hal_srng.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203
  1. /*
  2. * Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions are
  6. * met:
  7. * * Redistributions of source code must retain the above copyright
  8. * notice, this list of conditions and the following disclaimer.
  9. * * Redistributions in binary form must reproduce the above
  10. * copyright notice, this list of conditions and the following
  11. * disclaimer in the documentation and/or other materials provided
  12. * with the distribution.
  13. * * Neither the name of The Linux Foundation nor the names of its
  14. * contributors may be used to endorse or promote products derived
  15. * from this software without specific prior written permission.
  16. *
  17. * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
  18. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  19. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
  20. * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
  21. * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  24. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  25. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  26. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  27. * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28. */
  29. #include "hal_api.h"
  30. #include "wcss_version.h"
  31. /**
  32. * Common SRNG register access macros:
  33. * The SRNG registers are distributed accross various UMAC and LMAC HW blocks,
  34. * but the register group and format is exactly same for all rings, with some
  35. * difference between producer rings (these are 'producer rings' with respect
  36. * to HW and refered as 'destination rings' in SW) and consumer rings (these
  37. * are 'consumer rings' with respect to HW and refered as 'source rings' in SW).
  38. * The following macros provide uniform access to all SRNG rings.
  39. */
  40. /* SRNG registers are split among two groups R0 and R2 and following
  41. * definitions identify the group to which each register belongs to
  42. */
  43. #define R0_INDEX 0
  44. #define R2_INDEX 1
  45. #define HWREG_INDEX(_reg_group) _reg_group ## _ ## INDEX
  46. /* Registers in R0 group */
  47. #define BASE_LSB_GROUP R0
  48. #define BASE_MSB_GROUP R0
  49. #define ID_GROUP R0
  50. #define STATUS_GROUP R0
  51. #define MISC_GROUP R0
  52. #define HP_ADDR_LSB_GROUP R0
  53. #define HP_ADDR_MSB_GROUP R0
  54. #define PRODUCER_INT_SETUP_GROUP R0
  55. #define PRODUCER_INT_STATUS_GROUP R0
  56. #define PRODUCER_FULL_COUNTER_GROUP R0
  57. #define MSI1_BASE_LSB_GROUP R0
  58. #define MSI1_BASE_MSB_GROUP R0
  59. #define MSI1_DATA_GROUP R0
  60. #define HP_TP_SW_OFFSET_GROUP R0
  61. #define TP_ADDR_LSB_GROUP R0
  62. #define TP_ADDR_MSB_GROUP R0
  63. #define CONSUMER_INT_SETUP_IX0_GROUP R0
  64. #define CONSUMER_INT_SETUP_IX1_GROUP R0
  65. #define CONSUMER_INT_STATUS_GROUP R0
  66. #define CONSUMER_EMPTY_COUNTER_GROUP R0
  67. #define CONSUMER_PREFETCH_TIMER_GROUP R0
  68. #define CONSUMER_PREFETCH_STATUS_GROUP R0
  69. /* Registers in R2 group */
  70. #define HP_GROUP R2
  71. #define TP_GROUP R2
  72. /**
  73. * Register definitions for all SRNG based rings are same, except few
  74. * differences between source (HW consumer) and destination (HW producer)
  75. * registers. Following macros definitions provide generic access to all
  76. * SRNG based rings.
  77. * For source rings, we will use the register/field definitions of SW2TCL1
  78. * ring defined in the HW header file mac_tcl_reg_seq_hwioreg.h. To setup
  79. * individual fields, SRNG_SM macros should be used with fields specified
  80. * using SRNG_SRC_FLD(<register>, <field>), Register writes should be done
  81. * using SRNG_SRC_REG_WRITE(<hal_srng>, <register>, <value>).
  82. * Similarly for destination rings we will use definitions of REO2SW1 ring
  83. * defined in the register reo_destination_ring.h. To setup individual
  84. * fields SRNG_SM macros should be used with fields specified using
  85. * SRNG_DST_FLD(<register>, <field>). Register writes should be done using
  86. * SRNG_DST_REG_WRITE(<hal_srng>, <register>, <value>).
  87. */
  88. #define SRNG_DST_REG_OFFSET(_reg, _reg_group) \
  89. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg##_ADDR(0)
  90. #define SRNG_SRC_REG_OFFSET(_reg, _reg_group) \
  91. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg ## _ADDR(0)
  92. #define _SRNG_DST_FLD(_reg_group, _reg_fld) \
  93. HWIO_REO_ ## _reg_group ## _REO2SW1_RING_ ## _reg_fld
  94. #define _SRNG_SRC_FLD(_reg_group, _reg_fld) \
  95. HWIO_TCL_ ## _reg_group ## _SW2TCL1_RING_ ## _reg_fld
  96. #define _SRNG_FLD(_reg_group, _reg_fld, _dir) \
  97. _SRNG_ ## _dir ## _FLD(_reg_group, _reg_fld)
  98. #define SRNG_DST_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, DST)
  99. #define SRNG_SRC_FLD(_reg, _f) _SRNG_FLD(_reg ## _GROUP, _reg ## _ ## _f, SRC)
  100. #define SRNG_SRC_R0_START_OFFSET SRNG_SRC_REG_OFFSET(BASE_LSB, R0)
  101. #define SRNG_DST_R0_START_OFFSET SRNG_DST_REG_OFFSET(BASE_LSB, R0)
  102. #define SRNG_SRC_R2_START_OFFSET SRNG_SRC_REG_OFFSET(HP, R2)
  103. #define SRNG_DST_R2_START_OFFSET SRNG_DST_REG_OFFSET(HP, R2)
  104. #define SRNG_SRC_START_OFFSET(_reg_group) \
  105. SRNG_SRC_ ## _reg_group ## _START_OFFSET
  106. #define SRNG_DST_START_OFFSET(_reg_group) \
  107. SRNG_DST_ ## _reg_group ## _START_OFFSET
  108. #define SRNG_REG_ADDR(_srng, _reg, _reg_group, _dir) \
  109. ((_srng)->hwreg_base[HWREG_INDEX(_reg_group)] + \
  110. SRNG_ ## _dir ## _REG_OFFSET(_reg, _reg_group) - \
  111. SRNG_ ## _dir ## _START_OFFSET(_reg_group))
  112. #define SRNG_DST_ADDR(_srng, _reg) \
  113. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, DST)
  114. #define SRNG_SRC_ADDR(_srng, _reg) \
  115. SRNG_REG_ADDR(_srng, _reg, _reg ## _GROUP, SRC)
  116. #define SRNG_REG_WRITE(_srng, _reg, _value, _dir) \
  117. hif_write32_mb(SRNG_ ## _dir ## _ADDR(_srng, _reg), (_value))
  118. #define SRNG_REG_READ(_srng, _reg, _dir) \
  119. hif_read32_mb(SRNG_ ## _dir ## _ADDR(_srng, _reg))
  120. #define SRNG_SRC_REG_WRITE(_srng, _reg, _value) \
  121. SRNG_REG_WRITE(_srng, _reg, _value, SRC)
  122. #define SRNG_DST_REG_WRITE(_srng, _reg, _value) \
  123. SRNG_REG_WRITE(_srng, _reg, _value, DST)
  124. #define SRNG_SRC_REG_READ(_srng, _reg) \
  125. SRNG_REG_READ(_srng, _reg, SRC)
  126. #define _SRNG_FM(_reg_fld) _reg_fld ## _BMSK
  127. #define _SRNG_FS(_reg_fld) _reg_fld ## _SHFT
  128. #define SRNG_SM(_reg_fld, _val) \
  129. (((_val) << _SRNG_FS(_reg_fld)) & _SRNG_FM(_reg_fld))
  130. #define SRNG_MS(_reg_fld, _val) \
  131. (((_val) & _SRNG_FM(_reg_fld)) >> _SRNG_FS(_reg_fld))
  132. #define SRNG_MAX_SIZE_DWORDS \
  133. (SRNG_MS(SRNG_SRC_FLD(BASE_MSB, RING_SIZE), 0xffffffff))
  134. /**
  135. * HW ring configuration table to identify hardware ring attributes like
  136. * register addresses, number of rings, ring entry size etc., for each type
  137. * of SRNG ring.
