sde_hw_top.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2015-2021, The Linux Foundation. All rights reserved.
  4. */
  5. #include "sde_hwio.h"
  6. #include "sde_hw_catalog.h"
  7. #include "sde_hw_top.h"
  8. #include "sde_dbg.h"
  9. #include "sde_kms.h"
  10. #define SSPP_SPARE 0x28
  11. #define UBWC_DEC_HW_VERSION 0x058
  12. #define UBWC_STATIC 0x144
  13. #define UBWC_CTRL_2 0x150
  14. #define UBWC_PREDICTION_MODE 0x154
  15. #define FLD_SPLIT_DISPLAY_CMD BIT(1)
  16. #define FLD_SMART_PANEL_FREE_RUN BIT(2)
  17. #define FLD_INTF_1_SW_TRG_MUX BIT(4)
  18. #define FLD_INTF_2_SW_TRG_MUX BIT(8)
  19. #define FLD_TE_LINE_INTER_WATERLEVEL_MASK 0xFFFF
  20. #define MDP_DSPP_DBGBUS_CTRL 0x348
  21. #define MDP_DSPP_DBGBUS_STATUS 0x34C
  22. #define DANGER_STATUS 0x360
  23. #define SAFE_STATUS 0x364
  24. #define TE_LINE_INTERVAL 0x3F4
  25. #define TRAFFIC_SHAPER_EN BIT(31)
  26. #define TRAFFIC_SHAPER_RD_CLIENT(num) (0x030 + (num * 4))
  27. #define TRAFFIC_SHAPER_WR_CLIENT(num) (0x060 + (num * 4))
  28. #define TRAFFIC_SHAPER_FIXPOINT_FACTOR 4
  29. #define MDP_WD_TIMER_0_CTL 0x380
  30. #define MDP_WD_TIMER_0_CTL2 0x384
  31. #define MDP_WD_TIMER_0_LOAD_VALUE 0x388
  32. #define MDP_WD_TIMER_1_CTL 0x390
  33. #define MDP_WD_TIMER_1_CTL2 0x394
  34. #define MDP_WD_TIMER_1_LOAD_VALUE 0x398
  35. #define MDP_PERIPH_DBGBUS_CTRL 0x418
  36. #define MDP_WD_TIMER_2_CTL 0x420
  37. #define MDP_WD_TIMER_2_CTL2 0x424
  38. #define MDP_WD_TIMER_2_LOAD_VALUE 0x428
  39. #define MDP_WD_TIMER_3_CTL 0x430
  40. #define MDP_WD_TIMER_3_CTL2 0x434
  41. #define MDP_WD_TIMER_3_LOAD_VALUE 0x438
  42. #define MDP_WD_TIMER_4_CTL 0x440
  43. #define MDP_WD_TIMER_4_CTL2 0x444
  44. #define MDP_WD_TIMER_4_LOAD_VALUE 0x448
  45. #define MDP_PERIPH_TOP0 0x380
  46. #define MDP_SSPP_TOP2 0x3A8
  47. #define AUTOREFRESH_TEST_POINT 0x2
  48. #define TEST_MASK(id, tp) ((id << 4) | (tp << 1) | BIT(0))
  49. #define DCE_SEL 0x450
  50. #define MDP_SID_VIG0 0x0
  51. #define MDP_SID_VIG1 0x4
  52. #define MDP_SID_VIG2 0x8
  53. #define MDP_SID_VIG3 0xC
  54. #define MDP_SID_DMA0 0x10
  55. #define MDP_SID_DMA1 0x14
  56. #define MDP_SID_DMA2 0x18
  57. #define MDP_SID_DMA3 0x1C
  58. #define MDP_SID_ROT_RD 0x20
  59. #define MDP_SID_ROT_WR 0x24
  60. #define MDP_SID_WB2 0x28
  61. #define MDP_SID_XIN7 0x2C
  62. #define ROT_SID_ID_VAL 0x1c
  63. static void sde_hw_setup_split_pipe(struct sde_hw_mdp *mdp,
  64. struct split_pipe_cfg *cfg)
  65. {
  66. struct sde_hw_blk_reg_map *c;
  67. u32 upper_pipe = 0;
  68. u32 lower_pipe = 0;
  69. if (!mdp || !cfg)
  70. return;
  71. c = &mdp->hw;
  72. if (cfg->en) {
  73. if (cfg->mode == INTF_MODE_CMD) {
  74. lower_pipe = FLD_SPLIT_DISPLAY_CMD;
