hal_api_mon.h 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956
  1. /*
  2. * Copyright (c) 2017 The Linux Foundation. All rights reserved.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for
  5. * any purpose with or without fee is hereby granted, provided that the
  6. * above copyright notice and this permission notice appear in all
  7. * copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
  10. * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
  11. * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
  12. * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
  13. * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
  14. * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
  15. * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
  16. * PERFORMANCE OF THIS SOFTWARE.
  17. */
  18. #ifndef _HAL_API_MON_H_
  19. #define _HAL_API_MON_H_
  20. #include "qdf_types.h"
  21. #include "hal_internal.h"
  22. #define HAL_RX_OFFSET(block, field) block##_##field##_OFFSET
  23. #define HAL_RX_LSB(block, field) block##_##field##_LSB
  24. #define HAL_RX_MASk(block, field) block##_##field##_MASK
  25. #define HAL_RX_GET(_ptr, block, field) \
  26. (((*((volatile uint32_t *)_ptr + (HAL_RX_OFFSET(block, field)>>2))) & \
  27. HAL_RX_MASk(block, field)) >> \
  28. HAL_RX_LSB(block, field))
  29. #define HAL_RX_PHY_DATA_RADAR 0x01
  30. #define HAL_SU_MU_CODING_LDPC 0x01
  31. #define HAL_RX_FCS_LEN (4)
  32. #define KEY_EXTIV 0x20
  33. #define HAL_RX_USER_TLV32_TYPE_OFFSET 0x00000000
  34. #define HAL_RX_USER_TLV32_TYPE_LSB 1
  35. #define HAL_RX_USER_TLV32_TYPE_MASK 0x000003FE
  36. #define HAL_RX_USER_TLV32_LEN_OFFSET 0x00000000
  37. #define HAL_RX_USER_TLV32_LEN_LSB 10
  38. #define HAL_RX_USER_TLV32_LEN_MASK 0x003FFC00
  39. #define HAL_RX_USER_TLV32_USERID_OFFSET 0x00000000
  40. #define HAL_RX_USER_TLV32_USERID_LSB 26
  41. #define HAL_RX_USER_TLV32_USERID_MASK 0xFC000000
  42. #define HAL_ALIGN(x, a) HAL_ALIGN_MASK(x, (a)-1)
  43. #define HAL_ALIGN_MASK(x, mask) (typeof(x))(((uint32)(x) + (mask)) & ~(mask))
  44. #define HAL_RX_TLV32_HDR_SIZE 4
  45. #define HAL_RX_GET_USER_TLV32_TYPE(rx_status_tlv_ptr) \
  46. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  47. HAL_RX_USER_TLV32_TYPE_MASK) >> \
  48. HAL_RX_USER_TLV32_TYPE_LSB)
  49. #define HAL_RX_GET_USER_TLV32_LEN(rx_status_tlv_ptr) \
  50. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  51. HAL_RX_USER_TLV32_LEN_MASK) >> \
  52. HAL_RX_USER_TLV32_LEN_LSB)
  53. #define HAL_RX_GET_USER_TLV32_USERID(rx_status_tlv_ptr) \
  54. ((*((uint32_t *)(rx_status_tlv_ptr)) & \
  55. HAL_RX_USER_TLV32_USERID_MASK) >> \
  56. HAL_RX_USER_TLV32_USERID_LSB)
  57. #define HAL_TLV_STATUS_PPDU_NOT_DONE 0
  58. #define HAL_TLV_STATUS_PPDU_DONE 1
  59. #define HAL_TLV_STATUS_BUF_DONE 2
  60. #define HAL_MAX_UL_MU_USERS 8
  61. #define HAL_RX_PKT_TYPE_11A 0
  62. #define HAL_RX_PKT_TYPE_11B 1
  63. #define HAL_RX_PKT_TYPE_11N 2
  64. #define HAL_RX_PKT_TYPE_11AC 3
  65. #define HAL_RX_PKT_TYPE_11AX 4
  66. #define HAL_RX_RECEPTION_TYPE_SU 0
  67. #define HAL_RX_RECEPTION_TYPE_MU_MIMO 1
  68. #define HAL_RX_RECEPTION_TYPE_OFDMA 2
  69. #define HAL_RX_RECEPTION_TYPE_MU_OFDMA 3
  70. #define HAL_11B_RATE_0MCS 11
  71. #define HAL_11B_RATE_1MCS 5.5
  72. #define HAL_11B_RATE_2MCS 2
  73. #define HAL_11B_RATE_3MCS 1
  74. #define HAL_11B_RATE_4MCS 11
  75. #define HAL_11B_RATE_5MCS 5.5
  76. #define HAL_11B_RATE_6MCS 2
  77. #define HAL_11A_RATE_0MCS 48
  78. #define HAL_11A_RATE_1MCS 24
  79. #define HAL_11A_RATE_2MCS 12
  80. #define HAL_11A_RATE_3MCS 6
  81. #define HAL_11A_RATE_4MCS 54
  82. #define HAL_11A_RATE_5MCS 36
  83. #define HAL_11A_RATE_6MCS 18
  84. #define HAL_11A_RATE_7MCS 9
  85. #define HE_GI_0_8 0
  86. #define HE_GI_1_6 1
  87. #define HE_GI_3_2 2
  88. #define HE_LTF_1_X 0
  89. #define HE_LTF_2_X 1
  90. #define HE_LTF_4_X 2
  91. enum {
  92. HAL_HW_RX_DECAP_FORMAT_RAW = 0,
  93. HAL_HW_RX_DECAP_FORMAT_NWIFI,
  94. HAL_HW_RX_DECAP_FORMAT_ETH2,
  95. HAL_HW_RX_DECAP_FORMAT_8023,
  96. };
  97. enum {
  98. DP_PPDU_STATUS_START,
  99. DP_PPDU_STATUS_DONE,
  100. };
  101. static inline
  102. uint32_t HAL_RX_MON_HW_RX_DESC_SIZE(void)
  103. {