  138. *
  139. * Currently there is just one HW ring table, but there could be multiple
  140. * configurations in future based on HW variants from the same wifi3.0 family
  141. * and hence need to be attached with hal_soc based on HW type
  142. */
  143. #define HAL_SRNG_CONFIG(_hal_soc, _ring_type) (&hw_srng_table[_ring_type])
  144. static struct hal_hw_srng_config hw_srng_table[] = {
  145. /* TODO: max_rings can populated by querying HW capabilities */
  146. { /* REO_DST */
  147. .start_ring_id = HAL_SRNG_REO2SW1,
  148. .max_rings = 4,
  149. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  150. .lmac_ring = FALSE,
  151. .ring_dir = HAL_SRNG_DST_RING,
  152. .reg_start = {
  153. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(
  154. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  155. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(
  156. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  157. },
  158. .reg_size = {
  159. HWIO_REO_R0_REO2SW2_RING_BASE_LSB_ADDR(0) -
  160. HWIO_REO_R0_REO2SW1_RING_BASE_LSB_ADDR(0),
  161. HWIO_REO_R2_REO2SW1_RING_HP_ADDR(0) -
  162. HWIO_REO_R2_REO2SW2_RING_HP_ADDR(0),
  163. },
  164. },
  165. { /* REO_EXCEPTION */
  166. /* Designating REO2TCL ring as exception ring. This ring is
  167. * similar to other REO2SW rings though it is named as REO2TCL.
  168. * Any of theREO2SW rings can be used as exception ring.
  169. */
  170. .start_ring_id = HAL_SRNG_REO2TCL,
  171. .max_rings = 1,
  172. .entry_size = sizeof(struct reo_destination_ring) >> 2,
  173. .lmac_ring = FALSE,
  174. .ring_dir = HAL_SRNG_DST_RING,
  175. .reg_start = {
  176. HWIO_REO_R0_REO2TCL_RING_BASE_LSB_ADDR(
  177. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  178. HWIO_REO_R2_REO2TCL_RING_HP_ADDR(
  179. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  180. },
  181. /* Single ring - provide ring size if multiple rings of this
  182. * type are supported */
  183. .reg_size = {},
  184. },
  185. { /* REO_REINJECT */
  186. .start_ring_id = HAL_SRNG_SW2REO,
  187. .max_rings = 1,
  188. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  189. .lmac_ring = FALSE,
  190. .ring_dir = HAL_SRNG_SRC_RING,
  191. .reg_start = {
  192. HWIO_REO_R0_SW2REO_RING_BASE_LSB_ADDR(
  193. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  194. HWIO_REO_R2_SW2REO_RING_HP_ADDR(
  195. SEQ_WCSS_UMAC_REO_REG_OFFSET)
  196. },
  197. /* Single ring - provide ring size if multiple rings of this
  198. * type are supported */
  199. .reg_size = {},
  200. },
  201. { /* REO_CMD */
  202. .start_ring_id = HAL_SRNG_REO_CMD,
  203. .max_rings = 1,
  204. .entry_size = (sizeof(struct tlv_32_hdr) +
  205. sizeof(struct reo_get_queue_stats)) >> 2,
  206. .lmac_ring = FALSE,
  207. .ring_dir = HAL_SRNG_SRC_RING,
  208. .reg_start = {
  209. HWIO_REO_R0_REO_CMD_RING_BASE_LSB_ADDR(
  210. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  211. HWIO_REO_R2_REO_CMD_RING_HP_ADDR(
  212. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  213. },
  214. /* Single ring - provide ring size if multiple rings of this
  215. * type are supported */
  216. .reg_size = {},
  217. },
  218. { /* REO_STATUS */
  219. .start_ring_id = HAL_SRNG_REO_STATUS,
  220. .max_rings = 1,
  221. .entry_size = (sizeof(struct tlv_32_hdr) +
  222. sizeof(struct reo_get_queue_stats_status)) >> 2,
  223. .lmac_ring = FALSE,
  224. .ring_dir = HAL_SRNG_DST_RING,
  225. .reg_start = {
  226. HWIO_REO_R0_REO_STATUS_RING_BASE_LSB_ADDR(
  227. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  228. HWIO_REO_R2_REO_STATUS_RING_HP_ADDR(
  229. SEQ_WCSS_UMAC_REO_REG_OFFSET),
  230. },
  231. /* Single ring - provide ring size if multiple rings of this
  232. * type are supported */
  233. .reg_size = {},
  234. },
  235. { /* TCL_DATA */
  236. .start_ring_id = HAL_SRNG_SW2TCL1,
  237. .max_rings = 3,
  238. .entry_size = (sizeof(struct tlv_32_hdr) +
  239. sizeof(struct tcl_data_cmd)) >> 2,
  240. .lmac_ring = FALSE,
  241. .ring_dir = HAL_SRNG_SRC_RING,
  242. .reg_start = {
  243. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(
  244. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  245. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(
  246. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  247. },
  248. .reg_size = {
  249. HWIO_TCL_R0_SW2TCL2_RING_BASE_LSB_ADDR(0) -
  250. HWIO_TCL_R0_SW2TCL1_RING_BASE_LSB_ADDR(0),
  251. HWIO_TCL_R2_SW2TCL2_RING_HP_ADDR(0) -
  252. HWIO_TCL_R2_SW2TCL1_RING_HP_ADDR(0),
  253. },
  254. },
  255. { /* TCL_CMD */
  256. .start_ring_id = HAL_SRNG_SW2TCL_CMD,
  257. .max_rings = 1,
  258. .entry_size = (sizeof(struct tlv_32_hdr) +
  259. sizeof(struct tcl_gse_cmd)) >> 2,
  260. .lmac_ring = FALSE,
  261. .ring_dir = HAL_SRNG_SRC_RING,
  262. .reg_start = {
  263. HWIO_TCL_R0_SW2TCL_CMD_RING_BASE_LSB_ADDR(
  264. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  265. HWIO_TCL_R2_SW2TCL_CMD_RING_HP_ADDR(
  266. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  267. },
  268. /* Single ring - provide ring size if multiple rings of this
  269. * type are supported */
  270. .reg_size = {},
  271. },
  272. { /* TCL_STATUS */
  273. .start_ring_id = HAL_SRNG_TCL_STATUS,
  274. .max_rings = 1,
  275. .entry_size = (sizeof(struct tlv_32_hdr) +
  276. sizeof(struct tcl_status_ring)) >> 2,
  277. .lmac_ring = FALSE,
  278. .ring_dir = HAL_SRNG_DST_RING,
  279. .reg_start = {
  280. HWIO_TCL_R0_TCL_STATUS1_RING_BASE_LSB_ADDR(