  75. /* interface controlling sw trigger */
  76. if (cfg->intf == INTF_2)
  77. lower_pipe |= FLD_INTF_1_SW_TRG_MUX;
  78. else
  79. lower_pipe |= FLD_INTF_2_SW_TRG_MUX;
  80. /* free run */
  81. if (cfg->pp_split_slave != INTF_MAX)
  82. lower_pipe = FLD_SMART_PANEL_FREE_RUN;
  83. upper_pipe = lower_pipe;
  84. /* smart panel align mode */
  85. lower_pipe |= BIT(mdp->caps->smart_panel_align_mode);
  86. } else {
  87. if (cfg->intf == INTF_2) {
  88. lower_pipe = FLD_INTF_1_SW_TRG_MUX;
  89. upper_pipe = FLD_INTF_2_SW_TRG_MUX;
  90. } else {
  91. lower_pipe = FLD_INTF_2_SW_TRG_MUX;
  92. upper_pipe = FLD_INTF_1_SW_TRG_MUX;
  93. }
  94. }
  95. }
  96. SDE_REG_WRITE(c, SSPP_SPARE, cfg->split_flush_en ? 0x1 : 0x0);
  97. SDE_REG_WRITE(c, SPLIT_DISPLAY_LOWER_PIPE_CTRL, lower_pipe);
  98. SDE_REG_WRITE(c, SPLIT_DISPLAY_UPPER_PIPE_CTRL, upper_pipe);
  99. SDE_REG_WRITE(c, SPLIT_DISPLAY_EN, cfg->en & 0x1);
  100. }
  101. static u32 sde_hw_get_split_flush(struct sde_hw_mdp *mdp)
  102. {
  103. struct sde_hw_blk_reg_map *c;
  104. if (!mdp)
  105. return 0;
  106. c = &mdp->hw;
  107. return (SDE_REG_READ(c, SSPP_SPARE) & 0x1);
  108. }
  109. static void sde_hw_setup_pp_split(struct sde_hw_mdp *mdp,
  110. struct split_pipe_cfg *cfg)
  111. {
  112. u32 ppb_config = 0x0;
  113. u32 ppb_control = 0x0;
  114. if (!mdp || !cfg)
  115. return;
  116. if (cfg->split_link_en) {
  117. ppb_config |= BIT(16); /* split enable */
  118. ppb_control = BIT(5); /* horz split*/
  119. } else if (cfg->en && cfg->pp_split_slave != INTF_MAX) {
  120. ppb_config |= (cfg->pp_split_slave - INTF_0 + 1) << 20;
  121. ppb_config |= BIT(16); /* split enable */
  122. ppb_control = BIT(5); /* horz split*/
  123. }
  124. if (cfg->pp_split_index && !cfg->split_link_en) {
  125. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, 0x0);
  126. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, 0x0);
  127. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, ppb_config);
  128. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, ppb_control);
  129. } else {
  130. SDE_REG_WRITE(&mdp->hw, PPB0_CONFIG, ppb_config);
  131. SDE_REG_WRITE(&mdp->hw, PPB0_CNTL, ppb_control);
  132. SDE_REG_WRITE(&mdp->hw, PPB1_CONFIG, 0x0);
  133. SDE_REG_WRITE(&mdp->hw, PPB1_CNTL, 0x0);
  134. }
  135. }
  136. static void sde_hw_setup_cdm_output(struct sde_hw_mdp *mdp,
  137. struct cdm_output_cfg *cfg)
  138. {
  139. struct sde_hw_blk_reg_map *c;
  140. u32 out_ctl = 0;
  141. if (!mdp || !cfg)
  142. return;
  143. c = &mdp->hw;
  144. if (cfg->wb_en)
  145. out_ctl |= BIT(24);
  146. else if (cfg->intf_en)
  147. out_ctl |= BIT(19);
  148. SDE_REG_WRITE(c, MDP_OUT_CTL_0, out_ctl);
  149. }
