enum {
  108. INTn_2_INP_SEL_ZERO = 0,
  109. INTn_2_INP_SEL_RX0,
  110. INTn_2_INP_SEL_RX1,
  111. INTn_2_INP_SEL_RX2,
  112. INTn_2_INP_SEL_RX3,
  113. INTn_2_INP_SEL_RX4,
  114. INTn_2_INP_SEL_RX5,
  115. INTn_2_INP_SEL_RX6,
  116. INTn_2_INP_SEL_RX7,
  117. INTn_2_INP_SEL_RX8,
  118. };
  119. enum {
  120. IDLE_DETECT,
  121. NG1,
  122. NG2,
  123. NG3,
  124. };
  125. static struct lpass_cdc_comp_setting comp_setting_table[G_MAX_DB] = {
  126. {42, 0, 42},
  127. {39, 0, 42},
  128. {36, 0, 42},
  129. {33, 0, 42},
  130. {30, 0, 42},
  131. {27, 0, 42},
  132. {24, 0, 42},
  133. {21, 0, 42},
  134. {18, 0, 42},
  135. };
  136. struct interp_sample_rate {
  137. int sample_rate;
  138. int rate_val;
  139. };
  140. /*
  141. * Structure used to update codec
  142. * register defaults after reset
  143. */
  144. struct lpass_cdc_wsa_macro_reg_mask_val {
  145. u16 reg;
  146. u8 mask;
  147. u8 val;
  148. };
  149. static struct interp_sample_rate int_prim_sample_rate_val[] = {
  150. {8000, 0x0}, /* 8K */
  151. {16000, 0x1}, /* 16K */
  152. {24000, -EINVAL},/* 24K */
  153. {32000, 0x3}, /* 32K */
  154. {48000, 0x4}, /* 48K */
  155. {96000, 0x5}, /* 96K */
  156. {192000, 0x6}, /* 192K */
  157. {384000, 0x7}, /* 384K */
  158. {44100, 0x8}, /* 44.1K */
  159. };
  160. static struct interp_sample_rate int_mix_sample_rate_val[] = {
  161. {48000, 0x4}, /* 48K */
  162. {96000, 0x5}, /* 96K */
  163. {192000, 0x6}, /* 192K */
  164. };
  165. #define LPASS_CDC_WSA_MACRO_SWR_STRING_LEN 80
  166. static int lpass_cdc_wsa_macro_core_vote(void *handle, bool enable);
  167. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  168. struct snd_pcm_hw_params *params,
  169. struct snd_soc_dai *dai);
  170. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  171. unsigned int *tx_num, unsigned int *tx_slot,
  172. unsigned int *rx_num, unsigned int *rx_slot);
  173. static int lpass_cdc_wsa_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream);
  174. #define LPASS_CDC_WSA_MACRO_VTH_TO_REG(vth) ((vth) == 0 ? 255 : (vth))
  175. /* Hold instance to soundwire platform device */
  176. struct lpass_cdc_wsa_macro_swr_ctrl_data {
  177. struct platform_device *wsa_swr_pdev;
  178. };
  179. static int lpass_cdc_wsa_macro_enable_vi_decimator(struct snd_soc_component *component);
  180. #define LPASS_CDC_WSA_MACRO_SET_VOLUME_TLV(xname, xreg, xmin, xmax, tlv_array) \
  181. { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), \
  182. .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ | \
  183. SNDRV_CTL_ELEM_ACCESS_READWRITE, \
  184. .tlv.p = (tlv_array), \
  185. .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\
  186. .put = lpass_cdc_wsa_macro_set_digital_volume, \
  187. .private_value = (unsigned long)&(struct soc_mixer_control) \
  188. {.reg = xreg, .rreg = xreg, \
  189. .min = xmin, .max = xmax, .platform_max = xmax, \
  190. .sign_bit = 7,} }
  191. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data {
  192. void *handle; /* holds codec private data */
  193. int (*read)(void *handle, int reg);
  194. int (*write)(void *handle, int reg, int val);
  195. int (*bulk_write)(void *handle, u32 *reg, u32 *val, size_t len);
  196. int (*clk)(void *handle, bool enable);
  197. int (*core_vote)(void *handle, bool enable);
  198. int (*handle_irq)(void *handle,
  199. irqreturn_t (*swrm_irq_handler)(int irq,
  200. void *data),
  201. void *swrm_handle,
  202. int action);
  203. };
  204. enum {
  205. LPASS_CDC_WSA_MACRO_AIF_INVALID = 0,
  206. LPASS_CDC_WSA_MACRO_AIF1_PB,
  207. LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  208. LPASS_CDC_WSA_MACRO_AIF_VI,
  209. LPASS_CDC_WSA_MACRO_AIF_ECHO,
  210. LPASS_CDC_WSA_MACRO_AIF_CPS,
  211. LPASS_CDC_WSA_MACRO_MAX_DAIS,
  212. };
  213. #define LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX 3
  214. /*
  215. * @dev: wsa macro device pointer
  216. * @comp_enabled: compander enable mixer value set
  217. * @ec_hq: echo HQ enable mixer value set
  218. * @prim_int_users: Users of interpolator
  219. * @wsa_mclk_users: WSA MCLK users count
  220. * @swr_clk_users: SWR clk users count
  221. * @vi_feed_value: VI sense mask
  222. * @mclk_lock: to lock mclk operations
  223. * @swr_clk_lock: to lock swr master clock operations
  224. * @swr_ctrl_data: SoundWire data structure
  225. * @swr_plat_data: Soundwire platform data
  226. * @lpass_cdc_wsa_macro_add_child_devices_work: work for adding child devices
  227. * @wsa_swr_gpio_p: used by pinctrl API
  228. * @component: codec handle
  229. * @rx_0_count: RX0 interpolation users
  230. * @rx_1_count: RX1 interpolation users
  231. * @active_ch_mask: channel mask for all AIF DAIs
  232. * @active_ch_cnt: channel count of all AIF DAIs
  233. * @rx_port_value: mixer ctl value of WSA RX MUXes
  234. * @wsa_io_base: Base address of WSA macro addr space
  235. * @wsa_sys_gain System gain value, see wsa driver
  236. * @wsa_bat_cfg Battery Configuration value, see wsa driver
  237. * @wsa_rload Resistor load value for WSA Speaker, see wsa driver
  238. */
  239. struct lpass_cdc_wsa_macro_priv {
  240. struct device *dev;
  241. int comp_enabled[LPASS_CDC_WSA_MACRO_COMP_MAX];
  242. int comp_mode[LPASS_CDC_WSA_MACRO_COMP_MAX];
  243. int ec_hq[LPASS_CDC_WSA_MACRO_RX1 + 1];
  244. u16 prim_int_users[LPASS_CDC_WSA_MACRO_RX1 + 1];
  245. u16 wsa_mclk_users;
  246. u16 swr_clk_users;
  247. bool dapm_mclk_enable;
  248. bool reset_swr;
  249. unsigned int vi_feed_value;
  250. struct mutex mclk_lock;
  251. struct mutex swr_clk_lock;
  252. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data;
  253. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data swr_plat_data;
  254. struct work_struct lpass_cdc_wsa_macro_add_child_devices_work;
  255. struct device_node *wsa_swr_gpio_p;
  256. struct snd_soc_component *component;
  257. int rx_0_count;
  258. int rx_1_count;
  259. unsigned long active_ch_mask[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  260. unsigned long active_ch_cnt[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  261. u16 bit_width[LPASS_CDC_WSA_MACRO_MAX_DAIS];
  262. int rx_port_value[LPASS_CDC_WSA_MACRO_RX_MAX];
  263. char __iomem *wsa_io_base;
  264. struct platform_device *pdev_child_devices
  265. [LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX];
  266. int child_count;
  267. int wsa_spkrrecv;
  268. int spkr_gain_offset;
  269. int spkr_mode;
  270. int is_softclip_on[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  271. int softclip_clk_users[LPASS_CDC_WSA_MACRO_SOFTCLIP_MAX];
  272. char __iomem *mclk_mode_muxsel;
  273. u16 default_clk_id;
  274. u32 pcm_rate_vi;
  275. int wsa_digital_mute_status[LPASS_CDC_WSA_MACRO_RX_MAX];
  276. u8 rx0_origin_gain;
  277. u8 rx1_origin_gain;
  278. struct thermal_cooling_device *tcdev;
  279. uint32_t thermal_cur_state;
  280. uint32_t thermal_max_state;
  281. struct work_struct lpass_cdc_wsa_macro_cooling_work;
  282. bool pbr_enable;
  283. u32 wsa_sys_gain[2 * (LPASS_CDC_WSA_MACRO_RX1 + 1)];
  284. u32 wsa_bat_cfg[LPASS_CDC_WSA_MACRO_RX1 + 1];
  285. u32 wsa_rload[LPASS_CDC_WSA_MACRO_RX1 + 1];
  286. u8 idle_detect_en;
  287. int noise_gate_mode;
  288. bool pre_dev_up;
  289. };
  290. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[];
  291. static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
  292. static const char *const rx_text[] = {
  293. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1", "RX4",
  294. "RX5", "RX6", "RX7", "RX8", "DEC0", "DEC1"
  295. };
  296. static const char *const rx_mix_text[] = {
  297. "ZERO", "RX0", "RX1", "RX_MIX0", "RX_MIX1", "RX4", "RX5", "RX6", "RX7", "RX8"
  298. };
  299. static const char *const rx_mix_ec_text[] = {
  300. "ZERO", "RX_MIX_TX0", "RX_MIX_TX1"
  301. };
  302. static const char *const rx_mux_text[] = {
  303. "ZERO", "AIF1_PB", "AIF_MIX1_PB"
  304. };
  305. static const char *const rx_sidetone_mix_text[] = {
  306. "ZERO", "SRC0"
  307. };
  308. static const char * const lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text[] = {
  309. "OFF", "ON"
  310. };
  311. static const char * const lpass_cdc_wsa_macro_comp_mode_text[] = {
  312. "G_21_DB", "G_19P5_DB", "G_18_DB", "G_16P5_DB", "G_15_DB",
  313. "G_13P5_DB", "G_12_DB", "G_10P5_DB", "G_9_DB"
  314. };
  315. static const struct snd_kcontrol_new wsa_int0_vbat_mix_switch[] = {
  316. SOC_DAPM_SINGLE("WSA RX0 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  317. };
  318. static const struct snd_kcontrol_new wsa_int1_vbat_mix_switch[] = {
  319. SOC_DAPM_SINGLE("WSA RX1 VBAT Enable", SND_SOC_NOPM, 0, 1, 0)
  320. };
  321. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  322. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_text);
  323. static SOC_ENUM_SINGLE_EXT_DECL(lpass_cdc_wsa_macro_comp_mode_enum,
  324. lpass_cdc_wsa_macro_comp_mode_text);
  325. /* RX INT0 */
  326. static const struct soc_enum rx0_prim_inp0_chain_enum =
  327. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  328. 0, 12, rx_text);
  329. static const struct soc_enum rx0_prim_inp1_chain_enum =
  330. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0,
  331. 3, 12, rx_text);
  332. static const struct soc_enum rx0_prim_inp2_chain_enum =
  333. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  334. 3, 12, rx_text);
  335. static const struct soc_enum rx0_mix_chain_enum =
  336. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1,
  337. 0, 10, rx_mix_text);
  338. static const struct soc_enum rx0_sidetone_mix_enum =
  339. SOC_ENUM_SINGLE(SND_SOC_NOPM, 0, 2, rx_sidetone_mix_text);
  340. static const struct snd_kcontrol_new rx0_prim_inp0_mux =
  341. SOC_DAPM_ENUM("WSA_RX0 INP0 Mux", rx0_prim_inp0_chain_enum);
  342. static const struct snd_kcontrol_new rx0_prim_inp1_mux =
  343. SOC_DAPM_ENUM("WSA_RX0 INP1 Mux", rx0_prim_inp1_chain_enum);
  344. static const struct snd_kcontrol_new rx0_prim_inp2_mux =
  345. SOC_DAPM_ENUM("WSA_RX0 INP2 Mux", rx0_prim_inp2_chain_enum);
  346. static const struct snd_kcontrol_new rx0_mix_mux =
  347. SOC_DAPM_ENUM("WSA_RX0 MIX Mux", rx0_mix_chain_enum);
  348. static const struct snd_kcontrol_new rx0_sidetone_mix_mux =
  349. SOC_DAPM_ENUM("WSA_RX0 SIDETONE MIX Mux", rx0_sidetone_mix_enum);
  350. /* RX INT1 */
  351. static const struct soc_enum rx1_prim_inp0_chain_enum =
  352. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  353. 0, 12, rx_text);
  354. static const struct soc_enum rx1_prim_inp1_chain_enum =
  355. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG0,
  356. 3, 12, rx_text);
  357. static const struct soc_enum rx1_prim_inp2_chain_enum =
  358. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  359. 3, 12, rx_text);
  360. static const struct soc_enum rx1_mix_chain_enum =
  361. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_INT1_CFG1,
  362. 0, 10, rx_mix_text);
  363. static const struct snd_kcontrol_new rx1_prim_inp0_mux =
  364. SOC_DAPM_ENUM("WSA_RX1 INP0 Mux", rx1_prim_inp0_chain_enum);
  365. static const struct snd_kcontrol_new rx1_prim_inp1_mux =
  366. SOC_DAPM_ENUM("WSA_RX1 INP1 Mux", rx1_prim_inp1_chain_enum);
  367. static const struct snd_kcontrol_new rx1_prim_inp2_mux =
  368. SOC_DAPM_ENUM("WSA_RX1 INP2 Mux", rx1_prim_inp2_chain_enum);
  369. static const struct snd_kcontrol_new rx1_mix_mux =
  370. SOC_DAPM_ENUM("WSA_RX1 MIX Mux", rx1_mix_chain_enum);
  371. static const struct soc_enum rx_mix_ec0_enum =
  372. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  373. 0, 3, rx_mix_ec_text);
  374. static const struct soc_enum rx_mix_ec1_enum =
  375. SOC_ENUM_SINGLE(LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  376. 3, 3, rx_mix_ec_text);
  377. static const struct snd_kcontrol_new rx_mix_ec0_mux =
  378. SOC_DAPM_ENUM("WSA RX_MIX EC0_Mux", rx_mix_ec0_enum);
  379. static const struct snd_kcontrol_new rx_mix_ec1_mux =
  380. SOC_DAPM_ENUM("WSA RX_MIX EC1_Mux", rx_mix_ec1_enum);
  381. static struct snd_soc_dai_ops lpass_cdc_wsa_macro_dai_ops = {
  382. .hw_params = lpass_cdc_wsa_macro_hw_params,
  383. .get_channel_map = lpass_cdc_wsa_macro_get_channel_map,
  384. .mute_stream = lpass_cdc_wsa_macro_mute_stream,
  385. };
  386. static struct snd_soc_dai_driver lpass_cdc_wsa_macro_dai[] = {
  387. {
  388. .name = "wsa_macro_rx1",
  389. .id = LPASS_CDC_WSA_MACRO_AIF1_PB,
  390. .playback = {
  391. .stream_name = "WSA_AIF1 Playback",
  392. .rates = LPASS_CDC_WSA_MACRO_RX_RATES,
  393. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  394. .rate_max = 384000,
  395. .rate_min = 8000,
  396. .channels_min = 1,
  397. .channels_max = 2,
  398. },
  399. .ops = &lpass_cdc_wsa_macro_dai_ops,
  400. },
  401. {
  402. .name = "wsa_macro_rx_mix",
  403. .id = LPASS_CDC_WSA_MACRO_AIF_MIX1_PB,
  404. .playback = {
  405. .stream_name = "WSA_AIF_MIX1 Playback",
  406. .rates = LPASS_CDC_WSA_MACRO_RX_MIX_RATES,
  407. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  408. .rate_max = 192000,
  409. .rate_min = 48000,
  410. .channels_min = 1,
  411. .channels_max = 2,
  412. },
  413. .ops = &lpass_cdc_wsa_macro_dai_ops,
  414. },
  415. {
  416. .name = "wsa_macro_vifeedback",
  417. .id = LPASS_CDC_WSA_MACRO_AIF_VI,
  418. .capture = {
  419. .stream_name = "WSA_AIF_VI Capture",
  420. .rates = SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_48000,
  421. .formats = LPASS_CDC_WSA_MACRO_RX_FORMATS,
  422. .rate_max = 48000,
  423. .rate_min = 8000,
  424. .channels_min = 1,
  425. .channels_max = 4,
  426. },
  427. .ops = &lpass_cdc_wsa_macro_dai_ops,
  428. },
  429. {
  430. .name = "wsa_macro_echo",
  431. .id = LPASS_CDC_WSA_MACRO_AIF_ECHO,
  432. .capture = {
  433. .stream_name = "WSA_AIF_ECHO Capture",
  434. .rates = LPASS_CDC_WSA_MACRO_ECHO_RATES,
  435. .formats = LPASS_CDC_WSA_MACRO_ECHO_FORMATS,
  436. .rate_max = 48000,
  437. .rate_min = 8000,
  438. .channels_min = 1,
  439. .channels_max = 2,
  440. },
  441. .ops = &lpass_cdc_wsa_macro_dai_ops,
  442. },
  443. {
  444. .name = "wsa_macro_cpsfeedback",
  445. .id = LPASS_CDC_WSA_MACRO_AIF_CPS,
  446. .capture = {
  447. .stream_name = "WSA_AIF_CPS Capture",
  448. .rates = LPASS_CDC_WSA_MACRO_CPS_RATES,
  449. .formats = LPASS_CDC_WSA_MACRO_CPS_FORMATS,
  450. .rate_max = 48000,
  451. .rate_min = 48000,
  452. .channels_min = 1,
  453. .channels_max = 2,
  454. },
  455. .ops = &lpass_cdc_wsa_macro_dai_ops,
  456. },
  457. };
  458. static bool lpass_cdc_wsa_macro_get_data(struct snd_soc_component *component,
  459. struct device **wsa_dev,
  460. struct lpass_cdc_wsa_macro_priv **wsa_priv,
  461. const char *func_name)
  462. {
  463. *wsa_dev = lpass_cdc_get_device_ptr(component->dev,
  464. WSA_MACRO);
  465. if (!(*wsa_dev)) {
  466. dev_err_ratelimited(component->dev,
  467. "%s: null device for macro!\n", func_name);
  468. return false;
  469. }
  470. *wsa_priv = dev_get_drvdata((*wsa_dev));
  471. if (!(*wsa_priv) || !(*wsa_priv)->component) {
  472. dev_err_ratelimited(component->dev,
  473. "%s: priv is null for macro!\n", func_name);
  474. return false;
  475. }
  476. return true;
  477. }
  478. static int lpass_cdc_wsa_macro_set_port_map(struct snd_soc_component *component,
  479. u32 usecase, u32 size, void *data)
  480. {
  481. struct device *wsa_dev = NULL;
  482. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  483. struct swrm_port_config port_cfg;
  484. int ret = 0;
  485. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  486. return -EINVAL;
  487. memset(&port_cfg, 0, sizeof(port_cfg));
  488. port_cfg.uc = usecase;
  489. port_cfg.size = size;
  490. port_cfg.params = data;
  491. if (wsa_priv->swr_ctrl_data)
  492. ret = swrm_wcd_notify(
  493. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  494. SWR_SET_PORT_MAP, &port_cfg);
  495. return ret;
  496. }
  497. static int lpass_cdc_wsa_macro_set_prim_interpolator_rate(struct snd_soc_dai *dai,
  498. u8 int_prim_fs_rate_reg_val,
  499. u32 sample_rate)
  500. {
  501. u8 int_1_mix1_inp;
  502. u32 j, port;
  503. u16 int_mux_cfg0, int_mux_cfg1;
  504. u16 int_fs_reg;
  505. u8 int_mux_cfg0_val, int_mux_cfg1_val;
  506. u8 inp0_sel, inp1_sel, inp2_sel;
  507. struct snd_soc_component *component = dai->component;
  508. struct device *wsa_dev = NULL;
  509. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  510. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  511. return -EINVAL;
  512. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  513. LPASS_CDC_WSA_MACRO_RX_MAX) {
  514. int_1_mix1_inp = port;
  515. if ((int_1_mix1_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  516. (int_1_mix1_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  517. dev_err_ratelimited(wsa_dev,
  518. "%s: Invalid RX port, Dai ID is %d\n",
  519. __func__, dai->id);
  520. return -EINVAL;
  521. }
  522. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0;
  523. /*
  524. * Loop through all interpolator MUX inputs and find out
  525. * to which interpolator input, the cdc_dma rx port
  526. * is connected
  527. */
  528. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  529. int_mux_cfg1 = int_mux_cfg0 + LPASS_CDC_WSA_MACRO_MUX_CFG1_OFFSET;
  530. int_mux_cfg0_val = snd_soc_component_read(component,
  531. int_mux_cfg0);
  532. int_mux_cfg1_val = snd_soc_component_read(component,
  533. int_mux_cfg1);
  534. inp0_sel = int_mux_cfg0_val & LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  535. inp1_sel = (int_mux_cfg0_val >>
  536. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  537. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  538. inp2_sel = (int_mux_cfg1_val >>
  539. LPASS_CDC_WSA_MACRO_MUX_INP_SHFT) &
  540. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  541. if ((inp0_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  542. (inp1_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0) ||
  543. (inp2_sel == int_1_mix1_inp + INTn_1_INP_SEL_RX0)) {
  544. int_fs_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  545. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  546. dev_dbg(wsa_dev,
  547. "%s: AIF_PB DAI(%d) connected to INT%u_1\n",
  548. __func__, dai->id, j);
  549. dev_dbg(wsa_dev,
  550. "%s: set INT%u_1 sample rate to %u\n",
