qdf_mem.c 80 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257
  1. /*
  2. * Copyright (c) 2014-2021 The Linux Foundation. All rights reserved.
  3. * Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for
  6. * any purpose with or without fee is hereby granted, provided that the
  7. * above copyright notice and this permission notice appear in all
  8. * copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  11. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  12. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  13. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  14. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  15. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  16. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  17. * PERFORMANCE OF THIS SOFTWARE.
  18. */
  19. /**
  20. * DOC: qdf_mem
  21. * This file provides OS dependent memory management APIs
  22. */
  23. #include "qdf_debugfs.h"
  24. #include "qdf_mem.h"
  25. #include "qdf_nbuf.h"
  26. #include "qdf_lock.h"
  27. #include "qdf_mc_timer.h"
  28. #include "qdf_module.h"
  29. #include <qdf_trace.h>
  30. #include "qdf_str.h"
  31. #include "qdf_talloc.h"
  32. #include <linux/debugfs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/string.h>
  35. #include <qdf_list.h>
  36. #ifdef CNSS_MEM_PRE_ALLOC
  37. #ifdef CONFIG_CNSS_OUT_OF_TREE
  38. #include "cnss_prealloc.h"
  39. #else
  40. #include <net/cnss_prealloc.h>
  41. #endif
  42. #endif
  43. #if defined(MEMORY_DEBUG) || defined(NBUF_MEMORY_DEBUG)
  44. static bool mem_debug_disabled;
  45. qdf_declare_param(mem_debug_disabled, bool);
  46. #endif
  47. #ifdef MEMORY_DEBUG
  48. static bool is_initial_mem_debug_disabled;
  49. #endif
  50. /* Preprocessor Definitions and Constants */
  51. #define QDF_MEM_MAX_MALLOC (4096 * 1024) /* 4 Mega Bytes */
  52. #define QDF_MEM_WARN_THRESHOLD 300 /* ms */
  53. #define QDF_DEBUG_STRING_SIZE 512
  54. /**
  55. * struct __qdf_mem_stat - qdf memory statistics
  56. * @kmalloc: total kmalloc allocations
  57. * @dma: total dma allocations
  58. * @skb: total skb allocations
  59. * @skb_total: total skb allocations in host driver
  60. * @dp_tx_skb: total Tx skb allocations in datapath
  61. * @dp_rx_skb: total Rx skb allocations in datapath
  62. * @skb_mem_max: high watermark for skb allocations
  63. * @dp_tx_skb_mem_max: high watermark for Tx DP skb allocations
  64. * @dp_rx_skb_mem_max: high watermark for Rx DP skb allocations
  65. * @dp_tx_skb_count: DP Tx buffer count
  66. * @dp_tx_skb_count_max: High watermark for DP Tx buffer count
  67. * @dp_rx_skb_count: DP Rx buffer count
  68. * @dp_rx_skb_count_max: High watermark for DP Rx buffer count
  69. * @tx_descs_outstanding: Current pending Tx descs count
  70. * @tx_descs_max: High watermark for pending Tx descs count
  71. */
  72. static struct __qdf_mem_stat {
  73. qdf_atomic_t kmalloc;
  74. qdf_atomic_t dma;
  75. qdf_atomic_t skb;
  76. qdf_atomic_t skb_total;
  77. qdf_atomic_t dp_tx_skb;
  78. qdf_atomic_t dp_rx_skb;
  79. int32_t skb_mem_max;
  80. int32_t dp_tx_skb_mem_max;
  81. int32_t dp_rx_skb_mem_max;
  82. qdf_atomic_t dp_tx_skb_count;
  83. int32_t dp_tx_skb_count_max;
  84. qdf_atomic_t dp_rx_skb_count;
  85. int32_t dp_rx_skb_count_max;
  86. qdf_atomic_t tx_descs_outstanding;
  87. int32_t tx_descs_max;
  88. } qdf_mem_stat;
  89. #ifdef MEMORY_DEBUG
  90. #include "qdf_debug_domain.h"
  91. enum list_type {
  92. LIST_TYPE_MEM = 0,
  93. LIST_TYPE_DMA = 1,
  94. LIST_TYPE_NBUF = 2,
  95. LIST_TYPE_MAX,
  96. };
  97. /**
  98. * struct major_alloc_priv - private data registered to debugfs entry
  99. * created to list the list major allocations
  100. * @type: type of the list to be parsed
  101. * @threshold: configured by user by overwriting the respective debugfs
  102. * sys entry. This is to list the functions which requested
  103. * memory/dma allocations more than threshold number of times.
  104. */
  105. struct major_alloc_priv {
  106. enum list_type type;
  107. uint32_t threshold;
  108. };
  109. static qdf_list_t qdf_mem_domains[QDF_DEBUG_DOMAIN_COUNT];
  110. static qdf_spinlock_t qdf_mem_list_lock;
  111. static qdf_list_t qdf_mem_dma_domains[QDF_DEBUG_DOMAIN_COUNT];
  112. static qdf_spinlock_t qdf_mem_dma_list_lock;
  113. static inline qdf_list_t *qdf_mem_list_get(enum qdf_debug_domain domain)
  114. {
  115. return &qdf_mem_domains[domain];
  116. }
  117. static inline qdf_list_t *qdf_mem_dma_list(enum qdf_debug_domain domain)
  118. {
  119. return &qdf_mem_dma_domains[domain];
  120. }
  121. /**
  122. * struct qdf_mem_header - memory object to dubug
  123. * @node: node to the list
  124. * @domain: the active memory domain at time of allocation
  125. * @freed: flag set during free, used to detect double frees
  126. * Use uint8_t so we can detect corruption
  127. * @func: name of the function the allocation was made from
  128. * @line: line number of the file the allocation was made from
  129. * @size: size of the allocation in bytes
  130. * @caller: Caller of the function for which memory is allocated
  131. * @header: a known value, used to detect out-of-bounds access
  132. * @time: timestamp at which allocation was made
  133. */
  134. struct qdf_mem_header {
  135. qdf_list_node_t node;
  136. enum qdf_debug_domain domain;
  137. uint8_t freed;
  138. char func[QDF_MEM_FUNC_NAME_SIZE];
  139. uint32_t line;
  140. uint32_t size;
  141. void *caller;
  142. uint64_t header;
  143. uint64_t time;
  144. };
  145. /* align the qdf_mem_header to 8 bytes */
  146. #define QDF_DMA_MEM_HEADER_ALIGN 8
  147. static uint64_t WLAN_MEM_HEADER = 0x6162636465666768;
  148. static uint64_t WLAN_MEM_TRAILER = 0x8081828384858687;
  149. static inline struct qdf_mem_header *qdf_mem_get_header(void *ptr)
  150. {
  151. return (struct qdf_mem_header *)ptr - 1;
  152. }
  153. /* make sure the header pointer is 8bytes aligned */
  154. static inline struct qdf_mem_header *qdf_mem_dma_get_header(void *ptr,
  155. qdf_size_t size)
  156. {
  157. return (struct qdf_mem_header *)
  158. qdf_roundup((size_t)((uint8_t *)ptr + size),
  159. QDF_DMA_MEM_HEADER_ALIGN);
  160. }
  161. static inline uint64_t *qdf_mem_get_trailer(struct qdf_mem_header *header)
  162. {
  163. return (uint64_t *)((void *)(header + 1) + header->size);
  164. }
  165. static inline void *qdf_mem_get_ptr(struct qdf_mem_header *header)
  166. {
  167. return (void *)(header + 1);
  168. }
  169. /* number of bytes needed for the qdf memory debug information */
  170. #define QDF_MEM_DEBUG_SIZE \
  171. (sizeof(struct qdf_mem_header) + sizeof(WLAN_MEM_TRAILER))
  172. /* number of bytes needed for the qdf dma memory debug information */
  173. #define QDF_DMA_MEM_DEBUG_SIZE \
  174. (sizeof(struct qdf_mem_header) + QDF_DMA_MEM_HEADER_ALIGN)
  175. static void qdf_mem_trailer_init(struct qdf_mem_header *header)
  176. {
  177. QDF_BUG(header);
  178. if (!header)
  179. return;
  180. *qdf_mem_get_trailer(header) = WLAN_MEM_TRAILER;
  181. }
  182. static void qdf_mem_header_init(struct qdf_mem_header *header, qdf_size_t size,
  183. const char *func, uint32_t line, void *caller)
  184. {
  185. QDF_BUG(header);
  186. if (!header)
  187. return;
  188. header->domain = qdf_debug_domain_get();
  189. header->freed = false;
  190. qdf_str_lcopy(header->func, func, QDF_MEM_FUNC_NAME_SIZE);
  191. header->line = line;
  192. header->size = size;
  193. header->caller = caller;
  194. header->header = WLAN_MEM_HEADER;
  195. header->time = qdf_get_log_timestamp();
  196. }
  197. enum qdf_mem_validation_bitmap {
  198. QDF_MEM_BAD_HEADER = 1 << 0,
  199. QDF_MEM_BAD_TRAILER = 1 << 1,
  200. QDF_MEM_BAD_SIZE = 1 << 2,
  201. QDF_MEM_DOUBLE_FREE = 1 << 3,
  202. QDF_MEM_BAD_FREED = 1 << 4,
  203. QDF_MEM_BAD_NODE = 1 << 5,
  204. QDF_MEM_BAD_DOMAIN = 1 << 6,
  205. QDF_MEM_WRONG_DOMAIN = 1 << 7,
  206. };
  207. static enum qdf_mem_validation_bitmap
  208. qdf_mem_trailer_validate(struct qdf_mem_header *header)
  209. {
  210. enum qdf_mem_validation_bitmap error_bitmap = 0;
  211. if (*qdf_mem_get_trailer(header) != WLAN_MEM_TRAILER)
  212. error_bitmap |= QDF_MEM_BAD_TRAILER;
  213. return error_bitmap;
  214. }
  215. static enum qdf_mem_validation_bitmap
  216. qdf_mem_header_validate(struct qdf_mem_header *header,
  217. enum qdf_debug_domain domain)
  218. {
  219. enum qdf_mem_validation_bitmap error_bitmap = 0;
  220. if (header->header != WLAN_MEM_HEADER)
  221. error_bitmap |= QDF_MEM_BAD_HEADER;
  222. if (header->size > QDF_MEM_MAX_MALLOC)
  223. error_bitmap |= QDF_MEM_BAD_SIZE;
  224. if (header->freed == true)
  225. error_bitmap |= QDF_MEM_DOUBLE_FREE;
  226. else if (header->freed)
  227. error_bitmap |= QDF_MEM_BAD_FREED;
  228. if (!qdf_list_node_in_any_list(&header->node))
  229. error_bitmap |= QDF_MEM_BAD_NODE;
  230. if (header->domain < QDF_DEBUG_DOMAIN_INIT ||
  231. header->domain >= QDF_DEBUG_DOMAIN_COUNT)
  232. error_bitmap |= QDF_MEM_BAD_DOMAIN;
  233. else if (header->domain != domain)
  234. error_bitmap |= QDF_MEM_WRONG_DOMAIN;
  235. return error_bitmap;
  236. }
  237. static void
  238. qdf_mem_header_assert_valid(struct qdf_mem_header *header,
  239. enum qdf_debug_domain current_domain,
  240. enum qdf_mem_validation_bitmap error_bitmap,
  241. const char *func,
  242. uint32_t line)
  243. {
  244. if (!error_bitmap)
  245. return;
  246. if (error_bitmap & QDF_MEM_BAD_HEADER)
  247. qdf_err("Corrupted memory header 0x%llx (expected 0x%llx)",
  248. header->header, WLAN_MEM_HEADER);
  249. if (error_bitmap & QDF_MEM_BAD_SIZE)
  250. qdf_err("Corrupted memory size %u (expected < %d)",
  251. header->size, QDF_MEM_MAX_MALLOC);
  252. if (error_bitmap & QDF_MEM_BAD_TRAILER)
  253. qdf_err("Corrupted memory trailer 0x%llx (expected 0x%llx)",
  254. *qdf_mem_get_trailer(header), WLAN_MEM_TRAILER);
  255. if (error_bitmap & QDF_MEM_DOUBLE_FREE)
  256. qdf_err("Memory has previously been freed");
  257. if (error_bitmap & QDF_MEM_BAD_FREED)
  258. qdf_err("Corrupted memory freed flag 0x%x", header->freed);
  259. if (error_bitmap & QDF_MEM_BAD_NODE)
  260. qdf_err("Corrupted memory header node or double free");
  261. if (error_bitmap & QDF_MEM_BAD_DOMAIN)
  262. qdf_err("Corrupted memory domain 0x%x", header->domain);
  263. if (error_bitmap & QDF_MEM_WRONG_DOMAIN)
  264. qdf_err("Memory domain mismatch; allocated:%s(%d), current:%s(%d)",
  265. qdf_debug_domain_name(header->domain), header->domain,
  266. qdf_debug_domain_name(current_domain), current_domain);
  267. QDF_MEMDEBUG_PANIC("Fatal memory error detected @ %s:%d", func, line);
  268. }
  269. /**
  270. * struct __qdf_mem_info - memory statistics
  271. * @func: the function which allocated memory
  272. * @line: the line at which allocation happened
  273. * @size: the size of allocation
  274. * @caller: Address of the caller function
  275. * @count: how many allocations of same type
  276. * @time: timestamp at which allocation happened
  277. */
  278. struct __qdf_mem_info {
  279. char func[QDF_MEM_FUNC_NAME_SIZE];
  280. uint32_t line;
  281. uint32_t size;
  282. void *caller;
  283. uint32_t count;
  284. uint64_t time;
  285. };
  286. /*
  287. * The table depth defines the de-duplication proximity scope.
  288. * A deeper table takes more time, so choose any optimum value.