  104. /* return the HW_RX_DESC size */
  105. return sizeof(struct rx_pkt_tlvs);
  106. }
  107. static inline
  108. uint8_t *HAL_RX_MON_DEST_GET_DESC(uint8_t *data)
  109. {
  110. return data;
  111. }
  112. static inline
  113. uint32_t HAL_RX_DESC_GET_MPDU_LENGTH_ERR(void *hw_desc_addr)
  114. {
  115. struct rx_attention *rx_attn;
  116. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  117. rx_attn = &rx_desc->attn_tlv.rx_attn;
  118. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, MPDU_LENGTH_ERR);
  119. }
  120. static inline
  121. uint32_t HAL_RX_DESC_GET_MPDU_FCS_ERR(void *hw_desc_addr)
  122. {
  123. struct rx_attention *rx_attn;
  124. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  125. rx_attn = &rx_desc->attn_tlv.rx_attn;
  126. return HAL_RX_GET(rx_attn, RX_ATTENTION_1, FCS_ERR);
  127. }
  128. static inline
  129. uint32_t
  130. HAL_RX_DESC_GET_DECAP_FORMAT(void *hw_desc_addr) {
  131. struct rx_msdu_start *rx_msdu_start;
  132. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  133. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  134. return HAL_RX_GET(rx_msdu_start, RX_MSDU_START_2, DECAP_FORMAT);
  135. }
  136. static inline
  137. uint8_t *
  138. HAL_RX_DESC_GET_80211_HDR(void *hw_desc_addr) {
  139. uint8_t *rx_pkt_hdr;
  140. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  141. rx_pkt_hdr = &rx_desc->pkt_hdr_tlv.rx_pkt_hdr[0];
  142. return rx_pkt_hdr;
  143. }
  144. static inline
  145. uint32_t HAL_RX_MON_HW_DESC_GET_PPDUID_GET(void *hw_desc_addr)
  146. {
  147. struct rx_mpdu_info *rx_mpdu_info;
  148. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  149. rx_mpdu_info =
  150. &rx_desc->mpdu_start_tlv.rx_mpdu_start.rx_mpdu_info_details;
  151. return HAL_RX_GET(rx_mpdu_info, RX_MPDU_INFO_0, PHY_PPDU_ID);
  152. }
  153. /* TODO: Move all Rx descriptor functions to hal_rx.h to avoid duplication */
  154. static inline
  155. uint32_t hal_rx_desc_is_first_msdu(void *hw_desc_addr)
  156. {
  157. struct rx_pkt_tlvs *rx_tlvs = (struct rx_pkt_tlvs *)hw_desc_addr;
  158. struct rx_msdu_end *msdu_end = &rx_tlvs->msdu_end_tlv.rx_msdu_end;
  159. return HAL_RX_GET(msdu_end, RX_MSDU_END_5, FIRST_MSDU);
  160. }
  161. #define HAL_RX_BUFFER_ADDR_31_0_GET(buff_addr_info) \
  162. (_HAL_MS((*_OFFSET_TO_WORD_PTR(buff_addr_info, \
  163. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_OFFSET)), \
  164. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_MASK, \
  165. BUFFER_ADDR_INFO_0_BUFFER_ADDR_31_0_LSB))
  166. #define HAL_RX_REO_ENT_BUFFER_ADDR_39_32_GET(reo_ent_desc) \
  167. (HAL_RX_BUFFER_ADDR_39_32_GET(& \
  168. (((struct reo_entrance_ring *)reo_ent_desc) \
  169. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  170. #define HAL_RX_REO_ENT_BUFFER_ADDR_31_0_GET(reo_ent_desc) \
  171. (HAL_RX_BUFFER_ADDR_31_0_GET(& \
  172. (((struct reo_entrance_ring *)reo_ent_desc) \
  173. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  174. #define HAL_RX_REO_ENT_BUF_COOKIE_GET(reo_ent_desc) \
  175. (HAL_RX_BUF_COOKIE_GET(& \
  176. (((struct reo_entrance_ring *)reo_ent_desc) \
  177. ->reo_level_mpdu_frame_info.msdu_link_desc_addr_info)))
  178. /**
  179. * hal_rx_reo_ent_buf_paddr_get: Gets the physical address and
  180. * cookie from the REO entrance ring element
  181. *
  182. * @ hal_rx_desc_cookie: Opaque cookie pointer used by HAL to get to
  183. * the current descriptor
  184. * @ buf_info: structure to return the buffer information
  185. * @ msdu_cnt: pointer to msdu count in MPDU
  186. * Return: void
  187. */
  188. static inline
  189. void hal_rx_reo_ent_buf_paddr_get(void *rx_desc,
  190. struct hal_buf_info *buf_info,
  191. void **pp_buf_addr_info,
  192. uint32_t *msdu_cnt
  193. )
  194. {
  195. struct reo_entrance_ring *reo_ent_ring =
  196. (struct reo_entrance_ring *)rx_desc;
  197. struct buffer_addr_info *buf_addr_info;
  198. struct rx_mpdu_desc_info *rx_mpdu_desc_info_details;
  199. uint32_t loop_cnt;
  200. rx_mpdu_desc_info_details =
  201. &reo_ent_ring->reo_level_mpdu_frame_info.rx_mpdu_desc_info_details;
  202. *msdu_cnt = HAL_RX_GET(rx_mpdu_desc_info_details,
  203. RX_MPDU_DESC_INFO_0, MSDU_COUNT);
  204. loop_cnt = HAL_RX_GET(reo_ent_ring, REO_ENTRANCE_RING_7, LOOPING_COUNT);