  551. __func__, j, sample_rate);
  552. /* sample_rate is in Hz */
  553. snd_soc_component_update_bits(component,
  554. int_fs_reg,
  555. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  556. int_prim_fs_rate_reg_val);
  557. }
  558. int_mux_cfg0 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  559. }
  560. }
  561. return 0;
  562. }
  563. static int lpass_cdc_wsa_macro_set_mix_interpolator_rate(struct snd_soc_dai *dai,
  564. u8 int_mix_fs_rate_reg_val,
  565. u32 sample_rate)
  566. {
  567. u8 int_2_inp;
  568. u32 j, port;
  569. u16 int_mux_cfg1, int_fs_reg;
  570. u8 int_mux_cfg1_val;
  571. struct snd_soc_component *component = dai->component;
  572. struct device *wsa_dev = NULL;
  573. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  574. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  575. return -EINVAL;
  576. for_each_set_bit(port, &wsa_priv->active_ch_mask[dai->id],
  577. LPASS_CDC_WSA_MACRO_RX_MAX) {
  578. int_2_inp = port;
  579. if ((int_2_inp < LPASS_CDC_WSA_MACRO_RX0) ||
  580. (int_2_inp > LPASS_CDC_WSA_MACRO_RX_MIX1)) {
  581. dev_err_ratelimited(wsa_dev,
  582. "%s: Invalid RX port, Dai ID is %d\n",
  583. __func__, dai->id);
  584. return -EINVAL;
  585. }
  586. int_mux_cfg1 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG1;
  587. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  588. int_mux_cfg1_val = snd_soc_component_read(component,
  589. int_mux_cfg1) &
  590. LPASS_CDC_WSA_MACRO_MUX_INP_MASK1;
  591. if (int_mux_cfg1_val == int_2_inp +
  592. INTn_2_INP_SEL_RX0) {
  593. int_fs_reg =
  594. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  595. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * j;
  596. dev_dbg(wsa_dev,
  597. "%s: AIF_PB DAI(%d) connected to INT%u_2\n",
  598. __func__, dai->id, j);
  599. dev_dbg(wsa_dev,
  600. "%s: set INT%u_2 sample rate to %u\n",
  601. __func__, j, sample_rate);
  602. snd_soc_component_update_bits(component,
  603. int_fs_reg,
  604. LPASS_CDC_WSA_MACRO_FS_RATE_MASK,
  605. int_mix_fs_rate_reg_val);
  606. }
  607. int_mux_cfg1 += LPASS_CDC_WSA_MACRO_MUX_CFG_OFFSET;
  608. }
  609. }
  610. return 0;
  611. }
  612. static int lpass_cdc_wsa_macro_set_interpolator_rate(struct snd_soc_dai *dai,
  613. u32 sample_rate)
  614. {
  615. int rate_val = 0;
  616. int i, ret;
  617. /* set mixing path rate */
  618. for (i = 0; i < ARRAY_SIZE(int_mix_sample_rate_val); i++) {
  619. if (sample_rate ==
  620. int_mix_sample_rate_val[i].sample_rate) {
  621. rate_val =
  622. int_mix_sample_rate_val[i].rate_val;
  623. break;
  624. }
  625. }
  626. if ((i == ARRAY_SIZE(int_mix_sample_rate_val)) ||
  627. (rate_val < 0))
  628. goto prim_rate;
  629. ret = lpass_cdc_wsa_macro_set_mix_interpolator_rate(dai,
  630. (u8) rate_val, sample_rate);
  631. prim_rate:
  632. /* set primary path sample rate */
  633. for (i = 0; i < ARRAY_SIZE(int_prim_sample_rate_val); i++) {
  634. if (sample_rate ==
  635. int_prim_sample_rate_val[i].sample_rate) {
  636. rate_val =
  637. int_prim_sample_rate_val[i].rate_val;
  638. break;
  639. }
  640. }
  641. if ((i == ARRAY_SIZE(int_prim_sample_rate_val)) ||
  642. (rate_val < 0))
  643. return -EINVAL;
  644. ret = lpass_cdc_wsa_macro_set_prim_interpolator_rate(dai,
  645. (u8) rate_val, sample_rate);
  646. return ret;
  647. }
  648. static int lpass_cdc_wsa_macro_hw_params(struct snd_pcm_substream *substream,
  649. struct snd_pcm_hw_params *params,
  650. struct snd_soc_dai *dai)
  651. {
  652. struct snd_soc_component *component = dai->component;
  653. int ret;
  654. struct device *wsa_dev = NULL;
  655. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  656. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  657. return -EINVAL;
  658. wsa_priv = dev_get_drvdata(wsa_dev);
  659. if (!wsa_priv)
  660. return -EINVAL;
  661. dev_dbg(component->dev,
  662. "%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
  663. dai->name, dai->id, params_rate(params),
  664. params_channels(params));
  665. switch (substream->stream) {
  666. case SNDRV_PCM_STREAM_PLAYBACK:
  667. ret = lpass_cdc_wsa_macro_set_interpolator_rate(dai, params_rate(params));
  668. if (ret) {
  669. dev_err_ratelimited(component->dev,
  670. "%s: cannot set sample rate: %u\n",
  671. __func__, params_rate(params));
  672. return ret;
  673. }
  674. switch (params_width(params)) {
  675. case 16:
  676. wsa_priv->bit_width[dai->id] = 16;
  677. break;
  678. case 24:
  679. wsa_priv->bit_width[dai->id] = 24;
  680. break;
  681. case 32:
  682. wsa_priv->bit_width[dai->id] = 32;
  683. break;
  684. default:
  685. dev_err_ratelimited(component->dev, "%s: Invalid format 0x%x\n",
  686. __func__, params_width(params));
  687. return -EINVAL;
  688. }
  689. break;
  690. case SNDRV_PCM_STREAM_CAPTURE:
  691. if (dai->id == LPASS_CDC_WSA_MACRO_AIF_VI)
  692. wsa_priv->pcm_rate_vi = params_rate(params);
  693. switch (params_width(params)) {
  694. case 16:
  695. wsa_priv->bit_width[dai->id] = 16;
  696. break;
  697. case 24:
  698. wsa_priv->bit_width[dai->id] = 24;
  699. break;
  700. case 32:
  701. wsa_priv->bit_width[dai->id] = 32;
  702. break;
  703. default:
  704. dev_err_ratelimited(component->dev, "%s: Invalid format 0x%x\n",
  705. __func__, params_width(params));
  706. return -EINVAL;
  707. }
  708. default:
  709. break;
  710. }
  711. return 0;
  712. }
  713. static int lpass_cdc_wsa_macro_get_channel_map(struct snd_soc_dai *dai,
  714. unsigned int *tx_num, unsigned int *tx_slot,
  715. unsigned int *rx_num, unsigned int *rx_slot)
  716. {
  717. struct snd_soc_component *component = dai->component;
  718. struct device *wsa_dev = NULL;
  719. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  720. u16 val = 0, mask = 0, cnt = 0, temp = 0;
  721. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  722. return -EINVAL;
  723. wsa_priv = dev_get_drvdata(wsa_dev);
  724. if (!wsa_priv)
  725. return -EINVAL;
  726. switch (dai->id) {
  727. case LPASS_CDC_WSA_MACRO_AIF_VI:
  728. for_each_set_bit(temp, &wsa_priv->active_ch_mask[dai->id],
  729. LPASS_CDC_WSA_MACRO_TX_MAX) {
  730. mask |= (1 << temp);
  731. if (++cnt == LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT)
  732. break;
  733. }
  734. if (mask & 0x0C)
  735. mask = mask >> 0x2;
  736. *tx_slot = mask;
  737. *tx_num = cnt;
  738. break;
  739. case LPASS_CDC_WSA_MACRO_AIF_CPS:
  740. *tx_slot = wsa_priv->active_ch_mask[dai->id];
  741. *tx_num = wsa_priv->active_ch_cnt[dai->id];
  742. break;
  743. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  744. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  745. for_each_set_bit(temp, &wsa_priv->active_ch_mask[dai->id],
  746. LPASS_CDC_WSA_MACRO_RX_MAX) {
  747. mask |= (1 << temp);
  748. if (++cnt == LPASS_CDC_WSA_MACRO_MAX_DMA_CH_PER_PORT)
  749. break;
  750. }
  751. if (mask & 0x0C)
  752. mask = mask >> 0x2;
  753. *rx_slot = mask;
  754. *rx_num = cnt;
  755. break;
  756. case LPASS_CDC_WSA_MACRO_AIF_ECHO:
  757. val = snd_soc_component_read(component,
  758. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  759. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX1_MASK) {
  760. mask |= 0x2;
  761. cnt++;
  762. }
  763. if (val & LPASS_CDC_WSA_MACRO_EC_MIX_TX0_MASK) {
  764. mask |= 0x1;
  765. cnt++;
  766. }
  767. *tx_slot = mask;
  768. *tx_num = cnt;
  769. break;
  770. default:
  771. dev_err_ratelimited(wsa_dev, "%s: Invalid AIF\n", __func__);
  772. break;
  773. }
  774. return 0;
  775. }
  776. static void lpass_cdc_wsa_unmute_interpolator(struct snd_soc_dai *dai)
  777. {
  778. struct snd_soc_component *component = dai->component;
  779. uint16_t j = 0, reg = 0, mix_reg = 0;
  780. switch (dai->id) {
  781. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  782. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  783. for (j = 0; j < NUM_INTERPOLATORS; ++j) {
  784. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  785. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  786. mix_reg = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  787. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  788. snd_soc_component_update_bits(component, reg, 0x10, 0x00);
  789. snd_soc_component_update_bits(component, mix_reg, 0x10, 0x00);
  790. }
  791. }
  792. }
  793. static int lpass_cdc_wsa_macro_mute_stream(struct snd_soc_dai *dai, int mute, int stream)
  794. {
  795. struct snd_soc_component *component = dai->component;
  796. struct device *wsa_dev = NULL;
  797. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  798. uint16_t j = 0, reg = 0, mix_reg = 0, dsm_reg = 0;
  799. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  800. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  801. bool adie_lb = false;
  802. if (mute)
  803. return 0;
  804. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  805. return -EINVAL;
  806. switch (dai->id) {
  807. case LPASS_CDC_WSA_MACRO_AIF1_PB:
  808. case LPASS_CDC_WSA_MACRO_AIF_MIX1_PB:
  809. for (j = 0; j < NUM_INTERPOLATORS; j++) {
  810. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  811. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  812. mix_reg = LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL +
  813. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  814. dsm_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  815. (j * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET) +
  816. LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET;
  817. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + j * 8;
  818. int_mux_cfg1 = int_mux_cfg0 + 4;
  819. int_mux_cfg0_val = snd_soc_component_read(component,
  820. int_mux_cfg0);
  821. int_mux_cfg1_val = snd_soc_component_read(component,
  822. int_mux_cfg1);
  823. if (snd_soc_component_read(component, dsm_reg) & 0x01) {
  824. if (int_mux_cfg0_val || (int_mux_cfg1_val & 0x38))
  825. snd_soc_component_update_bits(component, reg,
  826. 0x20, 0x20);
  827. if (int_mux_cfg1_val & 0x07) {
  828. snd_soc_component_update_bits(component, reg,
  829. 0x20, 0x20);
  830. snd_soc_component_update_bits(component,
  831. mix_reg, 0x20, 0x20);
  832. }
  833. }
  834. }
  835. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  836. lpass_cdc_wsa_unmute_interpolator(dai);
  837. lpass_cdc_wsa_macro_enable_vi_decimator(component);
  838. break;
  839. default:
  840. break;
  841. }
  842. return 0;
  843. }
  844. static int lpass_cdc_wsa_macro_mclk_enable(
  845. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  846. bool mclk_enable, bool dapm)
  847. {
  848. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  849. int ret = 0;
  850. if (regmap == NULL) {
  851. dev_err_ratelimited(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  852. return -EINVAL;
  853. }
  854. dev_dbg(wsa_priv->dev, "%s: mclk_enable = %u, dapm = %d clk_users= %d\n",
  855. __func__, mclk_enable, dapm, wsa_priv->wsa_mclk_users);
  856. mutex_lock(&wsa_priv->mclk_lock);
  857. if (mclk_enable) {
  858. if (wsa_priv->wsa_mclk_users == 0) {
  859. ret = lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  860. wsa_priv->default_clk_id,
  861. wsa_priv->default_clk_id,
  862. true);
  863. if (ret < 0) {
  864. dev_err_ratelimited(wsa_priv->dev,
  865. "%s: wsa request clock enable failed\n",
  866. __func__);
  867. goto exit;
  868. }
  869. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  870. true);
  871. regcache_mark_dirty(regmap);
  872. regcache_sync_region(regmap,
  873. WSA_START_OFFSET,
  874. WSA_MAX_OFFSET);
  875. /* 9.6MHz MCLK, set value 0x00 if other frequency */
  876. regmap_update_bits(regmap,
  877. LPASS_CDC_WSA_TOP_FREQ_MCLK, 0x01, 0x01);
  878. regmap_update_bits(regmap,
  879. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  880. 0x01, 0x01);
  881. regmap_update_bits(regmap,
  882. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  883. 0x01, 0x01);
  884. }
  885. wsa_priv->wsa_mclk_users++;
  886. } else {
  887. if (wsa_priv->wsa_mclk_users <= 0) {
  888. dev_err_ratelimited(wsa_priv->dev, "%s: clock already disabled\n",
  889. __func__);
  890. wsa_priv->wsa_mclk_users = 0;
  891. goto exit;
  892. }
  893. wsa_priv->wsa_mclk_users--;
  894. if (wsa_priv->wsa_mclk_users == 0) {
  895. regmap_update_bits(regmap,
  896. LPASS_CDC_WSA_CLK_RST_CTRL_FS_CNT_CONTROL,
  897. 0x01, 0x00);
  898. regmap_update_bits(regmap,
  899. LPASS_CDC_WSA_CLK_RST_CTRL_MCLK_CONTROL,
  900. 0x01, 0x00);
  901. lpass_cdc_clk_rsc_fs_gen_request(wsa_priv->dev,
  902. false);
  903. lpass_cdc_clk_rsc_request_clock(wsa_priv->dev,
  904. wsa_priv->default_clk_id,
  905. wsa_priv->default_clk_id,
  906. false);
  907. }
  908. }
  909. exit:
  910. mutex_unlock(&wsa_priv->mclk_lock);
  911. return ret;
  912. }
  913. static int lpass_cdc_wsa_macro_mclk_event(struct snd_soc_dapm_widget *w,
  914. struct snd_kcontrol *kcontrol, int event)
  915. {
  916. struct snd_soc_component *component =
  917. snd_soc_dapm_to_component(w->dapm);
  918. int ret = 0;
  919. struct device *wsa_dev = NULL;
  920. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  921. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  922. return -EINVAL;
  923. dev_dbg(wsa_dev, "%s: event = %d\n", __func__, event);
  924. switch (event) {
  925. case SND_SOC_DAPM_PRE_PMU:
  926. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  927. if (ret)
  928. wsa_priv->dapm_mclk_enable = false;
  929. else
  930. wsa_priv->dapm_mclk_enable = true;
  931. break;
  932. case SND_SOC_DAPM_POST_PMD:
  933. if (wsa_priv->dapm_mclk_enable) {
  934. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  935. wsa_priv->dapm_mclk_enable = false;
  936. }
  937. break;
  938. default:
  939. dev_err_ratelimited(wsa_priv->dev,
  940. "%s: invalid DAPM event %d\n", __func__, event);
  941. ret = -EINVAL;
  942. }
  943. return ret;
  944. }
  945. static int lpass_cdc_wsa_macro_event_handler(struct snd_soc_component *component,
  946. u16 event, u32 data)
  947. {
  948. struct device *wsa_dev = NULL;
  949. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  950. int ret = 0;
  951. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  952. return -EINVAL;
  953. switch (event) {
  954. case LPASS_CDC_MACRO_EVT_SSR_DOWN:
  955. wsa_priv->pre_dev_up = false;
  956. trace_printk("%s, enter SSR down\n", __func__);
  957. if (wsa_priv->swr_ctrl_data) {
  958. swrm_wcd_notify(
  959. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  960. SWR_DEVICE_SSR_DOWN, NULL);
  961. }
  962. if ((!pm_runtime_enabled(wsa_dev) ||
  963. !pm_runtime_suspended(wsa_dev))) {
  964. ret = lpass_cdc_runtime_suspend(wsa_dev);
  965. if (!ret) {
  966. pm_runtime_disable(wsa_dev);
  967. pm_runtime_set_suspended(wsa_dev);
  968. pm_runtime_enable(wsa_dev);
  969. }
  970. }
  971. break;
  972. case LPASS_CDC_MACRO_EVT_PRE_SSR_UP:
  973. break;
  974. case LPASS_CDC_MACRO_EVT_SSR_UP:
  975. trace_printk("%s, enter SSR up\n", __func__);
  976. wsa_priv->pre_dev_up = true;
  977. /* reset swr after ssr/pdr */
  978. wsa_priv->reset_swr = true;
  979. if (wsa_priv->swr_ctrl_data)
  980. swrm_wcd_notify(
  981. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  982. SWR_DEVICE_SSR_UP, NULL);
  983. break;
  984. case LPASS_CDC_MACRO_EVT_CLK_RESET:
  985. lpass_cdc_rsc_clk_reset(wsa_dev, WSA_CORE_CLK);
  986. lpass_cdc_rsc_clk_reset(wsa_dev, WSA_TX_CORE_CLK);
  987. break;
  988. }
  989. return 0;
  990. }
  991. static int lpass_cdc_wsa_macro_enable_vi_decimator(struct snd_soc_component *component)
  992. {
  993. struct device *wsa_dev = NULL;
  994. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  995. u8 val = 0x0;
  996. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  997. return -EINVAL;
  998. usleep_range(5000, 5500);
  999. dev_dbg(wsa_dev, "%s: wsa_priv->pcm_rate_vi %d\n", __func__, wsa_priv->pcm_rate_vi);
  1000. switch (wsa_priv->pcm_rate_vi) {
  1001. case 48000:
  1002. val = 0x04;
  1003. break;
  1004. case 24000:
  1005. val = 0x02;
  1006. break;
  1007. case 8000:
  1008. default:
  1009. val = 0x00;
  1010. break;
  1011. }
  1012. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  1013. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1014. dev_dbg(wsa_dev, "%s: spkr1 enabled\n", __func__);
  1015. /* Enable V&I sensing */
  1016. snd_soc_component_update_bits(component,
  1017. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1018. 0x20, 0x20);
  1019. snd_soc_component_update_bits(component,
  1020. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1021. 0x20, 0x20);
  1022. snd_soc_component_update_bits(component,
  1023. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1024. 0x0F, val);
  1025. snd_soc_component_update_bits(component,
  1026. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1027. 0x0F, val);
  1028. snd_soc_component_update_bits(component,
  1029. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1030. 0x10, 0x10);
  1031. snd_soc_component_update_bits(component,
  1032. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1033. 0x10, 0x10);
  1034. snd_soc_component_update_bits(component,
  1035. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1036. 0x20, 0x00);
  1037. snd_soc_component_update_bits(component,
  1038. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1039. 0x20, 0x00);
  1040. }
  1041. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  1042. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1043. dev_dbg(wsa_dev, "%s: spkr2 enabled\n", __func__);
  1044. /* Enable V&I sensing */
  1045. snd_soc_component_update_bits(component,
  1046. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1047. 0x20, 0x20);
  1048. snd_soc_component_update_bits(component,
  1049. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1050. 0x20, 0x20);
  1051. snd_soc_component_update_bits(component,
  1052. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1053. 0x0F, val);
  1054. snd_soc_component_update_bits(component,
  1055. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1056. 0x0F, val);
  1057. snd_soc_component_update_bits(component,
  1058. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1059. 0x10, 0x10);
  1060. snd_soc_component_update_bits(component,