  289. */
  290. #define QDF_MEM_STAT_TABLE_SIZE 8
  291. /**
  292. * qdf_mem_debug_print_header() - memory debug header print logic
  293. * @print: the print adapter function
  294. * @print_priv: the private data to be consumed by @print
  295. * @threshold: the threshold value set by user to list top allocations
  296. *
  297. * Return: None
  298. */
  299. static void qdf_mem_debug_print_header(qdf_abstract_print print,
  300. void *print_priv,
  301. uint32_t threshold)
  302. {
  303. if (threshold)
  304. print(print_priv, "APIs requested allocations >= %u no of time",
  305. threshold);
  306. print(print_priv,
  307. "--------------------------------------------------------------");
  308. print(print_priv,
  309. " count size total filename caller timestamp");
  310. print(print_priv,
  311. "--------------------------------------------------------------");
  312. }
  313. /**
  314. * qdf_mem_meta_table_insert() - insert memory metadata into the given table
  315. * @table: the memory metadata table to insert into
  316. * @meta: the memory metadata to insert
  317. *
  318. * Return: true if the table is full after inserting, false otherwise
  319. */
  320. static bool qdf_mem_meta_table_insert(struct __qdf_mem_info *table,
  321. struct qdf_mem_header *meta)
  322. {
  323. int i;
  324. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  325. if (!table[i].count) {
  326. qdf_str_lcopy(table[i].func, meta->func,
  327. QDF_MEM_FUNC_NAME_SIZE);
  328. table[i].line = meta->line;
  329. table[i].size = meta->size;
  330. table[i].count = 1;
  331. table[i].caller = meta->caller;
  332. table[i].time = meta->time;
  333. break;
  334. }
  335. if (qdf_str_eq(table[i].func, meta->func) &&
  336. table[i].line == meta->line &&
  337. table[i].size == meta->size &&
  338. table[i].caller == meta->caller) {
  339. table[i].count++;
  340. break;
  341. }
  342. }
  343. /* return true if the table is now full */
  344. return i >= QDF_MEM_STAT_TABLE_SIZE - 1;
  345. }
  346. /**
  347. * qdf_mem_domain_print() - output agnostic memory domain print logic
  348. * @domain: the memory domain to print
  349. * @print: the print adapter function
  350. * @print_priv: the private data to be consumed by @print
  351. * @threshold: the threshold value set by uset to list top allocations
  352. * @mem_print: pointer to function which prints the memory allocation data
  353. *
  354. * Return: None
  355. */
  356. static void qdf_mem_domain_print(qdf_list_t *domain,
  357. qdf_abstract_print print,
  358. void *print_priv,
  359. uint32_t threshold,
  360. void (*mem_print)(struct __qdf_mem_info *,
  361. qdf_abstract_print,
  362. void *, uint32_t))
  363. {
  364. QDF_STATUS status;
  365. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  366. qdf_list_node_t *node;
  367. qdf_mem_zero(table, sizeof(table));
  368. qdf_mem_debug_print_header(print, print_priv, threshold);
  369. /* hold lock while inserting to avoid use-after free of the metadata */
  370. qdf_spin_lock(&qdf_mem_list_lock);
  371. status = qdf_list_peek_front(domain, &node);
  372. while (QDF_IS_STATUS_SUCCESS(status)) {
  373. struct qdf_mem_header *meta = (struct qdf_mem_header *)node;
  374. bool is_full = qdf_mem_meta_table_insert(table, meta);
  375. qdf_spin_unlock(&qdf_mem_list_lock);
  376. if (is_full) {
  377. (*mem_print)(table, print, print_priv, threshold);
  378. qdf_mem_zero(table, sizeof(table));
  379. }
  380. qdf_spin_lock(&qdf_mem_list_lock);
  381. status = qdf_list_peek_next(domain, node, &node);
  382. }
  383. qdf_spin_unlock(&qdf_mem_list_lock);
  384. (*mem_print)(table, print, print_priv, threshold);
  385. }
  386. /**
  387. * qdf_mem_meta_table_print() - memory metadata table print logic
  388. * @table: the memory metadata table to print
  389. * @print: the print adapter function
  390. * @print_priv: the private data to be consumed by @print
  391. * @threshold: the threshold value set by user to list top allocations
  392. *
  393. * Return: None
  394. */
  395. static void qdf_mem_meta_table_print(struct __qdf_mem_info *table,
  396. qdf_abstract_print print,
  397. void *print_priv,
  398. uint32_t threshold)
  399. {
  400. int i;
  401. char debug_str[QDF_DEBUG_STRING_SIZE];
  402. size_t len = 0;
  403. char *debug_prefix = "WLAN_BUG_RCA: memory leak detected";
  404. len += qdf_scnprintf(debug_str, sizeof(debug_str) - len,
  405. "%s", debug_prefix);
  406. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  407. if (!table[i].count)
  408. break;
  409. print(print_priv,
  410. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  411. table[i].count,
  412. table[i].size,
  413. table[i].count * table[i].size,
  414. table[i].func,
  415. table[i].line, table[i].caller,
  416. table[i].time);
  417. len += qdf_scnprintf(debug_str + len,
  418. sizeof(debug_str) - len,
  419. " @ %s:%u %pS",
  420. table[i].func,
  421. table[i].line,
  422. table[i].caller);
  423. }
  424. print(print_priv, "%s", debug_str);
  425. }
  426. static int qdf_err_printer(void *priv, const char *fmt, ...)
  427. {
  428. va_list args;
  429. va_start(args, fmt);
  430. QDF_VTRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, (char *)fmt, args);
  431. va_end(args);
  432. return 0;
  433. }
  434. #endif /* MEMORY_DEBUG */
  435. bool prealloc_disabled = 1;
  436. qdf_declare_param(prealloc_disabled, bool);
  437. qdf_export_symbol(prealloc_disabled);
  438. int qdf_mem_malloc_flags(void)
  439. {
  440. if (in_interrupt() || !preemptible() || rcu_preempt_depth())
  441. return GFP_ATOMIC;
  442. return GFP_KERNEL;
  443. }
  444. qdf_export_symbol(qdf_mem_malloc_flags);
  445. bool qdf_prealloc_disabled_config_get(void)
  446. {
  447. return prealloc_disabled;
  448. }
  449. qdf_export_symbol(qdf_prealloc_disabled_config_get);
  450. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  451. QDF_STATUS qdf_prealloc_disabled_config_set(const char *str_value)
  452. {
  453. QDF_STATUS status;
  454. status = qdf_bool_parse(str_value, &prealloc_disabled);
  455. return status;
  456. }
  457. #endif
  458. #if defined WLAN_DEBUGFS
  459. /* Debugfs root directory for qdf_mem */
  460. static struct dentry *qdf_mem_debugfs_root;
  461. #ifdef MEMORY_DEBUG
  462. static int seq_printf_printer(void *priv, const char *fmt, ...)
  463. {
  464. struct seq_file *file = priv;
  465. va_list args;
  466. va_start(args, fmt);
  467. seq_vprintf(file, fmt, args);
  468. seq_puts(file, "\n");
  469. va_end(args);
  470. return 0;
  471. }
  472. /**
  473. * qdf_print_major_alloc() - memory metadata table print logic
  474. * @table: the memory metadata table to print
  475. * @print: the print adapter function
  476. * @print_priv: the private data to be consumed by @print
  477. * @threshold: the threshold value set by uset to list top allocations
  478. *
  479. * Return: None
  480. */
  481. static void qdf_print_major_alloc(struct __qdf_mem_info *table,
  482. qdf_abstract_print print,
  483. void *print_priv,
  484. uint32_t threshold)
  485. {
  486. int i;
  487. for (i = 0; i < QDF_MEM_STAT_TABLE_SIZE; i++) {
  488. if (!table[i].count)
  489. break;
  490. if (table[i].count >= threshold)
  491. print(print_priv,
  492. "%6u x %5u = %7uB @ %s:%u %pS %llu",
  493. table[i].count,
  494. table[i].size,
  495. table[i].count * table[i].size,
  496. table[i].func,
  497. table[i].line, table[i].caller,
  498. table[i].time);
  499. }
  500. }
  501. /**
  502. * qdf_mem_seq_start() - sequential callback to start
  503. * @seq: seq_file handle
  504. * @pos: The start position of the sequence
  505. *
  506. * Return: iterator pointer, or NULL if iteration is complete
  507. */
  508. static void *qdf_mem_seq_start(struct seq_file *seq, loff_t *pos)
  509. {
  510. enum qdf_debug_domain domain = *pos;
  511. if (!qdf_debug_domain_valid(domain))
  512. return NULL;
  513. /* just use the current position as our iterator */
  514. return pos;
  515. }
  516. /**
  517. * qdf_mem_seq_next() - next sequential callback
  518. * @seq: seq_file handle
  519. * @v: the current iterator
  520. * @pos: the current position
  521. *
  522. * Get the next node and release previous node.
  523. *
  524. * Return: iterator pointer, or NULL if iteration is complete
  525. */
  526. static void *qdf_mem_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  527. {
  528. ++*pos;
  529. return qdf_mem_seq_start(seq, pos);
  530. }
  531. /**
  532. * qdf_mem_seq_stop() - stop sequential callback
  533. * @seq: seq_file handle
  534. * @v: current iterator
  535. *
  536. * Return: None
  537. */
  538. static void qdf_mem_seq_stop(struct seq_file *seq, void *v) { }
  539. /**
  540. * qdf_mem_seq_show() - print sequential callback
  541. * @seq: seq_file handle
  542. * @v: current iterator
  543. *
  544. * Return: 0 - success
  545. */
  546. static int qdf_mem_seq_show(struct seq_file *seq, void *v)
  547. {
  548. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  549. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  550. qdf_debug_domain_name(domain_id), domain_id);
  551. qdf_mem_domain_print(qdf_mem_list_get(domain_id),
  552. seq_printf_printer,
  553. seq,
  554. 0,
  555. qdf_mem_meta_table_print);
  556. return 0;
  557. }
  558. /* sequential file operation table */
  559. static const struct seq_operations qdf_mem_seq_ops = {
  560. .start = qdf_mem_seq_start,
  561. .next = qdf_mem_seq_next,
  562. .stop = qdf_mem_seq_stop,
  563. .show = qdf_mem_seq_show,
  564. };
  565. static int qdf_mem_debugfs_open(struct inode *inode, struct file *file)
  566. {
  567. return seq_open(file, &qdf_mem_seq_ops);
  568. }
  569. /**
  570. * qdf_major_alloc_show() - print sequential callback
  571. * @seq: seq_file handle
  572. * @v: current iterator
  573. *
  574. * Return: 0 - success
  575. */
  576. static int qdf_major_alloc_show(struct seq_file *seq, void *v)
  577. {
  578. enum qdf_debug_domain domain_id = *(enum qdf_debug_domain *)v;
  579. struct major_alloc_priv *priv;
  580. qdf_list_t *list;
  581. priv = (struct major_alloc_priv *)seq->private;
  582. seq_printf(seq, "\n%s Memory Domain (Id %d)\n",
  583. qdf_debug_domain_name(domain_id), domain_id);
  584. switch (priv->type) {
  585. case LIST_TYPE_MEM:
  586. list = qdf_mem_list_get(domain_id);
  587. break;
  588. case LIST_TYPE_DMA:
  589. list = qdf_mem_dma_list(domain_id);
  590. break;
  591. default:
  592. list = NULL;
  593. break;
  594. }
  595. if (list)
  596. qdf_mem_domain_print(list,
  597. seq_printf_printer,
  598. seq,
  599. priv->threshold,
  600. qdf_print_major_alloc);
  601. return 0;
  602. }
  603. /* sequential file operation table created to track major allocs */
  604. static const struct seq_operations qdf_major_allocs_seq_ops = {
  605. .start = qdf_mem_seq_start,
  606. .next = qdf_mem_seq_next,
  607. .stop = qdf_mem_seq_stop,
  608. .show = qdf_major_alloc_show,
  609. };
  610. static int qdf_major_allocs_open(struct inode *inode, struct file *file)
  611. {
  612. void *private = inode->i_private;
  613. struct seq_file *seq;
  614. int rc;
  615. rc = seq_open(file, &qdf_major_allocs_seq_ops);
  616. if (rc == 0) {
  617. seq = file->private_data;
  618. seq->private = private;
  619. }
  620. return rc;
  621. }
  622. static ssize_t qdf_major_alloc_set_threshold(struct file *file,
  623. const char __user *user_buf,
  624. size_t count,
  625. loff_t *pos)
  626. {
  627. char buf[32];
  628. ssize_t buf_size;
  629. uint32_t threshold;
  630. struct seq_file *seq = file->private_data;
  631. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  632. buf_size = min(count, (sizeof(buf) - 1));
  633. if (buf_size <= 0)
  634. return 0;
  635. if (copy_from_user(buf, user_buf, buf_size))
  636. return -EFAULT;
  637. buf[buf_size] = '\0';
  638. if (!kstrtou32(buf, 10, &threshold))
  639. priv->threshold = threshold;
  640. return buf_size;
  641. }
  642. /**
  643. * qdf_print_major_nbuf_allocs() - output agnostic nbuf print logic
  644. * @threshold: the threshold value set by uset to list top allocations
  645. * @print: the print adapter function
  646. * @print_priv: the private data to be consumed by @print
  647. * @mem_print: pointer to function which prints the memory allocation data
  648. *
  649. * Return: None
  650. */
  651. static void
  652. qdf_print_major_nbuf_allocs(uint32_t threshold,
  653. qdf_abstract_print print,
  654. void *print_priv,
  655. void (*mem_print)(struct __qdf_mem_info *,
  656. qdf_abstract_print,
  657. void *, uint32_t))
  658. {
  659. uint32_t nbuf_iter;
  660. unsigned long irq_flag = 0;
  661. QDF_NBUF_TRACK *p_node;
  662. struct __qdf_mem_info table[QDF_MEM_STAT_TABLE_SIZE];
  663. struct qdf_mem_header meta;
  664. bool is_full;
  665. qdf_mem_zero(table, sizeof(table));
  666. qdf_mem_debug_print_header(print, print_priv, threshold);
  667. if (is_initial_mem_debug_disabled)
  668. return;
  669. qdf_rl_info("major nbuf print with threshold %u", threshold);
  670. for (nbuf_iter = 0; nbuf_iter < QDF_NET_BUF_TRACK_MAX_SIZE;
  671. nbuf_iter++) {
  672. qdf_nbuf_acquire_track_lock(nbuf_iter, irq_flag);
  673. p_node = qdf_nbuf_get_track_tbl(nbuf_iter);
  674. while (p_node) {
  675. meta.line = p_node->line_num;
  676. meta.size = p_node->size;
  677. meta.caller = NULL;
  678. meta.time = p_node->time;
  679. qdf_str_lcopy(meta.func, p_node->func_name,
  680. QDF_MEM_FUNC_NAME_SIZE);
  681. is_full = qdf_mem_meta_table_insert(table, &meta);
  682. if (is_full) {
  683. (*mem_print)(table, print,
  684. print_priv, threshold);
  685. qdf_mem_zero(table, sizeof(table));
  686. }
  687. p_node = p_node->p_next;
  688. }
  689. qdf_nbuf_release_track_lock(nbuf_iter, irq_flag);
  690. }
  691. (*mem_print)(table, print, print_priv, threshold);
  692. qdf_rl_info("major nbuf print end");
  693. }
  694. /**
  695. * qdf_major_nbuf_alloc_show() - print sequential callback
  696. * @seq: seq_file handle
  697. * @v: current iterator
  698. *
  699. * Return: 0 - success
  700. */
  701. static int qdf_major_nbuf_alloc_show(struct seq_file *seq, void *v)
  702. {
  703. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  704. if (!priv) {
  705. qdf_err("priv is null");
  706. return -EINVAL;
  707. }
  708. qdf_print_major_nbuf_allocs(priv->threshold,
  709. seq_printf_printer,
  710. seq,
  711. qdf_print_major_alloc);
  712. return 0;
  713. }
  714. /**
  715. * qdf_nbuf_seq_start() - sequential callback to start
  716. * @seq: seq_file handle
  717. * @pos: The start position of the sequence
  718. *
  719. * Return: iterator pointer, or NULL if iteration is complete
  720. */
  721. static void *qdf_nbuf_seq_start(struct seq_file *seq, loff_t *pos)
  722. {
  723. enum qdf_debug_domain domain = *pos;
  724. if (domain > QDF_DEBUG_NBUF_DOMAIN)
  725. return NULL;
  726. return pos;
  727. }
  728. /**
  729. * qdf_nbuf_seq_next() - next sequential callback
  730. * @seq: seq_file handle
  731. * @v: the current iterator
  732. * @pos: the current position
  733. *
  734. * Get the next node and release previous node.
