sde_hw_rc.c 25 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2020, The Linux Foundation. All rights reserved.
  4. */
  5. #include <drm/msm_drm_pp.h>
  6. #include "sde_kms.h"
  7. #include "sde_reg_dma.h"
  8. #include "sde_hw_rc.h"
  9. #include "sde_hw_catalog.h"
  10. #include "sde_hw_util.h"
  11. #include "sde_hw_dspp.h"
  12. #include "sde_hw_reg_dma_v1_color_proc.h"
  13. /**
  14. * Hardware register set
  15. */
  16. #define SDE_HW_RC_REG0 0x00
  17. #define SDE_HW_RC_REG1 0x04
  18. #define SDE_HW_RC_REG2 0x08
  19. #define SDE_HW_RC_REG3 0x0C
  20. #define SDE_HW_RC_REG4 0x10
  21. #define SDE_HW_RC_REG5 0x14
  22. #define SDE_HW_RC_REG6 0x18
  23. #define SDE_HW_RC_REG7 0x1C
  24. #define SDE_HW_RC_REG8 0x20
  25. #define SDE_HW_RC_REG9 0x24
  26. #define SDE_HW_RC_REG10 0x28
  27. #define SDE_HW_RC_REG11 0x2C
  28. #define SDE_HW_RC_REG12 0x30
  29. #define SDE_HW_RC_REG13 0x34
  30. #define SDE_HW_RC_DATA_REG_SIZE 18
  31. #define SDE_HW_RC_SKIP_DATA_PROG 0x1
  32. #define SDE_HW_RC_DISABLE_R1 0x01E
  33. #define SDE_HW_RC_DISABLE_R2 0x1E0
  34. #define SDE_HW_RC_PU_SKIP_OP 0x1
  35. /**
  36. * struct sde_hw_rc_state - rounded corner cached state per RC instance
  37. *
  38. * @last_rc_mask_cfg: cached value of most recent programmed mask.
  39. * @mask_programmed: true if mask was programmed at least once to RC hardware.
  40. * @last_roi_list: cached value of most recent processed list of ROIs.
  41. * @roi_programmed: true if list of ROIs were processed at least once.
  42. */
  43. struct sde_hw_rc_state {
  44. struct drm_msm_rc_mask_cfg *last_rc_mask_cfg;
  45. bool mask_programmed;
  46. struct msm_roi_list *last_roi_list;
  47. bool roi_programmed;
  48. };
  49. static struct sde_hw_rc_state rc_state[RC_MAX - RC_0] = {
  50. {
  51. .last_rc_mask_cfg = NULL,
  52. .last_roi_list = NULL,
  53. .mask_programmed = false,
  54. .roi_programmed = false,
  55. },
  56. {
  57. .last_rc_mask_cfg = NULL,
  58. .last_roi_list = NULL,
  59. .mask_programmed = false,
  60. .roi_programmed = false,
  61. },
  62. };
  63. #define RC_STATE(hw_dspp) rc_state[hw_dspp->cap->sblk->rc.idx]
  64. enum rc_param_r {
  65. RC_PARAM_R0 = 0x0,
  66. RC_PARAM_R1 = 0x1,
  67. RC_PARAM_R2 = 0x2,
  68. RC_PARAM_R1R2 = (RC_PARAM_R1 | RC_PARAM_R2),
  69. };
  70. enum rc_param_a {
  71. RC_PARAM_A0 = 0x2,
  72. RC_PARAM_A1 = 0x4,
  73. };
  74. enum rc_param_b {
  75. RC_PARAM_B0 = 0x0,
  76. RC_PARAM_B1 = 0x1,
  77. RC_PARAM_B2 = 0x2,
  78. RC_PARAM_B1B2 = (RC_PARAM_B1 | RC_PARAM_B2),
  79. };
  80. enum rc_param_c {
  81. RC_PARAM_C0 = (BIT(8)),
  82. RC_PARAM_C1 = (BIT(10)),
  83. RC_PARAM_C2 = (BIT(10) | BIT(11)),
  84. RC_PARAM_C3 = (BIT(8) | BIT(10)),
  85. RC_PARAM_C4 = (BIT(8) | BIT(9)),
  86. RC_PARAM_C5 = (BIT(8) | BIT(9) | BIT(10) | BIT(11)),
  87. };
  88. enum rc_merge_mode {
  89. RC_MERGE_SINGLE_PIPE = 0x0,
  90. RC_MERGE_DUAL_PIPE = 0x1
  91. };
  92. struct rc_config_table {
  93. enum rc_param_a param_a;
  94. enum rc_param_b param_b;
  95. enum rc_param_c param_c;
  96. enum rc_merge_mode merge_mode;
  97. enum rc_merge_mode merge_mode_en;
  98. };
  99. static struct rc_config_table config_table[] = {