  205. buf_addr_info =
  206. &reo_ent_ring->reo_level_mpdu_frame_info.msdu_link_desc_addr_info;
  207. buf_info->paddr =
  208. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  209. ((uint64_t)
  210. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  211. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  212. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  213. "[%s][%d] ReoAddr=%pK, addrInfo=%pK, paddr=0x%llx, loopcnt=%d\n",
  214. __func__, __LINE__, reo_ent_ring, buf_addr_info,
  215. (unsigned long long)buf_info->paddr, loop_cnt);
  216. *pp_buf_addr_info = (void *)buf_addr_info;
  217. }
  218. static inline
  219. void hal_rx_mon_next_link_desc_get(void *rx_msdu_link_desc,
  220. struct hal_buf_info *buf_info, void **pp_buf_addr_info)
  221. {
  222. struct rx_msdu_link *msdu_link =
  223. (struct rx_msdu_link *)rx_msdu_link_desc;
  224. struct buffer_addr_info *buf_addr_info;
  225. buf_addr_info = &msdu_link->next_msdu_link_desc_addr_info;
  226. buf_info->paddr =
  227. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  228. ((uint64_t)
  229. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  230. buf_info->sw_cookie = HAL_RX_BUF_COOKIE_GET(buf_addr_info);
  231. *pp_buf_addr_info = (void *)buf_addr_info;
  232. }
  233. /**
  234. * hal_rx_msdu_link_desc_set: Retrieves MSDU Link Descriptor to WBM
  235. *
  236. * @ soc : HAL version of the SOC pointer
  237. * @ src_srng_desc : void pointer to the WBM Release Ring descriptor
  238. * @ buf_addr_info : void pointer to the buffer_addr_info
  239. *
  240. * Return: void
  241. */
  242. static inline void hal_rx_mon_msdu_link_desc_set(struct hal_soc *soc,
  243. void *src_srng_desc, void *buf_addr_info)
  244. {
  245. struct buffer_addr_info *wbm_srng_buffer_addr_info =
  246. (struct buffer_addr_info *)src_srng_desc;
  247. uint64_t paddr;
  248. struct buffer_addr_info *p_buffer_addr_info =
  249. (struct buffer_addr_info *)buf_addr_info;
  250. paddr =
  251. (HAL_RX_BUFFER_ADDR_31_0_GET(buf_addr_info) |
  252. ((uint64_t)
  253. (HAL_RX_BUFFER_ADDR_39_32_GET(buf_addr_info)) << 32));
  254. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  255. "[%s][%d] src_srng_desc=%pK, buf_addr=0x%llx, cookie=0x%llx\n",
  256. __func__, __LINE__, src_srng_desc, (unsigned long long)paddr,
  257. (unsigned long long)p_buffer_addr_info->sw_buffer_cookie);
  258. /* Structure copy !!! */
  259. *wbm_srng_buffer_addr_info =
  260. *((struct buffer_addr_info *)buf_addr_info);
  261. }
  262. static inline
  263. uint32 hal_get_rx_msdu_link_desc_size(void)
  264. {
  265. return sizeof(struct rx_msdu_link);
  266. }
  267. enum {
  268. HAL_PKT_TYPE_OFDM = 0,
  269. HAL_PKT_TYPE_CCK,
  270. HAL_PKT_TYPE_HT,
  271. HAL_PKT_TYPE_VHT,
  272. HAL_PKT_TYPE_HE,
  273. };
  274. enum {
  275. HAL_SGI_0_8_US,
  276. HAL_SGI_0_4_US,
  277. HAL_SGI_1_6_US,
  278. HAL_SGI_3_2_US,
  279. };
  280. enum {
  281. HAL_FULL_RX_BW_20,
  282. HAL_FULL_RX_BW_40,
  283. HAL_FULL_RX_BW_80,
  284. HAL_FULL_RX_BW_160,
  285. };
  286. enum {
  287. HAL_RX_TYPE_SU,
  288. HAL_RX_TYPE_MU_MIMO,
  289. HAL_RX_TYPE_MU_OFDMA,
  290. HAL_RX_TYPE_MU_OFDMA_MIMO,
  291. };
  292. /**
  293. * hal_rx_mon_hw_desc_get_mpdu_status: Retrieve MPDU status
  294. *
  295. * @ hw_desc_addr: Start address of Rx HW TLVs
  296. * @ rs: Status for monitor mode
  297. *
  298. * Return: void
  299. */
  300. static inline
  301. void hal_rx_mon_hw_desc_get_mpdu_status(void *hw_desc_addr,
  302. struct mon_rx_status *rs)
  303. {
  304. struct rx_msdu_start *rx_msdu_start;
  305. struct rx_pkt_tlvs *rx_desc = (struct rx_pkt_tlvs *)hw_desc_addr;
  306. uint32_t reg_value;
  307. uint8_t nss = 0;
  308. static uint32_t sgi_hw_to_cdp[] = {
  309. CDP_SGI_0_8_US,
  310. CDP_SGI_0_4_US,
  311. CDP_SGI_1_6_US,
  312. CDP_SGI_3_2_US,
  313. };
  314. rx_msdu_start = &rx_desc->msdu_start_tlv.rx_msdu_start;
  315. rs->ant_signal_db = HAL_RX_GET(rx_msdu_start,
  316. RX_MSDU_START_5, USER_RSSI);
  317. rs->mcs = HAL_RX_GET(rx_msdu_start,
  318. RX_MSDU_START_5, RATE_MCS);
  319. rs->is_stbc = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, STBC);
  320. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, SGI);