  735. *
  736. * Return: iterator pointer, or NULL if iteration is complete
  737. */
  738. static void *qdf_nbuf_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  739. {
  740. ++*pos;
  741. return qdf_nbuf_seq_start(seq, pos);
  742. }
  743. /**
  744. * qdf_nbuf_seq_stop() - stop sequential callback
  745. * @seq: seq_file handle
  746. * @v: current iterator
  747. *
  748. * Return: None
  749. */
  750. static void qdf_nbuf_seq_stop(struct seq_file *seq, void *v) { }
  751. /* sequential file operation table created to track major skb allocs */
  752. static const struct seq_operations qdf_major_nbuf_allocs_seq_ops = {
  753. .start = qdf_nbuf_seq_start,
  754. .next = qdf_nbuf_seq_next,
  755. .stop = qdf_nbuf_seq_stop,
  756. .show = qdf_major_nbuf_alloc_show,
  757. };
  758. static int qdf_major_nbuf_allocs_open(struct inode *inode, struct file *file)
  759. {
  760. void *private = inode->i_private;
  761. struct seq_file *seq;
  762. int rc;
  763. rc = seq_open(file, &qdf_major_nbuf_allocs_seq_ops);
  764. if (rc == 0) {
  765. seq = file->private_data;
  766. seq->private = private;
  767. }
  768. return rc;
  769. }
  770. static ssize_t qdf_major_nbuf_alloc_set_threshold(struct file *file,
  771. const char __user *user_buf,
  772. size_t count,
  773. loff_t *pos)
  774. {
  775. char buf[32];
  776. ssize_t buf_size;
  777. uint32_t threshold;
  778. struct seq_file *seq = file->private_data;
  779. struct major_alloc_priv *priv = (struct major_alloc_priv *)seq->private;
  780. buf_size = min(count, (sizeof(buf) - 1));
  781. if (buf_size <= 0)
  782. return 0;
  783. if (copy_from_user(buf, user_buf, buf_size))
  784. return -EFAULT;
  785. buf[buf_size] = '\0';
  786. if (!kstrtou32(buf, 10, &threshold))
  787. priv->threshold = threshold;
  788. return buf_size;
  789. }
  790. /* file operation table for listing major allocs */
  791. static const struct file_operations fops_qdf_major_allocs = {
  792. .owner = THIS_MODULE,
  793. .open = qdf_major_allocs_open,
  794. .read = seq_read,
  795. .llseek = seq_lseek,
  796. .release = seq_release,
  797. .write = qdf_major_alloc_set_threshold,
  798. };
  799. /* debugfs file operation table */
  800. static const struct file_operations fops_qdf_mem_debugfs = {
  801. .owner = THIS_MODULE,
  802. .open = qdf_mem_debugfs_open,
  803. .read = seq_read,
  804. .llseek = seq_lseek,
  805. .release = seq_release,
  806. };
  807. /* file operation table for listing major allocs */
  808. static const struct file_operations fops_qdf_nbuf_major_allocs = {
  809. .owner = THIS_MODULE,
  810. .open = qdf_major_nbuf_allocs_open,
  811. .read = seq_read,
  812. .llseek = seq_lseek,
  813. .release = seq_release,
  814. .write = qdf_major_nbuf_alloc_set_threshold,
  815. };
  816. static struct major_alloc_priv mem_priv = {
  817. /* List type set to mem */
  818. LIST_TYPE_MEM,
  819. /* initial threshold to list APIs which allocates mem >= 50 times */
  820. 50
  821. };
  822. static struct major_alloc_priv dma_priv = {
  823. /* List type set to DMA */
  824. LIST_TYPE_DMA,
  825. /* initial threshold to list APIs which allocates dma >= 50 times */
  826. 50
  827. };
  828. static struct major_alloc_priv nbuf_priv = {
  829. /* List type set to NBUF */
  830. LIST_TYPE_NBUF,
  831. /* initial threshold to list APIs which allocates nbuf >= 50 times */
  832. 50
  833. };
  834. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  835. {
  836. if (is_initial_mem_debug_disabled)
  837. return QDF_STATUS_SUCCESS;
  838. if (!qdf_mem_debugfs_root)
  839. return QDF_STATUS_E_FAILURE;
  840. debugfs_create_file("list",
  841. S_IRUSR,
  842. qdf_mem_debugfs_root,
  843. NULL,
  844. &fops_qdf_mem_debugfs);
  845. debugfs_create_file("major_mem_allocs",
  846. 0600,
  847. qdf_mem_debugfs_root,
  848. &mem_priv,
  849. &fops_qdf_major_allocs);
  850. debugfs_create_file("major_dma_allocs",
  851. 0600,
  852. qdf_mem_debugfs_root,
  853. &dma_priv,
  854. &fops_qdf_major_allocs);
  855. debugfs_create_file("major_nbuf_allocs",
  856. 0600,
  857. qdf_mem_debugfs_root,
  858. &nbuf_priv,
  859. &fops_qdf_nbuf_major_allocs);
  860. return QDF_STATUS_SUCCESS;
  861. }
  862. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  863. {
  864. return QDF_STATUS_SUCCESS;
  865. }
  866. #else /* MEMORY_DEBUG */
  867. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  868. {
  869. return QDF_STATUS_E_NOSUPPORT;
  870. }
  871. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  872. {
  873. return QDF_STATUS_E_NOSUPPORT;
  874. }
  875. #endif /* MEMORY_DEBUG */
  876. static void qdf_mem_debugfs_exit(void)
  877. {
  878. debugfs_remove_recursive(qdf_mem_debugfs_root);
  879. qdf_mem_debugfs_root = NULL;
  880. }
  881. static QDF_STATUS qdf_mem_debugfs_init(void)
  882. {
  883. struct dentry *qdf_debugfs_root = qdf_debugfs_get_root();
  884. if (!qdf_debugfs_root)
  885. return QDF_STATUS_E_FAILURE;
  886. qdf_mem_debugfs_root = debugfs_create_dir("mem", qdf_debugfs_root);
  887. if (!qdf_mem_debugfs_root)
  888. return QDF_STATUS_E_FAILURE;
  889. debugfs_create_atomic_t("kmalloc",
  890. S_IRUSR,
  891. qdf_mem_debugfs_root,
  892. &qdf_mem_stat.kmalloc);
  893. debugfs_create_atomic_t("dma",
  894. S_IRUSR,
  895. qdf_mem_debugfs_root,
  896. &qdf_mem_stat.dma);
  897. debugfs_create_atomic_t("skb",
  898. S_IRUSR,
  899. qdf_mem_debugfs_root,
  900. &qdf_mem_stat.skb);
  901. return QDF_STATUS_SUCCESS;
  902. }
  903. #else /* WLAN_DEBUGFS */
  904. static QDF_STATUS qdf_mem_debugfs_init(void)
  905. {
  906. return QDF_STATUS_E_NOSUPPORT;
  907. }
  908. static void qdf_mem_debugfs_exit(void) {}
  909. static QDF_STATUS qdf_mem_debug_debugfs_init(void)
  910. {
  911. return QDF_STATUS_E_NOSUPPORT;
  912. }
  913. static QDF_STATUS qdf_mem_debug_debugfs_exit(void)
  914. {
  915. return QDF_STATUS_E_NOSUPPORT;
  916. }
  917. #endif /* WLAN_DEBUGFS */
  918. void qdf_mem_kmalloc_inc(qdf_size_t size)
  919. {
  920. qdf_atomic_add(size, &qdf_mem_stat.kmalloc);
  921. }
  922. static void qdf_mem_dma_inc(qdf_size_t size)
  923. {
  924. qdf_atomic_add(size, &qdf_mem_stat.dma);
  925. }
  926. #ifdef CONFIG_WLAN_SYSFS_MEM_STATS
  927. void qdf_mem_skb_inc(qdf_size_t size)
  928. {
  929. qdf_atomic_add(size, &qdf_mem_stat.skb);
  930. }
  931. void qdf_mem_skb_dec(qdf_size_t size)
  932. {
  933. qdf_atomic_sub(size, &qdf_mem_stat.skb);
  934. }
  935. void qdf_mem_skb_total_inc(qdf_size_t size)
  936. {
  937. int32_t skb_mem_max = 0;
  938. qdf_atomic_add(size, &qdf_mem_stat.skb_total);
  939. skb_mem_max = qdf_atomic_read(&qdf_mem_stat.skb_total);
  940. if (qdf_mem_stat.skb_mem_max < skb_mem_max)
  941. qdf_mem_stat.skb_mem_max = skb_mem_max;
  942. }
  943. void qdf_mem_skb_total_dec(qdf_size_t size)
  944. {
  945. qdf_atomic_sub(size, &qdf_mem_stat.skb_total);
  946. }
  947. void qdf_mem_dp_tx_skb_inc(qdf_size_t size)
  948. {
  949. int32_t curr_dp_tx_skb_mem_max = 0;
  950. qdf_atomic_add(size, &qdf_mem_stat.dp_tx_skb);
  951. curr_dp_tx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  952. if (qdf_mem_stat.dp_tx_skb_mem_max < curr_dp_tx_skb_mem_max)
  953. qdf_mem_stat.dp_tx_skb_mem_max = curr_dp_tx_skb_mem_max;
  954. }
  955. void qdf_mem_dp_tx_skb_dec(qdf_size_t size)
  956. {
  957. qdf_atomic_sub(size, &qdf_mem_stat.dp_tx_skb);
  958. }
  959. void qdf_mem_dp_rx_skb_inc(qdf_size_t size)
  960. {
  961. int32_t curr_dp_rx_skb_mem_max = 0;
  962. qdf_atomic_add(size, &qdf_mem_stat.dp_rx_skb);
  963. curr_dp_rx_skb_mem_max = qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  964. if (qdf_mem_stat.dp_rx_skb_mem_max < curr_dp_rx_skb_mem_max)
  965. qdf_mem_stat.dp_rx_skb_mem_max = curr_dp_rx_skb_mem_max;
  966. }
  967. void qdf_mem_dp_rx_skb_dec(qdf_size_t size)
  968. {
  969. qdf_atomic_sub(size, &qdf_mem_stat.dp_rx_skb);
  970. }
  971. void qdf_mem_dp_tx_skb_cnt_inc(void)
  972. {
  973. int32_t curr_dp_tx_skb_count_max = 0;
  974. qdf_atomic_add(1, &qdf_mem_stat.dp_tx_skb_count);
  975. curr_dp_tx_skb_count_max =
  976. qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  977. if (qdf_mem_stat.dp_tx_skb_count_max < curr_dp_tx_skb_count_max)
  978. qdf_mem_stat.dp_tx_skb_count_max = curr_dp_tx_skb_count_max;
  979. }
  980. void qdf_mem_dp_tx_skb_cnt_dec(void)
  981. {
  982. qdf_atomic_sub(1, &qdf_mem_stat.dp_tx_skb_count);
  983. }
  984. void qdf_mem_dp_rx_skb_cnt_inc(void)
  985. {
  986. int32_t curr_dp_rx_skb_count_max = 0;
  987. qdf_atomic_add(1, &qdf_mem_stat.dp_rx_skb_count);
  988. curr_dp_rx_skb_count_max =
  989. qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  990. if (qdf_mem_stat.dp_rx_skb_count_max < curr_dp_rx_skb_count_max)
  991. qdf_mem_stat.dp_rx_skb_count_max = curr_dp_rx_skb_count_max;
  992. }
  993. void qdf_mem_dp_rx_skb_cnt_dec(void)
  994. {
  995. qdf_atomic_sub(1, &qdf_mem_stat.dp_rx_skb_count);
  996. }
  997. #endif
  998. void qdf_mem_kmalloc_dec(qdf_size_t size)
  999. {
  1000. qdf_atomic_sub(size, &qdf_mem_stat.kmalloc);
  1001. }
  1002. static inline void qdf_mem_dma_dec(qdf_size_t size)
  1003. {
  1004. qdf_atomic_sub(size, &qdf_mem_stat.dma);
  1005. }
  1006. int __qdf_mempool_init(qdf_device_t osdev, __qdf_mempool_t *pool_addr,
  1007. int elem_cnt, size_t elem_size, u_int32_t flags)
  1008. {
  1009. __qdf_mempool_ctxt_t *new_pool = NULL;
  1010. u_int32_t align = L1_CACHE_BYTES;
  1011. unsigned long aligned_pool_mem;
  1012. int pool_id;
  1013. int i;
  1014. if (prealloc_disabled) {
  1015. /* TBD: We can maintain a list of pools in qdf_device_t
  1016. * to help debugging
  1017. * when pre-allocation is not enabled
  1018. */
  1019. new_pool = (__qdf_mempool_ctxt_t *)
  1020. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1021. if (!new_pool)
  1022. return QDF_STATUS_E_NOMEM;
  1023. memset(new_pool, 0, sizeof(*new_pool));
  1024. /* TBD: define flags for zeroing buffers etc */
  1025. new_pool->flags = flags;
  1026. new_pool->elem_size = elem_size;
  1027. new_pool->max_elem = elem_cnt;
  1028. *pool_addr = new_pool;
  1029. return 0;
  1030. }
  1031. for (pool_id = 0; pool_id < MAX_MEM_POOLS; pool_id++) {
  1032. if (!osdev->mem_pool[pool_id])
  1033. break;
  1034. }
  1035. if (pool_id == MAX_MEM_POOLS)
  1036. return -ENOMEM;
  1037. new_pool = osdev->mem_pool[pool_id] = (__qdf_mempool_ctxt_t *)
  1038. kmalloc(sizeof(__qdf_mempool_ctxt_t), GFP_KERNEL);
  1039. if (!new_pool)
  1040. return -ENOMEM;
  1041. memset(new_pool, 0, sizeof(*new_pool));
  1042. /* TBD: define flags for zeroing buffers etc */
  1043. new_pool->flags = flags;
  1044. new_pool->pool_id = pool_id;
  1045. /* Round up the element size to cacheline */
  1046. new_pool->elem_size = roundup(elem_size, L1_CACHE_BYTES);
  1047. new_pool->mem_size = elem_cnt * new_pool->elem_size +
  1048. ((align)?(align - 1):0);
  1049. new_pool->pool_mem = kzalloc(new_pool->mem_size, GFP_KERNEL);
  1050. if (!new_pool->pool_mem) {
  1051. /* TBD: Check if we need get_free_pages above */
  1052. kfree(new_pool);
  1053. osdev->mem_pool[pool_id] = NULL;
  1054. return -ENOMEM;
  1055. }
  1056. spin_lock_init(&new_pool->lock);
  1057. /* Initialize free list */
  1058. aligned_pool_mem = (unsigned long)(new_pool->pool_mem) +
  1059. ((align) ? (unsigned long)(new_pool->pool_mem)%align:0);
  1060. STAILQ_INIT(&new_pool->free_list);
  1061. for (i = 0; i < elem_cnt; i++)
  1062. STAILQ_INSERT_TAIL(&(new_pool->free_list),
  1063. (mempool_elem_t *)(aligned_pool_mem +
  1064. (new_pool->elem_size * i)), mempool_entry);
  1065. new_pool->free_cnt = elem_cnt;
  1066. *pool_addr = new_pool;
  1067. return 0;
  1068. }
  1069. qdf_export_symbol(__qdf_mempool_init);
  1070. void __qdf_mempool_destroy(qdf_device_t osdev, __qdf_mempool_t pool)
  1071. {
  1072. int pool_id = 0;
  1073. if (!pool)
  1074. return;
  1075. if (prealloc_disabled) {
  1076. kfree(pool);
  1077. return;
  1078. }
  1079. pool_id = pool->pool_id;
  1080. /* TBD: Check if free count matches elem_cnt if debug is enabled */
  1081. kfree(pool->pool_mem);
  1082. kfree(pool);
  1083. osdev->mem_pool[pool_id] = NULL;
  1084. }
  1085. qdf_export_symbol(__qdf_mempool_destroy);
  1086. void *__qdf_mempool_alloc(qdf_device_t osdev, __qdf_mempool_t pool)
  1087. {
  1088. void *buf = NULL;
  1089. if (!pool)
  1090. return NULL;
  1091. if (prealloc_disabled)
  1092. return qdf_mem_malloc(pool->elem_size);
  1093. spin_lock_bh(&pool->lock);
  1094. buf = STAILQ_FIRST(&pool->free_list);
  1095. if (buf) {
  1096. STAILQ_REMOVE_HEAD(&pool->free_list, mempool_entry);
  1097. pool->free_cnt--;
  1098. }
  1099. /* TBD: Update free count if debug is enabled */
  1100. spin_unlock_bh(&pool->lock);
  1101. return buf;
  1102. }
  1103. qdf_export_symbol(__qdf_mempool_alloc);
  1104. void __qdf_mempool_free(qdf_device_t osdev, __qdf_mempool_t pool, void *buf)
  1105. {
  1106. if (!pool)
  1107. return;
  1108. if (prealloc_disabled)
  1109. return qdf_mem_free(buf);
  1110. spin_lock_bh(&pool->lock);
  1111. pool->free_cnt++;
  1112. STAILQ_INSERT_TAIL
  1113. (&pool->free_list, (mempool_elem_t *)buf, mempool_entry);
  1114. spin_unlock_bh(&pool->lock);
  1115. }
  1116. qdf_export_symbol(__qdf_mempool_free);
  1117. #ifdef CNSS_MEM_PRE_ALLOC
  1118. static bool qdf_might_be_prealloc(void *ptr)
  1119. {
  1120. if (ksize(ptr) > WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1121. return true;
  1122. else
  1123. return false;
  1124. }
  1125. /**
  1126. * qdf_mem_prealloc_get() - conditionally pre-allocate memory
  1127. * @size: the number of bytes to allocate
  1128. *
  1129. * If size if greater than WCNSS_PRE_ALLOC_GET_THRESHOLD, this function returns
  1130. * a chunk of pre-allocated memory. If size if less than or equal to
  1131. * WCNSS_PRE_ALLOC_GET_THRESHOLD, or an error occurs, NULL is returned instead.