  100. /* RC_PARAM_A0 configurations */
  101. {
  102. .param_a = RC_PARAM_A0,
  103. .param_b = RC_PARAM_B0,
  104. .param_c = RC_PARAM_C5,
  105. .merge_mode = RC_MERGE_SINGLE_PIPE,
  106. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  107. },
  108. {
  109. .param_a = RC_PARAM_A0,
  110. .param_b = RC_PARAM_B1B2,
  111. .param_c = RC_PARAM_C3,
  112. .merge_mode = RC_MERGE_SINGLE_PIPE,
  113. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  114. },
  115. {
  116. .param_a = RC_PARAM_A0,
  117. .param_b = RC_PARAM_B1,
  118. .param_c = RC_PARAM_C0,
  119. .merge_mode = RC_MERGE_SINGLE_PIPE,
  120. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  121. },
  122. {
  123. .param_a = RC_PARAM_A0,
  124. .param_b = RC_PARAM_B2,
  125. .param_c = RC_PARAM_C1,
  126. .merge_mode = RC_MERGE_SINGLE_PIPE,
  127. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  128. },
  129. {
  130. .param_a = RC_PARAM_A0,
  131. .param_b = RC_PARAM_B0,
  132. .param_c = RC_PARAM_C5,
  133. .merge_mode = RC_MERGE_DUAL_PIPE,
  134. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  135. },
  136. {
  137. .param_a = RC_PARAM_A0,
  138. .param_b = RC_PARAM_B1B2,
  139. .param_c = RC_PARAM_C3,
  140. .merge_mode = RC_MERGE_DUAL_PIPE,
  141. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  142. },
  143. {
  144. .param_a = RC_PARAM_A0,
  145. .param_b = RC_PARAM_B1,
  146. .param_c = RC_PARAM_C0,
  147. .merge_mode = RC_MERGE_DUAL_PIPE,
  148. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  149. },
  150. {
  151. .param_a = RC_PARAM_A0,
  152. .param_b = RC_PARAM_B2,
  153. .param_c = RC_PARAM_C1,
  154. .merge_mode = RC_MERGE_DUAL_PIPE,
  155. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  156. },
  157. /* RC_PARAM_A1 configurations */
  158. {
  159. .param_a = RC_PARAM_A1,
  160. .param_b = RC_PARAM_B0,
  161. .param_c = RC_PARAM_C5,
  162. .merge_mode = RC_MERGE_SINGLE_PIPE,
  163. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  164. },
  165. {
  166. .param_a = RC_PARAM_A1,
  167. .param_b = RC_PARAM_B1B2,
  168. .param_c = RC_PARAM_C5,
  169. .merge_mode = RC_MERGE_SINGLE_PIPE,
  170. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  171. },
  172. {
  173. .param_a = RC_PARAM_A1,
  174. .param_b = RC_PARAM_B1,
  175. .param_c = RC_PARAM_C4,
  176. .merge_mode = RC_MERGE_SINGLE_PIPE,
  177. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  178. },
  179. {
  180. .param_a = RC_PARAM_A1,
  181. .param_b = RC_PARAM_B2,
  182. .param_c = RC_PARAM_C2,
  183. .merge_mode = RC_MERGE_SINGLE_PIPE,
  184. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  185. },
  186. {
  187. .param_a = RC_PARAM_A1,
  188. .param_b = RC_PARAM_B0,
  189. .param_c = RC_PARAM_C5,
  190. .merge_mode = RC_MERGE_DUAL_PIPE,
  191. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  192. },
  193. {
  194. .param_a = RC_PARAM_A1,
  195. .param_b = RC_PARAM_B1B2,
  196. .param_c = RC_PARAM_C5,
  197. .merge_mode = RC_MERGE_DUAL_PIPE,
  198. .merge_mode_en = RC_MERGE_DUAL_PIPE,
  199. },
  200. {
  201. .param_a = RC_PARAM_A1,
  202. .param_b = RC_PARAM_B1,
  203. .param_c = RC_PARAM_C4,