  281. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  282. HWIO_TCL_R2_TCL_STATUS1_RING_HP_ADDR(
  283. SEQ_WCSS_UMAC_MAC_TCL_REG_OFFSET),
  284. },
  285. /* Single ring - provide ring size if multiple rings of this
  286. * type are supported */
  287. .reg_size = {},
  288. },
  289. { /* CE_SRC */
  290. .start_ring_id = HAL_SRNG_CE_0_SRC,
  291. .max_rings = 12,
  292. .entry_size = sizeof(struct ce_src_desc) >> 2,
  293. .lmac_ring = FALSE,
  294. .ring_dir = HAL_SRNG_SRC_RING,
  295. .reg_start = {
  296. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  297. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  298. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  299. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET),
  300. },
  301. .reg_size = {
  302. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  303. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  304. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_SRC_REG_OFFSET -
  305. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_SRC_REG_OFFSET,
  306. },
  307. },
  308. { /* CE_DST */
  309. .start_ring_id = HAL_SRNG_CE_0_DST,
  310. .max_rings = 12,
  311. .entry_size = 8 >> 2,
  312. /*TODO: entry_size above should actually be
  313. * sizeof(struct ce_dst_desc) >> 2, but couldn't find definition
  314. * of struct ce_dst_desc in HW header files
  315. */
  316. .lmac_ring = FALSE,
  317. .ring_dir = HAL_SRNG_SRC_RING,
  318. .reg_start = {
  319. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_RING_BASE_LSB_ADDR(
  320. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  321. HWIO_WFSS_CE_CHANNEL_DST_R2_DEST_RING_HP_ADDR(
  322. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  323. },
  324. .reg_size = {
  325. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  326. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  327. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  328. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  329. },
  330. },
  331. { /* CE_DST_STATUS */
  332. .start_ring_id = HAL_SRNG_CE_0_DST_STATUS,
  333. .max_rings = 12,
  334. .entry_size = sizeof(struct ce_stat_desc) >> 2,
  335. .lmac_ring = FALSE,
  336. .ring_dir = HAL_SRNG_DST_RING,
  337. .reg_start = {
  338. HWIO_WFSS_CE_CHANNEL_DST_R0_STATUS_RING_BASE_LSB_ADDR(
  339. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  340. HWIO_WFSS_CE_CHANNEL_DST_R2_STATUS_RING_HP_ADDR(
  341. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET),
  342. },
  343. /* TODO: check destination status ring registers */
  344. .reg_size = {
  345. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  346. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  347. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_1_CHANNEL_DST_REG_OFFSET -
  348. SEQ_WCSS_UMAC_WFSS_CE_0_REG_WFSS_CE_0_CHANNEL_DST_REG_OFFSET,
  349. },
  350. },
  351. { /* WBM_IDLE_LINK */
  352. .start_ring_id = HAL_SRNG_WBM_IDLE_LINK,
  353. .max_rings = 1,
  354. .entry_size = sizeof(struct wbm_link_descriptor_ring) >> 2,
  355. .lmac_ring = FALSE,
  356. .ring_dir = HAL_SRNG_SRC_RING,
  357. .reg_start = {
  358. HWIO_WBM_R0_WBM_IDLE_LINK_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  359. HWIO_WBM_R2_WBM_IDLE_LINK_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  360. },
  361. /* Single ring - provide ring size if multiple rings of this
  362. * type are supported */
  363. .reg_size = {},
  364. },
  365. { /* SW2WBM_RELEASE */
  366. .start_ring_id = HAL_SRNG_WBM_SW_RELEASE,
  367. .max_rings = 1,
  368. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  369. .lmac_ring = FALSE,
  370. .ring_dir = HAL_SRNG_SRC_RING,
  371. .reg_start = {
  372. HWIO_WBM_R0_SW_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  373. HWIO_WBM_R2_SW_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  374. },
  375. /* Single ring - provide ring size if multiple rings of this
  376. * type are supported */
  377. .reg_size = {},
  378. },
  379. { /* WBM2SW_RELEASE */
  380. .start_ring_id = HAL_SRNG_WBM2SW0_RELEASE,
  381. .max_rings = 4,
  382. .entry_size = sizeof(struct wbm_release_ring) >> 2,
  383. .lmac_ring = FALSE,
  384. .ring_dir = HAL_SRNG_DST_RING,
  385. .reg_start = {
  386. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  387. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  388. },
  389. .reg_size = {
  390. HWIO_WBM_R0_WBM2SW1_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  391. HWIO_WBM_R0_WBM2SW0_RELEASE_RING_BASE_LSB_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  392. HWIO_WBM_R2_WBM2SW1_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET) -
  393. HWIO_WBM_R2_WBM2SW0_RELEASE_RING_HP_ADDR(SEQ_WCSS_UMAC_WBM_REG_OFFSET),
  394. },
  395. },
  396. { /* RXDMA_BUF */
  397. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA0_BUF,
  398. .max_rings = 2,
  399. /* TODO: Check if the additional IPA buffer ring needs to be
  400. * setup here (in which case max_rings should be set to 2),
  401. * or it will be setup by IPA host driver
  402. */
  403. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  404. .lmac_ring = TRUE,
  405. .ring_dir = HAL_SRNG_SRC_RING,
  406. /* reg_start is not set because LMAC rings are not accessed
  407. * from host
  408. */
  409. .reg_start = {},
  410. .reg_size = {},
  411. },
  412. { /* RXDMA_DST */
  413. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW0,
  414. .max_rings = 1,
  415. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  416. .lmac_ring = TRUE,
  417. .ring_dir = HAL_SRNG_DST_RING,