  1132. *
  1133. * Return: NULL on failure, non-NULL on success
  1134. */
  1135. static void *qdf_mem_prealloc_get(size_t size)
  1136. {
  1137. void *ptr;
  1138. if (size <= WCNSS_PRE_ALLOC_GET_THRESHOLD)
  1139. return NULL;
  1140. ptr = wcnss_prealloc_get(size);
  1141. if (!ptr)
  1142. return NULL;
  1143. memset(ptr, 0, size);
  1144. return ptr;
  1145. }
  1146. static inline bool qdf_mem_prealloc_put(void *ptr)
  1147. {
  1148. return wcnss_prealloc_put(ptr);
  1149. }
  1150. #else
  1151. static bool qdf_might_be_prealloc(void *ptr)
  1152. {
  1153. return false;
  1154. }
  1155. static inline void *qdf_mem_prealloc_get(size_t size)
  1156. {
  1157. return NULL;
  1158. }
  1159. static inline bool qdf_mem_prealloc_put(void *ptr)
  1160. {
  1161. return false;
  1162. }
  1163. #endif /* CNSS_MEM_PRE_ALLOC */
  1164. /* External Function implementation */
  1165. #ifdef MEMORY_DEBUG
  1166. #ifdef DISABLE_MEM_DBG_LOAD_CONFIG
  1167. bool qdf_mem_debug_config_get(void)
  1168. {
  1169. /* Return false if DISABLE_LOAD_MEM_DBG_CONFIG flag is enabled */
  1170. return false;
  1171. }
  1172. #else
  1173. bool qdf_mem_debug_config_get(void)
  1174. {
  1175. return mem_debug_disabled;
  1176. }
  1177. #endif /* DISABLE_MEM_DBG_LOAD_CONFIG */
  1178. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1179. QDF_STATUS qdf_mem_debug_disabled_config_set(const char *str_value)
  1180. {
  1181. QDF_STATUS status;
  1182. status = qdf_bool_parse(str_value, &mem_debug_disabled);
  1183. return status;
  1184. }
  1185. #endif
  1186. /**
  1187. * qdf_mem_debug_init() - initialize qdf memory debug functionality
  1188. *
  1189. * Return: none
  1190. */
  1191. static void qdf_mem_debug_init(void)
  1192. {
  1193. int i;
  1194. is_initial_mem_debug_disabled = qdf_mem_debug_config_get();
  1195. if (is_initial_mem_debug_disabled)
  1196. return;
  1197. /* Initializing the list with maximum size of 60000 */
  1198. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1199. qdf_list_create(&qdf_mem_domains[i], 60000);
  1200. qdf_spinlock_create(&qdf_mem_list_lock);
  1201. /* dma */
  1202. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1203. qdf_list_create(&qdf_mem_dma_domains[i], 0);
  1204. qdf_spinlock_create(&qdf_mem_dma_list_lock);
  1205. }
  1206. static uint32_t
  1207. qdf_mem_domain_check_for_leaks(enum qdf_debug_domain domain,
  1208. qdf_list_t *mem_list)
  1209. {
  1210. if (is_initial_mem_debug_disabled)
  1211. return 0;
  1212. if (qdf_list_empty(mem_list))
  1213. return 0;
  1214. qdf_err("Memory leaks detected in %s domain!",
  1215. qdf_debug_domain_name(domain));
  1216. qdf_mem_domain_print(mem_list,
  1217. qdf_err_printer,
  1218. NULL,
  1219. 0,
  1220. qdf_mem_meta_table_print);
  1221. return mem_list->count;
  1222. }
  1223. static void qdf_mem_domain_set_check_for_leaks(qdf_list_t *domains)
  1224. {
  1225. uint32_t leak_count = 0;
  1226. int i;
  1227. if (is_initial_mem_debug_disabled)
  1228. return;
  1229. /* detect and print leaks */
  1230. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1231. leak_count += qdf_mem_domain_check_for_leaks(i, domains + i);
  1232. if (leak_count)
  1233. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1234. leak_count);
  1235. }
  1236. /**
  1237. * qdf_mem_debug_exit() - exit qdf memory debug functionality
  1238. *
  1239. * Return: none
  1240. */
  1241. static void qdf_mem_debug_exit(void)
  1242. {
  1243. int i;
  1244. if (is_initial_mem_debug_disabled)
  1245. return;
  1246. /* mem */
  1247. qdf_mem_domain_set_check_for_leaks(qdf_mem_domains);
  1248. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1249. qdf_list_destroy(qdf_mem_list_get(i));
  1250. qdf_spinlock_destroy(&qdf_mem_list_lock);
  1251. /* dma */
  1252. qdf_mem_domain_set_check_for_leaks(qdf_mem_dma_domains);
  1253. for (i = 0; i < QDF_DEBUG_DOMAIN_COUNT; ++i)
  1254. qdf_list_destroy(&qdf_mem_dma_domains[i]);
  1255. qdf_spinlock_destroy(&qdf_mem_dma_list_lock);
  1256. }
  1257. void *qdf_mem_malloc_debug(size_t size, const char *func, uint32_t line,
  1258. void *caller, uint32_t flag)
  1259. {
  1260. QDF_STATUS status;
  1261. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1262. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1263. struct qdf_mem_header *header;
  1264. void *ptr;
  1265. unsigned long start, duration;
  1266. if (is_initial_mem_debug_disabled)
  1267. return __qdf_mem_malloc(size, func, line);
  1268. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1269. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  1270. return NULL;
  1271. }
  1272. ptr = qdf_mem_prealloc_get(size);
  1273. if (ptr)
  1274. return ptr;
  1275. if (!flag)
  1276. flag = qdf_mem_malloc_flags();
  1277. start = qdf_mc_timer_get_system_time();
  1278. header = kzalloc(size + QDF_MEM_DEBUG_SIZE, flag);
  1279. duration = qdf_mc_timer_get_system_time() - start;
  1280. if (duration > QDF_MEM_WARN_THRESHOLD)
  1281. qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
  1282. duration, size, func, line);
  1283. if (!header) {
  1284. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  1285. return NULL;
  1286. }
  1287. qdf_mem_header_init(header, size, func, line, caller);
  1288. qdf_mem_trailer_init(header);
  1289. ptr = qdf_mem_get_ptr(header);
  1290. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1291. status = qdf_list_insert_front(mem_list, &header->node);
  1292. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1293. if (QDF_IS_STATUS_ERROR(status))
  1294. qdf_err("Failed to insert memory header; status %d", status);
  1295. qdf_mem_kmalloc_inc(ksize(header));
  1296. return ptr;
  1297. }
  1298. qdf_export_symbol(qdf_mem_malloc_debug);
  1299. void *qdf_mem_malloc_atomic_debug(size_t size, const char *func,
  1300. uint32_t line, void *caller)
  1301. {
  1302. QDF_STATUS status;
  1303. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1304. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1305. struct qdf_mem_header *header;
  1306. void *ptr;
  1307. unsigned long start, duration;
  1308. if (is_initial_mem_debug_disabled)
  1309. return qdf_mem_malloc_atomic_debug_fl(size, func, line);
  1310. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1311. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  1312. return NULL;
  1313. }
  1314. ptr = qdf_mem_prealloc_get(size);
  1315. if (ptr)
  1316. return ptr;
  1317. start = qdf_mc_timer_get_system_time();
  1318. header = kzalloc(size + QDF_MEM_DEBUG_SIZE, GFP_ATOMIC);
  1319. duration = qdf_mc_timer_get_system_time() - start;
  1320. if (duration > QDF_MEM_WARN_THRESHOLD)
  1321. qdf_warn("Malloc slept; %lums, %zuB @ %s:%d",
  1322. duration, size, func, line);
  1323. if (!header) {
  1324. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  1325. return NULL;
  1326. }
  1327. qdf_mem_header_init(header, size, func, line, caller);
  1328. qdf_mem_trailer_init(header);
  1329. ptr = qdf_mem_get_ptr(header);
  1330. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1331. status = qdf_list_insert_front(mem_list, &header->node);
  1332. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1333. if (QDF_IS_STATUS_ERROR(status))
  1334. qdf_err("Failed to insert memory header; status %d", status);
  1335. qdf_mem_kmalloc_inc(ksize(header));
  1336. return ptr;
  1337. }
  1338. qdf_export_symbol(qdf_mem_malloc_atomic_debug);
  1339. void *qdf_mem_malloc_atomic_debug_fl(size_t size, const char *func,
  1340. uint32_t line)
  1341. {
  1342. void *ptr;
  1343. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1344. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1345. line);
  1346. return NULL;
  1347. }
  1348. ptr = qdf_mem_prealloc_get(size);
  1349. if (ptr)
  1350. return ptr;
  1351. ptr = kzalloc(size, GFP_ATOMIC);
  1352. if (!ptr) {
  1353. qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
  1354. size, func, line);
  1355. return NULL;
  1356. }
  1357. qdf_mem_kmalloc_inc(ksize(ptr));
  1358. return ptr;
  1359. }
  1360. qdf_export_symbol(qdf_mem_malloc_atomic_debug_fl);
  1361. void qdf_mem_free_debug(void *ptr, const char *func, uint32_t line)
  1362. {
  1363. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1364. struct qdf_mem_header *header;
  1365. enum qdf_mem_validation_bitmap error_bitmap;
  1366. if (is_initial_mem_debug_disabled) {
  1367. __qdf_mem_free(ptr);
  1368. return;
  1369. }
  1370. /* freeing a null pointer is valid */
  1371. if (qdf_unlikely(!ptr))
  1372. return;
  1373. if (qdf_mem_prealloc_put(ptr))
  1374. return;
  1375. if (qdf_unlikely((qdf_size_t)ptr <= sizeof(*header)))
  1376. QDF_MEMDEBUG_PANIC("Failed to free invalid memory location %pK",
  1377. ptr);
  1378. qdf_talloc_assert_no_children_fl(ptr, func, line);
  1379. qdf_spin_lock_irqsave(&qdf_mem_list_lock);
  1380. header = qdf_mem_get_header(ptr);
  1381. error_bitmap = qdf_mem_header_validate(header, current_domain);
  1382. error_bitmap |= qdf_mem_trailer_validate(header);
  1383. if (!error_bitmap) {
  1384. header->freed = true;
  1385. qdf_list_remove_node(qdf_mem_list_get(header->domain),
  1386. &header->node);
  1387. }
  1388. qdf_spin_unlock_irqrestore(&qdf_mem_list_lock);
  1389. qdf_mem_header_assert_valid(header, current_domain, error_bitmap,
  1390. func, line);
  1391. qdf_mem_kmalloc_dec(ksize(header));
  1392. kfree(header);
  1393. }
  1394. qdf_export_symbol(qdf_mem_free_debug);
  1395. void qdf_mem_check_for_leaks(void)
  1396. {
  1397. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  1398. qdf_list_t *mem_list = qdf_mem_list_get(current_domain);
  1399. qdf_list_t *dma_list = qdf_mem_dma_list(current_domain);
  1400. uint32_t leaks_count = 0;
  1401. if (is_initial_mem_debug_disabled)
  1402. return;
  1403. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, mem_list);
  1404. leaks_count += qdf_mem_domain_check_for_leaks(current_domain, dma_list);
  1405. if (leaks_count)
  1406. QDF_MEMDEBUG_PANIC("%u fatal memory leaks detected!",
  1407. leaks_count);
  1408. }
  1409. void qdf_mem_multi_pages_alloc_debug(qdf_device_t osdev,
  1410. struct qdf_mem_multi_page_t *pages,
  1411. size_t element_size, uint32_t element_num,
  1412. qdf_dma_context_t memctxt, bool cacheable,
  1413. const char *func, uint32_t line,
  1414. void *caller)
  1415. {
  1416. uint16_t page_idx;
  1417. struct qdf_mem_dma_page_t *dma_pages;
  1418. void **cacheable_pages = NULL;
  1419. uint16_t i;
  1420. if (!pages->page_size)
  1421. pages->page_size = qdf_page_size;
  1422. pages->num_element_per_page = pages->page_size / element_size;
  1423. if (!pages->num_element_per_page) {
  1424. qdf_print("Invalid page %d or element size %d",
  1425. (int)pages->page_size, (int)element_size);
  1426. goto out_fail;
  1427. }
  1428. pages->num_pages = element_num / pages->num_element_per_page;
  1429. if (element_num % pages->num_element_per_page)
  1430. pages->num_pages++;
  1431. if (cacheable) {
  1432. /* Pages information storage */
  1433. pages->cacheable_pages = qdf_mem_malloc_debug(
  1434. pages->num_pages * sizeof(pages->cacheable_pages),
  1435. func, line, caller, 0);
  1436. if (!pages->cacheable_pages)
  1437. goto out_fail;
  1438. cacheable_pages = pages->cacheable_pages;
  1439. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1440. cacheable_pages[page_idx] = qdf_mem_malloc_debug(
  1441. pages->page_size, func, line, caller, 0);
  1442. if (!cacheable_pages[page_idx])
  1443. goto page_alloc_fail;
  1444. }
  1445. pages->dma_pages = NULL;
  1446. } else {
  1447. pages->dma_pages = qdf_mem_malloc_debug(
  1448. pages->num_pages * sizeof(struct qdf_mem_dma_page_t),
  1449. func, line, caller, 0);
  1450. if (!pages->dma_pages)
  1451. goto out_fail;
  1452. dma_pages = pages->dma_pages;
  1453. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1454. dma_pages->page_v_addr_start =
  1455. qdf_mem_alloc_consistent_debug(
  1456. osdev, osdev->dev, pages->page_size,
  1457. &dma_pages->page_p_addr,
  1458. func, line, caller);
  1459. if (!dma_pages->page_v_addr_start) {
  1460. qdf_print("dmaable page alloc fail pi %d",
  1461. page_idx);
  1462. goto page_alloc_fail;
  1463. }
  1464. dma_pages->page_v_addr_end =
  1465. dma_pages->page_v_addr_start + pages->page_size;
  1466. dma_pages++;
  1467. }
  1468. pages->cacheable_pages = NULL;
  1469. }
  1470. return;
  1471. page_alloc_fail:
  1472. if (cacheable) {