  321. rs->sgi = sgi_hw_to_cdp[reg_value];
  322. #if !defined(QCA_WIFI_QCA6290_11AX)
  323. rs->nr_ant = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  324. #endif
  325. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, PKT_TYPE);
  326. switch (reg_value) {
  327. case HAL_RX_PKT_TYPE_11N:
  328. rs->ht_flags = 1;
  329. rs->bw = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
  330. RECEIVE_BANDWIDTH);
  331. break;
  332. case HAL_RX_PKT_TYPE_11AC:
  333. rs->vht_flags = 1;
  334. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5,
  335. RECEIVE_BANDWIDTH);
  336. rs->vht_flag_values2 = reg_value;
  337. #if !defined(QCA_WIFI_QCA6290_11AX)
  338. nss = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, NSS);
  339. nss = nss + 1;
  340. #else
  341. nss = 0;
  342. #endif
  343. rs->vht_flag_values3[0] = (rs->mcs << 4) | nss ;
  344. break;
  345. case HAL_RX_PKT_TYPE_11AX:
  346. rs->he_flags = 1;
  347. break;
  348. default:
  349. break;
  350. }
  351. reg_value = HAL_RX_GET(rx_msdu_start, RX_MSDU_START_5, RECEPTION_TYPE);
  352. rs->beamformed = (reg_value == HAL_RX_RECEPTION_TYPE_MU_MIMO) ? 1 : 0;
  353. /* TODO: rs->beamformed should be set for SU beamforming also */
  354. }
  355. struct hal_rx_ppdu_user_info {
  356. };
  357. struct hal_rx_ppdu_common_info {
  358. uint32_t ppdu_id;
  359. uint32_t ppdu_timestamp;
  360. };
  361. struct hal_rx_ppdu_info {
  362. struct hal_rx_ppdu_common_info com_info;
  363. struct hal_rx_ppdu_user_info user_info[HAL_MAX_UL_MU_USERS];
  364. struct mon_rx_status rx_status;
  365. uint8_t *first_msdu_payload;
  366. };
  367. static inline uint32_t
  368. hal_get_rx_status_buf_size(void) {
  369. /* RX status buffer size is hard coded for now */
  370. return 2048;
  371. }
  372. static inline uint8_t*
  373. hal_rx_status_get_next_tlv(uint8_t *rx_tlv) {
  374. uint32_t tlv_len, tlv_tag;
  375. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  376. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  377. /* The actual length of PPDU_END is the combined lenght of many PHY
  378. * TLVs that follow. Skip the TLV header and
  379. * rx_rxpcu_classification_overview that follows the header to get to
  380. * next TLV.
  381. */
  382. if (tlv_tag == WIFIRX_PPDU_END_E)
  383. tlv_len = sizeof(struct rx_rxpcu_classification_overview);
  384. return (uint8_t *)(((unsigned long)(rx_tlv + tlv_len +
  385. HAL_RX_TLV32_HDR_SIZE + 3)) & (~((unsigned long)3)));
  386. }
  387. static inline uint32_t
  388. hal_rx_status_get_tlv_info(void *rx_tlv, struct hal_rx_ppdu_info *ppdu_info)
  389. {
  390. uint32_t tlv_tag, user_id, tlv_len, value;
  391. uint8_t group_id = 0;
  392. uint16_t he_gi = 0;
  393. uint16_t he_ltf = 0;
  394. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  395. user_id = HAL_RX_GET_USER_TLV32_USERID(rx_tlv);
  396. tlv_len = HAL_RX_GET_USER_TLV32_LEN(rx_tlv);
  397. rx_tlv = (uint8_t *) rx_tlv + HAL_RX_TLV32_HDR_SIZE;
  398. switch (tlv_tag) {
  399. case WIFIRX_PPDU_START_E:
  400. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  401. "[%s][%d] ppdu_start_e len=%d\n",
  402. __func__, __LINE__, tlv_len);
  403. ppdu_info->com_info.ppdu_id =
  404. HAL_RX_GET(rx_tlv, RX_PPDU_START_0,
  405. PHY_PPDU_ID);
  406. /* TODO: Ensure channel number is set in PHY meta data */
  407. ppdu_info->rx_status.chan_freq =
  408. HAL_RX_GET(rx_tlv, RX_PPDU_START_1,
  409. SW_PHY_META_DATA);
  410. ppdu_info->com_info.ppdu_timestamp =
  411. HAL_RX_GET(rx_tlv, RX_PPDU_START_2,
  412. PPDU_START_TIMESTAMP);
  413. break;
  414. case WIFIRX_PPDU_START_USER_INFO_E:
  415. break;
  416. case WIFIRX_PPDU_END_E:
  417. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  418. "[%s][%d] ppdu_end_e len=%d\n",
  419. __func__, __LINE__, tlv_len);
  420. /* This is followed by sub-TLVs of PPDU_END */
  421. ppdu_info->rx_status.duration =
  422. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_8,
  423. RX_PPDU_DURATION);
  424. break;
  425. case WIFIRXPCU_PPDU_END_INFO_E:
  426. ppdu_info->rx_status.tsft =
  427. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_1,
  428. WB_TIMESTAMP_UPPER_32);
  429. ppdu_info->rx_status.tsft = (ppdu_info->rx_status.tsft << 32) |