  418. /* reg_start is not set because LMAC rings are not accessed
  419. * from host
  420. */
  421. .reg_start = {},
  422. .reg_size = {},
  423. },
  424. { /* RXDMA_MONITOR_BUF */
  425. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA2_BUF,
  426. .max_rings = 1,
  427. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  428. .lmac_ring = TRUE,
  429. .ring_dir = HAL_SRNG_SRC_RING,
  430. /* reg_start is not set because LMAC rings are not accessed
  431. * from host
  432. */
  433. .reg_start = {},
  434. .reg_size = {},
  435. },
  436. { /* RXDMA_MONITOR_STATUS */
  437. .start_ring_id = HAL_SRNG_WMAC1_SW2RXDMA1_STATBUF,
  438. .max_rings = 1,
  439. .entry_size = sizeof(struct wbm_buffer_ring) >> 2,
  440. .lmac_ring = TRUE,
  441. .ring_dir = HAL_SRNG_SRC_RING,
  442. /* reg_start is not set because LMAC rings are not accessed
  443. * from host
  444. */
  445. .reg_start = {},
  446. .reg_size = {},
  447. },
  448. { /* RXDMA_MONITOR_DST */
  449. .start_ring_id = HAL_SRNG_WMAC1_RXDMA2SW1,
  450. .max_rings = 1,
  451. .entry_size = sizeof(struct reo_entrance_ring) >> 2,
  452. .lmac_ring = TRUE,
  453. .ring_dir = HAL_SRNG_DST_RING,
  454. /* reg_start is not set because LMAC rings are not accessed
  455. * from host
  456. */
  457. .reg_start = {},
  458. .reg_size = {},
  459. },
  460. };
  461. /**
  462. * hal_get_srng_ring_id() - get the ring id of a descriped ring
  463. * @hal: hal_soc data structure
  464. * @ring_type: type enum describing the ring
  465. * @ring_num: which ring of the ring type
  466. * @mac_id: which mac does the ring belong to (or 0 for non-lmac rings)
  467. *
  468. * Return: the ring id or -EINVAL if the ring does not exist.
  469. */
  470. static int hal_get_srng_ring_id(struct hal_soc *hal, int ring_type,
  471. int ring_num, int mac_id)
  472. {
  473. struct hal_hw_srng_config *ring_config =
  474. HAL_SRNG_CONFIG(hal, ring_type);
  475. int ring_id;
  476. if (ring_num >= ring_config->max_rings) {
  477. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  478. "%s: ring_num exceeded maximum no. of supported rings\n",
  479. __func__);
  480. return -EINVAL;
  481. }
  482. if (ring_config->lmac_ring) {
  483. ring_id = ring_config->start_ring_id + ring_num +
  484. (mac_id * HAL_MAX_RINGS_PER_LMAC);
  485. } else {
  486. ring_id = ring_config->start_ring_id + ring_num;
  487. }
  488. return ring_id;
  489. }
  490. static struct hal_srng *hal_get_srng(struct hal_soc *hal, int ring_id)
  491. {
  492. /* TODO: Should we allocate srng structures dynamically? */
  493. return &(hal->srng_list[ring_id]);
  494. }
  495. #define HP_OFFSET_IN_REG_START 1
  496. #define OFFSET_FROM_HP_TO_TP 4
  497. static void hal_update_srng_hp_tp_address(void *hal_soc,
  498. int shadow_config_index,
  499. int ring_type,
  500. int ring_num)
  501. {
  502. struct hal_srng *srng;
  503. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  504. int ring_id;
  505. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, 0);
  506. if (ring_id < 0)
  507. return;
  508. srng = hal_get_srng(hal_soc, ring_id);
  509. if (srng->ring_dir == HAL_SRNG_DST_RING)
  510. srng->u.dst_ring.tp_addr = SHADOW_REGISTER(shadow_config_index)
  511. + hal->dev_base_addr;
  512. else
  513. srng->u.src_ring.hp_addr = SHADOW_REGISTER(shadow_config_index)
  514. + hal->dev_base_addr;
  515. }
  516. QDF_STATUS hal_set_one_shadow_config(void *hal_soc,
  517. int ring_type,
  518. int ring_num)
  519. {
  520. uint32_t target_register;
  521. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  522. struct hal_hw_srng_config *srng_config = &hw_srng_table[ring_type];
  523. int shadow_config_index = hal->num_shadow_registers_configured;
  524. if (shadow_config_index >= MAX_SHADOW_REGISTERS) {
  525. QDF_ASSERT(0);
  526. return QDF_STATUS_E_RESOURCES;
  527. }
  528. hal->num_shadow_registers_configured++;
  529. target_register = srng_config->reg_start[HP_OFFSET_IN_REG_START];
  530. target_register += (srng_config->reg_size[HP_OFFSET_IN_REG_START]
  531. *ring_num);
  532. /* if the ring is a dst ring, we need to shadow the tail pointer */
  533. if (srng_config->ring_dir == HAL_SRNG_DST_RING)
  534. target_register += OFFSET_FROM_HP_TO_TP;
  535. hal->shadow_config[shadow_config_index].addr = target_register;
  536. /* update hp/tp addr in the hal_soc structure*/
  537. hal_update_srng_hp_tp_address(hal_soc, shadow_config_index, ring_type,
  538. ring_num);
  539. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO,
  540. "%s: target_reg %x, shadow_index %x, ring_type %d, ring num %d\n",
  541. __func__, target_register, shadow_config_index,
  542. ring_type, ring_num);
  543. return QDF_STATUS_SUCCESS;
  544. }
  545. QDF_STATUS hal_construct_shadow_config(void *hal_soc)
  546. {
  547. int ring_type, ring_num;
  548. for (ring_type = 0; ring_type < MAX_RING_TYPES; ring_type++) {
  549. struct hal_hw_srng_config *srng_config =
  550. &hw_srng_table[ring_type];
  551. if (ring_type == CE_SRC ||
  552. ring_type == CE_DST ||
  553. ring_type == CE_DST_STATUS)
  554. continue;
  555. if (srng_config->lmac_ring)
  556. continue;
  557. for (ring_num = 0; ring_num < srng_config->max_rings;
  558. ring_num++)
  559. hal_set_one_shadow_config(hal_soc, ring_type, ring_num);
  560. }
  561. return QDF_STATUS_SUCCESS;
  562. }
  563. void hal_get_shadow_config(void *hal_soc,
  564. struct pld_shadow_reg_v2_cfg **shadow_config,
  565. int *num_shadow_registers_configured)
  566. {