  1473. for (i = 0; i < page_idx; i++)
  1474. qdf_mem_free_debug(pages->cacheable_pages[i],
  1475. func, line);
  1476. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1477. } else {
  1478. dma_pages = pages->dma_pages;
  1479. for (i = 0; i < page_idx; i++) {
  1480. qdf_mem_free_consistent_debug(
  1481. osdev, osdev->dev,
  1482. pages->page_size, dma_pages->page_v_addr_start,
  1483. dma_pages->page_p_addr, memctxt, func, line);
  1484. dma_pages++;
  1485. }
  1486. qdf_mem_free_debug(pages->dma_pages, func, line);
  1487. }
  1488. out_fail:
  1489. pages->cacheable_pages = NULL;
  1490. pages->dma_pages = NULL;
  1491. pages->num_pages = 0;
  1492. }
  1493. qdf_export_symbol(qdf_mem_multi_pages_alloc_debug);
  1494. void qdf_mem_multi_pages_free_debug(qdf_device_t osdev,
  1495. struct qdf_mem_multi_page_t *pages,
  1496. qdf_dma_context_t memctxt, bool cacheable,
  1497. const char *func, uint32_t line)
  1498. {
  1499. unsigned int page_idx;
  1500. struct qdf_mem_dma_page_t *dma_pages;
  1501. if (!pages->page_size)
  1502. pages->page_size = qdf_page_size;
  1503. if (cacheable) {
  1504. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1505. qdf_mem_free_debug(pages->cacheable_pages[page_idx],
  1506. func, line);
  1507. qdf_mem_free_debug(pages->cacheable_pages, func, line);
  1508. } else {
  1509. dma_pages = pages->dma_pages;
  1510. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1511. qdf_mem_free_consistent_debug(
  1512. osdev, osdev->dev, pages->page_size,
  1513. dma_pages->page_v_addr_start,
  1514. dma_pages->page_p_addr, memctxt, func, line);
  1515. dma_pages++;
  1516. }
  1517. qdf_mem_free_debug(pages->dma_pages, func, line);
  1518. }
  1519. pages->cacheable_pages = NULL;
  1520. pages->dma_pages = NULL;
  1521. pages->num_pages = 0;
  1522. }
  1523. qdf_export_symbol(qdf_mem_multi_pages_free_debug);
  1524. #else
  1525. static void qdf_mem_debug_init(void) {}
  1526. static void qdf_mem_debug_exit(void) {}
  1527. void *qdf_mem_malloc_atomic_fl(size_t size, const char *func, uint32_t line)
  1528. {
  1529. void *ptr;
  1530. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1531. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1532. line);
  1533. return NULL;
  1534. }
  1535. ptr = qdf_mem_prealloc_get(size);
  1536. if (ptr)
  1537. return ptr;
  1538. ptr = kzalloc(size, GFP_ATOMIC);
  1539. if (!ptr) {
  1540. qdf_nofl_warn("Failed to malloc %zuB @ %s:%d",
  1541. size, func, line);
  1542. return NULL;
  1543. }
  1544. qdf_mem_kmalloc_inc(ksize(ptr));
  1545. return ptr;
  1546. }
  1547. qdf_export_symbol(qdf_mem_malloc_atomic_fl);
  1548. #ifndef ALLOC_CONTIGUOUS_MULTI_PAGE
  1549. void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
  1550. struct qdf_mem_multi_page_t *pages,
  1551. size_t element_size, uint32_t element_num,
  1552. qdf_dma_context_t memctxt, bool cacheable)
  1553. {
  1554. uint16_t page_idx;
  1555. struct qdf_mem_dma_page_t *dma_pages;
  1556. void **cacheable_pages = NULL;
  1557. uint16_t i;
  1558. if (!pages->page_size)
  1559. pages->page_size = qdf_page_size;
  1560. pages->num_element_per_page = pages->page_size / element_size;
  1561. if (!pages->num_element_per_page) {
  1562. qdf_print("Invalid page %d or element size %d",
  1563. (int)pages->page_size, (int)element_size);
  1564. goto out_fail;
  1565. }
  1566. pages->num_pages = element_num / pages->num_element_per_page;
  1567. if (element_num % pages->num_element_per_page)
  1568. pages->num_pages++;
  1569. if (cacheable) {
  1570. /* Pages information storage */
  1571. pages->cacheable_pages = qdf_mem_malloc(
  1572. pages->num_pages * sizeof(pages->cacheable_pages));
  1573. if (!pages->cacheable_pages)
  1574. goto out_fail;
  1575. cacheable_pages = pages->cacheable_pages;
  1576. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1577. cacheable_pages[page_idx] =
  1578. qdf_mem_malloc(pages->page_size);
  1579. if (!cacheable_pages[page_idx])
  1580. goto page_alloc_fail;
  1581. }
  1582. pages->dma_pages = NULL;
  1583. } else {
  1584. pages->dma_pages = qdf_mem_malloc(
  1585. pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
  1586. if (!pages->dma_pages)
  1587. goto out_fail;
  1588. dma_pages = pages->dma_pages;
  1589. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1590. dma_pages->page_v_addr_start =
  1591. qdf_mem_alloc_consistent(osdev, osdev->dev,
  1592. pages->page_size,
  1593. &dma_pages->page_p_addr);
  1594. if (!dma_pages->page_v_addr_start) {
  1595. qdf_print("dmaable page alloc fail pi %d",
  1596. page_idx);
  1597. goto page_alloc_fail;
  1598. }
  1599. dma_pages->page_v_addr_end =
  1600. dma_pages->page_v_addr_start + pages->page_size;
  1601. dma_pages++;
  1602. }
  1603. pages->cacheable_pages = NULL;
  1604. }
  1605. return;
  1606. page_alloc_fail:
  1607. if (cacheable) {
  1608. for (i = 0; i < page_idx; i++)
  1609. qdf_mem_free(pages->cacheable_pages[i]);
  1610. qdf_mem_free(pages->cacheable_pages);
  1611. } else {
  1612. dma_pages = pages->dma_pages;
  1613. for (i = 0; i < page_idx; i++) {
  1614. qdf_mem_free_consistent(
  1615. osdev, osdev->dev, pages->page_size,
  1616. dma_pages->page_v_addr_start,
  1617. dma_pages->page_p_addr, memctxt);
  1618. dma_pages++;
  1619. }
  1620. qdf_mem_free(pages->dma_pages);
  1621. }
  1622. out_fail:
  1623. pages->cacheable_pages = NULL;
  1624. pages->dma_pages = NULL;
  1625. pages->num_pages = 0;
  1626. return;
  1627. }
  1628. #else
  1629. void qdf_mem_multi_pages_alloc(qdf_device_t osdev,
  1630. struct qdf_mem_multi_page_t *pages,
  1631. size_t element_size, uint32_t element_num,
  1632. qdf_dma_context_t memctxt, bool cacheable)
  1633. {
  1634. uint16_t page_idx;
  1635. struct qdf_mem_dma_page_t *dma_pages;
  1636. void **cacheable_pages = NULL;
  1637. uint16_t i;
  1638. struct qdf_mem_dma_page_t temp_dma_pages;
  1639. struct qdf_mem_dma_page_t *total_dma_pages = &temp_dma_pages;
  1640. qdf_size_t total_size = 0;
  1641. pages->contiguous_dma_pages = false;
  1642. if (!pages->page_size)
  1643. pages->page_size = qdf_page_size;
  1644. pages->num_element_per_page = pages->page_size / element_size;
  1645. if (!pages->num_element_per_page) {
  1646. qdf_print("Invalid page %d or element size %d",
  1647. (int)pages->page_size, (int)element_size);
  1648. goto out_fail;
  1649. }
  1650. pages->num_pages = element_num / pages->num_element_per_page;
  1651. if (element_num % pages->num_element_per_page)
  1652. pages->num_pages++;
  1653. if (cacheable) {
  1654. /* Pages information storage */
  1655. pages->cacheable_pages = qdf_mem_malloc(
  1656. pages->num_pages * sizeof(pages->cacheable_pages));
  1657. if (!pages->cacheable_pages)
  1658. goto out_fail;
  1659. cacheable_pages = pages->cacheable_pages;
  1660. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1661. cacheable_pages[page_idx] =
  1662. qdf_mem_malloc(pages->page_size);
  1663. if (!cacheable_pages[page_idx])
  1664. goto page_alloc_fail;
  1665. }
  1666. pages->dma_pages = NULL;
  1667. } else {
  1668. pages->dma_pages = qdf_mem_malloc(
  1669. pages->num_pages * sizeof(struct qdf_mem_dma_page_t));
  1670. if (!pages->dma_pages)
  1671. goto out_fail;
  1672. dma_pages = pages->dma_pages;
  1673. total_size = pages->page_size * pages->num_pages;
  1674. total_dma_pages->page_v_addr_start =
  1675. qdf_mem_alloc_consistent(osdev, osdev->dev,
  1676. total_size,
  1677. &total_dma_pages->page_p_addr);
  1678. total_dma_pages->page_v_addr_end =
  1679. total_dma_pages->page_v_addr_start + total_size;
  1680. if (!total_dma_pages->page_v_addr_start) {
  1681. qdf_print("mem allocate fail, total_size: %zu",
  1682. total_size);
  1683. goto page_alloc_default;
  1684. }
  1685. pages->contiguous_dma_pages = true;
  1686. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1687. dma_pages->page_v_addr_start =
  1688. total_dma_pages->page_v_addr_start +
  1689. (pages->page_size * page_idx);
  1690. dma_pages->page_p_addr =
  1691. total_dma_pages->page_p_addr +
  1692. (pages->page_size * page_idx);
  1693. dma_pages->page_v_addr_end =
  1694. dma_pages->page_v_addr_start + pages->page_size;
  1695. dma_pages++;
  1696. }
  1697. pages->cacheable_pages = NULL;
  1698. return;
  1699. page_alloc_default:
  1700. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1701. dma_pages->page_v_addr_start =
  1702. qdf_mem_alloc_consistent(osdev, osdev->dev,
  1703. pages->page_size,
  1704. &dma_pages->page_p_addr);
  1705. if (!dma_pages->page_v_addr_start) {
  1706. qdf_print("dmaable page alloc fail pi %d",
  1707. page_idx);
  1708. goto page_alloc_fail;
  1709. }
  1710. dma_pages->page_v_addr_end =
  1711. dma_pages->page_v_addr_start + pages->page_size;
  1712. dma_pages++;
  1713. }
  1714. pages->cacheable_pages = NULL;
  1715. }
  1716. return;
  1717. page_alloc_fail:
  1718. if (cacheable) {
  1719. for (i = 0; i < page_idx; i++)
  1720. qdf_mem_free(pages->cacheable_pages[i]);
  1721. qdf_mem_free(pages->cacheable_pages);
  1722. } else {
  1723. dma_pages = pages->dma_pages;
  1724. for (i = 0; i < page_idx; i++) {
  1725. qdf_mem_free_consistent(
  1726. osdev, osdev->dev, pages->page_size,
  1727. dma_pages->page_v_addr_start,
  1728. dma_pages->page_p_addr, memctxt);
  1729. dma_pages++;
  1730. }
  1731. qdf_mem_free(pages->dma_pages);
  1732. }
  1733. out_fail:
  1734. pages->cacheable_pages = NULL;
  1735. pages->dma_pages = NULL;
  1736. pages->num_pages = 0;
  1737. }
  1738. #endif
  1739. qdf_export_symbol(qdf_mem_multi_pages_alloc);
  1740. #ifndef ALLOC_CONTIGUOUS_MULTI_PAGE
  1741. void qdf_mem_multi_pages_free(qdf_device_t osdev,
  1742. struct qdf_mem_multi_page_t *pages,
  1743. qdf_dma_context_t memctxt, bool cacheable)
  1744. {
  1745. unsigned int page_idx;
  1746. struct qdf_mem_dma_page_t *dma_pages;
  1747. if (!pages->page_size)
  1748. pages->page_size = qdf_page_size;
  1749. if (cacheable) {
  1750. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1751. qdf_mem_free(pages->cacheable_pages[page_idx]);
  1752. qdf_mem_free(pages->cacheable_pages);
  1753. } else {
  1754. dma_pages = pages->dma_pages;
  1755. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1756. qdf_mem_free_consistent(
  1757. osdev, osdev->dev, pages->page_size,
  1758. dma_pages->page_v_addr_start,
  1759. dma_pages->page_p_addr, memctxt);
  1760. dma_pages++;
  1761. }
  1762. qdf_mem_free(pages->dma_pages);
  1763. }
  1764. pages->cacheable_pages = NULL;
  1765. pages->dma_pages = NULL;
  1766. pages->num_pages = 0;
  1767. return;
  1768. }
  1769. #else
  1770. void qdf_mem_multi_pages_free(qdf_device_t osdev,
  1771. struct qdf_mem_multi_page_t *pages,
  1772. qdf_dma_context_t memctxt, bool cacheable)
  1773. {
  1774. unsigned int page_idx;
  1775. struct qdf_mem_dma_page_t *dma_pages;
  1776. qdf_size_t total_size = 0;
  1777. if (!pages->page_size)
  1778. pages->page_size = qdf_page_size;
  1779. if (cacheable) {
  1780. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1781. qdf_mem_free(pages->cacheable_pages[page_idx]);
  1782. qdf_mem_free(pages->cacheable_pages);
  1783. } else {
  1784. dma_pages = pages->dma_pages;
  1785. total_size = pages->page_size * pages->num_pages;
  1786. if (pages->contiguous_dma_pages) {
  1787. qdf_mem_free_consistent(
  1788. osdev, osdev->dev, total_size,
  1789. dma_pages->page_v_addr_start,
  1790. dma_pages->page_p_addr, memctxt);
  1791. goto pages_free_default;
  1792. }
  1793. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1794. qdf_mem_free_consistent(
  1795. osdev, osdev->dev, pages->page_size,
  1796. dma_pages->page_v_addr_start,
  1797. dma_pages->page_p_addr, memctxt);
  1798. dma_pages++;
  1799. }
  1800. pages_free_default:
  1801. qdf_mem_free(pages->dma_pages);
  1802. }
  1803. pages->cacheable_pages = NULL;
  1804. pages->dma_pages = NULL;
  1805. pages->num_pages = 0;
  1806. }
  1807. #endif
  1808. qdf_export_symbol(qdf_mem_multi_pages_free);
  1809. #endif
  1810. void qdf_mem_multi_pages_zero(struct qdf_mem_multi_page_t *pages,
  1811. bool cacheable)
  1812. {
  1813. unsigned int page_idx;
  1814. struct qdf_mem_dma_page_t *dma_pages;
  1815. if (!pages->page_size)
  1816. pages->page_size = qdf_page_size;
  1817. if (cacheable) {
  1818. for (page_idx = 0; page_idx < pages->num_pages; page_idx++)
  1819. qdf_mem_zero(pages->cacheable_pages[page_idx],
  1820. pages->page_size);
  1821. } else {