  150. static bool sde_hw_setup_clk_force_ctrl(struct sde_hw_mdp *mdp,
  151. enum sde_clk_ctrl_type clk_ctrl, bool enable)
  152. {
  153. struct sde_hw_blk_reg_map *c;
  154. u32 reg_off, bit_off;
  155. u32 reg_val, new_val;
  156. bool clk_forced_on;
  157. if (!mdp)
  158. return false;
  159. c = &mdp->hw;
  160. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX)
  161. return false;
  162. reg_off = mdp->caps->clk_ctrls[clk_ctrl].reg_off;
  163. bit_off = mdp->caps->clk_ctrls[clk_ctrl].bit_off;
  164. reg_val = SDE_REG_READ(c, reg_off);
  165. if (enable)
  166. new_val = reg_val | BIT(bit_off);
  167. else
  168. new_val = reg_val & ~BIT(bit_off);
  169. SDE_REG_WRITE(c, reg_off, new_val);
  170. wmb(); /* ensure write finished before progressing */
  171. clk_forced_on = !(reg_val & BIT(bit_off));
  172. return clk_forced_on;
  173. }
  174. static int sde_hw_get_clk_ctrl_status(struct sde_hw_mdp *mdp,
  175. enum sde_clk_ctrl_type clk_ctrl, bool *status)
  176. {
  177. struct sde_hw_blk_reg_map *c;
  178. u32 reg_off, bit_off;
  179. if (!mdp)
  180. return -EINVAL;
  181. c = &mdp->hw;
  182. if (clk_ctrl <= SDE_CLK_CTRL_NONE || clk_ctrl >= SDE_CLK_CTRL_MAX ||
  183. !mdp->caps->clk_status[clk_ctrl].reg_off)
  184. return -EINVAL;
  185. reg_off = mdp->caps->clk_status[clk_ctrl].reg_off;
  186. bit_off = mdp->caps->clk_status[clk_ctrl].bit_off;
  187. *status = SDE_REG_READ(c, reg_off) & BIT(bit_off);
  188. return 0;
  189. }
  190. static void sde_hw_get_danger_status(struct sde_hw_mdp *mdp,
  191. struct sde_danger_safe_status *status)
  192. {
  193. struct sde_hw_blk_reg_map *c;
  194. u32 value;
  195. if (!mdp || !status)
  196. return;
  197. c = &mdp->hw;
  198. value = SDE_REG_READ(c, DANGER_STATUS);
  199. status->mdp = (value >> 0) & 0x3;
  200. status->sspp[SSPP_VIG0] = (value >> 4) & 0x3;
  201. status->sspp[SSPP_VIG1] = (value >> 6) & 0x3;
  202. status->sspp[SSPP_VIG2] = (value >> 8) & 0x3;
  203. status->sspp[SSPP_VIG3] = (value >> 10) & 0x3;
  204. status->sspp[SSPP_RGB0] = (value >> 12) & 0x3;
  205. status->sspp[SSPP_RGB1] = (value >> 14) & 0x3;
  206. status->sspp[SSPP_RGB2] = (value >> 16) & 0x3;
  207. status->sspp[SSPP_RGB3] = (value >> 18) & 0x3;
  208. status->sspp[SSPP_DMA0] = (value >> 20) & 0x3;
  209. status->sspp[SSPP_DMA1] = (value >> 22) & 0x3;
  210. status->sspp[SSPP_DMA2] = (value >> 28) & 0x3;
  211. status->sspp[SSPP_DMA3] = (value >> 30) & 0x3;
  212. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x3;
  213. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x3;
  214. status->wb[WB_0] = 0;
  215. status->wb[WB_1] = 0;
  216. status->wb[WB_2] = (value >> 2) & 0x3;
  217. status->wb[WB_3] = 0;
  218. }
  219. static void _update_vsync_source(struct sde_hw_mdp *mdp,