  567. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  568. *shadow_config = hal->shadow_config;
  569. *num_shadow_registers_configured =
  570. hal->num_shadow_registers_configured;
  571. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  572. "%s\n", __func__);
  573. }
  574. static void hal_validate_shadow_register(struct hal_soc *hal,
  575. uint32_t *destination,
  576. uint32_t *shadow_address)
  577. {
  578. unsigned int index;
  579. uint32_t *shadow_0_offset = SHADOW_REGISTER(0) + hal->dev_base_addr;
  580. int destination_ba_offset =
  581. ((char *)destination) - (char *)hal->dev_base_addr;
  582. index = shadow_address - shadow_0_offset;
  583. if (index > MAX_SHADOW_REGISTERS) {
  584. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  585. "%s: index %x out of bounds\n", __func__, index);
  586. goto error;
  587. } else if (hal->shadow_config[index].addr != destination_ba_offset) {
  588. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  589. "%s: sanity check failure, expected %x, found %x\n",
  590. __func__, destination_ba_offset,
  591. hal->shadow_config[index].addr);
  592. goto error;
  593. }
  594. return;
  595. error:
  596. qdf_print("%s: baddr %p, desination %p, shadow_address %p s0offset %p index %x",
  597. __func__, hal->dev_base_addr, destination, shadow_address,
  598. shadow_0_offset, index);
  599. QDF_BUG(0);
  600. return;
  601. }
  602. /**
  603. * hal_attach - Initalize HAL layer
  604. * @hif_handle: Opaque HIF handle
  605. * @qdf_dev: QDF device
  606. *
  607. * Return: Opaque HAL SOC handle
  608. * NULL on failure (if given ring is not available)
  609. *
  610. * This function should be called as part of HIF initialization (for accessing
  611. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  612. *
  613. */
  614. void *hal_attach(void *hif_handle, qdf_device_t qdf_dev)
  615. {
  616. struct hal_soc *hal;
  617. int i;
  618. hal = qdf_mem_malloc(sizeof(*hal));
  619. if (!hal) {
  620. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  621. "%s: hal_soc allocation failed\n", __func__);
  622. goto fail0;
  623. }
  624. hal->hif_handle = hif_handle;
  625. hal->dev_base_addr = hif_get_dev_ba(hif_handle);
  626. hal->qdf_dev = qdf_dev;
  627. hal->shadow_rdptr_mem_vaddr = (uint32_t *)qdf_mem_alloc_consistent(
  628. qdf_dev, qdf_dev->dev, sizeof(*(hal->shadow_rdptr_mem_vaddr)) *
  629. HAL_SRNG_ID_MAX, &(hal->shadow_rdptr_mem_paddr));
  630. if (!hal->shadow_rdptr_mem_paddr) {
  631. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  632. "%s: hal->shadow_rdptr_mem_paddr allocation failed\n",
  633. __func__);
  634. goto fail1;
  635. }
  636. hal->shadow_wrptr_mem_vaddr =
  637. (uint32_t *)qdf_mem_alloc_consistent(qdf_dev, qdf_dev->dev,
  638. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  639. &(hal->shadow_wrptr_mem_paddr));
  640. if (!hal->shadow_wrptr_mem_vaddr) {
  641. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  642. "%s: hal->shadow_wrptr_mem_vaddr allocation failed\n",
  643. __func__);
  644. goto fail2;
  645. }
  646. for (i = 0; i < HAL_SRNG_ID_MAX; i++) {
  647. hal->srng_list[i].initialized = 0;
  648. hal->srng_list[i].ring_id = i;
  649. }
  650. return (void *)hal;
  651. fail2:
  652. qdf_mem_free_consistent(qdf_dev, qdf_dev->dev,
  653. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  654. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  655. fail1:
  656. qdf_mem_free(hal);
  657. fail0:
  658. return NULL;
  659. }
  660. /**
  661. * hal_detach - Detach HAL layer
  662. * @hal_soc: HAL SOC handle
  663. *
  664. * Return: Opaque HAL SOC handle
  665. * NULL on failure (if given ring is not available)
  666. *
  667. * This function should be called as part of HIF initialization (for accessing
  668. * copy engines). DP layer will get hal_soc handle using hif_get_hal_handle()
  669. *
  670. */
  671. extern void hal_detach(void *hal_soc)
  672. {
  673. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  674. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  675. sizeof(*(hal->shadow_rdptr_mem_vaddr)) * HAL_SRNG_ID_MAX,
  676. hal->shadow_rdptr_mem_vaddr, hal->shadow_rdptr_mem_paddr, 0);
  677. qdf_mem_free_consistent(hal->qdf_dev, hal->qdf_dev->dev,
  678. sizeof(*(hal->shadow_wrptr_mem_vaddr)) * HAL_MAX_LMAC_RINGS,
  679. hal->shadow_wrptr_mem_vaddr, hal->shadow_wrptr_mem_paddr, 0);
  680. qdf_mem_free(hal);
  681. return;
  682. }
  683. /**
  684. * hal_srng_src_hw_init - Private function to initialize SRNG
  685. * source ring HW
  686. * @hal_soc: HAL SOC handle
  687. * @srng: SRNG ring pointer
  688. */
  689. static inline void hal_srng_src_hw_init(struct hal_soc *hal,
  690. struct hal_srng *srng)
  691. {
  692. uint32_t reg_val = 0;
  693. uint64_t tp_addr = 0;
  694. HIF_INFO("%s: hw_init srng %d", __func__, srng->ring_id);
  695. if (srng->flags & HAL_SRNG_MSI_INTR) {
  696. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_LSB,
  697. srng->msi_addr & 0xffffffff);
  698. reg_val = SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB, ADDR),
  699. (uint64_t)(srng->msi_addr) >> 32) |
  700. SRNG_SM(SRNG_SRC_FLD(MSI1_BASE_MSB,
  701. MSI1_ENABLE), 1);
  702. SRNG_SRC_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  703. SRNG_SRC_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  704. }
  705. HIF_INFO("%s: hw_init srng (msi_end) %d", __func__, srng->ring_id);