  1822. dma_pages = pages->dma_pages;
  1823. for (page_idx = 0; page_idx < pages->num_pages; page_idx++) {
  1824. qdf_mem_zero(dma_pages->page_v_addr_start,
  1825. pages->page_size);
  1826. dma_pages++;
  1827. }
  1828. }
  1829. }
  1830. qdf_export_symbol(qdf_mem_multi_pages_zero);
  1831. void __qdf_mem_free(void *ptr)
  1832. {
  1833. if (!ptr)
  1834. return;
  1835. if (qdf_might_be_prealloc(ptr)) {
  1836. if (qdf_mem_prealloc_put(ptr))
  1837. return;
  1838. }
  1839. qdf_mem_kmalloc_dec(ksize(ptr));
  1840. kfree(ptr);
  1841. }
  1842. qdf_export_symbol(__qdf_mem_free);
  1843. void *__qdf_mem_malloc(size_t size, const char *func, uint32_t line)
  1844. {
  1845. void *ptr;
  1846. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1847. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1848. line);
  1849. return NULL;
  1850. }
  1851. ptr = qdf_mem_prealloc_get(size);
  1852. if (ptr)
  1853. return ptr;
  1854. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1855. if (!ptr)
  1856. return NULL;
  1857. qdf_mem_kmalloc_inc(ksize(ptr));
  1858. return ptr;
  1859. }
  1860. qdf_export_symbol(__qdf_mem_malloc);
  1861. #ifdef QCA_WIFI_MODULE_PARAMS_FROM_INI
  1862. void __qdf_untracked_mem_free(void *ptr)
  1863. {
  1864. if (!ptr)
  1865. return;
  1866. kfree(ptr);
  1867. }
  1868. void *__qdf_untracked_mem_malloc(size_t size, const char *func, uint32_t line)
  1869. {
  1870. void *ptr;
  1871. if (!size || size > QDF_MEM_MAX_MALLOC) {
  1872. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d", size, func,
  1873. line);
  1874. return NULL;
  1875. }
  1876. ptr = kzalloc(size, qdf_mem_malloc_flags());
  1877. if (!ptr)
  1878. return NULL;
  1879. return ptr;
  1880. }
  1881. #endif
  1882. void *qdf_aligned_malloc_fl(uint32_t *size,
  1883. void **vaddr_unaligned,
  1884. qdf_dma_addr_t *paddr_unaligned,
  1885. qdf_dma_addr_t *paddr_aligned,
  1886. uint32_t align,
  1887. const char *func, uint32_t line)
  1888. {
  1889. void *vaddr_aligned;
  1890. uint32_t align_alloc_size;
  1891. *vaddr_unaligned = qdf_mem_malloc_fl((qdf_size_t)*size, func,
  1892. line);
  1893. if (!*vaddr_unaligned) {
  1894. qdf_warn("Failed to alloc %uB @ %s:%d", *size, func, line);
  1895. return NULL;
  1896. }
  1897. *paddr_unaligned = qdf_mem_virt_to_phys(*vaddr_unaligned);
  1898. /* Re-allocate additional bytes to align base address only if
  1899. * above allocation returns unaligned address. Reason for
  1900. * trying exact size allocation above is, OS tries to allocate
  1901. * blocks of size power-of-2 pages and then free extra pages.
  1902. * e.g., of a ring size of 1MB, the allocation below will
  1903. * request 1MB plus 7 bytes for alignment, which will cause a
  1904. * 2MB block allocation,and that is failing sometimes due to
  1905. * memory fragmentation.
  1906. */
  1907. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  1908. align_alloc_size = *size + align - 1;
  1909. qdf_mem_free(*vaddr_unaligned);
  1910. *vaddr_unaligned = qdf_mem_malloc_fl(
  1911. (qdf_size_t)align_alloc_size, func, line);
  1912. if (!*vaddr_unaligned) {
  1913. qdf_warn("Failed to alloc %uB @ %s:%d",
  1914. align_alloc_size, func, line);
  1915. return NULL;
  1916. }
  1917. *paddr_unaligned = qdf_mem_virt_to_phys(
  1918. *vaddr_unaligned);
  1919. *size = align_alloc_size;
  1920. }
  1921. *paddr_aligned = (qdf_dma_addr_t)qdf_align
  1922. ((unsigned long)(*paddr_unaligned), align);
  1923. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  1924. ((unsigned long)(*paddr_aligned) -
  1925. (unsigned long)(*paddr_unaligned)));
  1926. return vaddr_aligned;
  1927. }
  1928. qdf_export_symbol(qdf_aligned_malloc_fl);
  1929. #if defined(DP_UMAC_HW_RESET_SUPPORT) || defined(WLAN_SUPPORT_PPEDS)
  1930. int qdf_tx_desc_pool_free_bufs(void *ctxt, struct qdf_mem_multi_page_t *pages,
  1931. uint32_t elem_size, uint32_t elem_count,
  1932. uint8_t cacheable, qdf_mem_release_cb cb,
  1933. void *elem_list)
  1934. {
  1935. uint16_t i, i_int;
  1936. void *page_info;
  1937. void *elem;
  1938. uint32_t num_elem = 0;
  1939. for (i = 0; i < pages->num_pages; i++) {
  1940. if (cacheable)
  1941. page_info = pages->cacheable_pages[i];
  1942. else
  1943. page_info = pages->dma_pages[i].page_v_addr_start;
  1944. if (!page_info)
  1945. return -ENOMEM;
  1946. elem = page_info;
  1947. for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
  1948. cb(ctxt, elem, elem_list);
  1949. elem = ((char *)elem + elem_size);
  1950. num_elem++;
  1951. /* Number of desc pool elements reached */
  1952. if (num_elem == (elem_count - 1))
  1953. break;
  1954. }
  1955. }
  1956. return 0;
  1957. }
  1958. qdf_export_symbol(qdf_tx_desc_pool_free_bufs);
  1959. #endif
  1960. int qdf_mem_multi_page_link(qdf_device_t osdev,
  1961. struct qdf_mem_multi_page_t *pages,
  1962. uint32_t elem_size, uint32_t elem_count,
  1963. uint8_t cacheable)
  1964. {
  1965. uint16_t i, i_int;
  1966. void *page_info;
  1967. void **c_elem = NULL;
  1968. uint32_t num_link = 0;
  1969. for (i = 0; i < pages->num_pages; i++) {
  1970. if (cacheable)
  1971. page_info = pages->cacheable_pages[i];
  1972. else
  1973. page_info = pages->dma_pages[i].page_v_addr_start;
  1974. if (!page_info)
  1975. return -ENOMEM;
  1976. c_elem = (void **)page_info;
  1977. for (i_int = 0; i_int < pages->num_element_per_page; i_int++) {
  1978. if (i_int == (pages->num_element_per_page - 1)) {
  1979. if ((i + 1) == pages->num_pages)
  1980. break;
  1981. if (cacheable)
  1982. *c_elem = pages->
  1983. cacheable_pages[i + 1];
  1984. else
  1985. *c_elem = pages->
  1986. dma_pages[i + 1].
  1987. page_v_addr_start;
  1988. num_link++;
  1989. break;
  1990. } else {
  1991. *c_elem =
  1992. (void *)(((char *)c_elem) + elem_size);
  1993. }
  1994. num_link++;
  1995. c_elem = (void **)*c_elem;
  1996. /* Last link established exit */
  1997. if (num_link == (elem_count - 1))
  1998. break;
  1999. }
  2000. }
  2001. if (c_elem)
  2002. *c_elem = NULL;
  2003. return 0;
  2004. }
  2005. qdf_export_symbol(qdf_mem_multi_page_link);
  2006. void qdf_mem_copy(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  2007. {
  2008. /* special case where dst_addr or src_addr can be NULL */
  2009. if (!num_bytes)
  2010. return;
  2011. QDF_BUG(dst_addr);
  2012. QDF_BUG(src_addr);
  2013. if (!dst_addr || !src_addr)
  2014. return;
  2015. memcpy(dst_addr, src_addr, num_bytes);
  2016. }
  2017. qdf_export_symbol(qdf_mem_copy);
  2018. qdf_shared_mem_t *qdf_mem_shared_mem_alloc(qdf_device_t osdev, uint32_t size)
  2019. {
  2020. qdf_shared_mem_t *shared_mem;
  2021. qdf_dma_addr_t dma_addr, paddr;
  2022. int ret;
  2023. shared_mem = qdf_mem_malloc(sizeof(*shared_mem));
  2024. if (!shared_mem)
  2025. return NULL;
  2026. shared_mem->vaddr = qdf_mem_alloc_consistent(osdev, osdev->dev,
  2027. size, qdf_mem_get_dma_addr_ptr(osdev,
  2028. &shared_mem->mem_info));
  2029. if (!shared_mem->vaddr) {
  2030. qdf_err("Unable to allocate DMA memory for shared resource");
  2031. qdf_mem_free(shared_mem);
  2032. return NULL;
  2033. }
  2034. qdf_mem_set_dma_size(osdev, &shared_mem->mem_info, size);
  2035. size = qdf_mem_get_dma_size(osdev, &shared_mem->mem_info);
  2036. qdf_mem_zero(shared_mem->vaddr, size);
  2037. dma_addr = qdf_mem_get_dma_addr(osdev, &shared_mem->mem_info);
  2038. paddr = qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
  2039. qdf_mem_set_dma_pa(osdev, &shared_mem->mem_info, paddr);
  2040. ret = qdf_mem_dma_get_sgtable(osdev->dev, &shared_mem->sgtable,
  2041. shared_mem->vaddr, dma_addr, size);
  2042. if (ret) {
  2043. qdf_err("Unable to get DMA sgtable");
  2044. qdf_mem_free_consistent(osdev, osdev->dev,
  2045. shared_mem->mem_info.size,
  2046. shared_mem->vaddr,
  2047. dma_addr,
  2048. qdf_get_dma_mem_context(shared_mem,
  2049. memctx));
  2050. qdf_mem_free(shared_mem);
  2051. return NULL;
  2052. }
  2053. qdf_dma_get_sgtable_dma_addr(&shared_mem->sgtable);
  2054. return shared_mem;
  2055. }
  2056. qdf_export_symbol(qdf_mem_shared_mem_alloc);
  2057. void qdf_mem_copy_toio(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  2058. {
  2059. if (0 == num_bytes) {
  2060. /* special case where dst_addr or src_addr can be NULL */
  2061. return;
  2062. }
  2063. if ((!dst_addr) || (!src_addr)) {
  2064. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  2065. "%s called with NULL parameter, source:%pK destination:%pK",
  2066. __func__, src_addr, dst_addr);
  2067. QDF_ASSERT(0);
  2068. return;
  2069. }
  2070. memcpy_toio(dst_addr, src_addr, num_bytes);
  2071. }
  2072. qdf_export_symbol(qdf_mem_copy_toio);
  2073. void qdf_mem_set_io(void *ptr, uint32_t num_bytes, uint32_t value)
  2074. {
  2075. if (!ptr) {
  2076. qdf_print("%s called with NULL parameter ptr", __func__);
  2077. return;
  2078. }
  2079. memset_io(ptr, value, num_bytes);
  2080. }
  2081. qdf_export_symbol(qdf_mem_set_io);
  2082. void qdf_mem_set(void *ptr, uint32_t num_bytes, uint32_t value)
  2083. {
  2084. QDF_BUG(ptr);
  2085. if (!ptr)
  2086. return;
  2087. memset(ptr, value, num_bytes);
  2088. }
  2089. qdf_export_symbol(qdf_mem_set);
  2090. void qdf_mem_move(void *dst_addr, const void *src_addr, uint32_t num_bytes)
  2091. {
  2092. /* special case where dst_addr or src_addr can be NULL */
  2093. if (!num_bytes)
  2094. return;
  2095. QDF_BUG(dst_addr);
  2096. QDF_BUG(src_addr);
  2097. if (!dst_addr || !src_addr)
  2098. return;
  2099. memmove(dst_addr, src_addr, num_bytes);
  2100. }
  2101. qdf_export_symbol(qdf_mem_move);
  2102. int qdf_mem_cmp(const void *left, const void *right, size_t size)
  2103. {
  2104. QDF_BUG(left);
  2105. QDF_BUG(right);
  2106. return memcmp(left, right, size);
  2107. }
  2108. qdf_export_symbol(qdf_mem_cmp);
  2109. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  2110. /**
  2111. * qdf_mem_dma_alloc() - allocates memory for dma
  2112. * @osdev: OS device handle
  2113. * @dev: Pointer to device handle
  2114. * @size: Size to be allocated
  2115. * @phy_addr: Physical address
  2116. *
  2117. * Return: pointer of allocated memory or null if memory alloc fails
  2118. */
  2119. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2120. qdf_size_t size,
  2121. qdf_dma_addr_t *phy_addr)
  2122. {
  2123. void *vaddr;
  2124. vaddr = qdf_mem_malloc(size);
  2125. *phy_addr = ((uintptr_t) vaddr);
  2126. /* using this type conversion to suppress "cast from pointer to integer
  2127. * of different size" warning on some platforms
  2128. */
  2129. BUILD_BUG_ON(sizeof(*phy_addr) < sizeof(vaddr));
  2130. return vaddr;
  2131. }
  2132. #elif defined(CONFIG_WIFI_EMULATION_WIFI_3_0) && defined(BUILD_X86) && \
  2133. !defined(QCA_WIFI_QCN9000)
  2134. #define QCA8074_RAM_BASE 0x50000000
  2135. #define QDF_MEM_ALLOC_X86_MAX_RETRIES 10
  2136. void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev, qdf_size_t size,
  2137. qdf_dma_addr_t *phy_addr)
  2138. {
  2139. void *vaddr = NULL;
  2140. int i;
  2141. *phy_addr = 0;
  2142. for (i = 0; i < QDF_MEM_ALLOC_X86_MAX_RETRIES; i++) {
  2143. vaddr = dma_alloc_coherent(dev, size, phy_addr,
  2144. qdf_mem_malloc_flags());
  2145. if (!vaddr) {
  2146. qdf_err("%s failed , size: %zu!", __func__, size);
  2147. return NULL;
  2148. }
  2149. if (*phy_addr >= QCA8074_RAM_BASE)
  2150. return vaddr;
  2151. dma_free_coherent(dev, size, vaddr, *phy_addr);
  2152. }
  2153. return NULL;
  2154. }
  2155. #elif defined(QCA_DMA_PADDR_CHECK)
  2156. #ifdef CONFIG_LEAK_DETECTION
  2157. #define MAX_DEBUG_DOMAIN_COUNT QDF_DEBUG_DOMAIN_COUNT
  2158. #define debug_domain_get() qdf_debug_domain_get()
  2159. #else
  2160. #define MAX_DEBUG_DOMAIN_COUNT 1
  2161. #define debug_domain_get() DEFAULT_DEBUG_DOMAIN_INIT
  2162. #endif
  2163. /**
  2164. * struct qdf_dma_buf_entry - DMA invalid buffer list entry
  2165. * @node: QDF list node member
  2166. * @size: DMA buffer size
  2167. * @phy_addr: DMA buffer physical address
  2168. * @vaddr: DMA buffer virtual address. if DMA buffer size is larger than entry
  2169. * size, we use the DMA buffer to save entry info and the starting
  2170. * address of the entry is the DMA buffer vaddr, in this way, we can
  2171. * reduce unnecessary memory consumption. if DMA buffer size is smaller
  2172. * than entry size, we need alloc another buffer, and vaddr will be set
  2173. * to the invalid dma buffer virtual address.