  430. HAL_RX_GET(rx_tlv, RXPCU_PPDU_END_INFO_0,
  431. WB_TIMESTAMP_LOWER_32);
  432. break;
  433. case WIFIRX_PPDU_END_USER_STATS_E:
  434. {
  435. unsigned long tid = 0;
  436. ppdu_info->rx_status.ast_index =
  437. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_4,
  438. AST_INDEX);
  439. tid = HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_12,
  440. RECEIVED_QOS_DATA_TID_BITMAP);
  441. ppdu_info->rx_status.tid = qdf_find_first_bit(&tid, sizeof(tid)*8);
  442. ppdu_info->rx_status.mcs =
  443. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1,
  444. MCS);
  445. ppdu_info->rx_status.tcp_msdu_count =
  446. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  447. TCP_MSDU_COUNT);
  448. ppdu_info->rx_status.udp_msdu_count =
  449. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_9,
  450. UDP_MSDU_COUNT);
  451. ppdu_info->rx_status.other_msdu_count =
  452. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_10,
  453. OTHER_MSDU_COUNT);
  454. ppdu_info->rx_status.nss =
  455. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_1,
  456. NSS);
  457. ppdu_info->rx_status.first_data_seq_ctrl =
  458. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  459. DATA_SEQUENCE_CONTROL_INFO_VALID);
  460. ppdu_info->rx_status.preamble_type =
  461. HAL_RX_GET(rx_tlv, RX_PPDU_END_USER_STATS_3,
  462. HT_CONTROL_FIELD_PKT_TYPE);
  463. break;
  464. }
  465. case WIFIRX_PPDU_END_USER_STATS_EXT_E:
  466. break;
  467. case WIFIRX_PPDU_END_STATUS_DONE_E:
  468. return HAL_TLV_STATUS_PPDU_DONE;
  469. case WIFIDUMMY_E:
  470. return HAL_TLV_STATUS_BUF_DONE;
  471. case WIFIPHYRX_HT_SIG_E:
  472. {
  473. uint8_t *ht_sig_info = (uint8_t *)rx_tlv +
  474. HAL_RX_OFFSET(PHYRX_HT_SIG_0,
  475. HT_SIG_INFO_PHYRX_HT_SIG_INFO_DETAILS);
  476. value = HAL_RX_GET(ht_sig_info, HT_SIG_INFO_1,
  477. FEC_CODING);
  478. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  479. 1 : 0;
  480. break;
  481. }
  482. case WIFIPHYRX_L_SIG_B_E:
  483. {
  484. uint8_t *l_sig_b_info = (uint8_t *)rx_tlv +
  485. HAL_RX_OFFSET(PHYRX_L_SIG_B_0,
  486. L_SIG_B_INFO_PHYRX_L_SIG_B_INFO_DETAILS);
  487. value = HAL_RX_GET(l_sig_b_info, L_SIG_B_INFO_0, RATE);
  488. switch (value) {
  489. case 1:
  490. ppdu_info->rx_status.rate = HAL_11B_RATE_3MCS;
  491. break;
  492. case 2:
  493. ppdu_info->rx_status.rate = HAL_11B_RATE_2MCS;
  494. break;
  495. case 3:
  496. ppdu_info->rx_status.rate = HAL_11B_RATE_1MCS;
  497. break;
  498. case 4:
  499. ppdu_info->rx_status.rate = HAL_11B_RATE_0MCS;
  500. break;
  501. case 5:
  502. ppdu_info->rx_status.rate = HAL_11B_RATE_6MCS;
  503. break;
  504. case 6:
  505. ppdu_info->rx_status.rate = HAL_11B_RATE_5MCS;
  506. break;
  507. case 7:
  508. ppdu_info->rx_status.rate = HAL_11B_RATE_4MCS;
  509. break;
  510. default:
  511. break;
  512. }
  513. break;
  514. }
  515. case WIFIPHYRX_L_SIG_A_E:
  516. {
  517. uint8_t *l_sig_a_info = (uint8_t *)rx_tlv +
  518. HAL_RX_OFFSET(PHYRX_L_SIG_A_0,
  519. L_SIG_A_INFO_PHYRX_L_SIG_A_INFO_DETAILS);
  520. value = HAL_RX_GET(l_sig_a_info, L_SIG_A_INFO_0, RATE);
  521. switch (value) {
  522. case 8:
  523. ppdu_info->rx_status.rate = HAL_11A_RATE_0MCS;
  524. break;
  525. case 9:
  526. ppdu_info->rx_status.rate = HAL_11A_RATE_1MCS;
  527. break;
  528. case 10:
  529. ppdu_info->rx_status.rate = HAL_11A_RATE_2MCS;
  530. break;
  531. case 11:
  532. ppdu_info->rx_status.rate = HAL_11A_RATE_3MCS;
  533. break;
  534. case 12:
  535. ppdu_info->rx_status.rate = HAL_11A_RATE_4MCS;
  536. break;
  537. case 13:
  538. ppdu_info->rx_status.rate = HAL_11A_RATE_5MCS;
  539. break;
  540. case 14:
  541. ppdu_info->rx_status.rate = HAL_11A_RATE_6MCS;
  542. break;
  543. case 15:
  544. ppdu_info->rx_status.rate = HAL_11A_RATE_7MCS;
  545. break;
  546. default:
  547. break;
  548. }
  549. break;
  550. }
  551. case WIFIPHYRX_VHT_SIG_A_E:
  552. {
  553. uint8_t *vht_sig_a_info = (uint8_t *)rx_tlv +
  554. HAL_RX_OFFSET(PHYRX_VHT_SIG_A_0,
  555. VHT_SIG_A_INFO_PHYRX_VHT_SIG_A_INFO_DETAILS);
  556. value = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_1,
  557. SU_MU_CODING);
  558. ppdu_info->rx_status.ldpc = (value == HAL_SU_MU_CODING_LDPC) ?