  204. .merge_mode = RC_MERGE_DUAL_PIPE,
  205. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  206. },
  207. {
  208. .param_a = RC_PARAM_A1,
  209. .param_b = RC_PARAM_B2,
  210. .param_c = RC_PARAM_C2,
  211. .merge_mode = RC_MERGE_DUAL_PIPE,
  212. .merge_mode_en = RC_MERGE_SINGLE_PIPE,
  213. },
  214. };
  215. static inline void _sde_hw_rc_reg_write(
  216. struct sde_hw_dspp *hw_dspp,
  217. int offset,
  218. u32 value)
  219. {
  220. u32 address = hw_dspp->cap->sblk->rc.base + offset;
  221. SDE_DEBUG("rc:%u, address:0x%08X, value:0x%08X\n",
  222. hw_dspp->cap->sblk->rc.idx,
  223. hw_dspp->hw.blk_off + address, value);
  224. SDE_REG_WRITE(&hw_dspp->hw, address, value);
  225. }
  226. static int _sde_hw_rc_get_enable_bits(
  227. enum rc_param_a param_a,
  228. enum rc_param_b param_b,
  229. enum rc_param_c *param_c,
  230. u32 merge_mode,
  231. u32 *merge_mode_en)
  232. {
  233. int i = 0;
  234. if (!param_c || !merge_mode_en) {
  235. SDE_ERROR("invalid arguments\n");
  236. return -EINVAL;
  237. }
  238. for (i = 0; i < ARRAY_SIZE(config_table); i++) {
  239. if (merge_mode == config_table[i].merge_mode &&
  240. param_a == config_table[i].param_a &&
  241. param_b == config_table[i].param_b) {
  242. *param_c = config_table[i].param_c;
  243. *merge_mode_en = config_table[i].merge_mode_en;
  244. SDE_DEBUG("found param_c:0x%08X, merge_mode_en:%d\n",
  245. *param_c, *merge_mode_en);
  246. return 0;
  247. }
  248. }
  249. SDE_ERROR("configuration not supported");
  250. return -EINVAL;
  251. }
  252. static int _sde_hw_rc_get_merge_mode(
  253. const struct sde_hw_cp_cfg *hw_cfg,
  254. u32 *merge_mode)
  255. {
  256. int rc = 0;
  257. if (!hw_cfg || !merge_mode) {
  258. SDE_ERROR("invalid arguments\n");
  259. return -EINVAL;
  260. }
  261. if (hw_cfg->num_of_mixers == 1)
  262. *merge_mode = RC_MERGE_SINGLE_PIPE;
  263. else if (hw_cfg->num_of_mixers == 2)
  264. *merge_mode = RC_MERGE_DUAL_PIPE;
  265. else {
  266. SDE_ERROR("invalid number of mixers:%d\n",
  267. hw_cfg->num_of_mixers);
  268. return -EINVAL;
  269. }
  270. SDE_DEBUG("number mixers:%u, merge mode:%u\n",
  271. hw_cfg->num_of_mixers, *merge_mode);
  272. return rc;
  273. }
  274. static int _sde_hw_rc_get_ajusted_roi(
  275. const struct sde_hw_cp_cfg *hw_cfg,
  276. const struct sde_rect *pu_roi,
  277. struct sde_rect *rc_roi)
  278. {
  279. int rc = 0;
  280. if (!hw_cfg || !pu_roi || !rc_roi) {
  281. SDE_ERROR("invalid arguments\n");
  282. return -EINVAL;
  283. }
  284. /*when partial update is disabled, use full screen ROI*/
  285. if (pu_roi->w == 0 && pu_roi->h == 0) {
  286. rc_roi->x = pu_roi->x;
  287. rc_roi->y = pu_roi->y;
  288. rc_roi->w = hw_cfg->displayh;
  289. rc_roi->h = hw_cfg->displayv;
  290. } else {
  291. memcpy(rc_roi, pu_roi, sizeof(struct sde_rect));
  292. }
  293. SDE_DEBUG("displayh:%u, displayv:%u\n", hw_cfg->displayh,
  294. hw_cfg->displayv);
  295. SDE_DEBUG("pu_roi x:%u, y:%u, w:%u, h:%u\n", pu_roi->x, pu_roi->y,
  296. pu_roi->w, pu_roi->h);
  297. SDE_DEBUG("rc_roi x:%u, y:%u, w:%u, h:%u\n", rc_roi->x, rc_roi->y,
  298. rc_roi->w, rc_roi->h);
  299. return rc;
  300. }