  2174. */
  2175. struct qdf_dma_buf_entry {
  2176. qdf_list_node_t node;
  2177. qdf_size_t size;
  2178. qdf_dma_addr_t phy_addr;
  2179. void *vaddr;
  2180. };
  2181. #define DMA_PHY_ADDR_RESERVED 0x2000
  2182. #define QDF_DMA_MEM_ALLOC_MAX_RETRIES 10
  2183. #define QDF_DMA_INVALID_BUF_LIST_SIZE 128
  2184. static qdf_list_t qdf_invalid_buf_list[MAX_DEBUG_DOMAIN_COUNT];
  2185. static bool qdf_invalid_buf_list_init[MAX_DEBUG_DOMAIN_COUNT];
  2186. static qdf_spinlock_t qdf_invalid_buf_list_lock;
  2187. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2188. qdf_size_t size, qdf_dma_addr_t *paddr)
  2189. {
  2190. void *vaddr;
  2191. uint32_t retry;
  2192. QDF_STATUS status;
  2193. bool is_separate;
  2194. qdf_list_t *cur_buf_list;
  2195. struct qdf_dma_buf_entry *entry;
  2196. uint8_t current_domain;
  2197. for (retry = 0; retry < QDF_DMA_MEM_ALLOC_MAX_RETRIES; retry++) {
  2198. vaddr = dma_alloc_coherent(dev, size, paddr,
  2199. qdf_mem_malloc_flags());
  2200. if (!vaddr)
  2201. return NULL;
  2202. if (qdf_likely(*paddr > DMA_PHY_ADDR_RESERVED))
  2203. return vaddr;
  2204. current_domain = debug_domain_get();
  2205. /* if qdf_invalid_buf_list not init, so we can't store memory
  2206. * info and can't hold it. let's free the invalid memory and
  2207. * try to get memory with phy address greater than
  2208. * DMA_PHY_ADDR_RESERVED
  2209. */
  2210. if (current_domain >= MAX_DEBUG_DOMAIN_COUNT ||
  2211. !qdf_invalid_buf_list_init[current_domain]) {
  2212. qdf_debug("physical address below 0x%x, re-alloc",
  2213. DMA_PHY_ADDR_RESERVED);
  2214. dma_free_coherent(dev, size, vaddr, *paddr);
  2215. continue;
  2216. }
  2217. cur_buf_list = &qdf_invalid_buf_list[current_domain];
  2218. if (size >= sizeof(*entry)) {
  2219. entry = vaddr;
  2220. entry->vaddr = NULL;
  2221. } else {
  2222. entry = qdf_mem_malloc(sizeof(*entry));
  2223. if (!entry) {
  2224. dma_free_coherent(dev, size, vaddr, *paddr);
  2225. qdf_err("qdf_mem_malloc entry failed!");
  2226. continue;
  2227. }
  2228. entry->vaddr = vaddr;
  2229. }
  2230. entry->phy_addr = *paddr;
  2231. entry->size = size;
  2232. qdf_spin_lock_irqsave(&qdf_invalid_buf_list_lock);
  2233. status = qdf_list_insert_back(cur_buf_list,
  2234. &entry->node);
  2235. qdf_spin_unlock_irqrestore(&qdf_invalid_buf_list_lock);
  2236. if (QDF_IS_STATUS_ERROR(status)) {
  2237. qdf_err("insert buf entry fail, status %d", status);
  2238. is_separate = !entry->vaddr ? false : true;
  2239. dma_free_coherent(dev, size, vaddr, *paddr);
  2240. if (is_separate)
  2241. qdf_mem_free(entry);
  2242. }
  2243. }
  2244. return NULL;
  2245. }
  2246. #else
  2247. static inline void *qdf_mem_dma_alloc(qdf_device_t osdev, void *dev,
  2248. qdf_size_t size, qdf_dma_addr_t *paddr)
  2249. {
  2250. return dma_alloc_coherent(dev, size, paddr, qdf_mem_malloc_flags());
  2251. }
  2252. #endif
  2253. #if defined(A_SIMOS_DEVHOST) || defined(HIF_SDIO) || defined(HIF_USB)
  2254. static inline void
  2255. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2256. {
  2257. qdf_mem_free(vaddr);
  2258. }
  2259. #else
  2260. static inline void
  2261. qdf_mem_dma_free(void *dev, qdf_size_t size, void *vaddr, qdf_dma_addr_t paddr)
  2262. {
  2263. dma_free_coherent(dev, size, vaddr, paddr);
  2264. }
  2265. #endif
  2266. #ifdef MEMORY_DEBUG
  2267. void *qdf_mem_alloc_consistent_debug(qdf_device_t osdev, void *dev,
  2268. qdf_size_t size, qdf_dma_addr_t *paddr,
  2269. const char *func, uint32_t line,
  2270. void *caller)
  2271. {
  2272. QDF_STATUS status;
  2273. enum qdf_debug_domain current_domain = qdf_debug_domain_get();
  2274. qdf_list_t *mem_list = qdf_mem_dma_list(current_domain);
  2275. struct qdf_mem_header *header;
  2276. void *vaddr;
  2277. if (is_initial_mem_debug_disabled)
  2278. return __qdf_mem_alloc_consistent(osdev, dev,
  2279. size, paddr,
  2280. func, line);
  2281. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2282. qdf_err("Cannot malloc %zu bytes @ %s:%d", size, func, line);
  2283. return NULL;
  2284. }
  2285. vaddr = qdf_mem_dma_alloc(osdev, dev, size + QDF_DMA_MEM_DEBUG_SIZE,
  2286. paddr);
  2287. if (!vaddr) {
  2288. qdf_warn("Failed to malloc %zuB @ %s:%d", size, func, line);
  2289. return NULL;
  2290. }
  2291. header = qdf_mem_dma_get_header(vaddr, size);
  2292. /* For DMA buffers we only add trailers, this function will init
  2293. * the header structure at the tail
  2294. * Prefix the header into DMA buffer causes SMMU faults, so
  2295. * do not prefix header into the DMA buffers
  2296. */
  2297. qdf_mem_header_init(header, size, func, line, caller);
  2298. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2299. status = qdf_list_insert_front(mem_list, &header->node);
  2300. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2301. if (QDF_IS_STATUS_ERROR(status))
  2302. qdf_err("Failed to insert memory header; status %d", status);
  2303. qdf_mem_dma_inc(size);
  2304. return vaddr;
  2305. }
  2306. qdf_export_symbol(qdf_mem_alloc_consistent_debug);
  2307. void qdf_mem_free_consistent_debug(qdf_device_t osdev, void *dev,
  2308. qdf_size_t size, void *vaddr,
  2309. qdf_dma_addr_t paddr,
  2310. qdf_dma_context_t memctx,
  2311. const char *func, uint32_t line)
  2312. {
  2313. enum qdf_debug_domain domain = qdf_debug_domain_get();
  2314. struct qdf_mem_header *header;
  2315. enum qdf_mem_validation_bitmap error_bitmap;
  2316. if (is_initial_mem_debug_disabled) {
  2317. __qdf_mem_free_consistent(
  2318. osdev, dev,
  2319. size, vaddr,
  2320. paddr, memctx);
  2321. return;
  2322. }
  2323. /* freeing a null pointer is valid */
  2324. if (qdf_unlikely(!vaddr))
  2325. return;
  2326. qdf_talloc_assert_no_children_fl(vaddr, func, line);
  2327. qdf_spin_lock_irqsave(&qdf_mem_dma_list_lock);
  2328. /* For DMA buffers we only add trailers, this function will retrieve
  2329. * the header structure at the tail
  2330. * Prefix the header into DMA buffer causes SMMU faults, so
  2331. * do not prefix header into the DMA buffers
  2332. */
  2333. header = qdf_mem_dma_get_header(vaddr, size);
  2334. error_bitmap = qdf_mem_header_validate(header, domain);
  2335. if (!error_bitmap) {
  2336. header->freed = true;
  2337. qdf_list_remove_node(qdf_mem_dma_list(header->domain),
  2338. &header->node);
  2339. }
  2340. qdf_spin_unlock_irqrestore(&qdf_mem_dma_list_lock);
  2341. qdf_mem_header_assert_valid(header, domain, error_bitmap, func, line);
  2342. qdf_mem_dma_dec(header->size);
  2343. qdf_mem_dma_free(dev, size + QDF_DMA_MEM_DEBUG_SIZE, vaddr, paddr);
  2344. }
  2345. qdf_export_symbol(qdf_mem_free_consistent_debug);
  2346. #endif /* MEMORY_DEBUG */
  2347. void __qdf_mem_free_consistent(qdf_device_t osdev, void *dev,
  2348. qdf_size_t size, void *vaddr,
  2349. qdf_dma_addr_t paddr, qdf_dma_context_t memctx)
  2350. {
  2351. qdf_mem_dma_dec(size);
  2352. qdf_mem_dma_free(dev, size, vaddr, paddr);
  2353. }
  2354. qdf_export_symbol(__qdf_mem_free_consistent);
  2355. void *__qdf_mem_alloc_consistent(qdf_device_t osdev, void *dev,
  2356. qdf_size_t size, qdf_dma_addr_t *paddr,
  2357. const char *func, uint32_t line)
  2358. {
  2359. void *vaddr;
  2360. if (!size || size > QDF_MEM_MAX_MALLOC) {
  2361. qdf_nofl_err("Cannot malloc %zu bytes @ %s:%d",
  2362. size, func, line);
  2363. return NULL;
  2364. }
  2365. vaddr = qdf_mem_dma_alloc(osdev, dev, size, paddr);
  2366. if (vaddr)
  2367. qdf_mem_dma_inc(size);
  2368. return vaddr;
  2369. }
  2370. qdf_export_symbol(__qdf_mem_alloc_consistent);
  2371. void *qdf_aligned_mem_alloc_consistent_fl(
  2372. qdf_device_t osdev, uint32_t *size,
  2373. void **vaddr_unaligned, qdf_dma_addr_t *paddr_unaligned,
  2374. qdf_dma_addr_t *paddr_aligned, uint32_t align,
  2375. const char *func, uint32_t line)
  2376. {
  2377. void *vaddr_aligned;
  2378. uint32_t align_alloc_size;
  2379. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2380. osdev, osdev->dev, (qdf_size_t)*size, paddr_unaligned);
  2381. if (!*vaddr_unaligned) {
  2382. qdf_warn("Failed to alloc %uB @ %s:%d",
  2383. *size, func, line);
  2384. return NULL;
  2385. }
  2386. /* Re-allocate additional bytes to align base address only if
  2387. * above allocation returns unaligned address. Reason for
  2388. * trying exact size allocation above is, OS tries to allocate
  2389. * blocks of size power-of-2 pages and then free extra pages.
  2390. * e.g., of a ring size of 1MB, the allocation below will
  2391. * request 1MB plus 7 bytes for alignment, which will cause a
  2392. * 2MB block allocation,and that is failing sometimes due to
  2393. * memory fragmentation.