  1061. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1062. 0x10, 0x10);
  1063. snd_soc_component_update_bits(component,
  1064. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1065. 0x20, 0x00);
  1066. snd_soc_component_update_bits(component,
  1067. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1068. 0x20, 0x00);
  1069. }
  1070. return 0;
  1071. }
  1072. static int lpass_cdc_wsa_macro_disable_vi_feedback(struct snd_soc_dapm_widget *w,
  1073. struct snd_kcontrol *kcontrol,
  1074. int event)
  1075. {
  1076. struct snd_soc_component *component =
  1077. snd_soc_dapm_to_component(w->dapm);
  1078. struct device *wsa_dev = NULL;
  1079. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1080. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1081. return -EINVAL;
  1082. switch (event) {
  1083. case SND_SOC_DAPM_POST_PMD:
  1084. if (test_bit(LPASS_CDC_WSA_MACRO_TX0,
  1085. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1086. /* Disable V&I sensing */
  1087. snd_soc_component_update_bits(component,
  1088. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1089. 0x20, 0x20);
  1090. snd_soc_component_update_bits(component,
  1091. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1092. 0x20, 0x20);
  1093. dev_dbg(wsa_dev, "%s: spkr1 disabled\n", __func__);
  1094. snd_soc_component_update_bits(component,
  1095. LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CTL,
  1096. 0x10, 0x00);
  1097. snd_soc_component_update_bits(component,
  1098. LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CTL,
  1099. 0x10, 0x00);
  1100. }
  1101. if (test_bit(LPASS_CDC_WSA_MACRO_TX1,
  1102. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  1103. /* Disable V&I sensing */
  1104. dev_dbg(wsa_dev, "%s: spkr2 disabled\n", __func__);
  1105. snd_soc_component_update_bits(component,
  1106. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1107. 0x20, 0x20);
  1108. snd_soc_component_update_bits(component,
  1109. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1110. 0x20, 0x20);
  1111. snd_soc_component_update_bits(component,
  1112. LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CTL,
  1113. 0x10, 0x00);
  1114. snd_soc_component_update_bits(component,
  1115. LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CTL,
  1116. 0x10, 0x00);
  1117. }
  1118. break;
  1119. }
  1120. return 0;
  1121. }
  1122. static void lpass_cdc_wsa_macro_hd2_control(struct snd_soc_component *component,
  1123. u16 reg, int event)
  1124. {
  1125. u16 hd2_scale_reg;
  1126. u16 hd2_enable_reg = 0;
  1127. if (reg == LPASS_CDC_WSA_RX0_RX_PATH_CTL) {
  1128. hd2_scale_reg = LPASS_CDC_WSA_RX0_RX_PATH_SEC3;
  1129. hd2_enable_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0;
  1130. }
  1131. if (reg == LPASS_CDC_WSA_RX1_RX_PATH_CTL) {
  1132. hd2_scale_reg = LPASS_CDC_WSA_RX1_RX_PATH_SEC3;
  1133. hd2_enable_reg = LPASS_CDC_WSA_RX1_RX_PATH_CFG0;
  1134. }
  1135. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1136. snd_soc_component_update_bits(component, hd2_scale_reg,
  1137. 0x3C, 0x10);
  1138. snd_soc_component_update_bits(component, hd2_scale_reg,
  1139. 0x03, 0x01);
  1140. snd_soc_component_update_bits(component, hd2_enable_reg,
  1141. 0x04, 0x04);
  1142. }
  1143. if (hd2_enable_reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1144. snd_soc_component_update_bits(component, hd2_enable_reg,
  1145. 0x04, 0x00);
  1146. snd_soc_component_update_bits(component, hd2_scale_reg,
  1147. 0x03, 0x00);
  1148. snd_soc_component_update_bits(component, hd2_scale_reg,
  1149. 0x3C, 0x00);
  1150. }
  1151. }
  1152. static int lpass_cdc_wsa_macro_enable_swr(struct snd_soc_dapm_widget *w,
  1153. struct snd_kcontrol *kcontrol, int event)
  1154. {
  1155. struct snd_soc_component *component =
  1156. snd_soc_dapm_to_component(w->dapm);
  1157. int ch_cnt;
  1158. struct device *wsa_dev = NULL;
  1159. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1160. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1161. return -EINVAL;
  1162. switch (event) {
  1163. case SND_SOC_DAPM_PRE_PMU:
  1164. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1165. !wsa_priv->rx_0_count)
  1166. wsa_priv->rx_0_count++;
  1167. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1168. !wsa_priv->rx_1_count)
  1169. wsa_priv->rx_1_count++;
  1170. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1171. if (wsa_priv->swr_ctrl_data) {
  1172. swrm_wcd_notify(
  1173. wsa_priv->swr_ctrl_data[0].wsa_swr_pdev,
  1174. SWR_DEVICE_UP, NULL);
  1175. }
  1176. break;
  1177. case SND_SOC_DAPM_POST_PMD:
  1178. if (!(strnstr(w->name, "RX0", sizeof("WSA_RX0"))) &&
  1179. wsa_priv->rx_0_count)
  1180. wsa_priv->rx_0_count--;
  1181. if (!(strnstr(w->name, "RX1", sizeof("WSA_RX1"))) &&
  1182. wsa_priv->rx_1_count)
  1183. wsa_priv->rx_1_count--;
  1184. ch_cnt = wsa_priv->rx_0_count + wsa_priv->rx_1_count;
  1185. break;
  1186. }
  1187. dev_dbg(wsa_priv->dev, "%s: current swr ch cnt: %d\n",
  1188. __func__, wsa_priv->rx_0_count + wsa_priv->rx_1_count);
  1189. return 0;
  1190. }
  1191. static int lpass_cdc_wsa_macro_enable_mix_path(struct snd_soc_dapm_widget *w,
  1192. struct snd_kcontrol *kcontrol, int event)
  1193. {
  1194. struct snd_soc_component *component =
  1195. snd_soc_dapm_to_component(w->dapm);
  1196. u16 gain_reg;
  1197. int offset_val = 0;
  1198. int val = 0;
  1199. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1200. if (!(strcmp(w->name, "WSA_RX0 MIX INP"))) {
  1201. gain_reg = LPASS_CDC_WSA_RX0_RX_VOL_MIX_CTL;
  1202. } else if (!(strcmp(w->name, "WSA_RX1 MIX INP"))) {
  1203. gain_reg = LPASS_CDC_WSA_RX1_RX_VOL_MIX_CTL;
  1204. } else {
  1205. dev_err_ratelimited(component->dev, "%s: No gain register avail for %s\n",
  1206. __func__, w->name);
  1207. return 0;
  1208. }
  1209. switch (event) {
  1210. case SND_SOC_DAPM_PRE_PMU:
  1211. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1212. val = snd_soc_component_read(component, gain_reg);
  1213. val += offset_val;
  1214. snd_soc_component_write(component, gain_reg, val);
  1215. break;
  1216. case SND_SOC_DAPM_POST_PMD:
  1217. snd_soc_component_update_bits(component,
  1218. w->reg, 0x20, 0x00);
  1219. lpass_cdc_wsa_macro_enable_swr(w, kcontrol, event);
  1220. break;
  1221. }
  1222. return 0;
  1223. }
  1224. static int lpass_cdc_wsa_macro_config_compander(struct snd_soc_component *component,
  1225. int comp, int event)
  1226. {
  1227. u16 comp_ctl0_reg, comp_ctl8_reg, rx_path_cfg0_reg;
  1228. struct device *wsa_dev = NULL;
  1229. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1230. struct lpass_cdc_comp_setting *comp_settings = NULL;
  1231. u16 mode = 0;
  1232. int sys_gain, bat_cfg, sys_gain_int, upper_gain, lower_gain;
  1233. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1234. return -EINVAL;
  1235. if (comp >= LPASS_CDC_WSA_MACRO_COMP_MAX) {
  1236. dev_err(component->dev, "%s: Invalid compander value: %d\n",
  1237. __func__, comp);
  1238. return -EINVAL;
  1239. }
  1240. dev_dbg(component->dev, "%s: event %d compander %d, enabled %d\n",
  1241. __func__, event, comp + 1, wsa_priv->comp_enabled[comp]);
  1242. if (!wsa_priv->comp_enabled[comp])
  1243. return 0;
  1244. mode = wsa_priv->comp_mode[comp];
  1245. comp_ctl0_reg = LPASS_CDC_WSA_COMPANDER0_CTL0 +
  1246. (comp * LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET);
  1247. comp_ctl8_reg = LPASS_CDC_WSA_COMPANDER0_CTL8 +
  1248. (comp * LPASS_CDC_WSA_MACRO_RX_COMP_OFFSET);
  1249. rx_path_cfg0_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG0 +
  1250. (comp * LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET);
  1251. comp_settings = &comp_setting_table[mode];
  1252. /* If System has battery configuration */
  1253. if (wsa_priv->wsa_bat_cfg[comp]) {
  1254. sys_gain = wsa_priv->wsa_sys_gain[comp * 2 + wsa_priv->wsa_spkrrecv];
  1255. bat_cfg = wsa_priv->wsa_bat_cfg[comp];
  1256. /* Convert enum to value and
  1257. * multiply all values by 10 to avoid float
  1258. */
  1259. sys_gain_int = -15 * sys_gain + 210;
  1260. switch (bat_cfg) {
  1261. case CONFIG_1S:
  1262. case EXT_1S:
  1263. if (sys_gain > G_13P5_DB) {
  1264. upper_gain = sys_gain_int + 60;
  1265. lower_gain = 0;
  1266. } else {
  1267. upper_gain = 210;
  1268. lower_gain = 0;
  1269. }
  1270. break;
  1271. case CONFIG_3S:
  1272. case EXT_3S:
  1273. upper_gain = sys_gain_int;
  1274. lower_gain = 75;
  1275. case EXT_ABOVE_3S:
  1276. upper_gain = sys_gain_int;
  1277. lower_gain = 120;
  1278. break;
  1279. default:
  1280. upper_gain = sys_gain_int;
  1281. lower_gain = 0;
  1282. break;
  1283. }
  1284. /* Truncate after calculation */
  1285. comp_settings->lower_gain_int = (lower_gain * 2) / 10;
  1286. comp_settings->upper_gain_int = (upper_gain * 2) / 10;
  1287. }
  1288. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1289. lpass_cdc_update_compander_setting(component,
  1290. comp_ctl8_reg,
  1291. comp_settings);
  1292. /* Enable Compander Clock */
  1293. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1294. 0x01, 0x01);
  1295. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1296. 0x02, 0x02);
  1297. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1298. 0x02, 0x00);
  1299. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1300. 0x02, 0x02);
  1301. }
  1302. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1303. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1304. 0x04, 0x04);
  1305. snd_soc_component_update_bits(component, rx_path_cfg0_reg,
  1306. 0x02, 0x00);
  1307. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1308. 0x02, 0x02);
  1309. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1310. 0x02, 0x00);
  1311. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1312. 0x01, 0x00);
  1313. snd_soc_component_update_bits(component, comp_ctl0_reg,
  1314. 0x04, 0x00);
  1315. }
  1316. return 0;
  1317. }
  1318. static void lpass_cdc_wsa_macro_enable_softclip_clk(struct snd_soc_component *component,
  1319. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  1320. int path,
  1321. bool enable)
  1322. {
  1323. u16 softclip_clk_reg = LPASS_CDC_WSA_SOFTCLIP0_CRC +
  1324. (path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1325. u8 softclip_mux_mask = (1 << path);
  1326. u8 softclip_mux_value = (1 << path);
  1327. dev_dbg(component->dev, "%s: path %d, enable %d\n",
  1328. __func__, path, enable);
  1329. if (enable) {
  1330. if (wsa_priv->softclip_clk_users[path] == 0) {
  1331. snd_soc_component_update_bits(component,
  1332. softclip_clk_reg, 0x01, 0x01);
  1333. snd_soc_component_update_bits(component,
  1334. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1335. softclip_mux_mask, softclip_mux_value);
  1336. }
  1337. wsa_priv->softclip_clk_users[path]++;
  1338. } else {
  1339. wsa_priv->softclip_clk_users[path]--;
  1340. if (wsa_priv->softclip_clk_users[path] == 0) {
  1341. snd_soc_component_update_bits(component,
  1342. softclip_clk_reg, 0x01, 0x00);
  1343. snd_soc_component_update_bits(component,
  1344. LPASS_CDC_WSA_RX_INP_MUX_SOFTCLIP_CFG0,
  1345. softclip_mux_mask, 0x00);
  1346. }
  1347. }
  1348. }
  1349. static int lpass_cdc_wsa_macro_config_softclip(struct snd_soc_component *component,
  1350. int path, int event)
  1351. {
  1352. u16 softclip_ctrl_reg = 0;
  1353. struct device *wsa_dev = NULL;
  1354. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1355. int softclip_path = 0;
  1356. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1357. return -EINVAL;
  1358. if (path == LPASS_CDC_WSA_MACRO_COMP1)
  1359. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1360. else if (path == LPASS_CDC_WSA_MACRO_COMP2)
  1361. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1362. dev_dbg(component->dev, "%s: event %d path %d, enabled %d\n",
  1363. __func__, event, softclip_path,
  1364. wsa_priv->is_softclip_on[softclip_path]);
  1365. if (!wsa_priv->is_softclip_on[softclip_path])
  1366. return 0;
  1367. softclip_ctrl_reg = LPASS_CDC_WSA_SOFTCLIP0_SOFTCLIP_CTRL +
  1368. (softclip_path * LPASS_CDC_WSA_MACRO_RX_SOFTCLIP_OFFSET);
  1369. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1370. /* Enable Softclip clock and mux */
  1371. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1372. softclip_path, true);
  1373. /* Enable Softclip control */
  1374. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1375. 0x01, 0x01);
  1376. }
  1377. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1378. snd_soc_component_update_bits(component, softclip_ctrl_reg,
  1379. 0x01, 0x00);
  1380. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1381. softclip_path, false);
  1382. }
  1383. return 0;
  1384. }
  1385. static int lpass_cdc_was_macro_config_pbr(struct snd_soc_component *component,
  1386. int path, int event)
  1387. {
  1388. struct device *wsa_dev = NULL;
  1389. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1390. u16 reg1 = 0, reg2 = 0, reg3 = 0;
  1391. int softclip_path = 0;
  1392. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1393. return -EINVAL;
  1394. if (path == LPASS_CDC_WSA_MACRO_COMP1) {
  1395. reg1 = LPASS_CDC_WSA_COMPANDER0_CTL0;
  1396. reg2 = LPASS_CDC_WSA_RX0_RX_PATH_CFG3;
  1397. reg3 = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1398. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1399. } else if (path == LPASS_CDC_WSA_MACRO_COMP2) {
  1400. reg1 = LPASS_CDC_WSA_COMPANDER1_CTL0;
  1401. reg2 = LPASS_CDC_WSA_RX1_RX_PATH_CFG3;
  1402. reg3 = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1403. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1404. }
  1405. if (!wsa_priv->pbr_enable || wsa_priv->wsa_bat_cfg[path] >= EXT_1S ||
  1406. wsa_priv->wsa_sys_gain[path * 2] > G_12_DB ||
  1407. wsa_priv->wsa_spkrrecv || !reg1 || !reg2 || !reg3)
  1408. return 0;
  1409. if (SND_SOC_DAPM_EVENT_ON(event)) {
  1410. snd_soc_component_update_bits(component,
  1411. reg1, 0x08, 0x08);
  1412. snd_soc_component_update_bits(component,
  1413. reg2, 0x40, 0x40);
  1414. snd_soc_component_update_bits(component,
  1415. reg3, 0x80, 0x80);
  1416. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1417. softclip_path, true);
  1418. snd_soc_component_update_bits(component,
  1419. LPASS_CDC_WSA_PBR_PATH_CTL,
  1420. 0x01, 0x01);
  1421. }
  1422. if (SND_SOC_DAPM_EVENT_OFF(event)) {
  1423. snd_soc_component_update_bits(component,
  1424. LPASS_CDC_WSA_PBR_PATH_CTL,
  1425. 0x01, 0x00);
  1426. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1427. softclip_path, false);
  1428. snd_soc_component_update_bits(component,
  1429. reg1, 0x08, 0x00);
  1430. snd_soc_component_update_bits(component,
  1431. reg2, 0x40, 0x00);
  1432. snd_soc_component_update_bits(component,
  1433. reg3, 0x80, 0x00);
  1434. }
  1435. return 0;
  1436. }
  1437. static bool lpass_cdc_wsa_macro_adie_lb(struct snd_soc_component *component,
  1438. int interp_idx)
  1439. {
  1440. u16 int_mux_cfg0 = 0, int_mux_cfg1 = 0;
  1441. u8 int_mux_cfg0_val = 0, int_mux_cfg1_val = 0;
  1442. u8 int_n_inp0 = 0, int_n_inp1 = 0, int_n_inp2 = 0;
  1443. int_mux_cfg0 = LPASS_CDC_WSA_RX_INP_MUX_RX_INT0_CFG0 + interp_idx * 8;
  1444. int_mux_cfg1 = int_mux_cfg0 + 4;
  1445. int_mux_cfg0_val = snd_soc_component_read(component, int_mux_cfg0);
  1446. int_mux_cfg1_val = snd_soc_component_read(component, int_mux_cfg1);
  1447. int_n_inp0 = int_mux_cfg0_val & 0x0F;
  1448. if (int_n_inp0 == INTn_1_INP_SEL_DEC0 ||
  1449. int_n_inp0 == INTn_1_INP_SEL_DEC1)
  1450. return true;
  1451. int_n_inp1 = int_mux_cfg0_val >> 4;
  1452. if (int_n_inp1 == INTn_1_INP_SEL_DEC0 ||
  1453. int_n_inp1 == INTn_1_INP_SEL_DEC1)
  1454. return true;
  1455. int_n_inp2 = int_mux_cfg1_val >> 4;
  1456. if (int_n_inp2 == INTn_1_INP_SEL_DEC0 ||
  1457. int_n_inp2 == INTn_1_INP_SEL_DEC1)
  1458. return true;
  1459. return false;
  1460. }
  1461. static int lpass_cdc_wsa_macro_enable_main_path(struct snd_soc_dapm_widget *w,
  1462. struct snd_kcontrol *kcontrol,
  1463. int event)
  1464. {
  1465. struct snd_soc_component *component =
  1466. snd_soc_dapm_to_component(w->dapm);
  1467. u16 reg = 0;
  1468. struct device *wsa_dev = NULL;
  1469. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1470. bool adie_lb = false;
  1471. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1472. return -EINVAL;
  1473. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL +
  1474. LPASS_CDC_WSA_MACRO_RX_PATH_OFFSET * w->shift;
  1475. switch (event) {
  1476. case SND_SOC_DAPM_PRE_PMU:
  1477. if (lpass_cdc_wsa_macro_adie_lb(component, w->shift)) {
  1478. adie_lb = true;
  1479. snd_soc_component_update_bits(component,
  1480. reg, 0x20, 0x20);
  1481. lpass_cdc_wsa_pa_on(wsa_dev, adie_lb);
  1482. }
  1483. break;
  1484. default:
  1485. break;
  1486. }
  1487. return 0;
  1488. }
  1489. static int lpass_cdc_wsa_macro_interp_get_primary_reg(u16 reg, u16 *ind)
  1490. {
  1491. u16 prim_int_reg = 0;
  1492. switch (reg) {
  1493. case LPASS_CDC_WSA_RX0_RX_PATH_CTL:
  1494. case LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL:
  1495. prim_int_reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1496. *ind = 0;
  1497. break;
  1498. case LPASS_CDC_WSA_RX1_RX_PATH_CTL:
  1499. case LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL:
  1500. prim_int_reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1501. *ind = 1;
  1502. break;
  1503. }
  1504. return prim_int_reg;
  1505. }
  1506. static int lpass_cdc_wsa_macro_enable_prim_interpolator(
  1507. struct snd_soc_component *component,
  1508. u16 reg, int event)
  1509. {
  1510. u16 prim_int_reg;
  1511. u16 ind = 0;
  1512. struct device *wsa_dev = NULL;
  1513. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1514. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1515. return -EINVAL;
  1516. prim_int_reg = lpass_cdc_wsa_macro_interp_get_primary_reg(reg, &ind);
  1517. switch (event) {
  1518. case SND_SOC_DAPM_PRE_PMU:
  1519. wsa_priv->prim_int_users[ind]++;
  1520. if (wsa_priv->prim_int_users[ind] == 1) {
  1521. snd_soc_component_update_bits(component,
  1522. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_CFG3_OFFSET,
  1523. 0x03, 0x03);