  301. static int _sde_hw_rc_get_param_rb(
  302. const struct drm_msm_rc_mask_cfg *rc_mask_cfg,
  303. const struct sde_rect *rc_roi,
  304. enum rc_param_r *param_r,
  305. enum rc_param_b *param_b)
  306. {
  307. int rc = 0;
  308. int half_panel_x = 0, half_panel_w = 0;
  309. int cfg_param_01 = 0, cfg_param_02 = 0;
  310. int x1 = 0, x2 = 0, y1 = 0, y2 = 0;
  311. if (!rc_mask_cfg || !rc_roi || !param_r || !param_b) {
  312. SDE_ERROR("invalid arguments\n");
  313. return -EINVAL;
  314. }
  315. if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A1)
  316. half_panel_w = rc_mask_cfg->cfg_param_04[0] +
  317. rc_mask_cfg->cfg_param_04[1];
  318. else if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A0)
  319. half_panel_w = rc_mask_cfg->cfg_param_04[0];
  320. else {
  321. SDE_ERROR("invalid cfg_param_03:%u\n",
  322. rc_mask_cfg->cfg_param_03);
  323. return -EINVAL;
  324. }
  325. cfg_param_01 = rc_mask_cfg->cfg_param_01;
  326. cfg_param_02 = rc_mask_cfg->cfg_param_02;
  327. x1 = rc_roi->x;
  328. x2 = rc_roi->x + rc_roi->w - 1;
  329. y1 = rc_roi->y;
  330. y2 = rc_roi->y + rc_roi->h - 1;
  331. half_panel_x = half_panel_w - 1;
  332. SDE_DEBUG("x1:%u y1:%u x2:%u y2:%u\n", x1, y1, x2, y2);
  333. SDE_DEBUG("cfg_param_01:%u cfg_param_02:%u half_panel_x:%u",
  334. cfg_param_01, cfg_param_02, half_panel_x);
  335. SDE_DEBUG("param_r:0x%08X param_b:0x%08X\n",
  336. *param_r, *param_b);
  337. if (x1 < 0 || x2 < 0 || y1 < 0 || y2 < 0 || half_panel_x < 0 ||
  338. x1 >= x2 || y1 >= y2) {
  339. SDE_ERROR("invalid coordinates\n");
  340. return -EINVAL;
  341. }
  342. if (y1 <= cfg_param_01) {
  343. *param_r |= RC_PARAM_R1;
  344. if (x1 <= half_panel_x && x2 <= half_panel_x)
  345. *param_b |= RC_PARAM_B1;
  346. else if (x1 > half_panel_x && x2 > half_panel_x)
  347. *param_b |= RC_PARAM_B2;
  348. else
  349. *param_b |= RC_PARAM_B1B2;
  350. }
  351. if (y2 >= cfg_param_02) {
  352. *param_r |= RC_PARAM_R2;
  353. if (x1 <= half_panel_x && x2 <= half_panel_x)
  354. *param_b |= RC_PARAM_B1;
  355. else if (x1 > half_panel_x && x2 > half_panel_x)
  356. *param_b |= RC_PARAM_B2;
  357. else
  358. *param_b |= RC_PARAM_B1B2;
  359. }
  360. return rc;
  361. }
  362. static int _sde_hw_rc_program_enable_bits(
  363. struct sde_hw_dspp *hw_dspp,
  364. struct drm_msm_rc_mask_cfg *rc_mask_cfg,
  365. enum rc_param_a param_a,
  366. enum rc_param_b param_b,
  367. int merge_mode,
  368. struct sde_rect *rc_roi)
  369. {
  370. int rc = 0;
  371. u32 val = 0, param_c = 0, rc_merge_mode = 0, ystart = 0;
  372. u64 flags = 0;
  373. bool r1_enable = false, r2_enable = false;
  374. if (!hw_dspp || !rc_mask_cfg || !rc_roi) {
  375. SDE_ERROR("invalid arguments\n");
  376. return -EINVAL;
  377. }
  378. rc = _sde_hw_rc_get_enable_bits(param_a, param_b, &param_c,
  379. merge_mode, &rc_merge_mode);
  380. if (rc) {
  381. SDE_ERROR("invalid enable bits, rc:%d\n", rc);
  382. return rc;
  383. }
  384. flags = rc_mask_cfg->flags;
  385. r1_enable = ((flags & SDE_HW_RC_DISABLE_R1) == SDE_HW_RC_DISABLE_R1) ?
  386. false : true;
  387. r2_enable = ((flags & SDE_HW_RC_DISABLE_R2) == SDE_HW_RC_DISABLE_R2) ?