  220. struct sde_vsync_source_cfg *cfg)
  221. {
  222. struct sde_hw_blk_reg_map *c;
  223. u32 reg, wd_load_value, wd_ctl, wd_ctl2;
  224. if (!mdp || !cfg)
  225. return;
  226. c = &mdp->hw;
  227. if (cfg->vsync_source >= SDE_VSYNC_SOURCE_WD_TIMER_4 &&
  228. cfg->vsync_source <= SDE_VSYNC_SOURCE_WD_TIMER_0) {
  229. switch (cfg->vsync_source) {
  230. case SDE_VSYNC_SOURCE_WD_TIMER_4:
  231. wd_load_value = MDP_WD_TIMER_4_LOAD_VALUE;
  232. wd_ctl = MDP_WD_TIMER_4_CTL;
  233. wd_ctl2 = MDP_WD_TIMER_4_CTL2;
  234. break;
  235. case SDE_VSYNC_SOURCE_WD_TIMER_3:
  236. wd_load_value = MDP_WD_TIMER_3_LOAD_VALUE;
  237. wd_ctl = MDP_WD_TIMER_3_CTL;
  238. wd_ctl2 = MDP_WD_TIMER_3_CTL2;
  239. break;
  240. case SDE_VSYNC_SOURCE_WD_TIMER_2:
  241. wd_load_value = MDP_WD_TIMER_2_LOAD_VALUE;
  242. wd_ctl = MDP_WD_TIMER_2_CTL;
  243. wd_ctl2 = MDP_WD_TIMER_2_CTL2;
  244. break;
  245. case SDE_VSYNC_SOURCE_WD_TIMER_1:
  246. wd_load_value = MDP_WD_TIMER_1_LOAD_VALUE;
  247. wd_ctl = MDP_WD_TIMER_1_CTL;
  248. wd_ctl2 = MDP_WD_TIMER_1_CTL2;
  249. break;
  250. case SDE_VSYNC_SOURCE_WD_TIMER_0:
  251. default:
  252. wd_load_value = MDP_WD_TIMER_0_LOAD_VALUE;
  253. wd_ctl = MDP_WD_TIMER_0_CTL;
  254. wd_ctl2 = MDP_WD_TIMER_0_CTL2;
  255. break;
  256. }
  257. SDE_REG_WRITE(c, wd_load_value, CALCULATE_WD_LOAD_VALUE(cfg->frame_rate));
  258. SDE_REG_WRITE(c, wd_ctl, BIT(0)); /* clear timer */
  259. reg = SDE_REG_READ(c, wd_ctl2);
  260. reg |= BIT(8); /* enable heartbeat timer */
  261. reg |= BIT(0); /* enable WD timer */
  262. SDE_REG_WRITE(c, wd_ctl2, reg);
  263. /* make sure that timers are enabled/disabled for vsync state */
  264. wmb();
  265. }
  266. }
  267. static void sde_hw_setup_vsync_source(struct sde_hw_mdp *mdp,
  268. struct sde_vsync_source_cfg *cfg)
  269. {
  270. struct sde_hw_blk_reg_map *c;
  271. u32 reg, i;
  272. static const u32 pp_offset[PINGPONG_MAX] = {0xC, 0x8, 0x4, 0x13, 0x18};
  273. if (!mdp || !cfg || (cfg->pp_count > ARRAY_SIZE(cfg->ppnumber)))
  274. return;
  275. c = &mdp->hw;
  276. reg = SDE_REG_READ(c, MDP_VSYNC_SEL);
  277. for (i = 0; i < cfg->pp_count; i++) {
  278. int pp_idx = cfg->ppnumber[i] - PINGPONG_0;
  279. if (pp_idx >= ARRAY_SIZE(pp_offset))
  280. continue;
  281. reg &= ~(0xf << pp_offset[pp_idx]);
  282. reg |= (cfg->vsync_source & 0xf) << pp_offset[pp_idx];
  283. }
  284. SDE_REG_WRITE(c, MDP_VSYNC_SEL, reg);
  285. _update_vsync_source(mdp, cfg);
  286. }
  287. static void sde_hw_setup_vsync_source_v1(struct sde_hw_mdp *mdp,
  288. struct sde_vsync_source_cfg *cfg)
  289. {
  290. _update_vsync_source(mdp, cfg);
  291. }
  292. static void sde_hw_get_safe_status(struct sde_hw_mdp *mdp,