  559. 1 : 0;
  560. group_id = HAL_RX_GET(vht_sig_a_info, VHT_SIG_A_INFO_0, GROUP_ID);
  561. ppdu_info->rx_status.vht_flag_values5 = group_id;
  562. break;
  563. }
  564. case WIFIPHYRX_HE_SIG_A_SU_E:
  565. {
  566. uint8_t *he_sig_a_su_info = (uint8_t *)rx_tlv +
  567. HAL_RX_OFFSET(PHYRX_HE_SIG_A_SU_0,
  568. HE_SIG_A_SU_INFO_PHYRX_HE_SIG_A_SU_INFO_DETAILS);
  569. ppdu_info->rx_status.he_flags = 1;
  570. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  571. FORMAT_INDICATION);
  572. if (value == 0) {
  573. ppdu_info->rx_status.he_data1 =
  574. QDF_MON_STATUS_HE_TRIG_FORMAT_TYPE;
  575. } else {
  576. ppdu_info->rx_status.he_data1 =
  577. QDF_MON_STATUS_HE_SU_OR_EXT_SU_FORMAT_TYPE;
  578. }
  579. /*data1*/
  580. ppdu_info->rx_status.he_data1 |=
  581. QDF_MON_STATUS_HE_BSS_COLOR_KNOWN |
  582. QDF_MON_STATUS_HE_BEAM_CHANGE_KNOWN |
  583. QDF_MON_STATUS_HE_DL_UL_KNOWN |
  584. QDF_MON_STATUS_HE_MCS_KNOWN |
  585. QDF_MON_STATUS_HE_DCM_KNOWN |
  586. QDF_MON_STATUS_HE_CODING_KNOWN |
  587. QDF_MON_STATUS_HE_LDPC_EXTRA_SYMBOL_KNOWN |
  588. QDF_MON_STATUS_HE_STBC_KNOWN |
  589. QDF_MON_STATUS_HE_DATA_BW_RU_KNOWN |
  590. QDF_MON_STATUS_HE_DOPPLER_KNOWN;
  591. /*data2*/
  592. ppdu_info->rx_status.he_data2 =
  593. QDF_MON_STATUS_HE_GI_KNOWN;
  594. ppdu_info->rx_status.he_data2 =
  595. QDF_MON_STATUS_TXBF_KNOWN |
  596. QDF_MON_STATUS_PE_DISAMBIGUITY_KNOWN |
  597. QDF_MON_STATUS_TXOP_KNOWN |
  598. QDF_MON_STATUS_LTF_SYMBOLS_KNOWN |
  599. QDF_MON_STATUS_PRE_FEC_PADDING_KNOWN |
  600. QDF_MON_STATUS_MIDABLE_PERIODICITY_KNOWN;
  601. /*data3*/
  602. value = HAL_RX_GET(he_sig_a_su_info,
  603. HE_SIG_A_SU_INFO_0, BSS_COLOR_ID);
  604. ppdu_info->rx_status.he_data3 = value;
  605. value = HAL_RX_GET(he_sig_a_su_info,
  606. HE_SIG_A_SU_INFO_0, BEAM_CHANGE);
  607. value = value << QDF_MON_STATUS_BEAM_CHANGE_SHIFT;
  608. ppdu_info->rx_status.he_data3 |= value;
  609. value = HAL_RX_GET(he_sig_a_su_info,
  610. HE_SIG_A_SU_INFO_0, DL_UL_FLAG);
  611. value = value << QDF_MON_STATUS_DL_UL_SHIFT;
  612. ppdu_info->rx_status.he_data3 |= value;
  613. value = HAL_RX_GET(he_sig_a_su_info,
  614. HE_SIG_A_SU_INFO_0, TRANSMIT_MCS);
  615. value = value << QDF_MON_STATUS_TRANSMIT_MCS_SHIFT;
  616. ppdu_info->rx_status.he_data3 |= value;
  617. value = HAL_RX_GET(he_sig_a_su_info,
  618. HE_SIG_A_SU_INFO_0, DCM);
  619. value = value << QDF_MON_STATUS_DCM_SHIFT;
  620. ppdu_info->rx_status.he_data3 |= value;
  621. value = HAL_RX_GET(he_sig_a_su_info,
  622. HE_SIG_A_SU_INFO_1, CODING);
  623. value = value << QDF_MON_STATUS_CODING_SHIFT;
  624. ppdu_info->rx_status.he_data3 |= value;
  625. value = HAL_RX_GET(he_sig_a_su_info,
  626. HE_SIG_A_SU_INFO_1,
  627. LDPC_EXTRA_SYMBOL);
  628. value = value << QDF_MON_STATUS_LDPC_EXTRA_SYMBOL_SHIFT;
  629. ppdu_info->rx_status.he_data3 |= value;
  630. value = HAL_RX_GET(he_sig_a_su_info,
  631. HE_SIG_A_SU_INFO_1, STBC);
  632. value = value << QDF_MON_STATUS_STBC_SHIFT;
  633. ppdu_info->rx_status.he_data3 |= value;
  634. /*data4*/
  635. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0,
  636. SPATIAL_REUSE);
  637. ppdu_info->rx_status.he_data4 = value;
  638. /*data5*/
  639. value = HAL_RX_GET(he_sig_a_su_info,
  640. HE_SIG_A_SU_INFO_0, TRANSMIT_BW);
  641. ppdu_info->rx_status.he_data5 = value;
  642. value = HAL_RX_GET(he_sig_a_su_info,
  643. HE_SIG_A_SU_INFO_0, CP_LTF_SIZE);
  644. switch (value) {
  645. case 0:
  646. he_gi = HE_GI_0_8;
  647. he_ltf = HE_LTF_1_X;