  1524. snd_soc_component_update_bits(component, prim_int_reg,
  1525. 0x10, 0x10);
  1526. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1527. snd_soc_component_update_bits(component,
  1528. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1529. 0x1, 0x1);
  1530. }
  1531. if ((reg != prim_int_reg) &&
  1532. ((snd_soc_component_read(
  1533. component, prim_int_reg)) & 0x10))
  1534. snd_soc_component_update_bits(component, reg,
  1535. 0x10, 0x10);
  1536. break;
  1537. case SND_SOC_DAPM_POST_PMD:
  1538. wsa_priv->prim_int_users[ind]--;
  1539. if (wsa_priv->prim_int_users[ind] == 0) {
  1540. snd_soc_component_update_bits(component, prim_int_reg,
  1541. 1 << 0x5, 0 << 0x5);
  1542. snd_soc_component_update_bits(component,
  1543. prim_int_reg + LPASS_CDC_WSA_MACRO_RX_PATH_DSMDEM_OFFSET,
  1544. 0x1, 0x0);
  1545. snd_soc_component_update_bits(component, prim_int_reg,
  1546. 0x40, 0x40);
  1547. snd_soc_component_update_bits(component, prim_int_reg,
  1548. 0x40, 0x00);
  1549. lpass_cdc_wsa_macro_hd2_control(component, prim_int_reg, event);
  1550. }
  1551. break;
  1552. }
  1553. dev_dbg(component->dev, "%s: primary interpolator: INT%d, users: %d\n",
  1554. __func__, ind, wsa_priv->prim_int_users[ind]);
  1555. return 0;
  1556. }
  1557. static void lpass_cdc_macro_idle_detect_control(struct snd_soc_component *component,
  1558. struct lpass_cdc_wsa_macro_priv *wsa_priv,
  1559. int interp, int event)
  1560. {
  1561. int reg = 0, mask = 0, val = 0, source_reg = 0;
  1562. u16 mode = 0;
  1563. dev_dbg(component->dev, "%s: Idle_detect_en value: %d\n", __func__,
  1564. wsa_priv->idle_detect_en);
  1565. if (!wsa_priv->idle_detect_en)
  1566. return;
  1567. if (interp == LPASS_CDC_WSA_MACRO_COMP1) {
  1568. source_reg = LPASS_CDC_WSA_RX0_RX_PATH_CFG3;
  1569. reg = LPASS_CDC_WSA_IDLE_DETECT_PATH_CTL;
  1570. mask = 0x01;
  1571. val = 0x01;
  1572. }
  1573. if (interp == LPASS_CDC_WSA_MACRO_COMP2) {
  1574. source_reg = LPASS_CDC_WSA_RX1_RX_PATH_CFG3;
  1575. reg = LPASS_CDC_WSA_IDLE_DETECT_PATH_CTL;
  1576. mask = 0x02;
  1577. val = 0x02;
  1578. }
  1579. mode = wsa_priv->comp_mode[interp];
  1580. if ((wsa_priv->noise_gate_mode == NG2 && mode >= G_13P5_DB) ||
  1581. wsa_priv->noise_gate_mode == IDLE_DETECT || !wsa_priv->pbr_enable ||
  1582. wsa_priv->wsa_spkrrecv) {
  1583. snd_soc_component_update_bits(component, source_reg, 0x80, 0x00);
  1584. dev_dbg(component->dev, "%s: Idle detect source: Legacy\n", __func__);
  1585. } else {
  1586. snd_soc_component_update_bits(component, source_reg, 0x80, 0x80);
  1587. dev_dbg(component->dev, "%s: Idle detect source: PRE-LA\n", __func__);
  1588. }
  1589. if (reg && SND_SOC_DAPM_EVENT_ON(event)) {
  1590. snd_soc_component_update_bits(component, reg, mask, val);
  1591. dev_dbg(component->dev, "%s: Idle detect clks ON\n", __func__);
  1592. }
  1593. if (reg && SND_SOC_DAPM_EVENT_OFF(event)) {
  1594. snd_soc_component_update_bits(component, reg, mask, 0x00);
  1595. snd_soc_component_write(component,
  1596. LPASS_CDC_WSA_IDLE_DETECT_CFG3, 0x0);
  1597. dev_dbg(component->dev, "%s: Idle detect clks OFF\n", __func__);
  1598. }
  1599. }
  1600. static int lpass_cdc_wsa_macro_enable_interpolator(struct snd_soc_dapm_widget *w,
  1601. struct snd_kcontrol *kcontrol,
  1602. int event)
  1603. {
  1604. struct snd_soc_component *component =
  1605. snd_soc_dapm_to_component(w->dapm);
  1606. struct device *wsa_dev = NULL;
  1607. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1608. u8 gain = 0;
  1609. u16 reg = 0;
  1610. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1611. return -EINVAL;
  1612. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1613. return -EINVAL;
  1614. dev_dbg(component->dev, "%s %d %s\n", __func__, event, w->name);
  1615. if (!(strcmp(w->name, "WSA_RX INT0 INTERP"))) {
  1616. reg = LPASS_CDC_WSA_RX0_RX_PATH_CTL;
  1617. } else if (!(strcmp(w->name, "WSA_RX INT1 INTERP"))) {
  1618. reg = LPASS_CDC_WSA_RX1_RX_PATH_CTL;
  1619. } else {
  1620. dev_err_ratelimited(component->dev, "%s: Interpolator reg not found\n",
  1621. __func__);
  1622. return -EINVAL;
  1623. }
  1624. switch (event) {
  1625. case SND_SOC_DAPM_PRE_PMU:
  1626. /* Reset if needed */
  1627. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1628. break;
  1629. case SND_SOC_DAPM_POST_PMU:
  1630. if (!strcmp(w->name, "WSA_RX INT0 INTERP")) {
  1631. gain = (u8)(wsa_priv->rx0_origin_gain -
  1632. wsa_priv->thermal_cur_state);
  1633. if (snd_soc_component_read(wsa_priv->component,
  1634. LPASS_CDC_WSA_RX0_RX_VOL_CTL) != gain) {
  1635. snd_soc_component_update_bits(wsa_priv->component,
  1636. LPASS_CDC_WSA_RX0_RX_VOL_CTL, 0xFF, gain);
  1637. dev_dbg(wsa_priv->dev,
  1638. "%s: RX0 current thermal state: %d, "
  1639. "adjusted gain: %#x\n",
  1640. __func__, wsa_priv->thermal_cur_state, gain);
  1641. }
  1642. }
  1643. if (!strcmp(w->name, "WSA_RX INT1 INTERP")) {
  1644. gain = (u8)(wsa_priv->rx1_origin_gain -
  1645. wsa_priv->thermal_cur_state);
  1646. if (snd_soc_component_read(wsa_priv->component,
  1647. LPASS_CDC_WSA_RX1_RX_VOL_CTL) != gain) {
  1648. snd_soc_component_update_bits(wsa_priv->component,
  1649. LPASS_CDC_WSA_RX1_RX_VOL_CTL, 0xFF, gain);
  1650. dev_dbg(wsa_priv->dev,
  1651. "%s: RX1 current thermal state: %d, "
  1652. "adjusted gain: %#x\n",
  1653. __func__, wsa_priv->thermal_cur_state, gain);
  1654. }
  1655. }
  1656. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1657. lpass_cdc_macro_idle_detect_control(component, wsa_priv,
  1658. w->shift, event);
  1659. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1660. lpass_cdc_was_macro_config_pbr(component, w->shift, event);
  1661. if (wsa_priv->wsa_spkrrecv)
  1662. snd_soc_component_update_bits(component,
  1663. LPASS_CDC_WSA_RX0_RX_PATH_CFG1,
  1664. 0x08, 0x00);
  1665. break;
  1666. case SND_SOC_DAPM_POST_PMD:
  1667. snd_soc_component_update_bits(component,
  1668. LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 0x08, 0x08);
  1669. lpass_cdc_wsa_macro_config_compander(component, w->shift, event);
  1670. lpass_cdc_macro_idle_detect_control(component, wsa_priv,
  1671. w->shift, event);
  1672. lpass_cdc_wsa_macro_config_softclip(component, w->shift, event);
  1673. lpass_cdc_was_macro_config_pbr(component, w->shift, event);
  1674. lpass_cdc_wsa_macro_enable_prim_interpolator(component, reg, event);
  1675. break;
  1676. }
  1677. return 0;
  1678. }
  1679. static int lpass_cdc_wsa_macro_spk_boost_event(struct snd_soc_dapm_widget *w,
  1680. struct snd_kcontrol *kcontrol,
  1681. int event)
  1682. {
  1683. struct snd_soc_component *component =
  1684. snd_soc_dapm_to_component(w->dapm);
  1685. u16 boost_path_ctl, boost_path_cfg1;
  1686. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1687. if (!strcmp(w->name, "WSA_RX INT0 CHAIN")) {
  1688. boost_path_ctl = LPASS_CDC_WSA_BOOST0_BOOST_PATH_CTL;
  1689. boost_path_cfg1 = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1690. } else if (!strcmp(w->name, "WSA_RX INT1 CHAIN")) {
  1691. boost_path_ctl = LPASS_CDC_WSA_BOOST1_BOOST_PATH_CTL;
  1692. boost_path_cfg1 = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1693. } else {
  1694. dev_err_ratelimited(component->dev, "%s: unknown widget: %s\n",
  1695. __func__, w->name);
  1696. return -EINVAL;
  1697. }
  1698. switch (event) {
  1699. case SND_SOC_DAPM_PRE_PMU:
  1700. snd_soc_component_update_bits(component, boost_path_cfg1,
  1701. 0x01, 0x01);
  1702. snd_soc_component_update_bits(component, boost_path_ctl,
  1703. 0x10, 0x10);
  1704. break;
  1705. case SND_SOC_DAPM_POST_PMU:
  1706. break;
  1707. case SND_SOC_DAPM_POST_PMD:
  1708. snd_soc_component_update_bits(component, boost_path_ctl,
  1709. 0x10, 0x00);
  1710. snd_soc_component_update_bits(component, boost_path_cfg1,
  1711. 0x01, 0x00);
  1712. break;
  1713. }
  1714. return 0;
  1715. }
  1716. static int lpass_cdc_wsa_macro_enable_vbat(struct snd_soc_dapm_widget *w,
  1717. struct snd_kcontrol *kcontrol,
  1718. int event)
  1719. {
  1720. struct snd_soc_component *component =
  1721. snd_soc_dapm_to_component(w->dapm);
  1722. struct device *wsa_dev = NULL;
  1723. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1724. u16 vbat_path_cfg = 0;
  1725. int softclip_path = 0;
  1726. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1727. return -EINVAL;
  1728. dev_dbg(component->dev, "%s %s %d\n", __func__, w->name, event);
  1729. if (!strcmp(w->name, "WSA_RX INT0 VBAT")) {
  1730. vbat_path_cfg = LPASS_CDC_WSA_RX0_RX_PATH_CFG1;
  1731. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP0;
  1732. } else if (!strcmp(w->name, "WSA_RX INT1 VBAT")) {
  1733. vbat_path_cfg = LPASS_CDC_WSA_RX1_RX_PATH_CFG1;
  1734. softclip_path = LPASS_CDC_WSA_MACRO_SOFTCLIP1;
  1735. }
  1736. switch (event) {
  1737. case SND_SOC_DAPM_PRE_PMU:
  1738. /* Enable clock for VBAT block */
  1739. snd_soc_component_update_bits(component,
  1740. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x10);
  1741. /* Enable VBAT block */
  1742. snd_soc_component_update_bits(component,
  1743. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x01);
  1744. /* Update interpolator with 384K path */
  1745. snd_soc_component_update_bits(component, vbat_path_cfg,
  1746. 0x80, 0x80);
  1747. /* Use attenuation mode */
  1748. snd_soc_component_update_bits(component,
  1749. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x02, 0x00);
  1750. /*
  1751. * BCL block needs softclip clock and mux config to be enabled
  1752. */
  1753. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1754. softclip_path, true);
  1755. /* Enable VBAT at channel level */
  1756. snd_soc_component_update_bits(component, vbat_path_cfg,
  1757. 0x02, 0x02);
  1758. /* Set the ATTK1 gain */
  1759. snd_soc_component_update_bits(component,
  1760. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1761. 0xFF, 0xFF);
  1762. snd_soc_component_update_bits(component,
  1763. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1764. 0xFF, 0x03);
  1765. snd_soc_component_update_bits(component,
  1766. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1767. 0xFF, 0x00);
  1768. /* Set the ATTK2 gain */
  1769. snd_soc_component_update_bits(component,
  1770. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1771. 0xFF, 0xFF);
  1772. snd_soc_component_update_bits(component,
  1773. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1774. 0xFF, 0x03);
  1775. snd_soc_component_update_bits(component,
  1776. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1777. 0xFF, 0x00);
  1778. /* Set the ATTK3 gain */
  1779. snd_soc_component_update_bits(component,
  1780. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1781. 0xFF, 0xFF);
  1782. snd_soc_component_update_bits(component,
  1783. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1784. 0xFF, 0x03);
  1785. snd_soc_component_update_bits(component,
  1786. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1787. 0xFF, 0x00);
  1788. /* Enable CB decode block clock */
  1789. snd_soc_component_update_bits(component,
  1790. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x01);
  1791. /* Enable BCL path */
  1792. snd_soc_component_update_bits(component,
  1793. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x01);
  1794. /* Request for BCL data */
  1795. snd_soc_component_update_bits(component,
  1796. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x01);
  1797. break;
  1798. case SND_SOC_DAPM_POST_PMD:
  1799. snd_soc_component_update_bits(component,
  1800. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL3, 0x01, 0x00);
  1801. snd_soc_component_update_bits(component,
  1802. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL2, 0x01, 0x00);
  1803. snd_soc_component_update_bits(component,
  1804. LPASS_CDC_WSA_CB_DECODE_CB_DECODE_CTL1, 0x01, 0x00);
  1805. snd_soc_component_update_bits(component, vbat_path_cfg,
  1806. 0x80, 0x00);
  1807. snd_soc_component_update_bits(component,
  1808. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  1809. 0x02, 0x02);
  1810. snd_soc_component_update_bits(component, vbat_path_cfg,
  1811. 0x02, 0x00);
  1812. snd_soc_component_update_bits(component,
  1813. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD1,
  1814. 0xFF, 0x00);
  1815. snd_soc_component_update_bits(component,
  1816. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD2,
  1817. 0xFF, 0x00);
  1818. snd_soc_component_update_bits(component,
  1819. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD3,
  1820. 0xFF, 0x00);
  1821. snd_soc_component_update_bits(component,
  1822. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD4,
  1823. 0xFF, 0x00);
  1824. snd_soc_component_update_bits(component,
  1825. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD5,
  1826. 0xFF, 0x00);
  1827. snd_soc_component_update_bits(component,
  1828. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD6,
  1829. 0xFF, 0x00);
  1830. snd_soc_component_update_bits(component,
  1831. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD7,
  1832. 0xFF, 0x00);
  1833. snd_soc_component_update_bits(component,
  1834. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD8,
  1835. 0xFF, 0x00);
  1836. snd_soc_component_update_bits(component,
  1837. LPASS_CDC_WSA_VBAT_BCL_VBAT_BCL_GAIN_UPD9,
  1838. 0xFF, 0x00);
  1839. lpass_cdc_wsa_macro_enable_softclip_clk(component, wsa_priv,
  1840. softclip_path, false);
  1841. snd_soc_component_update_bits(component,
  1842. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG, 0x01, 0x00);
  1843. snd_soc_component_update_bits(component,
  1844. LPASS_CDC_WSA_VBAT_BCL_VBAT_PATH_CTL, 0x10, 0x00);
  1845. break;
  1846. default:
  1847. dev_err_ratelimited(wsa_dev, "%s: Invalid event %d\n", __func__, event);
  1848. break;
  1849. }
  1850. return 0;
  1851. }
  1852. static int lpass_cdc_wsa_macro_enable_echo(struct snd_soc_dapm_widget *w,
  1853. struct snd_kcontrol *kcontrol,
  1854. int event)
  1855. {
  1856. struct snd_soc_component *component =
  1857. snd_soc_dapm_to_component(w->dapm);
  1858. struct device *wsa_dev = NULL;
  1859. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1860. u16 val, ec_tx = 0, ec_hq_reg;
  1861. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1862. return -EINVAL;
  1863. dev_dbg(wsa_dev, "%s %d %s\n", __func__, event, w->name);
  1864. val = snd_soc_component_read(component,
  1865. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0);
  1866. if (!(strcmp(w->name, "WSA RX_MIX EC0_MUX")))
  1867. ec_tx = (val & 0x07) - 1;
  1868. else
  1869. ec_tx = ((val & 0x38) >> 0x3) - 1;
  1870. if (ec_tx < 0 || ec_tx >= (LPASS_CDC_WSA_MACRO_RX1 + 1)) {
  1871. dev_err_ratelimited(wsa_dev, "%s: EC mix control not set correctly\n",
  1872. __func__);
  1873. return -EINVAL;
  1874. }
  1875. if (wsa_priv->ec_hq[ec_tx]) {
  1876. snd_soc_component_update_bits(component,
  1877. LPASS_CDC_WSA_RX_INP_MUX_RX_MIX_CFG0,
  1878. 0x1 << ec_tx, 0x1 << ec_tx);
  1879. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_PATH_CTL +
  1880. 0x40 * ec_tx;
  1881. snd_soc_component_update_bits(component, ec_hq_reg, 0x01, 0x01);
  1882. ec_hq_reg = LPASS_CDC_WSA_EC_HQ0_EC_REF_HQ_CFG0 +
  1883. 0x40 * ec_tx;
  1884. /* default set to 48k */
  1885. snd_soc_component_update_bits(component, ec_hq_reg, 0x1E, 0x08);
  1886. }
  1887. return 0;
  1888. }
  1889. static int lpass_cdc_wsa_macro_get_ec_hq(struct snd_kcontrol *kcontrol,
  1890. struct snd_ctl_elem_value *ucontrol)
  1891. {
  1892. struct snd_soc_component *component =
  1893. snd_soc_kcontrol_component(kcontrol);
  1894. int ec_tx = ((struct soc_multi_mixer_control *)
  1895. kcontrol->private_value)->shift;
  1896. struct device *wsa_dev = NULL;
  1897. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1898. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1899. return -EINVAL;
  1900. ucontrol->value.integer.value[0] = wsa_priv->ec_hq[ec_tx];
  1901. return 0;
  1902. }
  1903. static int lpass_cdc_wsa_macro_set_ec_hq(struct snd_kcontrol *kcontrol,
  1904. struct snd_ctl_elem_value *ucontrol)
  1905. {
  1906. struct snd_soc_component *component =
  1907. snd_soc_kcontrol_component(kcontrol);
  1908. int ec_tx = ((struct soc_multi_mixer_control *)
  1909. kcontrol->private_value)->shift;
  1910. int value = ucontrol->value.integer.value[0];
  1911. struct device *wsa_dev = NULL;
  1912. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1913. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1914. return -EINVAL;
  1915. dev_dbg(wsa_dev, "%s: enable current %d, new %d\n",
  1916. __func__, wsa_priv->ec_hq[ec_tx], value);
  1917. wsa_priv->ec_hq[ec_tx] = value;
  1918. return 0;
  1919. }
  1920. static int lpass_cdc_wsa_macro_get_rx_mute_status(struct snd_kcontrol *kcontrol,
  1921. struct snd_ctl_elem_value *ucontrol)
  1922. {
  1923. struct snd_soc_component *component =
  1924. snd_soc_kcontrol_component(kcontrol);
  1925. struct device *wsa_dev = NULL;
  1926. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1927. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1928. kcontrol->private_value)->shift;
  1929. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1930. return -EINVAL;
  1931. ucontrol->value.integer.value[0] =
  1932. wsa_priv->wsa_digital_mute_status[wsa_rx_shift];
  1933. return 0;
  1934. }
  1935. static int lpass_cdc_wsa_macro_set_rx_mute_status(struct snd_kcontrol *kcontrol,
  1936. struct snd_ctl_elem_value *ucontrol)
  1937. {
  1938. struct snd_soc_component *component =
  1939. snd_soc_kcontrol_component(kcontrol);
  1940. struct device *wsa_dev = NULL;
  1941. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1942. int value = ucontrol->value.integer.value[0];
  1943. int wsa_rx_shift = ((struct soc_multi_mixer_control *)
  1944. kcontrol->private_value)->shift;
  1945. int ret = 0;
  1946. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1947. return -EINVAL;
  1948. pm_runtime_get_sync(wsa_priv->dev);
  1949. switch (wsa_rx_shift) {
  1950. case 0:
  1951. snd_soc_component_update_bits(component,
  1952. LPASS_CDC_WSA_RX0_RX_PATH_CTL,
  1953. 0x10, value << 4);
  1954. break;
  1955. case 1:
  1956. snd_soc_component_update_bits(component,