  388. false : true;
  389. if (r1_enable) {
  390. val |= BIT(0);
  391. SDE_DEBUG("enable R1\n");
  392. } else {
  393. SDE_DEBUG("disable R1\n");
  394. }
  395. if (r2_enable) {
  396. val |= BIT(4);
  397. SDE_DEBUG("enable R2\n");
  398. } else {
  399. SDE_DEBUG("disable R2\n");
  400. }
  401. /*corner case for partial update in R2 region*/
  402. if (!r1_enable && r2_enable) {
  403. ystart = rc_roi->y;
  404. SDE_DEBUG("set partial update ystart:%u\n", ystart);
  405. }
  406. val |= param_c;
  407. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG1, val);
  408. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG13, ystart);
  409. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG9, rc_merge_mode);
  410. return rc;
  411. }
  412. static int _sde_hw_rc_program_roi(
  413. struct sde_hw_dspp *hw_dspp,
  414. struct drm_msm_rc_mask_cfg *rc_mask_cfg,
  415. int merge_mode,
  416. struct sde_rect *rc_roi)
  417. {
  418. int rc = 0;
  419. u32 val2 = 0, val3 = 0, val4 = 0;
  420. enum rc_param_r param_r = RC_PARAM_R0;
  421. enum rc_param_a param_a = RC_PARAM_A0;
  422. enum rc_param_b param_b = RC_PARAM_B0;
  423. if (!hw_dspp || !rc_mask_cfg || !rc_roi) {
  424. SDE_ERROR("invalid arguments\n");
  425. return -EINVAL;
  426. }
  427. rc = _sde_hw_rc_get_param_rb(rc_mask_cfg, rc_roi, &param_r,
  428. &param_b);
  429. if (rc) {
  430. SDE_ERROR("invalid rc roi, rc:%d\n", rc);
  431. return rc;
  432. }
  433. param_a = rc_mask_cfg->cfg_param_03;
  434. rc = _sde_hw_rc_program_enable_bits(hw_dspp, rc_mask_cfg,
  435. param_a, param_b, merge_mode, rc_roi);
  436. if (rc) {
  437. SDE_ERROR("failed to program enable bits, rc:%d\n", rc);
  438. return rc;
  439. }
  440. val2 = ((rc_mask_cfg->cfg_param_01 & 0x0000FFFF) |
  441. ((rc_mask_cfg->cfg_param_02 << 16) & 0xFFFF0000));
  442. if (param_a == RC_PARAM_A1) {
  443. val3 = (rc_mask_cfg->cfg_param_04[0] |
  444. (rc_mask_cfg->cfg_param_04[1] << 16));
  445. val4 = (rc_mask_cfg->cfg_param_04[2] |
  446. (rc_mask_cfg->cfg_param_04[3] << 16));
  447. } else if (param_a == RC_PARAM_A0) {
  448. val3 = (rc_mask_cfg->cfg_param_04[0]);
  449. val4 = (rc_mask_cfg->cfg_param_04[1]);
  450. }
  451. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG2, val2);
  452. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG3, val3);
  453. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG4, val4);
  454. return 0;
  455. }
  456. static int _sde_hw_rc_program_data_offset(
  457. struct sde_hw_dspp *hw_dspp,
  458. struct drm_msm_rc_mask_cfg *rc_mask_cfg)
  459. {
  460. int rc = 0;
  461. u32 val5 = 0, val6 = 0, val7 = 0, val8 = 0;
  462. u32 cfg_param_07;
  463. if (!hw_dspp || !rc_mask_cfg) {
  464. SDE_ERROR("invalid arguments\n");
  465. return -EINVAL;
  466. }
  467. cfg_param_07 = rc_mask_cfg->cfg_param_07;
  468. if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A1) {
  469. val5 = ((rc_mask_cfg->cfg_param_05[0] + cfg_param_07) |
  470. ((rc_mask_cfg->cfg_param_05[1] + cfg_param_07)
  471. << 16));
  472. val6 = ((rc_mask_cfg->cfg_param_05[2] + cfg_param_07)|
  473. ((rc_mask_cfg->cfg_param_05[3] + cfg_param_07)
  474. << 16));
  475. val7 = ((rc_mask_cfg->cfg_param_06[0] + cfg_param_07) |
  476. ((rc_mask_cfg->cfg_param_06[1] + cfg_param_07)
  477. << 16));
  478. val8 = ((rc_mask_cfg->cfg_param_06[2] + cfg_param_07) |
  479. ((rc_mask_cfg->cfg_param_06[3] + cfg_param_07)
  480. << 16));
  481. } else if (rc_mask_cfg->cfg_param_03 == RC_PARAM_A0) {
  482. val5 = (rc_mask_cfg->cfg_param_05[0] + cfg_param_07);
  483. val6 = (rc_mask_cfg->cfg_param_05[1] + cfg_param_07);
  484. val7 = (rc_mask_cfg->cfg_param_06[0] + cfg_param_07);
  485. val8 = (rc_mask_cfg->cfg_param_06[1] + cfg_param_07);
  486. }
  487. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG5, val5);
  488. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG6, val6);
  489. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG7, val7);
  490. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG8, val8);
  491. return rc;
  492. }
  493. static int sde_hw_rc_check_mask_cfg(
  494. struct sde_hw_dspp *hw_dspp,
  495. struct sde_hw_cp_cfg *hw_cfg,
  496. struct drm_msm_rc_mask_cfg *rc_mask_cfg)
  497. {
  498. int rc = 0;
  499. u32 i = 0;
  500. u32 half_panel_width;
  501. u64 flags;
  502. u32 cfg_param_01, cfg_param_02, cfg_param_03;
  503. u32 cfg_param_07, cfg_param_08;
  504. u32 *cfg_param_04, *cfg_param_05, *cfg_param_06;
  505. bool r1_enable, r2_enable;
  506. if (!hw_dspp || !hw_cfg || !rc_mask_cfg) {
  507. SDE_ERROR("invalid arguments\n");
  508. return -EINVAL;
  509. }
  510. flags = rc_mask_cfg->flags;
  511. cfg_param_01 = rc_mask_cfg->cfg_param_01;
  512. cfg_param_02 = rc_mask_cfg->cfg_param_02;
  513. cfg_param_03 = rc_mask_cfg->cfg_param_03;
  514. cfg_param_04 = rc_mask_cfg->cfg_param_04;
  515. cfg_param_05 = rc_mask_cfg->cfg_param_05;
  516. cfg_param_06 = rc_mask_cfg->cfg_param_06;
  517. cfg_param_07 = rc_mask_cfg->cfg_param_07;
  518. cfg_param_08 = rc_mask_cfg->cfg_param_08;
  519. r1_enable = ((flags & SDE_HW_RC_DISABLE_R1) == SDE_HW_RC_DISABLE_R1) ?