  293. struct sde_danger_safe_status *status)
  294. {
  295. struct sde_hw_blk_reg_map *c;
  296. u32 value;
  297. if (!mdp || !status)
  298. return;
  299. c = &mdp->hw;
  300. value = SDE_REG_READ(c, SAFE_STATUS);
  301. status->mdp = (value >> 0) & 0x1;
  302. status->sspp[SSPP_VIG0] = (value >> 4) & 0x1;
  303. status->sspp[SSPP_VIG1] = (value >> 6) & 0x1;
  304. status->sspp[SSPP_VIG2] = (value >> 8) & 0x1;
  305. status->sspp[SSPP_VIG3] = (value >> 10) & 0x1;
  306. status->sspp[SSPP_RGB0] = (value >> 12) & 0x1;
  307. status->sspp[SSPP_RGB1] = (value >> 14) & 0x1;
  308. status->sspp[SSPP_RGB2] = (value >> 16) & 0x1;
  309. status->sspp[SSPP_RGB3] = (value >> 18) & 0x1;
  310. status->sspp[SSPP_DMA0] = (value >> 20) & 0x1;
  311. status->sspp[SSPP_DMA1] = (value >> 22) & 0x1;
  312. status->sspp[SSPP_DMA2] = (value >> 28) & 0x1;
  313. status->sspp[SSPP_DMA3] = (value >> 30) & 0x1;
  314. status->sspp[SSPP_CURSOR0] = (value >> 24) & 0x1;
  315. status->sspp[SSPP_CURSOR1] = (value >> 26) & 0x1;
  316. status->wb[WB_0] = 0;
  317. status->wb[WB_1] = 0;
  318. status->wb[WB_2] = (value >> 2) & 0x1;
  319. status->wb[WB_3] = 0;
  320. }
  321. static void sde_hw_setup_dce(struct sde_hw_mdp *mdp, u32 dce_sel)
  322. {
  323. struct sde_hw_blk_reg_map *c;
  324. if (!mdp)
  325. return;
  326. c = &mdp->hw;
  327. SDE_REG_WRITE(c, DCE_SEL, dce_sel);
  328. }
  329. void sde_hw_reset_ubwc(struct sde_hw_mdp *mdp, struct sde_mdss_cfg *m)
  330. {
  331. struct sde_hw_blk_reg_map c;
  332. u32 ubwc_version;
  333. if (!mdp || !m)
  334. return;
  335. /* force blk offset to zero to access beginning of register region */
  336. c = mdp->hw;
  337. c.blk_off = 0x0;
  338. ubwc_version = SDE_REG_READ(&c, UBWC_DEC_HW_VERSION);
  339. if (IS_UBWC_40_SUPPORTED(ubwc_version)) {
  340. u32 ver = 2;
  341. u32 mode = 1;
  342. u32 reg = (m->mdp[0].ubwc_swizzle & 0x7) |
  343. ((m->mdp[0].ubwc_static & 0x1) << 3) |
  344. ((m->mdp[0].highest_bank_bit & 0x7) << 4) |
  345. ((m->macrotile_mode & 0x1) << 12);
  346. if (IS_UBWC_30_SUPPORTED(m->ubwc_version)) {
  347. ver = 1;
  348. mode = 0;
  349. }
  350. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  351. SDE_REG_WRITE(&c, UBWC_CTRL_2, ver);
  352. SDE_REG_WRITE(&c, UBWC_PREDICTION_MODE, mode);
  353. } else if (IS_UBWC_20_SUPPORTED(ubwc_version)) {
  354. SDE_REG_WRITE(&c, UBWC_STATIC, m->mdp[0].ubwc_static);
  355. } else if (IS_UBWC_30_SUPPORTED(ubwc_version)) {
  356. u32 reg = m->mdp[0].ubwc_static |
  357. (m->mdp[0].ubwc_swizzle & 0x1) |
  358. ((m->mdp[0].highest_bank_bit & 0x3) << 4) |
  359. ((m->macrotile_mode & 0x1) << 12);
  360. if (IS_UBWC_30_SUPPORTED(m->ubwc_version))
  361. reg |= BIT(10);