  1957. LPASS_CDC_WSA_RX1_RX_PATH_CTL,
  1958. 0x10, value << 4);
  1959. break;
  1960. case 2:
  1961. snd_soc_component_update_bits(component,
  1962. LPASS_CDC_WSA_RX0_RX_PATH_MIX_CTL,
  1963. 0x10, value << 4);
  1964. break;
  1965. case 3:
  1966. snd_soc_component_update_bits(component,
  1967. LPASS_CDC_WSA_RX1_RX_PATH_MIX_CTL,
  1968. 0x10, value << 4);
  1969. break;
  1970. default:
  1971. pr_err_ratelimited("%s: invalid argument rx_shift = %d\n", __func__,
  1972. wsa_rx_shift);
  1973. ret = -EINVAL;
  1974. }
  1975. pm_runtime_mark_last_busy(wsa_priv->dev);
  1976. pm_runtime_put_autosuspend(wsa_priv->dev);
  1977. dev_dbg(component->dev, "%s: WSA Digital Mute RX %d Enable %d\n",
  1978. __func__, wsa_rx_shift, value);
  1979. wsa_priv->wsa_digital_mute_status[wsa_rx_shift] = value;
  1980. return ret;
  1981. }
  1982. static int lpass_cdc_wsa_macro_set_digital_volume(struct snd_kcontrol *kcontrol,
  1983. struct snd_ctl_elem_value *ucontrol)
  1984. {
  1985. struct snd_soc_component *component =
  1986. snd_soc_kcontrol_component(kcontrol);
  1987. struct device *wsa_dev = NULL;
  1988. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  1989. struct soc_mixer_control *mc =
  1990. (struct soc_mixer_control *)kcontrol->private_value;
  1991. u8 gain = 0;
  1992. int ret = 0;
  1993. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  1994. return -EINVAL;
  1995. if (!wsa_priv) {
  1996. pr_err_ratelimited("%s: priv is null for macro!\n",
  1997. __func__);
  1998. return -EINVAL;
  1999. }
  2000. ret = snd_soc_put_volsw(kcontrol, ucontrol);
  2001. if (mc->reg == LPASS_CDC_WSA_RX0_RX_VOL_CTL) {
  2002. wsa_priv->rx0_origin_gain =
  2003. (u8)snd_soc_component_read(wsa_priv->component,
  2004. mc->reg);
  2005. gain = (u8)(wsa_priv->rx0_origin_gain -
  2006. wsa_priv->thermal_cur_state);
  2007. } else if (mc->reg == LPASS_CDC_WSA_RX1_RX_VOL_CTL) {
  2008. wsa_priv->rx1_origin_gain =
  2009. (u8)snd_soc_component_read(wsa_priv->component,
  2010. mc->reg);
  2011. gain = (u8)(wsa_priv->rx1_origin_gain -
  2012. wsa_priv->thermal_cur_state);
  2013. } else {
  2014. dev_err_ratelimited(wsa_priv->dev,
  2015. "%s: Incorrect RX Path selected\n", __func__);
  2016. return -EINVAL;
  2017. }
  2018. /* only adjust gain if thermal state is positive */
  2019. if (wsa_priv->dapm_mclk_enable &&
  2020. wsa_priv->thermal_cur_state > 0) {
  2021. snd_soc_component_update_bits(wsa_priv->component,
  2022. mc->reg, 0xFF, gain);
  2023. dev_dbg(wsa_priv->dev,
  2024. "%s: Current thermal state: %d, adjusted gain: %x\n",
  2025. __func__, wsa_priv->thermal_cur_state, gain);
  2026. }
  2027. return ret;
  2028. }
  2029. static int lpass_cdc_wsa_macro_get_compander(struct snd_kcontrol *kcontrol,
  2030. struct snd_ctl_elem_value *ucontrol)
  2031. {
  2032. struct snd_soc_component *component =
  2033. snd_soc_kcontrol_component(kcontrol);
  2034. int comp = ((struct soc_multi_mixer_control *)
  2035. kcontrol->private_value)->shift;
  2036. struct device *wsa_dev = NULL;
  2037. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2038. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2039. return -EINVAL;
  2040. ucontrol->value.integer.value[0] = wsa_priv->comp_enabled[comp];
  2041. return 0;
  2042. }
  2043. static int lpass_cdc_wsa_macro_set_compander(struct snd_kcontrol *kcontrol,
  2044. struct snd_ctl_elem_value *ucontrol)
  2045. {
  2046. struct snd_soc_component *component =
  2047. snd_soc_kcontrol_component(kcontrol);
  2048. int comp = ((struct soc_multi_mixer_control *)
  2049. kcontrol->private_value)->shift;
  2050. int value = ucontrol->value.integer.value[0];
  2051. struct device *wsa_dev = NULL;
  2052. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2053. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2054. return -EINVAL;
  2055. dev_dbg(component->dev, "%s: Compander %d enable current %d, new %d\n",
  2056. __func__, comp + 1, wsa_priv->comp_enabled[comp], value);
  2057. wsa_priv->comp_enabled[comp] = value;
  2058. return 0;
  2059. }
  2060. static int lpass_cdc_wsa_macro_ear_spkrrecv_get(struct snd_kcontrol *kcontrol,
  2061. struct snd_ctl_elem_value *ucontrol)
  2062. {
  2063. struct snd_soc_component *component =
  2064. snd_soc_kcontrol_component(kcontrol);
  2065. struct device *wsa_dev = NULL;
  2066. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2067. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2068. return -EINVAL;
  2069. ucontrol->value.integer.value[0] = wsa_priv->wsa_spkrrecv;
  2070. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2071. __func__, ucontrol->value.integer.value[0]);
  2072. return 0;
  2073. }
  2074. static int lpass_cdc_wsa_macro_ear_spkrrecv_put(struct snd_kcontrol *kcontrol,
  2075. struct snd_ctl_elem_value *ucontrol)
  2076. {
  2077. struct snd_soc_component *component =
  2078. snd_soc_kcontrol_component(kcontrol);
  2079. struct device *wsa_dev = NULL;
  2080. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2081. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2082. return -EINVAL;
  2083. wsa_priv->wsa_spkrrecv = ucontrol->value.integer.value[0];
  2084. dev_dbg(component->dev, "%s:spkrrecv status = %d\n",
  2085. __func__, wsa_priv->wsa_spkrrecv);
  2086. return 0;
  2087. }
  2088. static int lpass_cdc_wsa_macro_idle_detect_get(struct snd_kcontrol *kcontrol,
  2089. struct snd_ctl_elem_value *ucontrol)
  2090. {
  2091. struct snd_soc_component *component =
  2092. snd_soc_kcontrol_component(kcontrol);
  2093. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2094. struct device *wsa_dev = NULL;
  2095. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2096. return -EINVAL;
  2097. ucontrol->value.integer.value[0] = wsa_priv->idle_detect_en;
  2098. return 0;
  2099. }
  2100. static int lpass_cdc_wsa_macro_idle_detect_put(struct snd_kcontrol *kcontrol,
  2101. struct snd_ctl_elem_value *ucontrol)
  2102. {
  2103. struct snd_soc_component *component =
  2104. snd_soc_kcontrol_component(kcontrol);
  2105. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2106. struct device *wsa_dev = NULL;
  2107. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2108. return -EINVAL;
  2109. wsa_priv->idle_detect_en = ucontrol->value.integer.value[0];
  2110. return 0;
  2111. }
  2112. static int lpass_cdc_wsa_macro_comp_mode_get(struct snd_kcontrol *kcontrol,
  2113. struct snd_ctl_elem_value *ucontrol)
  2114. {
  2115. struct snd_soc_component *component =
  2116. snd_soc_kcontrol_component(kcontrol);
  2117. struct device *wsa_dev = NULL;
  2118. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2119. u16 idx = 0;
  2120. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2121. return -EINVAL;
  2122. if (strnstr(kcontrol->id.name, "RX0", sizeof("WSA_RX0")))
  2123. idx = LPASS_CDC_WSA_MACRO_COMP1;
  2124. if (strnstr(kcontrol->id.name, "RX1", sizeof("WSA_RX1")))
  2125. idx = LPASS_CDC_WSA_MACRO_COMP2;
  2126. ucontrol->value.integer.value[0] = wsa_priv->comp_mode[idx];
  2127. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2128. __func__, ucontrol->value.integer.value[0]);
  2129. return 0;
  2130. }
  2131. static int lpass_cdc_wsa_macro_comp_mode_put(struct snd_kcontrol *kcontrol,
  2132. struct snd_ctl_elem_value *ucontrol)
  2133. {
  2134. struct snd_soc_component *component =
  2135. snd_soc_kcontrol_component(kcontrol);
  2136. struct device *wsa_dev = NULL;
  2137. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2138. u16 idx = 0;
  2139. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2140. return -EINVAL;
  2141. if (strnstr(kcontrol->id.name, "RX0", sizeof("WSA_RX0")))
  2142. idx = LPASS_CDC_WSA_MACRO_COMP1;
  2143. if (strnstr(kcontrol->id.name, "RX1", sizeof("WSA_RX1")))
  2144. idx = LPASS_CDC_WSA_MACRO_COMP2;
  2145. wsa_priv->comp_mode[idx] = ucontrol->value.integer.value[0];
  2146. dev_dbg(component->dev, "%s: comp_mode = %d\n", __func__,
  2147. wsa_priv->comp_mode[idx]);
  2148. return 0;
  2149. }
  2150. static int lpass_cdc_wsa_macro_rx_mux_get(struct snd_kcontrol *kcontrol,
  2151. struct snd_ctl_elem_value *ucontrol)
  2152. {
  2153. struct snd_soc_dapm_widget *widget =
  2154. snd_soc_dapm_kcontrol_widget(kcontrol);
  2155. struct snd_soc_component *component =
  2156. snd_soc_dapm_to_component(widget->dapm);
  2157. struct device *wsa_dev = NULL;
  2158. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2159. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2160. return -EINVAL;
  2161. ucontrol->value.integer.value[0] =
  2162. wsa_priv->rx_port_value[widget->shift];
  2163. return 0;
  2164. }
  2165. static int lpass_cdc_wsa_macro_rx_mux_put(struct snd_kcontrol *kcontrol,
  2166. struct snd_ctl_elem_value *ucontrol)
  2167. {
  2168. struct snd_soc_dapm_widget *widget =
  2169. snd_soc_dapm_kcontrol_widget(kcontrol);
  2170. struct snd_soc_component *component =
  2171. snd_soc_dapm_to_component(widget->dapm);
  2172. struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
  2173. struct snd_soc_dapm_update *update = NULL;
  2174. u32 rx_port_value = ucontrol->value.integer.value[0];
  2175. u32 bit_input = 0;
  2176. u32 aif_rst;
  2177. struct device *wsa_dev = NULL;
  2178. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2179. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2180. return -EINVAL;
  2181. aif_rst = wsa_priv->rx_port_value[widget->shift];
  2182. if (!rx_port_value) {
  2183. if (aif_rst == 0) {
  2184. dev_err_ratelimited(wsa_dev, "%s: AIF reset already\n", __func__);
  2185. return 0;
  2186. }
  2187. if (aif_rst >= LPASS_CDC_WSA_MACRO_MAX_DAIS) {
  2188. dev_err_ratelimited(wsa_dev, "%s: Invalid AIF reset\n", __func__);
  2189. return 0;
  2190. }
  2191. }
  2192. wsa_priv->rx_port_value[widget->shift] = rx_port_value;
  2193. bit_input = widget->shift;
  2194. dev_dbg(wsa_dev,
  2195. "%s: mux input: %d, mux output: %d, bit: %d\n",
  2196. __func__, rx_port_value, widget->shift, bit_input);
  2197. switch (rx_port_value) {
  2198. case 0:
  2199. if (wsa_priv->active_ch_cnt[aif_rst]) {
  2200. clear_bit(bit_input,
  2201. &wsa_priv->active_ch_mask[aif_rst]);
  2202. wsa_priv->active_ch_cnt[aif_rst]--;
  2203. }
  2204. break;
  2205. case 1:
  2206. case 2:
  2207. set_bit(bit_input,
  2208. &wsa_priv->active_ch_mask[rx_port_value]);
  2209. wsa_priv->active_ch_cnt[rx_port_value]++;
  2210. break;
  2211. default:
  2212. dev_err_ratelimited(wsa_dev,
  2213. "%s: Invalid AIF_ID for WSA RX MUX %d\n",
  2214. __func__, rx_port_value);
  2215. return -EINVAL;
  2216. }
  2217. snd_soc_dapm_mux_update_power(widget->dapm, kcontrol,
  2218. rx_port_value, e, update);
  2219. return 0;
  2220. }
  2221. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get(struct snd_kcontrol *kcontrol,
  2222. struct snd_ctl_elem_value *ucontrol)
  2223. {
  2224. struct snd_soc_component *component =
  2225. snd_soc_kcontrol_component(kcontrol);
  2226. ucontrol->value.integer.value[0] =
  2227. ((snd_soc_component_read(
  2228. component, LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG) & 0x04) ?
  2229. 1 : 0);
  2230. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2231. ucontrol->value.integer.value[0]);
  2232. return 0;
  2233. }
  2234. static int lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put(struct snd_kcontrol *kcontrol,
  2235. struct snd_ctl_elem_value *ucontrol)
  2236. {
  2237. struct snd_soc_component *component =
  2238. snd_soc_kcontrol_component(kcontrol);
  2239. dev_dbg(component->dev, "%s: value: %lu\n", __func__,
  2240. ucontrol->value.integer.value[0]);
  2241. /* Set Vbat register configuration for GSM mode bit based on value */
  2242. if (ucontrol->value.integer.value[0])
  2243. snd_soc_component_update_bits(component,
  2244. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  2245. 0x04, 0x04);
  2246. else
  2247. snd_soc_component_update_bits(component,
  2248. LPASS_CDC_WSA_VBAT_BCL_VBAT_CFG,
  2249. 0x04, 0x00);
  2250. return 0;
  2251. }
  2252. static int lpass_cdc_wsa_macro_soft_clip_enable_get(struct snd_kcontrol *kcontrol,
  2253. struct snd_ctl_elem_value *ucontrol)
  2254. {
  2255. struct snd_soc_component *component =
  2256. snd_soc_kcontrol_component(kcontrol);
  2257. struct device *wsa_dev = NULL;
  2258. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2259. int path = ((struct soc_multi_mixer_control *)
  2260. kcontrol->private_value)->shift;
  2261. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2262. return -EINVAL;
  2263. ucontrol->value.integer.value[0] = wsa_priv->is_softclip_on[path];
  2264. dev_dbg(component->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
  2265. __func__, ucontrol->value.integer.value[0]);
  2266. return 0;
  2267. }
  2268. static int lpass_cdc_wsa_macro_soft_clip_enable_put(struct snd_kcontrol *kcontrol,
  2269. struct snd_ctl_elem_value *ucontrol)
  2270. {
  2271. struct snd_soc_component *component =
  2272. snd_soc_kcontrol_component(kcontrol);
  2273. struct device *wsa_dev = NULL;
  2274. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2275. int path = ((struct soc_multi_mixer_control *)
  2276. kcontrol->private_value)->shift;
  2277. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2278. return -EINVAL;
  2279. wsa_priv->is_softclip_on[path] = ucontrol->value.integer.value[0];
  2280. dev_dbg(component->dev, "%s: soft clip enable for %d: %d\n", __func__,
  2281. path, wsa_priv->is_softclip_on[path]);
  2282. return 0;
  2283. }
  2284. static int lpass_cdc_wsa_macro_pbr_enable_get(struct snd_kcontrol *kcontrol,
  2285. struct snd_ctl_elem_value *ucontrol)
  2286. {
  2287. struct snd_soc_component *component =
  2288. snd_soc_kcontrol_component(kcontrol);
  2289. struct device *wsa_dev = NULL;
  2290. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2291. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2292. return -EINVAL;
  2293. ucontrol->value.integer.value[0] = wsa_priv->pbr_enable;
  2294. return 0;
  2295. }
  2296. static int lpass_cdc_wsa_macro_pbr_enable_put(struct snd_kcontrol *kcontrol,
  2297. struct snd_ctl_elem_value *ucontrol)
  2298. {
  2299. struct snd_soc_component *component =
  2300. snd_soc_kcontrol_component(kcontrol);
  2301. struct device *wsa_dev = NULL;
  2302. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2303. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2304. return -EINVAL;
  2305. wsa_priv->pbr_enable = ucontrol->value.integer.value[0];
  2306. return 0;
  2307. }
  2308. static const struct snd_kcontrol_new lpass_cdc_wsa_macro_snd_controls[] = {
  2309. SOC_ENUM_EXT("GSM mode Enable", lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_enum,
  2310. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_get,
  2311. lpass_cdc_wsa_macro_vbat_bcl_gsm_mode_func_put),
  2312. SOC_ENUM_EXT("WSA_RX0 comp_mode", lpass_cdc_wsa_macro_comp_mode_enum,
  2313. lpass_cdc_wsa_macro_comp_mode_get,
  2314. lpass_cdc_wsa_macro_comp_mode_put),
  2315. SOC_ENUM_EXT("WSA_RX1 comp_mode", lpass_cdc_wsa_macro_comp_mode_enum,
  2316. lpass_cdc_wsa_macro_comp_mode_get,
  2317. lpass_cdc_wsa_macro_comp_mode_put),
  2318. SOC_SINGLE_EXT("WSA SPKRRECV", SND_SOC_NOPM, 0, 1, 0,
  2319. lpass_cdc_wsa_macro_ear_spkrrecv_get,
  2320. lpass_cdc_wsa_macro_ear_spkrrecv_put),
  2321. SOC_SINGLE_EXT("Idle Detect", SND_SOC_NOPM, 0, 1,
  2322. 0, lpass_cdc_wsa_macro_idle_detect_get,
  2323. lpass_cdc_wsa_macro_idle_detect_put),
  2324. SOC_SINGLE_EXT("WSA_Softclip0 Enable", SND_SOC_NOPM,
  2325. LPASS_CDC_WSA_MACRO_SOFTCLIP0, 1, 0,
  2326. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2327. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2328. SOC_SINGLE_EXT("WSA_Softclip1 Enable", SND_SOC_NOPM,
  2329. LPASS_CDC_WSA_MACRO_SOFTCLIP1, 1, 0,
  2330. lpass_cdc_wsa_macro_soft_clip_enable_get,
  2331. lpass_cdc_wsa_macro_soft_clip_enable_put),
  2332. LPASS_CDC_WSA_MACRO_SET_VOLUME_TLV("WSA_RX0 Digital Volume",
  2333. LPASS_CDC_WSA_RX0_RX_VOL_CTL,
  2334. -84, 40, digital_gain),
  2335. LPASS_CDC_WSA_MACRO_SET_VOLUME_TLV("WSA_RX1 Digital Volume",
  2336. LPASS_CDC_WSA_RX1_RX_VOL_CTL,
  2337. -84, 40, digital_gain),
  2338. SOC_SINGLE_EXT("WSA_RX0 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 1,
  2339. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2340. lpass_cdc_wsa_macro_set_rx_mute_status),
  2341. SOC_SINGLE_EXT("WSA_RX1 Digital Mute", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 1,
  2342. 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2343. lpass_cdc_wsa_macro_set_rx_mute_status),
  2344. SOC_SINGLE_EXT("WSA_RX0_MIX Digital Mute", SND_SOC_NOPM,
  2345. LPASS_CDC_WSA_MACRO_RX_MIX0, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2346. lpass_cdc_wsa_macro_set_rx_mute_status),
  2347. SOC_SINGLE_EXT("WSA_RX1_MIX Digital Mute", SND_SOC_NOPM,
  2348. LPASS_CDC_WSA_MACRO_RX_MIX1, 1, 0, lpass_cdc_wsa_macro_get_rx_mute_status,
  2349. lpass_cdc_wsa_macro_set_rx_mute_status),
  2350. SOC_SINGLE_EXT("WSA_COMP1 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP1, 1, 0,
  2351. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2352. SOC_SINGLE_EXT("WSA_COMP2 Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_COMP2, 1, 0,
  2353. lpass_cdc_wsa_macro_get_compander, lpass_cdc_wsa_macro_set_compander),
  2354. SOC_SINGLE_EXT("WSA_RX0 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0,
  2355. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2356. SOC_SINGLE_EXT("WSA_RX1 EC_HQ Switch", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1,
  2357. 1, 0, lpass_cdc_wsa_macro_get_ec_hq, lpass_cdc_wsa_macro_set_ec_hq),
  2358. SOC_SINGLE_EXT("WSA PBR Enable", SND_SOC_NOPM, 0, 1,
  2359. 0, lpass_cdc_wsa_macro_pbr_enable_get,
  2360. lpass_cdc_wsa_macro_pbr_enable_put),
  2361. };
  2362. static const struct soc_enum rx_mux_enum =
  2363. SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(rx_mux_text), rx_mux_text);
  2364. static const struct snd_kcontrol_new rx_mux[LPASS_CDC_WSA_MACRO_RX_MAX] = {
  2365. SOC_DAPM_ENUM_EXT("WSA RX0 Mux", rx_mux_enum,
  2366. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2367. SOC_DAPM_ENUM_EXT("WSA RX1 Mux", rx_mux_enum,
  2368. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2369. SOC_DAPM_ENUM_EXT("WSA RX_MIX0 Mux", rx_mux_enum,