  520. false : true;
  521. r2_enable = ((flags & SDE_HW_RC_DISABLE_R2) == SDE_HW_RC_DISABLE_R2) ?
  522. false : true;
  523. if (cfg_param_07 > hw_dspp->cap->sblk->rc.mem_total_size) {
  524. SDE_ERROR("invalid cfg_param_07:%d\n", cfg_param_07);
  525. return -EINVAL;
  526. }
  527. if (cfg_param_08 > RC_DATA_SIZE_MAX) {
  528. SDE_ERROR("invalid cfg_param_08:%d\n", cfg_param_08);
  529. return -EINVAL;
  530. }
  531. if ((cfg_param_07 + cfg_param_08) >
  532. hw_dspp->cap->sblk->rc.mem_total_size) {
  533. SDE_ERROR("invalid cfg_param_08:%d, cfg_param_07:%d, max:%u\n",
  534. cfg_param_08, cfg_param_07,
  535. hw_dspp->cap->sblk->rc.mem_total_size);
  536. return -EINVAL;
  537. }
  538. if (!(cfg_param_03 == RC_PARAM_A1 || cfg_param_03 == RC_PARAM_A0)) {
  539. SDE_ERROR("invalid cfg_param_03:%d\n", cfg_param_03);
  540. return -EINVAL;
  541. }
  542. for (i = 0; i < cfg_param_03; i++) {
  543. if (cfg_param_04[i] < 4) {
  544. SDE_ERROR("invalid cfg_param_04[%d]:%d\n", i,
  545. cfg_param_04[i]);
  546. return -EINVAL;
  547. }
  548. }
  549. half_panel_width = hw_cfg->displayh / cfg_param_03 * 2;
  550. for (i = 0; i < cfg_param_03; i += 2) {
  551. if (cfg_param_04[i] + cfg_param_04[i+1] != half_panel_width) {
  552. SDE_ERROR("invalid ratio [%d]:%d, [%d]:%d, %d\n",
  553. i, cfg_param_04[i], i+1,
  554. cfg_param_04[i+1], half_panel_width);
  555. return -EINVAL;
  556. }
  557. }
  558. if (r1_enable && r2_enable) {
  559. if (cfg_param_01 > cfg_param_02) {
  560. SDE_ERROR("invalid cfg_param_01:%d, cfg_param_02:%d\n",
  561. cfg_param_01, cfg_param_02);
  562. return -EINVAL;
  563. }
  564. } else {
  565. SDE_DEBUG("R1 or R2 disabled, skip overlap check");
  566. }
  567. if (r1_enable) {
  568. if (cfg_param_01 < 1) {
  569. SDE_ERROR("invalid min cfg_param_01:%d\n",
  570. cfg_param_01);
  571. return -EINVAL;
  572. }
  573. for (i = 0; i < cfg_param_03 - 1; i++) {
  574. if (cfg_param_05[i] >= cfg_param_05[i+1]) {
  575. SDE_ERROR("invalid cfg_param_05 %d, %d\n",
  576. cfg_param_05[i],
  577. cfg_param_05[i+1]);
  578. return -EINVAL;
  579. }
  580. }
  581. for (i = 0; i < cfg_param_03; i++) {
  582. if (cfg_param_05[i] > RC_DATA_SIZE_MAX) {
  583. SDE_ERROR("invalid cfg_param_05[%d]:%d\n", i,
  584. cfg_param_05[i]);
  585. return -EINVAL;
  586. }
  587. }
  588. } else {
  589. SDE_DEBUG("R1 is disabled, skip parameter checks\n");
  590. }
  591. if (r2_enable) {
  592. if ((hw_cfg->displayv - cfg_param_02) < 1) {
  593. SDE_ERROR("invalid max cfg_param_02:%d\n",
  594. cfg_param_02);
  595. return -EINVAL;
  596. }
  597. for (i = 0; i < cfg_param_03 - 1; i++) {
  598. if (cfg_param_06[i] >= cfg_param_06[i+1]) {
  599. SDE_ERROR("invalid cfg_param_06 %d, %d\n",
  600. cfg_param_06[i],
  601. cfg_param_06[i+1]);
  602. return -EINVAL;
  603. }
  604. }
  605. for (i = 0; i < cfg_param_03; i++) {
  606. if (cfg_param_06[i] > RC_DATA_SIZE_MAX) {
  607. SDE_ERROR("invalid cfg_param_06[%d]:%d\n", i,
  608. cfg_param_06[i]);
  609. return -EINVAL;
  610. }
  611. }
  612. } else {
  613. SDE_DEBUG("R2 is disabled, skip parameter checks\n");