  706. SRNG_SRC_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  707. reg_val = SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  708. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  709. SRNG_SM(SRNG_SRC_FLD(BASE_MSB, RING_SIZE),
  710. srng->entry_size * srng->num_entries);
  711. SRNG_SRC_REG_WRITE(srng, BASE_MSB, reg_val);
  712. #if defined(WCSS_VERSION) && \
  713. ((defined(CONFIG_WIN) && (WCSS_VERSION > 81)) || \
  714. (defined(CONFIG_MCL) && (WCSS_VERSION >= 72)))
  715. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  716. #else
  717. reg_val = SRNG_SM(SRNG_SRC_FLD(ID, RING_ID), srng->ring_id) |
  718. SRNG_SM(SRNG_SRC_FLD(ID, ENTRY_SIZE), srng->entry_size);
  719. #endif
  720. SRNG_SRC_REG_WRITE(srng, ID, reg_val);
  721. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  722. SRNG_SM(SRNG_SRC_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  723. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  724. SRNG_SM(SRNG_SRC_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  725. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  726. SRNG_SM(SRNG_SRC_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  727. /* Loop count is not used for SRC rings */
  728. reg_val |= SRNG_SM(SRNG_SRC_FLD(MISC, LOOPCNT_DISABLE), 1);
  729. SRNG_SRC_REG_WRITE(srng, MISC, reg_val);
  730. /**
  731. * Interrupt setup:
  732. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  733. * if level mode is required
  734. */
  735. reg_val = 0;
  736. if (srng->intr_timer_thres_us) {
  737. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  738. INTERRUPT_TIMER_THRESHOLD),
  739. srng->intr_timer_thres_us >> 3);
  740. }
  741. if (srng->intr_batch_cntr_thres_entries) {
  742. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX0,
  743. BATCH_COUNTER_THRESHOLD),
  744. srng->intr_batch_cntr_thres_entries *
  745. srng->entry_size);
  746. }
  747. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX0, reg_val);
  748. if (srng->flags & HAL_SRNG_LOW_THRES_INTR_ENABLE) {
  749. reg_val |= SRNG_SM(SRNG_SRC_FLD(CONSUMER_INT_SETUP_IX1,
  750. LOW_THRESHOLD), srng->u.src_ring.low_threshold);
  751. }
  752. SRNG_SRC_REG_WRITE(srng, CONSUMER_INT_SETUP_IX1, reg_val);
  753. /* As per HW team, TP_ADDR and HP_ADDR for Idle link ring should
  754. * remain 0 to avoid some WBM stability issues. Remote head/tail
  755. * pointers are not required since this ring is completly managed
  756. * by WBM HW */
  757. if (srng->ring_id != HAL_SRNG_WBM_IDLE_LINK) {
  758. tp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  759. ((unsigned long)(srng->u.src_ring.tp_addr) -
  760. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  761. SRNG_SRC_REG_WRITE(srng, TP_ADDR_LSB, tp_addr & 0xffffffff);
  762. SRNG_SRC_REG_WRITE(srng, TP_ADDR_MSB, tp_addr >> 32);
  763. }
  764. /* Initilaize head and tail pointers to indicate ring is empty */
  765. SRNG_SRC_REG_WRITE(srng, HP, 0);
  766. SRNG_SRC_REG_WRITE(srng, TP, 0);
  767. *(srng->u.src_ring.tp_addr) = 0;
  768. }
  769. /**
  770. * hal_ce_dst_setup - Initialize CE destination ring registers
  771. * @hal_soc: HAL SOC handle
  772. * @srng: SRNG ring pointer
  773. */
  774. static inline void hal_ce_dst_setup(struct hal_soc *hal, struct hal_srng *srng,
  775. int ring_num)
  776. {
  777. uint32_t reg_val = 0;
  778. uint32_t reg_addr;
  779. struct hal_hw_srng_config *ring_config =
  780. HAL_SRNG_CONFIG(hal, CE_DST);
  781. /* set DEST_MAX_LENGTH according to ce assignment */
  782. reg_addr = HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_ADDR(
  783. ring_config->reg_start[R0_INDEX] +
  784. (ring_num * ring_config->reg_size[R0_INDEX]));
  785. reg_val = HAL_REG_READ(hal, reg_addr);
  786. reg_val &= ~HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  787. reg_val |= srng->u.dst_ring.max_buffer_length &
  788. HWIO_WFSS_CE_CHANNEL_DST_R0_DEST_CTRL_DEST_MAX_LENGTH_BMSK;
  789. HAL_REG_WRITE(hal, reg_addr, reg_val);
  790. }
  791. /**
  792. * hal_srng_dst_hw_init - Private function to initialize SRNG
  793. * destination ring HW
  794. * @hal_soc: HAL SOC handle
  795. * @srng: SRNG ring pointer
  796. */
  797. static inline void hal_srng_dst_hw_init(struct hal_soc *hal,
  798. struct hal_srng *srng)
  799. {
  800. uint32_t reg_val = 0;
  801. uint64_t hp_addr = 0;
  802. HIF_INFO("%s: hw_init srng %d", __func__, srng->ring_id);
  803. if (srng->flags & HAL_SRNG_MSI_INTR) {
  804. SRNG_DST_REG_WRITE(srng, MSI1_BASE_LSB,
  805. srng->msi_addr & 0xffffffff);
  806. reg_val = SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB, ADDR),
  807. (uint64_t)(srng->msi_addr) >> 32) |
  808. SRNG_SM(SRNG_DST_FLD(MSI1_BASE_MSB,
  809. MSI1_ENABLE), 1);
  810. SRNG_DST_REG_WRITE(srng, MSI1_BASE_MSB, reg_val);
  811. SRNG_DST_REG_WRITE(srng, MSI1_DATA, srng->msi_data);
  812. }
  813. HIF_INFO("%s: hw_init srng msi end %d", __func__, srng->ring_id);
  814. SRNG_DST_REG_WRITE(srng, BASE_LSB, srng->ring_base_paddr & 0xffffffff);
  815. reg_val = SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_BASE_ADDR_MSB),
  816. ((uint64_t)(srng->ring_base_paddr) >> 32)) |
  817. SRNG_SM(SRNG_DST_FLD(BASE_MSB, RING_SIZE),
  818. srng->entry_size * srng->num_entries);
  819. SRNG_DST_REG_WRITE(srng, BASE_MSB, reg_val);
  820. reg_val = SRNG_SM(SRNG_DST_FLD(ID, RING_ID), srng->ring_id) |
  821. SRNG_SM(SRNG_DST_FLD(ID, ENTRY_SIZE), srng->entry_size);
  822. SRNG_DST_REG_WRITE(srng, ID, reg_val);
  823. reg_val = ((srng->flags & HAL_SRNG_DATA_TLV_SWAP) ?
  824. SRNG_SM(SRNG_DST_FLD(MISC, DATA_TLV_SWAP_BIT), 1) : 0) |
  825. ((srng->flags & HAL_SRNG_RING_PTR_SWAP) ?