  2370. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2371. SOC_DAPM_ENUM_EXT("WSA RX_MIX1 Mux", rx_mux_enum,
  2372. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2373. SOC_DAPM_ENUM_EXT("WSA RX4 Mux", rx_mux_enum,
  2374. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2375. SOC_DAPM_ENUM_EXT("WSA RX5 Mux", rx_mux_enum,
  2376. lpass_cdc_wsa_macro_rx_mux_get, lpass_cdc_wsa_macro_rx_mux_put),
  2377. };
  2378. static int lpass_cdc_wsa_macro_vi_feed_mixer_get(struct snd_kcontrol *kcontrol,
  2379. struct snd_ctl_elem_value *ucontrol)
  2380. {
  2381. struct snd_soc_dapm_widget *widget =
  2382. snd_soc_dapm_kcontrol_widget(kcontrol);
  2383. struct snd_soc_component *component =
  2384. snd_soc_dapm_to_component(widget->dapm);
  2385. struct soc_multi_mixer_control *mixer =
  2386. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2387. u32 dai_id = widget->shift;
  2388. u32 spk_tx_id = mixer->shift;
  2389. struct device *wsa_dev = NULL;
  2390. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2391. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2392. return -EINVAL;
  2393. if (test_bit(spk_tx_id, &wsa_priv->active_ch_mask[dai_id]))
  2394. ucontrol->value.integer.value[0] = 1;
  2395. else
  2396. ucontrol->value.integer.value[0] = 0;
  2397. return 0;
  2398. }
  2399. static int lpass_cdc_wsa_macro_vi_feed_mixer_put(struct snd_kcontrol *kcontrol,
  2400. struct snd_ctl_elem_value *ucontrol)
  2401. {
  2402. struct snd_soc_dapm_widget *widget =
  2403. snd_soc_dapm_kcontrol_widget(kcontrol);
  2404. struct snd_soc_component *component =
  2405. snd_soc_dapm_to_component(widget->dapm);
  2406. struct soc_multi_mixer_control *mixer =
  2407. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2408. u32 spk_tx_id = mixer->shift;
  2409. u32 enable = ucontrol->value.integer.value[0];
  2410. struct device *wsa_dev = NULL;
  2411. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2412. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2413. return -EINVAL;
  2414. wsa_priv->vi_feed_value = ucontrol->value.integer.value[0];
  2415. if (enable) {
  2416. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2417. !test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2418. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2419. set_bit(LPASS_CDC_WSA_MACRO_TX0,
  2420. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2421. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2422. }
  2423. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2424. !test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2425. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2426. set_bit(LPASS_CDC_WSA_MACRO_TX1,
  2427. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2428. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]++;
  2429. }
  2430. } else {
  2431. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2432. test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2433. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2434. clear_bit(LPASS_CDC_WSA_MACRO_TX0,
  2435. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2436. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2437. }
  2438. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2439. test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2440. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI])) {
  2441. clear_bit(LPASS_CDC_WSA_MACRO_TX1,
  2442. &wsa_priv->active_ch_mask[LPASS_CDC_WSA_MACRO_AIF_VI]);
  2443. wsa_priv->active_ch_cnt[LPASS_CDC_WSA_MACRO_AIF_VI]--;
  2444. }
  2445. }
  2446. snd_soc_dapm_mixer_update_power(widget->dapm, kcontrol, enable, NULL);
  2447. return 0;
  2448. }
  2449. static const struct snd_kcontrol_new aif_vi_mixer[] = {
  2450. SOC_SINGLE_EXT("WSA_SPKR_VI_1", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX0, 1, 0,
  2451. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2452. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2453. SOC_SINGLE_EXT("WSA_SPKR_VI_2", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX1, 1, 0,
  2454. lpass_cdc_wsa_macro_vi_feed_mixer_get,
  2455. lpass_cdc_wsa_macro_vi_feed_mixer_put),
  2456. };
  2457. static int lpass_cdc_wsa_macro_cps_feed_mixer_get(struct snd_kcontrol *kcontrol,
  2458. struct snd_ctl_elem_value *ucontrol)
  2459. {
  2460. struct snd_soc_dapm_widget *widget =
  2461. snd_soc_dapm_kcontrol_widget(kcontrol);
  2462. struct snd_soc_component *component =
  2463. snd_soc_dapm_to_component(widget->dapm);
  2464. struct soc_multi_mixer_control *mixer =
  2465. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2466. u32 dai_id = widget->shift;
  2467. u32 spk_tx_id = mixer->shift;
  2468. struct device *wsa_dev = NULL;
  2469. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2470. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2471. return -EINVAL;
  2472. if (test_bit(spk_tx_id, &wsa_priv->active_ch_mask[dai_id]))
  2473. ucontrol->value.integer.value[0] = 1;
  2474. else
  2475. ucontrol->value.integer.value[0] = 0;
  2476. return 0;
  2477. }
  2478. static int lpass_cdc_wsa_macro_cps_feed_mixer_put(struct snd_kcontrol *kcontrol,
  2479. struct snd_ctl_elem_value *ucontrol)
  2480. {
  2481. struct snd_soc_dapm_widget *widget =
  2482. snd_soc_dapm_kcontrol_widget(kcontrol);
  2483. struct snd_soc_component *component =
  2484. snd_soc_dapm_to_component(widget->dapm);
  2485. struct soc_multi_mixer_control *mixer =
  2486. ((struct soc_multi_mixer_control *)kcontrol->private_value);
  2487. u32 dai_id = widget->shift;
  2488. u32 spk_tx_id = mixer->shift;
  2489. u32 enable = ucontrol->value.integer.value[0];
  2490. struct device *wsa_dev = NULL;
  2491. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2492. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2493. return -EINVAL;
  2494. if (enable) {
  2495. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2496. !test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2497. &wsa_priv->active_ch_mask[dai_id])) {
  2498. set_bit(LPASS_CDC_WSA_MACRO_TX0,
  2499. &wsa_priv->active_ch_mask[dai_id]);
  2500. wsa_priv->active_ch_cnt[dai_id]++;
  2501. }
  2502. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2503. !test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2504. &wsa_priv->active_ch_mask[dai_id])) {
  2505. set_bit(LPASS_CDC_WSA_MACRO_TX1,
  2506. &wsa_priv->active_ch_mask[dai_id]);
  2507. wsa_priv->active_ch_cnt[dai_id]++;
  2508. }
  2509. } else {
  2510. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX0 &&
  2511. test_bit(LPASS_CDC_WSA_MACRO_TX0,
  2512. &wsa_priv->active_ch_mask[dai_id])) {
  2513. clear_bit(LPASS_CDC_WSA_MACRO_TX0,
  2514. &wsa_priv->active_ch_mask[dai_id]);
  2515. wsa_priv->active_ch_cnt[dai_id]--;
  2516. }
  2517. if (spk_tx_id == LPASS_CDC_WSA_MACRO_TX1 &&
  2518. test_bit(LPASS_CDC_WSA_MACRO_TX1,
  2519. &wsa_priv->active_ch_mask[dai_id])) {
  2520. clear_bit(LPASS_CDC_WSA_MACRO_TX1,
  2521. &wsa_priv->active_ch_mask[dai_id]);
  2522. wsa_priv->active_ch_cnt[dai_id]--;
  2523. }
  2524. }
  2525. snd_soc_dapm_mixer_update_power(widget->dapm, kcontrol, enable, NULL);
  2526. return 0;
  2527. }
  2528. static const struct snd_kcontrol_new aif_cps_mixer[] = {
  2529. SOC_SINGLE_EXT("WSA_SPKR_CPS_1", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX0, 1, 0,
  2530. lpass_cdc_wsa_macro_cps_feed_mixer_get,
  2531. lpass_cdc_wsa_macro_cps_feed_mixer_put),
  2532. SOC_SINGLE_EXT("WSA_SPKR_CPS_2", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_TX1, 1, 0,
  2533. lpass_cdc_wsa_macro_cps_feed_mixer_get,
  2534. lpass_cdc_wsa_macro_cps_feed_mixer_put),
  2535. };
  2536. static const struct snd_soc_dapm_widget lpass_cdc_wsa_macro_dapm_widgets[] = {
  2537. SND_SOC_DAPM_AIF_IN("WSA AIF1 PB", "WSA_AIF1 Playback", 0,
  2538. SND_SOC_NOPM, 0, 0),
  2539. SND_SOC_DAPM_AIF_IN("WSA AIF_MIX1 PB", "WSA_AIF_MIX1 Playback", 0,
  2540. SND_SOC_NOPM, 0, 0),
  2541. SND_SOC_DAPM_AIF_OUT_E("WSA AIF_VI", "WSA_AIF_VI Capture", 0,
  2542. SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI, 0,
  2543. lpass_cdc_wsa_macro_disable_vi_feedback,
  2544. SND_SOC_DAPM_POST_PMD),
  2545. SND_SOC_DAPM_AIF_OUT("WSA AIF_ECHO", "WSA_AIF_ECHO Capture", 0,
  2546. SND_SOC_NOPM, 0, 0),
  2547. SND_SOC_DAPM_AIF_OUT("WSA AIF_CPS", "WSA_AIF_CPS Capture", 0,
  2548. SND_SOC_NOPM, 0, 0),
  2549. SND_SOC_DAPM_AIF_OUT("WSA AIF_CPS", "WSA_AIF_CPS Capture", 0,
  2550. SND_SOC_NOPM, 0, 0),
  2551. SND_SOC_DAPM_MIXER("WSA_AIF_VI Mixer", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_VI,
  2552. 0, aif_vi_mixer, ARRAY_SIZE(aif_vi_mixer)),
  2553. SND_SOC_DAPM_MIXER("WSA_AIF_CPS Mixer", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_AIF_CPS,
  2554. 0, aif_cps_mixer, ARRAY_SIZE(aif_cps_mixer)),
  2555. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC0_MUX", SND_SOC_NOPM,
  2556. LPASS_CDC_WSA_MACRO_EC0_MUX, 0,
  2557. &rx_mix_ec0_mux, lpass_cdc_wsa_macro_enable_echo,
  2558. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2559. SND_SOC_DAPM_MUX_E("WSA RX_MIX EC1_MUX", SND_SOC_NOPM,
  2560. LPASS_CDC_WSA_MACRO_EC1_MUX, 0,
  2561. &rx_mix_ec1_mux, lpass_cdc_wsa_macro_enable_echo,
  2562. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2563. SND_SOC_DAPM_MUX("WSA RX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX0, 0,
  2564. &rx_mux[LPASS_CDC_WSA_MACRO_RX0]),
  2565. SND_SOC_DAPM_MUX("WSA RX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX1, 0,
  2566. &rx_mux[LPASS_CDC_WSA_MACRO_RX1]),
  2567. SND_SOC_DAPM_MUX("WSA RX_MIX0 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX0, 0,
  2568. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX0]),
  2569. SND_SOC_DAPM_MUX("WSA RX_MIX1 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX_MIX1, 0,
  2570. &rx_mux[LPASS_CDC_WSA_MACRO_RX_MIX1]),
  2571. SND_SOC_DAPM_MUX("WSA RX4 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX4, 0,
  2572. &rx_mux[LPASS_CDC_WSA_MACRO_RX4]),
  2573. SND_SOC_DAPM_MUX("WSA RX5 MUX", SND_SOC_NOPM, LPASS_CDC_WSA_MACRO_RX5, 0,
  2574. &rx_mux[LPASS_CDC_WSA_MACRO_RX5]),
  2575. SND_SOC_DAPM_MIXER("WSA RX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2576. SND_SOC_DAPM_MIXER("WSA RX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2577. SND_SOC_DAPM_MIXER("WSA RX_MIX0", SND_SOC_NOPM, 0, 0, NULL, 0),
  2578. SND_SOC_DAPM_MIXER("WSA RX_MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
  2579. SND_SOC_DAPM_MIXER("WSA RX4", SND_SOC_NOPM, 0, 0, NULL, 0),
  2580. SND_SOC_DAPM_MIXER("WSA RX5", SND_SOC_NOPM, 0, 0, NULL, 0),
  2581. SND_SOC_DAPM_MUX_E("WSA_RX0 INP0", SND_SOC_NOPM, 0, 0,
  2582. &rx0_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2583. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2584. SND_SOC_DAPM_MUX_E("WSA_RX0 INP1", SND_SOC_NOPM, 0, 0,
  2585. &rx0_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2586. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2587. SND_SOC_DAPM_MUX_E("WSA_RX0 INP2", SND_SOC_NOPM, 0, 0,
  2588. &rx0_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2589. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2590. SND_SOC_DAPM_MUX_E("WSA_RX0 MIX INP", SND_SOC_NOPM,
  2591. 0, 0, &rx0_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2592. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2593. SND_SOC_DAPM_MUX_E("WSA_RX1 INP0", SND_SOC_NOPM, 0, 0,
  2594. &rx1_prim_inp0_mux, lpass_cdc_wsa_macro_enable_swr,
  2595. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2596. SND_SOC_DAPM_MUX_E("WSA_RX1 INP1", SND_SOC_NOPM, 0, 0,
  2597. &rx1_prim_inp1_mux, lpass_cdc_wsa_macro_enable_swr,
  2598. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2599. SND_SOC_DAPM_MUX_E("WSA_RX1 INP2", SND_SOC_NOPM, 0, 0,
  2600. &rx1_prim_inp2_mux, lpass_cdc_wsa_macro_enable_swr,
  2601. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2602. SND_SOC_DAPM_MUX_E("WSA_RX1 MIX INP", SND_SOC_NOPM,
  2603. 0, 0, &rx1_mix_mux, lpass_cdc_wsa_macro_enable_mix_path,
  2604. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2605. SND_SOC_DAPM_PGA_E("WSA_RX INT0 MIX", SND_SOC_NOPM,
  2606. 0, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2607. SND_SOC_DAPM_PRE_PMU),
  2608. SND_SOC_DAPM_PGA_E("WSA_RX INT1 MIX", SND_SOC_NOPM,
  2609. 1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_main_path,
  2610. SND_SOC_DAPM_PRE_PMU),
  2611. SND_SOC_DAPM_MIXER("WSA_RX INT0 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2612. SND_SOC_DAPM_MIXER("WSA_RX INT1 SEC MIX", SND_SOC_NOPM, 0, 0, NULL, 0),
  2613. SND_SOC_DAPM_MUX_E("WSA_RX0 INT0 SIDETONE MIX",
  2614. LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 4, 0,
  2615. &rx0_sidetone_mix_mux, lpass_cdc_wsa_macro_enable_swr,
  2616. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2617. SND_SOC_DAPM_INPUT("WSA SRC0_INP"),
  2618. SND_SOC_DAPM_INPUT("WSA_TX DEC0_INP"),
  2619. SND_SOC_DAPM_INPUT("WSA_TX DEC1_INP"),
  2620. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 INTERP", SND_SOC_NOPM,
  2621. LPASS_CDC_WSA_MACRO_COMP1, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2622. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2623. SND_SOC_DAPM_POST_PMD),
  2624. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 INTERP", SND_SOC_NOPM,
  2625. LPASS_CDC_WSA_MACRO_COMP2, 0, NULL, 0, lpass_cdc_wsa_macro_enable_interpolator,
  2626. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2627. SND_SOC_DAPM_POST_PMD),
  2628. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 CHAIN", SND_SOC_NOPM, 0, 0,
  2629. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2630. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2631. SND_SOC_DAPM_POST_PMD),
  2632. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 CHAIN", SND_SOC_NOPM, 0, 0,
  2633. NULL, 0, lpass_cdc_wsa_macro_spk_boost_event,
  2634. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
  2635. SND_SOC_DAPM_POST_PMD),
  2636. SND_SOC_DAPM_MIXER_E("WSA_RX INT0 VBAT", SND_SOC_NOPM,
  2637. 0, 0, wsa_int0_vbat_mix_switch,
  2638. ARRAY_SIZE(wsa_int0_vbat_mix_switch),
  2639. lpass_cdc_wsa_macro_enable_vbat,
  2640. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2641. SND_SOC_DAPM_MIXER_E("WSA_RX INT1 VBAT", SND_SOC_NOPM,
  2642. 0, 0, wsa_int1_vbat_mix_switch,
  2643. ARRAY_SIZE(wsa_int1_vbat_mix_switch),
  2644. lpass_cdc_wsa_macro_enable_vbat,
  2645. SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2646. SND_SOC_DAPM_INPUT("VIINPUT_WSA"),
  2647. SND_SOC_DAPM_INPUT("CPSINPUT_WSA"),
  2648. SND_SOC_DAPM_OUTPUT("WSA_SPK1 OUT"),
  2649. SND_SOC_DAPM_OUTPUT("WSA_SPK2 OUT"),
  2650. SND_SOC_DAPM_SUPPLY_S("WSA_MCLK", 0, SND_SOC_NOPM, 0, 0,
  2651. lpass_cdc_wsa_macro_mclk_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
  2652. };
  2653. static const struct snd_soc_dapm_route wsa_audio_map[] = {
  2654. /* VI Feedback */
  2655. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_1", "VIINPUT_WSA"},
  2656. {"WSA_AIF_VI Mixer", "WSA_SPKR_VI_2", "VIINPUT_WSA"},
  2657. {"WSA AIF_VI", NULL, "WSA_AIF_VI Mixer"},
  2658. {"WSA AIF_VI", NULL, "WSA_MCLK"},
  2659. /* CPS Feedback */
  2660. {"WSA_AIF_CPS Mixer", "WSA_SPKR_CPS_1", "CPSINPUT_WSA"},
  2661. {"WSA_AIF_CPS Mixer", "WSA_SPKR_CPS_2", "CPSINPUT_WSA"},
  2662. {"WSA AIF_CPS", NULL, "WSA_AIF_CPS Mixer"},
  2663. {"WSA AIF_CPS", NULL, "WSA_MCLK"},
  2664. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2665. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX0", "WSA_RX INT0 SEC MIX"},
  2666. {"WSA RX_MIX EC0_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2667. {"WSA RX_MIX EC1_MUX", "RX_MIX_TX1", "WSA_RX INT1 SEC MIX"},
  2668. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC0_MUX"},
  2669. {"WSA AIF_ECHO", NULL, "WSA RX_MIX EC1_MUX"},
  2670. {"WSA AIF_ECHO", NULL, "WSA_MCLK"},
  2671. {"WSA AIF1 PB", NULL, "WSA_MCLK"},
  2672. {"WSA AIF_MIX1 PB", NULL, "WSA_MCLK"},
  2673. {"WSA RX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2674. {"WSA RX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2675. {"WSA RX_MIX0 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2676. {"WSA RX_MIX1 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2677. {"WSA RX4 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2678. {"WSA RX5 MUX", "AIF1_PB", "WSA AIF1 PB"},
  2679. {"WSA RX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2680. {"WSA RX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2681. {"WSA RX_MIX0 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2682. {"WSA RX_MIX1 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2683. {"WSA RX4 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2684. {"WSA RX5 MUX", "AIF_MIX1_PB", "WSA AIF_MIX1 PB"},
  2685. {"WSA RX0", NULL, "WSA RX0 MUX"},
  2686. {"WSA RX1", NULL, "WSA RX1 MUX"},
  2687. {"WSA RX_MIX0", NULL, "WSA RX_MIX0 MUX"},
  2688. {"WSA RX_MIX1", NULL, "WSA RX_MIX1 MUX"},
  2689. {"WSA RX4", NULL, "WSA RX4 MUX"},
  2690. {"WSA RX5", NULL, "WSA RX5 MUX"},
  2691. {"WSA_RX0 INP0", "RX0", "WSA RX0"},
  2692. {"WSA_RX0 INP0", "RX1", "WSA RX1"},
  2693. {"WSA_RX0 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2694. {"WSA_RX0 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2695. {"WSA_RX0 INP0", "RX4", "WSA RX4"},
  2696. {"WSA_RX0 INP0", "RX5", "WSA RX5"},
  2697. {"WSA_RX0 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2698. {"WSA_RX0 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2699. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP0"},
  2700. {"WSA_RX0 INP1", "RX0", "WSA RX0"},
  2701. {"WSA_RX0 INP1", "RX1", "WSA RX1"},
  2702. {"WSA_RX0 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2703. {"WSA_RX0 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2704. {"WSA_RX0 INP1", "RX4", "WSA RX4"},
  2705. {"WSA_RX0 INP1", "RX5", "WSA RX5"},
  2706. {"WSA_RX0 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2707. {"WSA_RX0 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2708. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP1"},
  2709. {"WSA_RX0 INP2", "RX0", "WSA RX0"},
  2710. {"WSA_RX0 INP2", "RX1", "WSA RX1"},
  2711. {"WSA_RX0 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2712. {"WSA_RX0 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2713. {"WSA_RX0 INP2", "RX4", "WSA RX4"},
  2714. {"WSA_RX0 INP2", "RX5", "WSA RX5"},