  362. if (IS_UBWC_10_SUPPORTED(m->ubwc_version))
  363. reg |= BIT(8);
  364. SDE_REG_WRITE(&c, UBWC_STATIC, reg);
  365. } else {
  366. SDE_ERROR("Unsupported UBWC version 0x%08x\n", ubwc_version);
  367. }
  368. }
  369. static void sde_hw_intf_audio_select(struct sde_hw_mdp *mdp)
  370. {
  371. struct sde_hw_blk_reg_map *c;
  372. if (!mdp)
  373. return;
  374. c = &mdp->hw;
  375. SDE_REG_WRITE(c, HDMI_DP_CORE_SELECT, 0x1);
  376. }
  377. static void sde_hw_mdp_events(struct sde_hw_mdp *mdp, bool enable)
  378. {
  379. struct sde_hw_blk_reg_map *c;
  380. if (!mdp)
  381. return;
  382. c = &mdp->hw;
  383. SDE_REG_WRITE(c, HW_EVENTS_CTL, enable);
  384. }
  385. struct sde_hw_sid *sde_hw_sid_init(void __iomem *addr,
  386. u32 sid_len, const struct sde_mdss_cfg *m)
  387. {
  388. struct sde_hw_sid *c;
  389. c = kzalloc(sizeof(*c), GFP_KERNEL);
  390. if (!c)
  391. return ERR_PTR(-ENOMEM);
  392. c->hw.base_off = addr;
  393. c->hw.blk_off = 0;
  394. c->hw.length = sid_len;
  395. c->hw.hwversion = m->hwversion;
  396. c->hw.log_mask = SDE_DBG_MASK_SID;
  397. return c;
  398. }
  399. void sde_hw_set_rotator_sid(struct sde_hw_sid *sid)
  400. {
  401. if (!sid)
  402. return;
  403. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_RD, ROT_SID_ID_VAL);
  404. SDE_REG_WRITE(&sid->hw, MDP_SID_ROT_WR, ROT_SID_ID_VAL);
  405. }
  406. void sde_hw_set_sspp_sid(struct sde_hw_sid *sid, u32 pipe, u32 vm)
  407. {
  408. u32 offset = 0;
  409. if (!sid)
  410. return;
  411. if ((pipe >= SSPP_VIG0) && (pipe <= SSPP_VIG3))
  412. offset = MDP_SID_VIG0 + ((pipe - SSPP_VIG0) * 4);
  413. else if ((pipe >= SSPP_DMA0) && (pipe <= SSPP_DMA3))
  414. offset = MDP_SID_DMA0 + ((pipe - SSPP_DMA0) * 4);
  415. else
  416. return;
  417. SDE_REG_WRITE(&sid->hw, offset, vm << 2);
  418. }
  419. void sde_hw_set_lutdma_sid(struct sde_hw_sid *sid, u32 vm)
  420. {
  421. if (!sid)
  422. return;
  423. SDE_REG_WRITE(&sid->hw, MDP_SID_XIN7, vm << 2);
  424. }
  425. static void sde_hw_program_cwb_ppb_ctrl(struct sde_hw_mdp *mdp,
  426. bool dual, bool dspp_out)
  427. {
  428. u32 value = dspp_out ? 0x4 : 0x0;
  429. SDE_REG_WRITE(&mdp->hw, PPB2_CNTL, value);
  430. if (dual) {
  431. value |= 0x1;
  432. SDE_REG_WRITE(&mdp->hw, PPB3_CNTL, value);
  433. }
  434. }
  435. static void sde_hw_set_hdr_plus_metadata(struct sde_hw_mdp *mdp,
  436. u8 *payload, u32 len, u32 stream_id)
  437. {
  438. u32 i, b;
  439. u32 length = len - 1;
  440. u32 d_offset, nb_offset, data = 0;
  441. const u32 dword_size = sizeof(u32);
  442. bool is_4k_aligned = mdp->caps->features &
  443. BIT(SDE_MDP_DHDR_MEMPOOL_4K);
  444. if (!payload || !len) {
  445. SDE_ERROR("invalid payload with length: %d\n", len);
  446. return;