  826. SRNG_SM(SRNG_DST_FLD(MISC, HOST_FW_SWAP_BIT), 1) : 0) |
  827. ((srng->flags & HAL_SRNG_MSI_SWAP) ?
  828. SRNG_SM(SRNG_DST_FLD(MISC, MSI_SWAP_BIT), 1) : 0);
  829. SRNG_DST_REG_WRITE(srng, MISC, reg_val);
  830. /**
  831. * Interrupt setup:
  832. * Default interrupt mode is 'pulse'. Need to setup SW_INTERRUPT_MODE
  833. * if level mode is required
  834. */
  835. reg_val = 0;
  836. if (srng->intr_timer_thres_us) {
  837. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  838. INTERRUPT_TIMER_THRESHOLD),
  839. srng->intr_timer_thres_us >> 3);
  840. }
  841. if (srng->intr_batch_cntr_thres_entries) {
  842. reg_val |= SRNG_SM(SRNG_DST_FLD(PRODUCER_INT_SETUP,
  843. BATCH_COUNTER_THRESHOLD),
  844. srng->intr_batch_cntr_thres_entries *
  845. srng->entry_size);
  846. }
  847. SRNG_DST_REG_WRITE(srng, PRODUCER_INT_SETUP, reg_val);
  848. hp_addr = (uint64_t)(hal->shadow_rdptr_mem_paddr +
  849. ((unsigned long)(srng->u.dst_ring.hp_addr) -
  850. (unsigned long)(hal->shadow_rdptr_mem_vaddr)));
  851. SRNG_DST_REG_WRITE(srng, HP_ADDR_LSB, hp_addr & 0xffffffff);
  852. SRNG_DST_REG_WRITE(srng, HP_ADDR_MSB, hp_addr >> 32);
  853. /* Initilaize head and tail pointers to indicate ring is empty */
  854. SRNG_DST_REG_WRITE(srng, HP, 0);
  855. SRNG_DST_REG_WRITE(srng, TP, 0);
  856. *(srng->u.dst_ring.hp_addr) = 0;
  857. }
  858. /**
  859. * hal_srng_hw_init - Private function to initialize SRNG HW
  860. * @hal_soc: HAL SOC handle
  861. * @srng: SRNG ring pointer
  862. */
  863. static inline void hal_srng_hw_init(struct hal_soc *hal,
  864. struct hal_srng *srng)
  865. {
  866. if (srng->ring_dir == HAL_SRNG_SRC_RING)
  867. hal_srng_src_hw_init(hal, srng);
  868. else
  869. hal_srng_dst_hw_init(hal, srng);
  870. }
  871. #ifdef CONFIG_SHADOW_V2
  872. #define ignore_shadow false
  873. #define CHECK_SHADOW_REGISTERS true
  874. #else
  875. #define ignore_shadow true
  876. #define CHECK_SHADOW_REGISTERS false
  877. #endif
  878. /**
  879. * hal_srng_setup - Initalize HW SRNG ring.
  880. * @hal_soc: Opaque HAL SOC handle
  881. * @ring_type: one of the types from hal_ring_type
  882. * @ring_num: Ring number if there are multiple rings of same type (staring
  883. * from 0)
  884. * @mac_id: valid MAC Id should be passed if ring type is one of lmac rings
  885. * @ring_params: SRNG ring params in hal_srng_params structure.
  886. * Callers are expected to allocate contiguous ring memory of size
  887. * 'num_entries * entry_size' bytes and pass the physical and virtual base
  888. * addresses through 'ring_base_paddr' and 'ring_base_vaddr' in
  889. * hal_srng_params structure. Ring base address should be 8 byte aligned
  890. * and size of each ring entry should be queried using the API
  891. * hal_srng_get_entrysize
  892. *
  893. * Return: Opaque pointer to ring on success
  894. * NULL on failure (if given ring is not available)
  895. */
  896. void *hal_srng_setup(void *hal_soc, int ring_type, int ring_num,
  897. int mac_id, struct hal_srng_params *ring_params)
  898. {
  899. int ring_id;
  900. struct hal_soc *hal = (struct hal_soc *)hal_soc;
  901. struct hal_srng *srng;
  902. struct hal_hw_srng_config *ring_config =
  903. HAL_SRNG_CONFIG(hal, ring_type);
  904. void *dev_base_addr;
  905. int i;
  906. ring_id = hal_get_srng_ring_id(hal_soc, ring_type, ring_num, mac_id);
  907. if (ring_id < 0)
  908. return NULL;
  909. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  910. "%s: mac_id %d ring_id %d\n",
  911. __func__, mac_id, ring_id);
  912. srng = hal_get_srng(hal_soc, ring_id);
  913. if (srng->initialized) {
  914. QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
  915. "%s: Ring (ring_type, ring_num) already initialized\n",
  916. __func__);
  917. return NULL;
  918. }
  919. dev_base_addr = hal->dev_base_addr;
  920. srng->ring_id = ring_id;
  921. srng->ring_dir = ring_config->ring_dir;
  922. srng->ring_base_paddr = ring_params->ring_base_paddr;
  923. srng->ring_base_vaddr = ring_params->ring_base_vaddr;
  924. srng->entry_size = ring_config->entry_size;
  925. srng->num_entries = ring_params->num_entries;
  926. srng->ring_size = srng->num_entries * srng->entry_size;
  927. srng->ring_size_mask = srng->ring_size - 1;
  928. srng->msi_addr = ring_params->msi_addr;
  929. srng->msi_data = ring_params->msi_data;
  930. srng->intr_timer_thres_us = ring_params->intr_timer_thres_us;
  931. srng->intr_batch_cntr_thres_entries =
  932. ring_params->intr_batch_cntr_thres_entries;
  933. for (i = 0 ; i < MAX_SRNG_REG_GROUPS; i++) {
  934. srng->hwreg_base[i] = dev_base_addr + ring_config->reg_start[i]
  935. + (ring_num * ring_config->reg_size[i]);
  936. }
  937. /* Zero out the entire ring memory */
  938. qdf_mem_zero(srng->ring_base_vaddr, (srng->entry_size *
  939. srng->num_entries) << 2);
  940. srng->flags = ring_params->flags;
  941. #ifdef BIG_ENDIAN_HOST
  942. /* TODO: See if we should we get these flags from caller */
  943. srng->flags |= HAL_SRNG_DATA_TLV_SWAP;
  944. srng->flags |= HAL_SRNG_MSI_SWAP;
  945. srng->flags |= HAL_SRNG_RING_PTR_SWAP;
  946. #endif
  947. if (srng->ring_dir == HAL_SRNG_SRC_RING) {
  948. srng->u.src_ring.hp = 0;
  949. srng->u.src_ring.reap_hp = srng->ring_size -
  950. srng->entry_size;
  951. srng->u.src_ring.tp_addr =
  952. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  953. srng->u.src_ring.low_threshold = ring_params->low_threshold;
  954. if (ring_config->lmac_ring) {
  955. /* For LMAC rings, head pointer updates will be done
  956. * through FW by writing to a shared memory location
  957. */
  958. srng->u.src_ring.hp_addr =
  959. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  960. HAL_SRNG_LMAC1_ID_START]);
  961. srng->flags |= HAL_SRNG_LMAC_RING;
  962. } else if (ignore_shadow || (srng->u.src_ring.hp_addr == 0)) {
  963. srng->u.src_ring.hp_addr = SRNG_SRC_ADDR(srng, HP);
  964. if (CHECK_SHADOW_REGISTERS) {
  965. QDF_TRACE(QDF_MODULE_ID_TXRX,
  966. QDF_TRACE_LEVEL_ERROR,
  967. "%s: Ring (%d, %d) missing shadow config\n",
  968. __func__, ring_type, ring_num);
  969. }
  970. } else {
  971. hal_validate_shadow_register(hal,
  972. SRNG_SRC_ADDR(srng, HP),
  973. srng->u.src_ring.hp_addr);
  974. }
  975. } else {
  976. /* During initialization loop count in all the descriptors
  977. * will be set to zero, and HW will set it to 1 on completing
  978. * descriptor update in first loop, and increments it by 1 on
  979. * subsequent loops (loop count wraps around after reaching
  980. * 0xffff). The 'loop_cnt' in SW ring state is the expected
  981. * loop count in descriptors updated by HW (to be processed
  982. * by SW).