  648. break;
  649. case 1:
  650. he_gi = HE_GI_0_8;
  651. he_ltf = HE_LTF_2_X;
  652. break;
  653. case 2:
  654. he_gi = HE_GI_1_6;
  655. he_ltf = HE_LTF_2_X;
  656. break;
  657. case 3:
  658. he_gi = HE_GI_3_2;
  659. he_ltf = HE_LTF_4_X;
  660. break;
  661. }
  662. value = he_gi << QDF_MON_STATUS_GI_SHIFT;
  663. ppdu_info->rx_status.he_data5 |= value;
  664. value = he_ltf << QDF_MON_STATUS_HE_LTF_SHIFT;
  665. ppdu_info->rx_status.he_data5 |= value;
  666. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  667. PACKET_EXTENSION_A_FACTOR);
  668. value = value << QDF_MON_STATUS_PRE_FEC_PAD_SHIFT;
  669. ppdu_info->rx_status.he_data5 |= value;
  670. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1, TXBF);
  671. value = value << QDF_MON_STATUS_TXBF_SHIFT;
  672. ppdu_info->rx_status.he_data5 |= value;
  673. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  674. PACKET_EXTENSION_PE_DISAMBIGUITY);
  675. value = value << QDF_MON_STATUS_PE_DISAMBIGUITY_SHIFT;
  676. ppdu_info->rx_status.he_data5 |= value;
  677. /*data6*/
  678. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_0, NSTS);
  679. value++;
  680. ppdu_info->rx_status.he_data6 = value;
  681. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  682. DOPPLER_INDICATION);
  683. value = value << QDF_MON_STATUS_DOPPLER_SHIFT;
  684. ppdu_info->rx_status.he_data6 |= value;
  685. value = HAL_RX_GET(he_sig_a_su_info, HE_SIG_A_SU_INFO_1,
  686. TXOP_DURATION);
  687. value = value << QDF_MON_STATUS_TXOP_SHIFT;
  688. ppdu_info->rx_status.he_data6 |= value;
  689. break;
  690. }
  691. case WIFIPHYRX_HE_SIG_A_MU_DL_E:
  692. ppdu_info->rx_status.he_sig_A1 =
  693. *((uint32_t *)((uint8_t *)rx_tlv +
  694. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_0,
  695. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  696. ppdu_info->rx_status.he_sig_A1 |=
  697. QDF_MON_STATUS_HE_SIG_A1_HE_FORMAT_MU;
  698. ppdu_info->rx_status.he_sig_A1_known =
  699. QDF_MON_STATUS_HE_SIG_A1_MU_KNOWN_ALL;
  700. ppdu_info->rx_status.he_sig_A2 =
  701. *((uint32_t *)((uint8_t *)rx_tlv +
  702. HAL_RX_OFFSET(PHYRX_HE_SIG_A_MU_DL_1,
  703. HE_SIG_A_MU_DL_INFO_PHYRX_HE_SIG_A_MU_DL_INFO_DETAILS)));
  704. ppdu_info->rx_status.he_sig_A2_known =
  705. QDF_MON_STATUS_HE_SIG_A2_MU_KNOWN_ALL;
  706. break;
  707. case WIFIPHYRX_HE_SIG_B1_MU_E:
  708. {
  709. uint8_t *he_sig_b1_mu_info = (uint8_t *)rx_tlv +
  710. *((uint32_t *)((uint8_t *)rx_tlv +
  711. HAL_RX_OFFSET(PHYRX_HE_SIG_B1_MU_0,
  712. HE_SIG_B1_MU_INFO_PHYRX_HE_SIG_B1_MU_INFO_DETAILS)));
  713. ppdu_info->rx_status.he_sig_b_common_RU[0] =
  714. HAL_RX_GET(he_sig_b1_mu_info, HE_SIG_B1_MU_INFO_0,
  715. RU_ALLOCATION);
  716. ppdu_info->rx_status.he_sig_b_common_known =
  717. QDF_MON_STATUS_HE_SIG_B_COMMON_KNOWN_RU0;
  718. /* TODO: Check on the availability of other fields in
  719. * sig_b_common
  720. */
  721. break;
  722. }
  723. case WIFIPHYRX_HE_SIG_B2_MU_E:
  724. ppdu_info->rx_status.he_sig_b_user =
  725. *((uint32_t *)((uint8_t *)rx_tlv +
  726. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_MU_0,
  727. HE_SIG_B2_MU_INFO_PHYRX_HE_SIG_B2_MU_INFO_DETAILS)));
  728. ppdu_info->rx_status.he_sig_b_user_known =
  729. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  730. break;
  731. case WIFIPHYRX_HE_SIG_B2_OFDMA_E:
  732. ppdu_info->rx_status.he_sig_b_user =
  733. *((uint32_t *)((uint8_t *)rx_tlv +
  734. HAL_RX_OFFSET(PHYRX_HE_SIG_B2_OFDMA_0,
  735. HE_SIG_B2_OFDMA_INFO_PHYRX_HE_SIG_B2_OFDMA_INFO_DETAILS)));