  2715. {"WSA_RX0 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2716. {"WSA_RX0 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2717. {"WSA_RX INT0 MIX", NULL, "WSA_RX0 INP2"},
  2718. {"WSA_RX0 MIX INP", "RX0", "WSA RX0"},
  2719. {"WSA_RX0 MIX INP", "RX1", "WSA RX1"},
  2720. {"WSA_RX0 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2721. {"WSA_RX0 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2722. {"WSA_RX0 MIX INP", "RX4", "WSA RX4"},
  2723. {"WSA_RX0 MIX INP", "RX5", "WSA RX5"},
  2724. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX0 MIX INP"},
  2725. {"WSA_RX INT0 SEC MIX", NULL, "WSA_RX INT0 MIX"},
  2726. {"WSA_RX INT0 INTERP", NULL, "WSA_RX INT0 SEC MIX"},
  2727. {"WSA_RX0 INT0 SIDETONE MIX", "SRC0", "WSA SRC0_INP"},
  2728. {"WSA_RX INT0 INTERP", NULL, "WSA_RX0 INT0 SIDETONE MIX"},
  2729. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 INTERP"},
  2730. {"WSA_RX INT0 VBAT", "WSA RX0 VBAT Enable", "WSA_RX INT0 INTERP"},
  2731. {"WSA_RX INT0 CHAIN", NULL, "WSA_RX INT0 VBAT"},
  2732. {"WSA_SPK1 OUT", NULL, "WSA_RX INT0 CHAIN"},
  2733. {"WSA_SPK1 OUT", NULL, "WSA_MCLK"},
  2734. {"WSA_RX1 INP0", "RX0", "WSA RX0"},
  2735. {"WSA_RX1 INP0", "RX1", "WSA RX1"},
  2736. {"WSA_RX1 INP0", "RX_MIX0", "WSA RX_MIX0"},
  2737. {"WSA_RX1 INP0", "RX_MIX1", "WSA RX_MIX1"},
  2738. {"WSA_RX1 INP0", "RX4", "WSA RX4"},
  2739. {"WSA_RX1 INP0", "RX5", "WSA RX5"},
  2740. {"WSA_RX1 INP0", "DEC0", "WSA_TX DEC0_INP"},
  2741. {"WSA_RX1 INP0", "DEC1", "WSA_TX DEC1_INP"},
  2742. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP0"},
  2743. {"WSA_RX1 INP1", "RX0", "WSA RX0"},
  2744. {"WSA_RX1 INP1", "RX1", "WSA RX1"},
  2745. {"WSA_RX1 INP1", "RX_MIX0", "WSA RX_MIX0"},
  2746. {"WSA_RX1 INP1", "RX_MIX1", "WSA RX_MIX1"},
  2747. {"WSA_RX1 INP1", "RX4", "WSA RX4"},
  2748. {"WSA_RX1 INP1", "RX5", "WSA RX5"},
  2749. {"WSA_RX1 INP1", "DEC0", "WSA_TX DEC0_INP"},
  2750. {"WSA_RX1 INP1", "DEC1", "WSA_TX DEC1_INP"},
  2751. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP1"},
  2752. {"WSA_RX1 INP2", "RX0", "WSA RX0"},
  2753. {"WSA_RX1 INP2", "RX1", "WSA RX1"},
  2754. {"WSA_RX1 INP2", "RX_MIX0", "WSA RX_MIX0"},
  2755. {"WSA_RX1 INP2", "RX_MIX1", "WSA RX_MIX1"},
  2756. {"WSA_RX1 INP2", "RX4", "WSA RX4"},
  2757. {"WSA_RX1 INP2", "RX5", "WSA RX5"},
  2758. {"WSA_RX1 INP2", "DEC0", "WSA_TX DEC0_INP"},
  2759. {"WSA_RX1 INP2", "DEC1", "WSA_TX DEC1_INP"},
  2760. {"WSA_RX INT1 MIX", NULL, "WSA_RX1 INP2"},
  2761. {"WSA_RX1 MIX INP", "RX0", "WSA RX0"},
  2762. {"WSA_RX1 MIX INP", "RX1", "WSA RX1"},
  2763. {"WSA_RX1 MIX INP", "RX_MIX0", "WSA RX_MIX0"},
  2764. {"WSA_RX1 MIX INP", "RX_MIX1", "WSA RX_MIX1"},
  2765. {"WSA_RX1 MIX INP", "RX4", "WSA RX4"},
  2766. {"WSA_RX1 MIX INP", "RX5", "WSA RX5"},
  2767. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX1 MIX INP"},
  2768. {"WSA_RX INT1 SEC MIX", NULL, "WSA_RX INT1 MIX"},
  2769. {"WSA_RX INT1 INTERP", NULL, "WSA_RX INT1 SEC MIX"},
  2770. {"WSA_RX INT1 VBAT", "WSA RX1 VBAT Enable", "WSA_RX INT1 INTERP"},
  2771. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 VBAT"},
  2772. {"WSA_RX INT1 CHAIN", NULL, "WSA_RX INT1 INTERP"},
  2773. {"WSA_SPK2 OUT", NULL, "WSA_RX INT1 CHAIN"},
  2774. {"WSA_SPK2 OUT", NULL, "WSA_MCLK"},
  2775. };
  2776. static void lpass_cdc_wsa_macro_init_pbr(struct snd_soc_component *component)
  2777. {
  2778. int sys_gain, bat_cfg, rload;
  2779. int vth1, vth2, vth3, vth4, vth5, vth6, vth7, vth8, vth9;
  2780. int vth10, vth11, vth12, vth13, vth14, vth15;
  2781. struct device *wsa_dev = NULL;
  2782. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  2783. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  2784. return;
  2785. /* RX0 */
  2786. sys_gain = wsa_priv->wsa_sys_gain[0];
  2787. bat_cfg = wsa_priv->wsa_bat_cfg[0];
  2788. rload = wsa_priv->wsa_rload[0];
  2789. /* ILIM */
  2790. switch (rload) {
  2791. case WSA_4_OHMS:
  2792. snd_soc_component_update_bits(component,
  2793. LPASS_CDC_WSA_ILIM_CFG0, 0xE0, 0x40);
  2794. break;
  2795. case WSA_6_OHMS:
  2796. snd_soc_component_update_bits(component,
  2797. LPASS_CDC_WSA_ILIM_CFG0, 0xE0, 0x80);
  2798. break;
  2799. case WSA_8_OHMS:
  2800. snd_soc_component_update_bits(component,
  2801. LPASS_CDC_WSA_ILIM_CFG0, 0xE0, 0xC0);
  2802. break;
  2803. case WSA_32_OHMS:
  2804. snd_soc_component_update_bits(component,
  2805. LPASS_CDC_WSA_ILIM_CFG0, 0xE0, 0xE0);
  2806. break;
  2807. default:
  2808. break;
  2809. }
  2810. snd_soc_component_update_bits(component,
  2811. LPASS_CDC_WSA_ILIM_CFG1, 0x0F, sys_gain);
  2812. snd_soc_component_update_bits(component,
  2813. LPASS_CDC_WSA_ILIM_CFG9, 0xC0, (bat_cfg - 1) << 0x6);
  2814. /* Thesh */
  2815. vth1 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth1_data[sys_gain][bat_cfg][rload]);
  2816. vth2 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth2_data[sys_gain][bat_cfg][rload]);
  2817. vth3 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth3_data[sys_gain][bat_cfg][rload]);
  2818. vth4 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth4_data[sys_gain][bat_cfg][rload]);
  2819. vth5 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth5_data[sys_gain][bat_cfg][rload]);
  2820. vth6 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth6_data[sys_gain][bat_cfg][rload]);
  2821. vth7 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth7_data[sys_gain][bat_cfg][rload]);
  2822. vth8 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth8_data[sys_gain][bat_cfg][rload]);
  2823. vth9 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth9_data[sys_gain][bat_cfg][rload]);
  2824. vth10 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth10_data[sys_gain][bat_cfg][rload]);
  2825. vth11 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth11_data[sys_gain][bat_cfg][rload]);
  2826. vth12 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth12_data[sys_gain][bat_cfg][rload]);
  2827. vth13 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth13_data[sys_gain][bat_cfg][rload]);
  2828. vth14 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth14_data[sys_gain][bat_cfg][rload]);
  2829. vth15 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth15_data[sys_gain][bat_cfg][rload]);
  2830. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG1, vth1);
  2831. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG2, vth2);
  2832. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG3, vth3);
  2833. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG4, vth4);
  2834. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG5, vth5);
  2835. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG6, vth6);
  2836. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG7, vth7);
  2837. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG8, vth8);
  2838. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG9, vth9);
  2839. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG10, vth10);
  2840. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG11, vth11);
  2841. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG12, vth12);
  2842. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG13, vth13);
  2843. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG14, vth14);
  2844. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG15, vth15);
  2845. /* RX1 */
  2846. sys_gain = wsa_priv->wsa_sys_gain[2];
  2847. bat_cfg = wsa_priv->wsa_bat_cfg[1];
  2848. rload = wsa_priv->wsa_rload[1];
  2849. /* ILIM */
  2850. switch (rload) {
  2851. case WSA_4_OHMS:
  2852. snd_soc_component_update_bits(component,
  2853. LPASS_CDC_WSA_ILIM_CFG0_1, 0xE0, 0x40);
  2854. break;
  2855. case WSA_6_OHMS:
  2856. snd_soc_component_update_bits(component,
  2857. LPASS_CDC_WSA_ILIM_CFG0_1, 0xE0, 0x80);
  2858. break;
  2859. case WSA_8_OHMS:
  2860. snd_soc_component_update_bits(component,
  2861. LPASS_CDC_WSA_ILIM_CFG0_1, 0xE0, 0xC0);
  2862. break;
  2863. case WSA_32_OHMS:
  2864. snd_soc_component_update_bits(component,
  2865. LPASS_CDC_WSA_ILIM_CFG0_1, 0xE0, 0xE0);
  2866. break;
  2867. default:
  2868. break;
  2869. }
  2870. snd_soc_component_update_bits(component,
  2871. LPASS_CDC_WSA_ILIM_CFG1_1, 0x0F, sys_gain);
  2872. snd_soc_component_update_bits(component,
  2873. LPASS_CDC_WSA_ILIM_CFG9, 0x30, (bat_cfg - 1) << 0x4);
  2874. /* Thesh */
  2875. vth1 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth1_data[sys_gain][bat_cfg][rload]);
  2876. vth2 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth2_data[sys_gain][bat_cfg][rload]);
  2877. vth3 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth3_data[sys_gain][bat_cfg][rload]);
  2878. vth4 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth4_data[sys_gain][bat_cfg][rload]);
  2879. vth5 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth5_data[sys_gain][bat_cfg][rload]);
  2880. vth6 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth6_data[sys_gain][bat_cfg][rload]);
  2881. vth7 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth7_data[sys_gain][bat_cfg][rload]);
  2882. vth8 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth8_data[sys_gain][bat_cfg][rload]);
  2883. vth9 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth9_data[sys_gain][bat_cfg][rload]);
  2884. vth10 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth10_data[sys_gain][bat_cfg][rload]);
  2885. vth11 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth11_data[sys_gain][bat_cfg][rload]);
  2886. vth12 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth12_data[sys_gain][bat_cfg][rload]);
  2887. vth13 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth13_data[sys_gain][bat_cfg][rload]);
  2888. vth14 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth14_data[sys_gain][bat_cfg][rload]);
  2889. vth15 = LPASS_CDC_WSA_MACRO_VTH_TO_REG(pbr_vth15_data[sys_gain][bat_cfg][rload]);
  2890. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG1_1, vth1);
  2891. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG2_1, vth2);
  2892. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG3_1, vth3);
  2893. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG4_1, vth4);
  2894. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG5_1, vth5);
  2895. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG6_1, vth6);
  2896. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG7_1, vth7);
  2897. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG8_1, vth8);
  2898. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG9_1, vth9);
  2899. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG10_1, vth10);
  2900. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG11_1, vth11);
  2901. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG12_1, vth12);
  2902. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG13_1, vth13);
  2903. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG14_1, vth14);
  2904. snd_soc_component_write(component, LPASS_CDC_WSA_PBR_CFG15_1, vth15);
  2905. }
  2906. static const struct lpass_cdc_wsa_macro_reg_mask_val
  2907. lpass_cdc_wsa_macro_reg_init[] = {
  2908. {LPASS_CDC_WSA_BOOST0_BOOST_CFG1, 0x3F, 0x12},
  2909. {LPASS_CDC_WSA_BOOST0_BOOST_CFG2, 0x1C, 0x08},
  2910. {LPASS_CDC_WSA_COMPANDER0_CTL7, 0x3E, 0x2e},
  2911. {LPASS_CDC_WSA_BOOST1_BOOST_CFG1, 0x3F, 0x12},
  2912. {LPASS_CDC_WSA_BOOST1_BOOST_CFG2, 0x1C, 0x08},
  2913. {LPASS_CDC_WSA_COMPANDER1_CTL7, 0x3E, 0x2e},
  2914. {LPASS_CDC_WSA_BOOST0_BOOST_CTL, 0x70, 0x58},
  2915. {LPASS_CDC_WSA_BOOST1_BOOST_CTL, 0x70, 0x58},
  2916. {LPASS_CDC_WSA_RX0_RX_PATH_CFG1, 0x08, 0x08},
  2917. {LPASS_CDC_WSA_RX1_RX_PATH_CFG1, 0x08, 0x08},
  2918. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x02, 0x02},
  2919. {LPASS_CDC_WSA_TOP_TOP_CFG1, 0x01, 0x01},
  2920. {LPASS_CDC_WSA_TX0_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2921. {LPASS_CDC_WSA_TX1_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2922. {LPASS_CDC_WSA_TX2_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2923. {LPASS_CDC_WSA_TX3_SPKR_PROT_PATH_CFG0, 0x01, 0x01},
  2924. {LPASS_CDC_WSA_RX0_RX_PATH_CFG0, 0x01, 0x01},
  2925. {LPASS_CDC_WSA_RX1_RX_PATH_CFG0, 0x01, 0x01},
  2926. {LPASS_CDC_WSA_RX0_RX_PATH_MIX_CFG, 0x01, 0x01},
  2927. {LPASS_CDC_WSA_RX1_RX_PATH_MIX_CFG, 0x01, 0x01},
  2928. {LPASS_CDC_WSA_LA_CFG, 0x3F, 0xF},
  2929. {LPASS_CDC_WSA_PBR_CFG16, 0xFF, 0x42},
  2930. {LPASS_CDC_WSA_PBR_CFG19, 0xFF, 0xFC},
  2931. {LPASS_CDC_WSA_PBR_CFG20, 0xF0, 0x60},
  2932. {LPASS_CDC_WSA_ILIM_CFG1, 0x70, 0x40},
  2933. {LPASS_CDC_WSA_ILIM_CFG0, 0x03, 0x01},
  2934. {LPASS_CDC_WSA_ILIM_CFG3, 0x1F, 0x15},
  2935. {LPASS_CDC_WSA_LA_CFG_1, 0x3F, 0x0F},
  2936. {LPASS_CDC_WSA_PBR_CFG16_1, 0xFF, 0x42},
  2937. {LPASS_CDC_WSA_PBR_CFG21, 0xFF, 0xFC},
  2938. {LPASS_CDC_WSA_PBR_CFG22, 0xF0, 0x60},
  2939. {LPASS_CDC_WSA_ILIM_CFG1_1, 0x70, 0x40},
  2940. {LPASS_CDC_WSA_ILIM_CFG0_1, 0x03, 0x01},
  2941. {LPASS_CDC_WSA_ILIM_CFG4, 0x1F, 0x15},
  2942. {LPASS_CDC_WSA_ILIM_CFG2_1, 0xFF, 0x2A},
  2943. {LPASS_CDC_WSA_ILIM_CFG2, 0x3F, 0x1B},
  2944. {LPASS_CDC_WSA_ILIM_CFG9, 0x0F, 0x05},
  2945. {LPASS_CDC_WSA_IDLE_DETECT_CFG1, 0xFF, 0x1D},
  2946. };
  2947. static void lpass_cdc_wsa_macro_init_reg(struct snd_soc_component *component)
  2948. {
  2949. int i;
  2950. for (i = 0; i < ARRAY_SIZE(lpass_cdc_wsa_macro_reg_init); i++)
  2951. snd_soc_component_update_bits(component,
  2952. lpass_cdc_wsa_macro_reg_init[i].reg,
  2953. lpass_cdc_wsa_macro_reg_init[i].mask,
  2954. lpass_cdc_wsa_macro_reg_init[i].val);
  2955. lpass_cdc_wsa_macro_init_pbr(component);
  2956. }
  2957. static int lpass_cdc_wsa_macro_core_vote(void *handle, bool enable)
  2958. {
  2959. int rc = 0;
  2960. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2961. if (wsa_priv == NULL) {
  2962. pr_err_ratelimited("%s: wsa priv data is NULL\n", __func__);
  2963. return -EINVAL;
  2964. }
  2965. if (!wsa_priv->pre_dev_up && enable) {
  2966. pr_debug("%s: adsp is not up\n", __func__);
  2967. return -EINVAL;
  2968. }
  2969. if (enable) {
  2970. pm_runtime_get_sync(wsa_priv->dev);
  2971. if (lpass_cdc_check_core_votes(wsa_priv->dev))
  2972. rc = 0;
  2973. else
  2974. rc = -ENOTSYNC;
  2975. } else {
  2976. pm_runtime_put_autosuspend(wsa_priv->dev);
  2977. pm_runtime_mark_last_busy(wsa_priv->dev);
  2978. }
  2979. return rc;
  2980. }
  2981. static int wsa_swrm_clock(void *handle, bool enable)
  2982. {
  2983. struct lpass_cdc_wsa_macro_priv *wsa_priv = (struct lpass_cdc_wsa_macro_priv *) handle;
  2984. struct regmap *regmap = dev_get_regmap(wsa_priv->dev->parent, NULL);
  2985. int ret = 0;
  2986. if (regmap == NULL) {
  2987. dev_err_ratelimited(wsa_priv->dev, "%s: regmap is NULL\n", __func__);
  2988. return -EINVAL;
  2989. }
  2990. mutex_lock(&wsa_priv->swr_clk_lock);
  2991. trace_printk("%s: %s swrm clock %s\n",
  2992. dev_name(wsa_priv->dev), __func__,
  2993. (enable ? "enable" : "disable"));
  2994. dev_dbg(wsa_priv->dev, "%s: swrm clock %s\n",
  2995. __func__, (enable ? "enable" : "disable"));
  2996. if (enable) {
  2997. pm_runtime_get_sync(wsa_priv->dev);
  2998. if (wsa_priv->swr_clk_users == 0) {
  2999. ret = msm_cdc_pinctrl_select_active_state(
  3000. wsa_priv->wsa_swr_gpio_p);
  3001. if (ret < 0) {
  3002. dev_err_ratelimited(wsa_priv->dev,
  3003. "%s: wsa swr pinctrl enable failed\n",
  3004. __func__);
  3005. pm_runtime_mark_last_busy(wsa_priv->dev);
  3006. pm_runtime_put_autosuspend(wsa_priv->dev);
  3007. goto exit;
  3008. }
  3009. ret = lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 1, true);
  3010. if (ret < 0) {
  3011. msm_cdc_pinctrl_select_sleep_state(
  3012. wsa_priv->wsa_swr_gpio_p);
  3013. dev_err_ratelimited(wsa_priv->dev,
  3014. "%s: wsa request clock enable failed\n",
  3015. __func__);
  3016. pm_runtime_mark_last_busy(wsa_priv->dev);
  3017. pm_runtime_put_autosuspend(wsa_priv->dev);
  3018. goto exit;
  3019. }
  3020. if (wsa_priv->reset_swr)
  3021. regmap_update_bits(regmap,
  3022. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  3023. 0x02, 0x02);
  3024. regmap_update_bits(regmap,
  3025. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  3026. 0x01, 0x01);
  3027. if (wsa_priv->reset_swr)
  3028. regmap_update_bits(regmap,
  3029. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  3030. 0x02, 0x00);
  3031. regmap_update_bits(regmap,
  3032. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  3033. 0x1C, 0x0C);
  3034. wsa_priv->reset_swr = false;
  3035. }
  3036. wsa_priv->swr_clk_users++;
  3037. pm_runtime_mark_last_busy(wsa_priv->dev);
  3038. pm_runtime_put_autosuspend(wsa_priv->dev);
  3039. } else {
  3040. if (wsa_priv->swr_clk_users <= 0) {
  3041. dev_err_ratelimited(wsa_priv->dev, "%s: clock already disabled\n",
  3042. __func__);
  3043. wsa_priv->swr_clk_users = 0;
  3044. goto exit;
  3045. }
  3046. wsa_priv->swr_clk_users--;
  3047. if (wsa_priv->swr_clk_users == 0) {
  3048. regmap_update_bits(regmap,
  3049. LPASS_CDC_WSA_CLK_RST_CTRL_SWR_CONTROL,
  3050. 0x01, 0x00);
  3051. lpass_cdc_wsa_macro_mclk_enable(wsa_priv, 0, true);
  3052. ret = msm_cdc_pinctrl_select_sleep_state(
  3053. wsa_priv->wsa_swr_gpio_p);
  3054. if (ret < 0) {
  3055. dev_err_ratelimited(wsa_priv->dev,
  3056. "%s: wsa swr pinctrl disable failed\n",
  3057. __func__);
  3058. goto exit;
  3059. }
  3060. }
  3061. }
  3062. trace_printk("%s: %s swrm clock users: %d\n",
  3063. dev_name(wsa_priv->dev), __func__,
  3064. wsa_priv->swr_clk_users);
  3065. dev_dbg(wsa_priv->dev, "%s: swrm clock users %d\n",
  3066. __func__, wsa_priv->swr_clk_users);
  3067. exit:
  3068. mutex_unlock(&wsa_priv->swr_clk_lock);
  3069. return ret;
  3070. }
  3071. /* Thermal Functions */
  3072. static int lpass_cdc_wsa_macro_get_max_state(
  3073. struct thermal_cooling_device *cdev,
  3074. unsigned long *state)
  3075. {
  3076. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  3077. if (!wsa_priv) {
  3078. pr_err_ratelimited("%s: cdev->devdata is NULL\n", __func__);
  3079. return -EINVAL;
  3080. }
  3081. *state = wsa_priv->thermal_max_state;
  3082. return 0;
  3083. }
  3084. static int lpass_cdc_wsa_macro_get_cur_state(
  3085. struct thermal_cooling_device *cdev,
  3086. unsigned long *state)
  3087. {