  447. }
  448. if (stream_id) {
  449. if (is_4k_aligned) {
  450. d_offset = DP_DHDR_MEM_POOL_1_DATA_4K;
  451. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES_4K;
  452. } else {
  453. d_offset = DP_DHDR_MEM_POOL_1_DATA;
  454. nb_offset = DP_DHDR_MEM_POOL_1_NUM_BYTES;
  455. }
  456. } else {
  457. if (is_4k_aligned) {
  458. d_offset = DP_DHDR_MEM_POOL_0_DATA_4K;
  459. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES_4K;
  460. } else {
  461. d_offset = DP_DHDR_MEM_POOL_0_DATA;
  462. nb_offset = DP_DHDR_MEM_POOL_0_NUM_BYTES;
  463. }
  464. }
  465. /* payload[0] is set in VSCEXT header byte 1, skip programming here */
  466. SDE_REG_WRITE(&mdp->hw, nb_offset, length);
  467. for (i = 1; i < len; i += dword_size) {
  468. for (b = 0; (i + b) < len && b < dword_size; b++)
  469. data |= payload[i + b] << (8 * b);
  470. SDE_REG_WRITE(&mdp->hw, d_offset, data);
  471. data = 0;
  472. }
  473. }
  474. static u32 sde_hw_get_autorefresh_status(struct sde_hw_mdp *mdp, u32 intf_idx)
  475. {
  476. struct sde_hw_blk_reg_map *c;
  477. u32 autorefresh_status;
  478. u32 blk_id = (intf_idx == INTF_2) ? 65 : 64;
  479. if (!mdp)
  480. return 0;
  481. c = &mdp->hw;
  482. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL,
  483. TEST_MASK(blk_id, AUTOREFRESH_TEST_POINT));
  484. SDE_REG_WRITE(&mdp->hw, MDP_DSPP_DBGBUS_CTRL, 0x7001);
  485. wmb(); /* make sure test bits were written */
  486. autorefresh_status = SDE_REG_READ(&mdp->hw, MDP_DSPP_DBGBUS_STATUS);
  487. SDE_REG_WRITE(&mdp->hw, MDP_PERIPH_DBGBUS_CTRL, 0x0);
  488. return autorefresh_status;
  489. }
  490. static void _setup_mdp_ops(struct sde_hw_mdp_ops *ops,
  491. unsigned long cap)
  492. {
  493. ops->setup_split_pipe = sde_hw_setup_split_pipe;
  494. ops->setup_pp_split = sde_hw_setup_pp_split;
  495. ops->setup_cdm_output = sde_hw_setup_cdm_output;
  496. ops->setup_clk_force_ctrl = sde_hw_setup_clk_force_ctrl;
  497. ops->get_clk_ctrl_status = sde_hw_get_clk_ctrl_status;
  498. ops->get_danger_status = sde_hw_get_danger_status;
  499. ops->set_cwb_ppb_cntl = sde_hw_program_cwb_ppb_ctrl;
  500. ops->get_safe_status = sde_hw_get_safe_status;
  501. ops->get_split_flush_status = sde_hw_get_split_flush;
  502. ops->setup_dce = sde_hw_setup_dce;
  503. ops->reset_ubwc = sde_hw_reset_ubwc;
  504. ops->intf_audio_select = sde_hw_intf_audio_select;
  505. ops->set_mdp_hw_events = sde_hw_mdp_events;
  506. if (cap & BIT(SDE_MDP_VSYNC_SEL))
  507. ops->setup_vsync_source = sde_hw_setup_vsync_source;
  508. else if (cap & BIT(SDE_MDP_WD_TIMER))
  509. ops->setup_vsync_source = sde_hw_setup_vsync_source_v1;
  510. if (cap & BIT(SDE_MDP_DHDR_MEMPOOL_4K) ||
  511. cap & BIT(SDE_MDP_DHDR_MEMPOOL))