  736. ppdu_info->rx_status.he_sig_b_user_known =
  737. QDF_MON_STATUS_HE_SIG_B_USER_KNOWN_SIG_B_ALL;
  738. break;
  739. case WIFIPHYRX_RSSI_LEGACY_E:
  740. {
  741. uint8_t *rssi_info_tlv = (uint8_t *)rx_tlv +
  742. HAL_RX_OFFSET(PHYRX_RSSI_LEGACY_3,
  743. RECEIVE_RSSI_INFO_PRE_RSSI_INFO_DETAILS);
  744. ppdu_info->rx_status.rssi_comb = HAL_RX_GET(rssi_info_tlv,
  745. PHYRX_RSSI_LEGACY_35, RSSI_COMB);
  746. ppdu_info->rx_status.bw = HAL_RX_GET(rssi_info_tlv,
  747. #if !defined(QCA_WIFI_QCA6290_11AX)
  748. PHYRX_RSSI_LEGACY_35, RECEIVE_BANDWIDTH);
  749. #else
  750. PHYRX_RSSI_LEGACY_0, RECEIVE_BANDWIDTH);
  751. #endif
  752. ppdu_info->rx_status.preamble_type = HAL_RX_GET(rssi_info_tlv,
  753. PHYRX_RSSI_LEGACY_0, RECEPTION_TYPE);
  754. ppdu_info->rx_status.he_re = 0;
  755. value = HAL_RX_GET(rssi_info_tlv,
  756. RECEIVE_RSSI_INFO_0, RSSI_PRI20_CHAIN0);
  757. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  758. "RSSI_PRI20_CHAIN0: %d\n", value);
  759. value = HAL_RX_GET(rssi_info_tlv,
  760. RECEIVE_RSSI_INFO_0, RSSI_EXT20_CHAIN0);
  761. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  762. "RSSI_EXT20_CHAIN0: %d\n", value);
  763. value = HAL_RX_GET(rssi_info_tlv,
  764. RECEIVE_RSSI_INFO_0, RSSI_EXT40_LOW20_CHAIN0);
  765. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  766. "RSSI_EXT40_LOW20_CHAIN0: %d\n", value);
  767. value = HAL_RX_GET(rssi_info_tlv,
  768. RECEIVE_RSSI_INFO_0, RSSI_EXT40_HIGH20_CHAIN0);
  769. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  770. "RSSI_EXT40_HIGH20_CHAIN0: %d\n", value);
  771. value = HAL_RX_GET(rssi_info_tlv,
  772. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW20_CHAIN0);
  773. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  774. "RSSI_EXT80_LOW20_CHAIN0: %d\n", value);
  775. value = HAL_RX_GET(rssi_info_tlv,
  776. RECEIVE_RSSI_INFO_1, RSSI_EXT80_LOW_HIGH20_CHAIN0);
  777. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  778. "RSSI_EXT80_LOW_HIGH20_CHAIN0: %d\n", value);
  779. value = HAL_RX_GET(rssi_info_tlv,
  780. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH_LOW20_CHAIN0);
  781. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  782. "RSSI_EXT80_HIGH_LOW20_CHAIN0: %d\n", value);
  783. value = HAL_RX_GET(rssi_info_tlv,
  784. RECEIVE_RSSI_INFO_1, RSSI_EXT80_HIGH20_CHAIN0);
  785. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
  786. "RSSI_EXT80_HIGH20_CHAIN0: %d\n", value);
  787. break;
  788. }
  789. case WIFIRX_HEADER_E:
  790. ppdu_info->first_msdu_payload = rx_tlv;
  791. break;
  792. case 0:
  793. return HAL_TLV_STATUS_PPDU_DONE;
  794. default:
  795. break;
  796. }
  797. QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
  798. "%s TLV type: %d, TLV len:%d\n",
  799. __func__, tlv_tag, tlv_len);
  800. return HAL_TLV_STATUS_PPDU_NOT_DONE;
  801. }
  802. static inline
  803. uint32_t hal_get_rx_status_done_tlv_size(void *hal_soc)
  804. {
  805. return HAL_RX_TLV32_HDR_SIZE;
  806. }
  807. static inline QDF_STATUS
  808. hal_get_rx_status_done(uint8_t *rx_tlv)
  809. {
  810. uint32_t tlv_tag;
  811. tlv_tag = HAL_RX_GET_USER_TLV32_TYPE(rx_tlv);
  812. if (tlv_tag == WIFIRX_STATUS_BUFFER_DONE_E)
  813. return QDF_STATUS_SUCCESS;
  814. else
  815. return QDF_STATUS_E_EMPTY;
  816. }
  817. static inline QDF_STATUS
  818. hal_clear_rx_status_done(uint8_t *rx_tlv)
  819. {
  820. *(uint32_t *)rx_tlv = 0;
  821. return QDF_STATUS_SUCCESS;
  822. }
  823. #endif