  2394. */
  2395. if ((unsigned long)(*paddr_unaligned) & (align - 1)) {
  2396. align_alloc_size = *size + align - 1;
  2397. qdf_mem_free_consistent(osdev, osdev->dev, *size,
  2398. *vaddr_unaligned,
  2399. *paddr_unaligned, 0);
  2400. *vaddr_unaligned = qdf_mem_alloc_consistent(
  2401. osdev, osdev->dev, align_alloc_size,
  2402. paddr_unaligned);
  2403. if (!*vaddr_unaligned) {
  2404. qdf_warn("Failed to alloc %uB @ %s:%d",
  2405. align_alloc_size, func, line);
  2406. return NULL;
  2407. }
  2408. *size = align_alloc_size;
  2409. }
  2410. *paddr_aligned = (qdf_dma_addr_t)qdf_align(
  2411. (unsigned long)(*paddr_unaligned), align);
  2412. vaddr_aligned = (void *)((unsigned long)(*vaddr_unaligned) +
  2413. ((unsigned long)(*paddr_aligned) -
  2414. (unsigned long)(*paddr_unaligned)));
  2415. return vaddr_aligned;
  2416. }
  2417. qdf_export_symbol(qdf_aligned_mem_alloc_consistent_fl);
  2418. void qdf_mem_dma_sync_single_for_device(qdf_device_t osdev,
  2419. qdf_dma_addr_t bus_addr,
  2420. qdf_size_t size,
  2421. enum dma_data_direction direction)
  2422. {
  2423. dma_sync_single_for_device(osdev->dev, bus_addr, size, direction);
  2424. }
  2425. qdf_export_symbol(qdf_mem_dma_sync_single_for_device);
  2426. void qdf_mem_dma_sync_single_for_cpu(qdf_device_t osdev,
  2427. qdf_dma_addr_t bus_addr,
  2428. qdf_size_t size,
  2429. enum dma_data_direction direction)
  2430. {
  2431. dma_sync_single_for_cpu(osdev->dev, bus_addr, size, direction);
  2432. }
  2433. qdf_export_symbol(qdf_mem_dma_sync_single_for_cpu);
  2434. void qdf_mem_init(void)
  2435. {
  2436. qdf_mem_debug_init();
  2437. qdf_net_buf_debug_init();
  2438. qdf_frag_debug_init();
  2439. qdf_mem_debugfs_init();
  2440. qdf_mem_debug_debugfs_init();
  2441. }
  2442. qdf_export_symbol(qdf_mem_init);
  2443. void qdf_mem_exit(void)
  2444. {
  2445. qdf_mem_debug_debugfs_exit();
  2446. qdf_mem_debugfs_exit();
  2447. qdf_frag_debug_exit();
  2448. qdf_net_buf_debug_exit();
  2449. qdf_mem_debug_exit();
  2450. }
  2451. qdf_export_symbol(qdf_mem_exit);
  2452. void qdf_ether_addr_copy(void *dst_addr, const void *src_addr)
  2453. {
  2454. if ((!dst_addr) || (!src_addr)) {
  2455. QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR,
  2456. "%s called with NULL parameter, source:%pK destination:%pK",
  2457. __func__, src_addr, dst_addr);
  2458. QDF_ASSERT(0);
  2459. return;
  2460. }
  2461. ether_addr_copy(dst_addr, src_addr);
  2462. }
  2463. qdf_export_symbol(qdf_ether_addr_copy);
  2464. int32_t qdf_dma_mem_stats_read(void)
  2465. {
  2466. return qdf_atomic_read(&qdf_mem_stat.dma);
  2467. }
  2468. qdf_export_symbol(qdf_dma_mem_stats_read);
  2469. int32_t qdf_heap_mem_stats_read(void)
  2470. {
  2471. return qdf_atomic_read(&qdf_mem_stat.kmalloc);
  2472. }
  2473. qdf_export_symbol(qdf_heap_mem_stats_read);
  2474. int32_t qdf_skb_mem_stats_read(void)
  2475. {
  2476. return qdf_atomic_read(&qdf_mem_stat.skb);
  2477. }
  2478. qdf_export_symbol(qdf_skb_mem_stats_read);
  2479. int32_t qdf_skb_total_mem_stats_read(void)
  2480. {
  2481. return qdf_atomic_read(&qdf_mem_stat.skb_total);
  2482. }
  2483. qdf_export_symbol(qdf_skb_total_mem_stats_read);
  2484. int32_t qdf_skb_max_mem_stats_read(void)
  2485. {
  2486. return qdf_mem_stat.skb_mem_max;
  2487. }
  2488. qdf_export_symbol(qdf_skb_max_mem_stats_read);
  2489. int32_t qdf_dp_tx_skb_mem_stats_read(void)
  2490. {
  2491. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb);
  2492. }
  2493. qdf_export_symbol(qdf_dp_tx_skb_mem_stats_read);
  2494. int32_t qdf_dp_rx_skb_mem_stats_read(void)
  2495. {
  2496. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb);
  2497. }
  2498. qdf_export_symbol(qdf_dp_rx_skb_mem_stats_read);
  2499. int32_t qdf_mem_dp_tx_skb_cnt_read(void)
  2500. {
  2501. return qdf_atomic_read(&qdf_mem_stat.dp_tx_skb_count);
  2502. }
  2503. qdf_export_symbol(qdf_mem_dp_tx_skb_cnt_read);
  2504. int32_t qdf_mem_dp_tx_skb_max_cnt_read(void)
  2505. {
  2506. return qdf_mem_stat.dp_tx_skb_count_max;
  2507. }
  2508. qdf_export_symbol(qdf_mem_dp_tx_skb_max_cnt_read);
  2509. int32_t qdf_mem_dp_rx_skb_cnt_read(void)
  2510. {
  2511. return qdf_atomic_read(&qdf_mem_stat.dp_rx_skb_count);
  2512. }
  2513. qdf_export_symbol(qdf_mem_dp_rx_skb_cnt_read);
  2514. int32_t qdf_mem_dp_rx_skb_max_cnt_read(void)
  2515. {
  2516. return qdf_mem_stat.dp_rx_skb_count_max;
  2517. }
  2518. qdf_export_symbol(qdf_mem_dp_rx_skb_max_cnt_read);
  2519. int32_t qdf_dp_tx_skb_max_mem_stats_read(void)
  2520. {
  2521. return qdf_mem_stat.dp_tx_skb_mem_max;
  2522. }
  2523. qdf_export_symbol(qdf_dp_tx_skb_max_mem_stats_read);
  2524. int32_t qdf_dp_rx_skb_max_mem_stats_read(void)
  2525. {
  2526. return qdf_mem_stat.dp_rx_skb_mem_max;
  2527. }
  2528. qdf_export_symbol(qdf_dp_rx_skb_max_mem_stats_read);
  2529. int32_t qdf_mem_tx_desc_cnt_read(void)
  2530. {
  2531. return qdf_atomic_read(&qdf_mem_stat.tx_descs_outstanding);
  2532. }
  2533. qdf_export_symbol(qdf_mem_tx_desc_cnt_read);
  2534. int32_t qdf_mem_tx_desc_max_read(void)
  2535. {
  2536. return qdf_mem_stat.tx_descs_max;
  2537. }
  2538. qdf_export_symbol(qdf_mem_tx_desc_max_read);
  2539. void qdf_mem_tx_desc_cnt_update(qdf_atomic_t pending_tx_descs,
  2540. int32_t tx_descs_max)
  2541. {
  2542. qdf_mem_stat.tx_descs_outstanding = pending_tx_descs;
  2543. qdf_mem_stat.tx_descs_max = tx_descs_max;
  2544. }
  2545. qdf_export_symbol(qdf_mem_tx_desc_cnt_update);
  2546. void qdf_mem_stats_init(void)
  2547. {
  2548. qdf_mem_stat.skb_mem_max = 0;
  2549. qdf_mem_stat.dp_tx_skb_mem_max = 0;
  2550. qdf_mem_stat.dp_rx_skb_mem_max = 0;
  2551. qdf_mem_stat.dp_tx_skb_count_max = 0;
  2552. qdf_mem_stat.dp_rx_skb_count_max = 0;
  2553. qdf_mem_stat.tx_descs_max = 0;
  2554. }
  2555. qdf_export_symbol(qdf_mem_stats_init);
  2556. void *__qdf_mem_valloc(size_t size, const char *func, uint32_t line)
  2557. {
  2558. void *ptr;
  2559. if (!size) {
  2560. qdf_err("Valloc called with 0 bytes @ %s:%d", func, line);
  2561. return NULL;
  2562. }
  2563. ptr = vzalloc(size);
  2564. return ptr;
  2565. }
  2566. qdf_export_symbol(__qdf_mem_valloc);
  2567. void __qdf_mem_vfree(void *ptr)
  2568. {
  2569. if (qdf_unlikely(!ptr))
  2570. return;
  2571. vfree(ptr);
  2572. }
  2573. qdf_export_symbol(__qdf_mem_vfree);
  2574. #if IS_ENABLED(CONFIG_ARM_SMMU) && defined(ENABLE_SMMU_S1_TRANSLATION)
  2575. int
  2576. qdf_iommu_domain_get_attr(qdf_iommu_domain_t *domain,
  2577. enum qdf_iommu_attr attr, void *data)
  2578. {
  2579. return __qdf_iommu_domain_get_attr(domain, attr, data);
  2580. }
  2581. qdf_export_symbol(qdf_iommu_domain_get_attr);
  2582. #endif
  2583. #ifdef ENHANCED_OS_ABSTRACTION
  2584. void qdf_update_mem_map_table(qdf_device_t osdev,
  2585. qdf_mem_info_t *mem_info,
  2586. qdf_dma_addr_t dma_addr,
  2587. uint32_t mem_size)
  2588. {
  2589. if (!mem_info) {
  2590. qdf_nofl_err("%s: NULL mem_info", __func__);
  2591. return;
  2592. }
  2593. __qdf_update_mem_map_table(osdev, mem_info, dma_addr, mem_size);
  2594. }
  2595. qdf_export_symbol(qdf_update_mem_map_table);
  2596. qdf_dma_addr_t qdf_mem_paddr_from_dmaaddr(qdf_device_t osdev,
  2597. qdf_dma_addr_t dma_addr)
  2598. {
  2599. return __qdf_mem_paddr_from_dmaaddr(osdev, dma_addr);
  2600. }
  2601. qdf_export_symbol(qdf_mem_paddr_from_dmaaddr);
  2602. #endif
  2603. #ifdef QCA_KMEM_CACHE_SUPPORT
  2604. qdf_kmem_cache_t
  2605. __qdf_kmem_cache_create(const char *cache_name,
  2606. qdf_size_t size)
  2607. {
  2608. struct kmem_cache *cache;
  2609. cache = kmem_cache_create(cache_name, size,
  2610. 0, 0, NULL);
  2611. if (!cache)
  2612. return NULL;
  2613. return cache;
  2614. }
  2615. qdf_export_symbol(__qdf_kmem_cache_create);
  2616. void
  2617. __qdf_kmem_cache_destroy(qdf_kmem_cache_t cache)
  2618. {
  2619. kmem_cache_destroy(cache);
  2620. }
  2621. qdf_export_symbol(__qdf_kmem_cache_destroy);
  2622. void*
  2623. __qdf_kmem_cache_alloc(qdf_kmem_cache_t cache)
  2624. {
  2625. int flags = GFP_KERNEL;
  2626. if (in_interrupt() || irqs_disabled() || in_atomic())
  2627. flags = GFP_ATOMIC;
  2628. return kmem_cache_alloc(cache, flags);
  2629. }
  2630. qdf_export_symbol(__qdf_kmem_cache_alloc);
  2631. void
  2632. __qdf_kmem_cache_free(qdf_kmem_cache_t cache, void *node)
  2633. {
  2634. kmem_cache_free(cache, node);
  2635. }
  2636. qdf_export_symbol(__qdf_kmem_cache_free);
  2637. #else
  2638. qdf_kmem_cache_t
  2639. __qdf_kmem_cache_create(const char *cache_name,
  2640. qdf_size_t size)
  2641. {
  2642. return NULL;
  2643. }
  2644. void
  2645. __qdf_kmem_cache_destroy(qdf_kmem_cache_t cache)
  2646. {
  2647. }
  2648. void *
  2649. __qdf_kmem_cache_alloc(qdf_kmem_cache_t cache)
  2650. {
  2651. return NULL;
  2652. }
  2653. void
  2654. __qdf_kmem_cache_free(qdf_kmem_cache_t cache, void *node)
  2655. {
  2656. }
  2657. #endif
  2658. #ifdef QCA_DMA_PADDR_CHECK
  2659. void qdf_dma_invalid_buf_list_init(void)
  2660. {
  2661. int i;
  2662. for (i = 0; i < MAX_DEBUG_DOMAIN_COUNT; i++) {
  2663. qdf_list_create(&qdf_invalid_buf_list[i],
  2664. QDF_DMA_INVALID_BUF_LIST_SIZE);
  2665. qdf_invalid_buf_list_init[i] = true;
  2666. }
  2667. qdf_spinlock_create(&qdf_invalid_buf_list_lock);
  2668. }
  2669. void qdf_dma_invalid_buf_free(void *dev, uint8_t domain)
  2670. {
  2671. bool is_separate;
  2672. qdf_list_t *cur_buf_list;
  2673. struct qdf_dma_buf_entry *entry;
  2674. QDF_STATUS status = QDF_STATUS_E_EMPTY;
  2675. if (!dev)
  2676. return;
  2677. if (domain >= MAX_DEBUG_DOMAIN_COUNT)
  2678. return;
  2679. if (!qdf_invalid_buf_list_init[domain])
  2680. return;
  2681. cur_buf_list = &qdf_invalid_buf_list[domain];
  2682. do {
  2683. qdf_spin_lock_irqsave(&qdf_invalid_buf_list_lock);
  2684. status = qdf_list_remove_front(cur_buf_list,
  2685. (qdf_list_node_t **)&entry);
  2686. qdf_spin_unlock_irqrestore(&qdf_invalid_buf_list_lock);
  2687. if (status != QDF_STATUS_SUCCESS)
  2688. break;
  2689. is_separate = !entry->vaddr ? false : true;
  2690. if (is_separate) {
  2691. dma_free_coherent(dev, entry->size, entry->vaddr,
  2692. entry->phy_addr);
  2693. qdf_mem_free(entry);
  2694. } else
  2695. dma_free_coherent(dev, entry->size, entry,
  2696. entry->phy_addr);
  2697. } while (!qdf_list_empty(cur_buf_list));
  2698. qdf_invalid_buf_list_init[domain] = false;
  2699. }
  2700. void qdf_dma_invalid_buf_list_deinit(void)
  2701. {
  2702. int i;
  2703. for (i = 0; i < MAX_DEBUG_DOMAIN_COUNT; i++)
  2704. qdf_list_destroy(&qdf_invalid_buf_list[i]);
  2705. qdf_spinlock_destroy(&qdf_invalid_buf_list_lock);
  2706. }
  2707. #endif /* QCA_DMA_PADDR_CHECK */