  614. }
  615. return rc;
  616. }
  617. int sde_hw_rc_check_mask(struct sde_hw_dspp *hw_dspp, void *cfg)
  618. {
  619. int rc = 0;
  620. struct sde_hw_cp_cfg *hw_cfg = cfg;
  621. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  622. if (!hw_dspp || !hw_cfg) {
  623. SDE_ERROR("invalid arguments\n");
  624. return -EINVAL;
  625. }
  626. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  627. SDE_DEBUG("rc feature disabled, skip mask checks\n");
  628. return 0;
  629. }
  630. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  631. !hw_cfg->payload) {
  632. SDE_ERROR("invalid payload\n");
  633. return -EINVAL;
  634. }
  635. rc_mask_cfg = hw_cfg->payload;
  636. if (hw_cfg->num_of_mixers != 1 && hw_cfg->num_of_mixers != 2) {
  637. SDE_ERROR("invalid number of mixers:%d\n",
  638. hw_cfg->num_of_mixers);
  639. return -EINVAL;
  640. }
  641. rc = sde_hw_rc_check_mask_cfg(hw_dspp, hw_cfg, rc_mask_cfg);
  642. if (rc) {
  643. SDE_ERROR("invalid rc mask configuration, rc:%d\n", rc);
  644. return rc;
  645. }
  646. return 0;
  647. }
  648. int sde_hw_rc_check_pu_roi(struct sde_hw_dspp *hw_dspp, void *cfg)
  649. {
  650. int rc = 0;
  651. struct sde_hw_cp_cfg *hw_cfg = cfg;
  652. struct msm_roi_list *roi_list;
  653. struct sde_rect rc_roi, merged_roi;
  654. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  655. bool mask_programmed = false;
  656. enum rc_param_r param_r = RC_PARAM_R0;
  657. enum rc_param_b param_b = RC_PARAM_B0;
  658. if (!hw_dspp || !hw_cfg) {
  659. SDE_ERROR("invalid arguments\n");
  660. return -EINVAL;
  661. }
  662. if (hw_cfg->len != sizeof(struct sde_drm_roi_v1)) {
  663. SDE_ERROR("invalid payload size\n");
  664. return -EINVAL;
  665. }
  666. rc_mask_cfg = RC_STATE(hw_dspp).last_rc_mask_cfg;
  667. mask_programmed = RC_STATE(hw_dspp).mask_programmed;
  668. /* early return when there is no mask in memory */
  669. if (!mask_programmed || !rc_mask_cfg) {
  670. SDE_DEBUG("no previous rc mask programmed\n");
  671. return SDE_HW_RC_PU_SKIP_OP;
  672. }
  673. rc = sde_hw_rc_check_mask_cfg(hw_dspp, hw_cfg, rc_mask_cfg);
  674. if (rc) {
  675. SDE_ERROR("invalid rc mask configuration, rc:%d\n", rc);
  676. return rc;
  677. }
  678. roi_list = hw_cfg->payload;
  679. sde_kms_rect_merge_rectangles(roi_list, &merged_roi);
  680. rc = _sde_hw_rc_get_ajusted_roi(hw_cfg, &merged_roi, &rc_roi);
  681. if (rc) {
  682. SDE_ERROR("failed to get adjusted roi, rc:%d\n", rc);
  683. return rc;
  684. }
  685. rc = _sde_hw_rc_get_param_rb(rc_mask_cfg, &rc_roi,
  686. &param_r, &param_b);
  687. if (rc) {
  688. SDE_ERROR("invalid rc roi, rc:%d\n", rc);
  689. return rc;
  690. }
  691. return 0;
  692. }
  693. int sde_hw_rc_setup_pu_roi(struct sde_hw_dspp *hw_dspp, void *cfg)
  694. {
  695. int rc = 0;
  696. struct sde_hw_cp_cfg *hw_cfg = cfg;
  697. struct msm_roi_list *roi_list;
  698. struct sde_rect rc_roi, merged_roi;
  699. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  700. enum rc_param_r param_r = RC_PARAM_R0;
  701. enum rc_param_a param_a = RC_PARAM_A0;
  702. enum rc_param_b param_b = RC_PARAM_B0;