  983. */
  984. srng->u.dst_ring.loop_cnt = 1;
  985. srng->u.dst_ring.tp = 0;
  986. srng->u.dst_ring.hp_addr =
  987. &(hal->shadow_rdptr_mem_vaddr[ring_id]);
  988. if (ring_config->lmac_ring) {
  989. /* For LMAC rings, tail pointer updates will be done
  990. * through FW by writing to a shared memory location
  991. */
  992. srng->u.dst_ring.tp_addr =
  993. &(hal->shadow_wrptr_mem_vaddr[ring_id -
  994. HAL_SRNG_LMAC1_ID_START]);
  995. srng->flags |= HAL_SRNG_LMAC_RING;
  996. } else if (ignore_shadow || srng->u.dst_ring.tp_addr == 0) {
  997. srng->u.dst_ring.tp_addr = SRNG_DST_ADDR(srng, TP);
  998. if (CHECK_SHADOW_REGISTERS) {
  999. QDF_TRACE(QDF_MODULE_ID_TXRX,
  1000. QDF_TRACE_LEVEL_ERROR,
  1001. "%s: Ring (%d, %d) missing shadow config\n",
  1002. __func__, ring_type, ring_num);
  1003. }
  1004. } else {
  1005. hal_validate_shadow_register(hal,
  1006. SRNG_DST_ADDR(srng, TP),
  1007. srng->u.dst_ring.tp_addr);
  1008. }
  1009. }
  1010. if (!(ring_config->lmac_ring)) {
  1011. hal_srng_hw_init(hal, srng);
  1012. if (ring_type == CE_DST) {
  1013. srng->u.dst_ring.max_buffer_length = ring_params->max_buffer_length;
  1014. hal_ce_dst_setup(hal, srng, ring_num);
  1015. }
  1016. }
  1017. SRNG_LOCK_INIT(&srng->lock);
  1018. return (void *)srng;
  1019. }
  1020. /**
  1021. * hal_srng_cleanup - Deinitialize HW SRNG ring.
  1022. * @hal_soc: Opaque HAL SOC handle
  1023. * @hal_srng: Opaque HAL SRNG pointer
  1024. */
  1025. void hal_srng_cleanup(void *hal_soc, void *hal_srng)
  1026. {
  1027. struct hal_srng *srng = (struct hal_srng *)hal_srng;
  1028. SRNG_LOCK_DESTROY(&srng->lock);
  1029. srng->initialized = 0;
  1030. }
  1031. /**
  1032. * hal_srng_get_entrysize - Returns size of ring entry in bytes
  1033. * @hal_soc: Opaque HAL SOC handle
  1034. * @ring_type: one of the types from hal_ring_type
  1035. *
  1036. */
  1037. uint32_t hal_srng_get_entrysize(void *hal_soc, int ring_type)
  1038. {
  1039. struct hal_hw_srng_config *ring_config =
  1040. HAL_SRNG_CONFIG(hal, ring_type);
  1041. return ring_config->entry_size << 2;
  1042. }
  1043. /**
  1044. * hal_srng_max_entries - Returns maximum possible number of ring entries
  1045. * @hal_soc: Opaque HAL SOC handle
  1046. * @ring_type: one of the types from hal_ring_type
  1047. *
  1048. * Return: Maximum number of entries for the given ring_type
  1049. */
  1050. uint32_t hal_srng_max_entries(void *hal_soc, int ring_type)
  1051. {
  1052. struct hal_hw_srng_config *ring_config = HAL_SRNG_CONFIG(hal, ring_type);
  1053. return SRNG_MAX_SIZE_DWORDS / ring_config->entry_size;
  1054. }
  1055. /**
  1056. * hal_get_srng_params - Retreive SRNG parameters for a given ring from HAL
  1057. *
  1058. * @hal_soc: Opaque HAL SOC handle
  1059. * @hal_ring: Ring pointer (Source or Destination ring)
  1060. * @ring_params: SRNG parameters will be returned through this structure
  1061. */
  1062. extern void hal_get_srng_params(void *hal_soc, void *hal_ring,
  1063. struct hal_srng_params *ring_params)
  1064. {
  1065. struct hal_srng *srng = (struct hal_srng *)hal_ring;
  1066. ring_params->ring_base_paddr = srng->ring_base_paddr;
  1067. ring_params->ring_base_vaddr = srng->ring_base_vaddr;
  1068. ring_params->num_entries = srng->num_entries;
  1069. ring_params->msi_addr = srng->msi_addr;
  1070. ring_params->msi_data = srng->msi_data;
  1071. ring_params->intr_timer_thres_us = srng->intr_timer_thres_us;
  1072. ring_params->intr_batch_cntr_thres_entries =
  1073. srng->intr_batch_cntr_thres_entries;
  1074. ring_params->low_threshold = srng->u.src_ring.low_threshold;
  1075. ring_params->flags = srng->flags;
  1076. ring_params->ring_id = srng->ring_id;
  1077. }