  512. ops->set_hdr_plus_metadata = sde_hw_set_hdr_plus_metadata;
  513. ops->get_autorefresh_status = sde_hw_get_autorefresh_status;
  514. }
  515. static const struct sde_mdp_cfg *_top_offset(enum sde_mdp mdp,
  516. const struct sde_mdss_cfg *m,
  517. void __iomem *addr,
  518. struct sde_hw_blk_reg_map *b)
  519. {
  520. int i;
  521. if (!m || !addr || !b)
  522. return ERR_PTR(-EINVAL);
  523. for (i = 0; i < m->mdp_count; i++) {
  524. if (mdp == m->mdp[i].id) {
  525. b->base_off = addr;
  526. b->blk_off = m->mdp[i].base;
  527. b->length = m->mdp[i].len;
  528. b->hwversion = m->hwversion;
  529. b->log_mask = SDE_DBG_MASK_TOP;
  530. return &m->mdp[i];
  531. }
  532. }
  533. return ERR_PTR(-EINVAL);
  534. }
  535. static struct sde_hw_blk_ops sde_hw_ops = {
  536. .start = NULL,
  537. .stop = NULL,
  538. };
  539. struct sde_hw_mdp *sde_hw_mdptop_init(enum sde_mdp idx,
  540. void __iomem *addr,
  541. const struct sde_mdss_cfg *m)
  542. {
  543. struct sde_hw_mdp *mdp;
  544. const struct sde_mdp_cfg *cfg;
  545. int rc;
  546. if (!addr || !m)
  547. return ERR_PTR(-EINVAL);
  548. mdp = kzalloc(sizeof(*mdp), GFP_KERNEL);
  549. if (!mdp)
  550. return ERR_PTR(-ENOMEM);
  551. cfg = _top_offset(idx, m, addr, &mdp->hw);
  552. if (IS_ERR_OR_NULL(cfg)) {
  553. kfree(mdp);
  554. return ERR_PTR(-EINVAL);
  555. }
  556. /*
  557. * Assign ops
  558. */
  559. mdp->idx = idx;
  560. mdp->caps = cfg;
  561. _setup_mdp_ops(&mdp->ops, mdp->caps->features);
  562. rc = sde_hw_blk_init(&mdp->base, SDE_HW_BLK_TOP, idx, &sde_hw_ops);
  563. if (rc) {
  564. SDE_ERROR("failed to init hw blk %d\n", rc);
  565. goto blk_init_error;
  566. }
  567. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, "mdss_hw", 0,
  568. m->mdss_hw_block_size, 0);
  569. if (test_bit(SDE_MDP_PERIPH_TOP_0_REMOVED, &m->mdp[0].features)) {
  570. char name[SDE_HW_BLK_NAME_LEN];
  571. snprintf(name, sizeof(name), "%s_1", cfg->name);
  572. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name, mdp->hw.blk_off,
  573. mdp->hw.blk_off + MDP_PERIPH_TOP0, mdp->hw.xin_id);
  574. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, name, mdp->hw.blk_off + MDP_SSPP_TOP2,
  575. mdp->hw.blk_off + mdp->hw.length, mdp->hw.xin_id);
  576. } else {
  577. sde_dbg_reg_register_dump_range(SDE_DBG_NAME, cfg->name,
  578. mdp->hw.blk_off, mdp->hw.blk_off + mdp->hw.length,
  579. mdp->hw.xin_id);
  580. }
  581. sde_dbg_set_sde_top_offset(mdp->hw.blk_off);
  582. return mdp;
  583. blk_init_error:
  584. kfree(mdp);
  585. return ERR_PTR(rc);
  586. }
  587. void sde_hw_mdp_destroy(struct sde_hw_mdp *mdp)
  588. {
  589. if (mdp)
  590. sde_hw_blk_destroy(&mdp->base);
  591. kfree(mdp);
  592. }