  3088. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  3089. if (!wsa_priv) {
  3090. pr_err_ratelimited("%s: cdev->devdata is NULL\n", __func__);
  3091. return -EINVAL;
  3092. }
  3093. *state = wsa_priv->thermal_cur_state;
  3094. pr_debug("%s: thermal current state:%lu\n", __func__, *state);
  3095. return 0;
  3096. }
  3097. static int lpass_cdc_wsa_macro_set_cur_state(
  3098. struct thermal_cooling_device *cdev,
  3099. unsigned long state)
  3100. {
  3101. struct lpass_cdc_wsa_macro_priv *wsa_priv = cdev->devdata;
  3102. if (!wsa_priv || !wsa_priv->dev) {
  3103. pr_err_ratelimited("%s: cdev->devdata is NULL\n", __func__);
  3104. return -EINVAL;
  3105. }
  3106. if (state <= wsa_priv->thermal_max_state) {
  3107. wsa_priv->thermal_cur_state = state;
  3108. } else {
  3109. dev_err_ratelimited(wsa_priv->dev,
  3110. "%s: incorrect requested state:%d\n",
  3111. __func__, state);
  3112. return -EINVAL;
  3113. }
  3114. dev_dbg(wsa_priv->dev,
  3115. "%s: set the thermal current state to %d\n",
  3116. __func__, wsa_priv->thermal_cur_state);
  3117. schedule_work(&wsa_priv->lpass_cdc_wsa_macro_cooling_work);
  3118. return 0;
  3119. }
  3120. static struct thermal_cooling_device_ops wsa_cooling_ops = {
  3121. .get_max_state = lpass_cdc_wsa_macro_get_max_state,
  3122. .get_cur_state = lpass_cdc_wsa_macro_get_cur_state,
  3123. .set_cur_state = lpass_cdc_wsa_macro_set_cur_state,
  3124. };
  3125. static int lpass_cdc_wsa_macro_init(struct snd_soc_component *component)
  3126. {
  3127. struct snd_soc_dapm_context *dapm =
  3128. snd_soc_component_get_dapm(component);
  3129. int ret;
  3130. struct device *wsa_dev = NULL;
  3131. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  3132. wsa_dev = lpass_cdc_get_device_ptr(component->dev, WSA_MACRO);
  3133. if (!wsa_dev) {
  3134. dev_err(component->dev,
  3135. "%s: null device for macro!\n", __func__);
  3136. return -EINVAL;
  3137. }
  3138. wsa_priv = dev_get_drvdata(wsa_dev);
  3139. if (!wsa_priv) {
  3140. dev_err(component->dev,
  3141. "%s: priv is null for macro!\n", __func__);
  3142. return -EINVAL;
  3143. }
  3144. ret = snd_soc_dapm_new_controls(dapm, lpass_cdc_wsa_macro_dapm_widgets,
  3145. ARRAY_SIZE(lpass_cdc_wsa_macro_dapm_widgets));
  3146. if (ret < 0) {
  3147. dev_err(wsa_dev, "%s: Failed to add controls\n", __func__);
  3148. return ret;
  3149. }
  3150. ret = snd_soc_dapm_add_routes(dapm, wsa_audio_map,
  3151. ARRAY_SIZE(wsa_audio_map));
  3152. if (ret < 0) {
  3153. dev_err(wsa_dev, "%s: Failed to add routes\n", __func__);
  3154. return ret;
  3155. }
  3156. ret = snd_soc_dapm_new_widgets(dapm->card);
  3157. if (ret < 0) {
  3158. dev_err(wsa_dev, "%s: Failed to add widgets\n", __func__);
  3159. return ret;
  3160. }
  3161. ret = snd_soc_add_component_controls(component, lpass_cdc_wsa_macro_snd_controls,
  3162. ARRAY_SIZE(lpass_cdc_wsa_macro_snd_controls));
  3163. if (ret < 0) {
  3164. dev_err(wsa_dev, "%s: Failed to add snd_ctls\n", __func__);
  3165. return ret;
  3166. }
  3167. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF1 Playback");
  3168. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_MIX1 Playback");
  3169. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_VI Capture");
  3170. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_ECHO Capture");
  3171. snd_soc_dapm_ignore_suspend(dapm, "WSA_AIF_CPS Capture");
  3172. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK1 OUT");
  3173. snd_soc_dapm_ignore_suspend(dapm, "WSA_SPK2 OUT");
  3174. snd_soc_dapm_ignore_suspend(dapm, "VIINPUT_WSA");
  3175. snd_soc_dapm_ignore_suspend(dapm, "CPSINPUT_WSA");
  3176. snd_soc_dapm_ignore_suspend(dapm, "WSA SRC0_INP");
  3177. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC0_INP");
  3178. snd_soc_dapm_ignore_suspend(dapm, "WSA_TX DEC1_INP");
  3179. snd_soc_dapm_sync(dapm);
  3180. wsa_priv->component = component;
  3181. wsa_priv->spkr_gain_offset = LPASS_CDC_WSA_MACRO_GAIN_OFFSET_0_DB;
  3182. lpass_cdc_wsa_macro_init_reg(component);
  3183. return 0;
  3184. }
  3185. static int lpass_cdc_wsa_macro_deinit(struct snd_soc_component *component)
  3186. {
  3187. struct device *wsa_dev = NULL;
  3188. struct lpass_cdc_wsa_macro_priv *wsa_priv = NULL;
  3189. if (!lpass_cdc_wsa_macro_get_data(component, &wsa_dev, &wsa_priv, __func__))
  3190. return -EINVAL;
  3191. wsa_priv->component = NULL;
  3192. return 0;
  3193. }
  3194. static void lpass_cdc_wsa_macro_add_child_devices(struct work_struct *work)
  3195. {
  3196. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  3197. struct platform_device *pdev;
  3198. struct device_node *node;
  3199. struct lpass_cdc_wsa_macro_swr_ctrl_data *swr_ctrl_data = NULL, *temp;
  3200. int ret;
  3201. u16 count = 0, ctrl_num = 0;
  3202. struct lpass_cdc_wsa_macro_swr_ctrl_platform_data *platdata;
  3203. char plat_dev_name[LPASS_CDC_WSA_MACRO_SWR_STRING_LEN];
  3204. wsa_priv = container_of(work, struct lpass_cdc_wsa_macro_priv,
  3205. lpass_cdc_wsa_macro_add_child_devices_work);
  3206. if (!wsa_priv) {
  3207. pr_err("%s: Memory for wsa_priv does not exist\n",
  3208. __func__);
  3209. return;
  3210. }
  3211. if (!wsa_priv->dev || !wsa_priv->dev->of_node) {
  3212. dev_err(wsa_priv->dev,
  3213. "%s: DT node for wsa_priv does not exist\n", __func__);
  3214. return;
  3215. }
  3216. platdata = &wsa_priv->swr_plat_data;
  3217. wsa_priv->child_count = 0;
  3218. for_each_available_child_of_node(wsa_priv->dev->of_node, node) {
  3219. if (strnstr(node->name, "wsa_swr_master",
  3220. strlen("wsa_swr_master")) != NULL)
  3221. strlcpy(plat_dev_name, "wsa_swr_ctrl",
  3222. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  3223. else if (strnstr(node->name, "msm_cdc_pinctrl",
  3224. strlen("msm_cdc_pinctrl")) != NULL)
  3225. strlcpy(plat_dev_name, node->name,
  3226. (LPASS_CDC_WSA_MACRO_SWR_STRING_LEN - 1));
  3227. else
  3228. continue;
  3229. pdev = platform_device_alloc(plat_dev_name, -1);
  3230. if (!pdev) {
  3231. dev_err(wsa_priv->dev, "%s: pdev memory alloc failed\n",
  3232. __func__);
  3233. ret = -ENOMEM;
  3234. goto err;
  3235. }
  3236. pdev->dev.parent = wsa_priv->dev;
  3237. pdev->dev.of_node = node;
  3238. if (strnstr(node->name, "wsa_swr_master",
  3239. strlen("wsa_swr_master")) != NULL) {
  3240. ret = platform_device_add_data(pdev, platdata,
  3241. sizeof(*platdata));
  3242. if (ret) {
  3243. dev_err(&pdev->dev,
  3244. "%s: cannot add plat data ctrl:%d\n",
  3245. __func__, ctrl_num);
  3246. goto fail_pdev_add;
  3247. }
  3248. temp = krealloc(swr_ctrl_data,
  3249. (ctrl_num + 1) * sizeof(
  3250. struct lpass_cdc_wsa_macro_swr_ctrl_data),
  3251. GFP_KERNEL);
  3252. if (!temp) {
  3253. dev_err(&pdev->dev, "out of memory\n");
  3254. ret = -ENOMEM;
  3255. goto fail_pdev_add;
  3256. }
  3257. swr_ctrl_data = temp;
  3258. swr_ctrl_data[ctrl_num].wsa_swr_pdev = pdev;
  3259. ctrl_num++;
  3260. dev_dbg(&pdev->dev,
  3261. "%s: Adding soundwire ctrl device(s)\n",
  3262. __func__);
  3263. wsa_priv->swr_ctrl_data = swr_ctrl_data;
  3264. }
  3265. ret = platform_device_add(pdev);
  3266. if (ret) {
  3267. dev_err(&pdev->dev,
  3268. "%s: Cannot add platform device\n",
  3269. __func__);
  3270. goto fail_pdev_add;
  3271. }
  3272. if (wsa_priv->child_count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX)
  3273. wsa_priv->pdev_child_devices[
  3274. wsa_priv->child_count++] = pdev;
  3275. else
  3276. goto err;
  3277. }
  3278. return;
  3279. fail_pdev_add:
  3280. for (count = 0; count < wsa_priv->child_count; count++)
  3281. platform_device_put(wsa_priv->pdev_child_devices[count]);
  3282. err:
  3283. return;
  3284. }
  3285. static void lpass_cdc_wsa_macro_cooling_adjust_gain(struct work_struct *work)
  3286. {
  3287. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  3288. u8 gain = 0;
  3289. wsa_priv = container_of(work, struct lpass_cdc_wsa_macro_priv,
  3290. lpass_cdc_wsa_macro_cooling_work);
  3291. if (!wsa_priv) {
  3292. pr_err("%s: priv is null for macro!\n",
  3293. __func__);
  3294. return;
  3295. }
  3296. if (!wsa_priv->dev || !wsa_priv->dev->of_node) {
  3297. dev_err(wsa_priv->dev,
  3298. "%s: DT node for wsa_priv does not exist\n", __func__);
  3299. return;
  3300. }
  3301. /* Only adjust the volume when WSA clock is enabled */
  3302. if (wsa_priv->dapm_mclk_enable) {
  3303. gain = (u8)(wsa_priv->rx0_origin_gain -
  3304. wsa_priv->thermal_cur_state);
  3305. snd_soc_component_update_bits(wsa_priv->component,
  3306. LPASS_CDC_WSA_RX0_RX_VOL_CTL, 0xFF, gain);
  3307. dev_dbg(wsa_priv->dev,
  3308. "%s: RX0 current thermal state: %d, "
  3309. "adjusted gain: %#x\n",
  3310. __func__, wsa_priv->thermal_cur_state, gain);
  3311. gain = (u8)(wsa_priv->rx1_origin_gain -
  3312. wsa_priv->thermal_cur_state);
  3313. snd_soc_component_update_bits(wsa_priv->component,
  3314. LPASS_CDC_WSA_RX1_RX_VOL_CTL, 0xFF, gain);
  3315. dev_dbg(wsa_priv->dev,
  3316. "%s: RX1 current thermal state: %d, "
  3317. "adjusted gain: %#x\n",
  3318. __func__, wsa_priv->thermal_cur_state, gain);
  3319. }
  3320. return;
  3321. }
  3322. static int lpass_cdc_wsa_macro_read_array(struct platform_device *pdev,
  3323. const char *name, int num_values,
  3324. u32 *output)
  3325. {
  3326. u32 len, ret, size;
  3327. if (!of_find_property(pdev->dev.of_node, name, &size)) {
  3328. dev_info(&pdev->dev, "%s: missing %s\n", __func__, name);
  3329. return 0;
  3330. }
  3331. len = size / sizeof(u32);
  3332. if (len != num_values) {
  3333. dev_info(&pdev->dev, "%s: invalid number of %s\n", __func__, name);
  3334. return -EINVAL;
  3335. }
  3336. ret = of_property_read_u32_array(pdev->dev.of_node, name, output, len);
  3337. if (ret)
  3338. dev_info(&pdev->dev, "%s: Failed to read %s\n", __func__, name);
  3339. return 0;
  3340. }
  3341. static void lpass_cdc_wsa_macro_init_ops(struct macro_ops *ops,
  3342. char __iomem *wsa_io_base)
  3343. {
  3344. memset(ops, 0, sizeof(struct macro_ops));
  3345. ops->init = lpass_cdc_wsa_macro_init;
  3346. ops->exit = lpass_cdc_wsa_macro_deinit;
  3347. ops->io_base = wsa_io_base;
  3348. ops->dai_ptr = lpass_cdc_wsa_macro_dai;
  3349. ops->num_dais = ARRAY_SIZE(lpass_cdc_wsa_macro_dai);
  3350. ops->event_handler = lpass_cdc_wsa_macro_event_handler;
  3351. ops->set_port_map = lpass_cdc_wsa_macro_set_port_map;
  3352. }
  3353. static int lpass_cdc_wsa_macro_probe(struct platform_device *pdev)
  3354. {
  3355. struct macro_ops ops;
  3356. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  3357. u32 wsa_base_addr, default_clk_id, thermal_max_state;
  3358. char __iomem *wsa_io_base;
  3359. int ret = 0;
  3360. u32 is_used_wsa_swr_gpio = 1;
  3361. u32 noise_gate_mode;
  3362. const char *is_used_wsa_swr_gpio_dt = "qcom,is-used-swr-gpio";
  3363. if (!lpass_cdc_is_va_macro_registered(&pdev->dev)) {
  3364. dev_err(&pdev->dev,
  3365. "%s: va-macro not registered yet, defer\n", __func__);
  3366. return -EPROBE_DEFER;
  3367. }
  3368. wsa_priv = devm_kzalloc(&pdev->dev, sizeof(struct lpass_cdc_wsa_macro_priv),
  3369. GFP_KERNEL);
  3370. if (!wsa_priv)
  3371. return -ENOMEM;
  3372. wsa_priv->pre_dev_up = true;
  3373. wsa_priv->dev = &pdev->dev;
  3374. ret = of_property_read_u32(pdev->dev.of_node, "reg",
  3375. &wsa_base_addr);
  3376. if (ret) {
  3377. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3378. __func__, "reg");
  3379. return ret;
  3380. }
  3381. if (of_find_property(pdev->dev.of_node, is_used_wsa_swr_gpio_dt,
  3382. NULL)) {
  3383. ret = of_property_read_u32(pdev->dev.of_node,
  3384. is_used_wsa_swr_gpio_dt,
  3385. &is_used_wsa_swr_gpio);
  3386. if (ret) {
  3387. dev_err(&pdev->dev, "%s: error reading %s in dt\n",
  3388. __func__, is_used_wsa_swr_gpio_dt);
  3389. is_used_wsa_swr_gpio = 1;
  3390. }
  3391. }
  3392. wsa_priv->wsa_swr_gpio_p = of_parse_phandle(pdev->dev.of_node,
  3393. "qcom,wsa-swr-gpios", 0);
  3394. if (!wsa_priv->wsa_swr_gpio_p && is_used_wsa_swr_gpio) {
  3395. dev_err(&pdev->dev, "%s: swr_gpios handle not provided!\n",
  3396. __func__);
  3397. return -EINVAL;
  3398. }
  3399. if (msm_cdc_pinctrl_get_state(wsa_priv->wsa_swr_gpio_p) < 0 &&
  3400. is_used_wsa_swr_gpio) {
  3401. dev_err(&pdev->dev, "%s: failed to get swr pin state\n",
  3402. __func__);
  3403. return -EPROBE_DEFER;
  3404. }
  3405. msm_cdc_pinctrl_set_wakeup_capable(
  3406. wsa_priv->wsa_swr_gpio_p, false);
  3407. wsa_io_base = devm_ioremap(&pdev->dev,
  3408. wsa_base_addr, LPASS_CDC_WSA_MACRO_MAX_OFFSET);
  3409. if (!wsa_io_base) {
  3410. dev_err(&pdev->dev, "%s: ioremap failed\n", __func__);
  3411. return -EINVAL;
  3412. }
  3413. lpass_cdc_wsa_macro_read_array(pdev, "qcom,wsa-rloads",
  3414. LPASS_CDC_WSA_MACRO_RX1 + 1, wsa_priv->wsa_rload);
  3415. lpass_cdc_wsa_macro_read_array(pdev, "qcom,wsa-system-gains",
  3416. 2 * (LPASS_CDC_WSA_MACRO_RX1 + 1), wsa_priv->wsa_sys_gain);
  3417. lpass_cdc_wsa_macro_read_array(pdev, "qcom,wsa-bat-cfgs",
  3418. LPASS_CDC_WSA_MACRO_RX1 + 1, wsa_priv->wsa_bat_cfg);
  3419. wsa_priv->wsa_io_base = wsa_io_base;
  3420. wsa_priv->reset_swr = true;
  3421. INIT_WORK(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work,
  3422. lpass_cdc_wsa_macro_add_child_devices);
  3423. INIT_WORK(&wsa_priv->lpass_cdc_wsa_macro_cooling_work,
  3424. lpass_cdc_wsa_macro_cooling_adjust_gain);
  3425. wsa_priv->swr_plat_data.handle = (void *) wsa_priv;
  3426. wsa_priv->swr_plat_data.read = NULL;
  3427. wsa_priv->swr_plat_data.write = NULL;
  3428. wsa_priv->swr_plat_data.bulk_write = NULL;
  3429. wsa_priv->swr_plat_data.clk = wsa_swrm_clock;
  3430. wsa_priv->swr_plat_data.core_vote = lpass_cdc_wsa_macro_core_vote;
  3431. wsa_priv->swr_plat_data.handle_irq = NULL;
  3432. ret = of_property_read_u32(pdev->dev.of_node, "qcom,default-clk-id",
  3433. &default_clk_id);
  3434. if (ret) {
  3435. dev_err(&pdev->dev, "%s: could not find %s entry in dt\n",
  3436. __func__, "qcom,mux0-clk-id");
  3437. default_clk_id = WSA_CORE_CLK;
  3438. }
  3439. wsa_priv->default_clk_id = default_clk_id;
  3440. dev_set_drvdata(&pdev->dev, wsa_priv);
  3441. mutex_init(&wsa_priv->mclk_lock);
  3442. mutex_init(&wsa_priv->swr_clk_lock);
  3443. lpass_cdc_wsa_macro_init_ops(&ops, wsa_io_base);
  3444. ops.clk_id_req = wsa_priv->default_clk_id;
  3445. ops.default_clk_id = wsa_priv->default_clk_id;
  3446. ret = lpass_cdc_register_macro(&pdev->dev, WSA_MACRO, &ops);
  3447. if (ret < 0) {
  3448. dev_err(&pdev->dev, "%s: register macro failed\n", __func__);
  3449. goto reg_macro_fail;
  3450. }
  3451. if (of_find_property(wsa_priv->dev->of_node, "#cooling-cells", NULL)) {
  3452. ret = of_property_read_u32(pdev->dev.of_node,
  3453. "qcom,thermal-max-state",
  3454. &thermal_max_state);
  3455. if (ret) {
  3456. dev_info(&pdev->dev, "%s: could not find %s entry in dt\n",
  3457. __func__, "qcom,thermal-max-state");
  3458. wsa_priv->thermal_max_state =
  3459. LPASS_CDC_WSA_MACRO_THERMAL_MAX_STATE;
  3460. } else {
  3461. wsa_priv->thermal_max_state = thermal_max_state;
  3462. }
  3463. wsa_priv->tcdev = devm_thermal_of_cooling_device_register(
  3464. &pdev->dev,
  3465. wsa_priv->dev->of_node,
  3466. "wsa", wsa_priv,
  3467. &wsa_cooling_ops);
  3468. if (IS_ERR(wsa_priv->tcdev)) {
  3469. dev_err(&pdev->dev,
  3470. "%s: failed to register wsa macro as cooling device\n",
  3471. __func__);
  3472. wsa_priv->tcdev = NULL;
  3473. }
  3474. }
  3475. ret = of_property_read_u32(pdev->dev.of_node,
  3476. "qcom,noise-gate-mode", &noise_gate_mode);
  3477. if (ret) {
  3478. dev_info(&pdev->dev, "%s: could not find %s entry in dt\n",
  3479. __func__, "qcom,noise-gate-mode");
  3480. wsa_priv->noise_gate_mode = IDLE_DETECT;
  3481. } else {
  3482. if (noise_gate_mode >= IDLE_DETECT && noise_gate_mode <= NG3)
  3483. wsa_priv->noise_gate_mode = noise_gate_mode;
  3484. else
  3485. wsa_priv->noise_gate_mode = IDLE_DETECT;
  3486. }
  3487. pm_runtime_set_autosuspend_delay(&pdev->dev, AUTO_SUSPEND_DELAY);
  3488. pm_runtime_use_autosuspend(&pdev->dev);
  3489. pm_runtime_set_suspended(&pdev->dev);
  3490. pm_suspend_ignore_children(&pdev->dev, true);
  3491. pm_runtime_enable(&pdev->dev);
  3492. schedule_work(&wsa_priv->lpass_cdc_wsa_macro_add_child_devices_work);
  3493. return ret;
  3494. reg_macro_fail:
  3495. mutex_destroy(&wsa_priv->mclk_lock);
  3496. mutex_destroy(&wsa_priv->swr_clk_lock);
  3497. return ret;
  3498. }
  3499. static int lpass_cdc_wsa_macro_remove(struct platform_device *pdev)
  3500. {
  3501. struct lpass_cdc_wsa_macro_priv *wsa_priv;
  3502. u16 count = 0;
  3503. wsa_priv = dev_get_drvdata(&pdev->dev);
  3504. if (!wsa_priv)
  3505. return -EINVAL;
  3506. if (wsa_priv->tcdev)
  3507. thermal_cooling_device_unregister(wsa_priv->tcdev);
  3508. for (count = 0; count < wsa_priv->child_count &&
  3509. count < LPASS_CDC_WSA_MACRO_CHILD_DEVICES_MAX; count++)
  3510. platform_device_unregister(wsa_priv->pdev_child_devices[count]);
  3511. pm_runtime_disable(&pdev->dev);
  3512. pm_runtime_set_suspended(&pdev->dev);
  3513. lpass_cdc_unregister_macro(&pdev->dev, WSA_MACRO);
  3514. mutex_destroy(&wsa_priv->mclk_lock);
  3515. mutex_destroy(&wsa_priv->swr_clk_lock);
  3516. return 0;
  3517. }
  3518. static const struct of_device_id lpass_cdc_wsa_macro_dt_match[] = {
  3519. {.compatible = "qcom,lpass-cdc-wsa-macro"},
  3520. {}
  3521. };
  3522. static const struct dev_pm_ops lpass_cdc_dev_pm_ops = {
  3523. SET_SYSTEM_SLEEP_PM_OPS(
  3524. pm_runtime_force_suspend,
  3525. pm_runtime_force_resume
  3526. )
  3527. SET_RUNTIME_PM_OPS(
  3528. lpass_cdc_runtime_suspend,
  3529. lpass_cdc_runtime_resume,
  3530. NULL
  3531. )
  3532. };
  3533. static struct platform_driver lpass_cdc_wsa_macro_driver = {
  3534. .driver = {
  3535. .name = "lpass_cdc_wsa_macro",
  3536. .owner = THIS_MODULE,
  3537. .pm = &lpass_cdc_dev_pm_ops,
  3538. .of_match_table = lpass_cdc_wsa_macro_dt_match,
  3539. .suppress_bind_attrs = true,
  3540. },
  3541. .probe = lpass_cdc_wsa_macro_probe,
  3542. .remove = lpass_cdc_wsa_macro_remove,
  3543. };
  3544. module_platform_driver(lpass_cdc_wsa_macro_driver);
  3545. MODULE_DESCRIPTION("WSA macro driver");
  3546. MODULE_LICENSE("GPL v2");