  703. u32 merge_mode = 0;
  704. bool mask_programmed = false;
  705. if (!hw_dspp || !hw_cfg) {
  706. SDE_ERROR("invalid arguments\n");
  707. return -EINVAL;
  708. }
  709. if (hw_cfg->len != sizeof(struct sde_drm_roi_v1)) {
  710. SDE_ERROR("invalid payload size\n");
  711. return -EINVAL;
  712. }
  713. rc_mask_cfg = RC_STATE(hw_dspp).last_rc_mask_cfg;
  714. mask_programmed = RC_STATE(hw_dspp).mask_programmed;
  715. /* early return when there is no mask in memory */
  716. if (!mask_programmed || !rc_mask_cfg) {
  717. SDE_DEBUG("no previous rc mask programmed\n");
  718. return SDE_HW_RC_PU_SKIP_OP;
  719. }
  720. roi_list = hw_cfg->payload;
  721. sde_kms_rect_merge_rectangles(roi_list, &merged_roi);
  722. rc = _sde_hw_rc_get_ajusted_roi(hw_cfg, &merged_roi, &rc_roi);
  723. if (rc) {
  724. SDE_ERROR("failed to get adjusted roi, rc:%d\n", rc);
  725. return rc;
  726. }
  727. rc = _sde_hw_rc_get_merge_mode(hw_cfg, &merge_mode);
  728. if (rc) {
  729. SDE_ERROR("invalid merge_mode, rc:%d\n");
  730. return rc;
  731. }
  732. rc = _sde_hw_rc_get_param_rb(rc_mask_cfg, &rc_roi, &param_r,
  733. &param_b);
  734. if (rc) {
  735. SDE_ERROR("invalid roi, rc:%d\n", rc);
  736. return rc;
  737. }
  738. param_a = rc_mask_cfg->cfg_param_03;
  739. rc = _sde_hw_rc_program_enable_bits(hw_dspp, rc_mask_cfg,
  740. param_a, param_b, merge_mode, &rc_roi);
  741. if (rc) {
  742. SDE_ERROR("failed to program enable bits, rc:%d\n", rc);
  743. return rc;
  744. }
  745. memcpy(RC_STATE(hw_dspp).last_roi_list,
  746. roi_list, sizeof(struct msm_roi_list));
  747. RC_STATE(hw_dspp).roi_programmed = true;
  748. return 0;
  749. }
  750. int sde_hw_rc_setup_mask(struct sde_hw_dspp *hw_dspp, void *cfg)
  751. {
  752. int rc = 0;
  753. struct sde_hw_cp_cfg *hw_cfg = cfg;
  754. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  755. struct sde_rect rc_roi, merged_roi;
  756. struct msm_roi_list *last_roi_list;
  757. u32 merge_mode = 0;
  758. bool roi_programmed = false;
  759. if (!hw_dspp || !hw_cfg) {
  760. SDE_ERROR("invalid arguments\n");
  761. return -EINVAL;
  762. }
  763. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  764. SDE_DEBUG("rc feature disabled\n");
  765. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG1, 0);
  766. memset(RC_STATE(hw_dspp).last_rc_mask_cfg, 0,
  767. sizeof(struct drm_msm_rc_mask_cfg));
  768. RC_STATE(hw_dspp).mask_programmed = false;
  769. return 0;
  770. }
  771. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  772. !hw_cfg->payload) {
  773. SDE_ERROR("invalid payload\n");
  774. return -EINVAL;
  775. }
  776. rc_mask_cfg = hw_cfg->payload;
  777. last_roi_list = RC_STATE(hw_dspp).last_roi_list;
  778. roi_programmed = RC_STATE(hw_dspp).roi_programmed;
  779. if (!roi_programmed) {
  780. SDE_DEBUG("full frame update\n");
  781. memset(&merged_roi, 0, sizeof(struct sde_rect));
  782. } else {
  783. SDE_DEBUG("partial frame update\n");
  784. sde_kms_rect_merge_rectangles(last_roi_list, &merged_roi);
  785. }
  786. rc = _sde_hw_rc_get_ajusted_roi(hw_cfg, &merged_roi, &rc_roi);
  787. if (rc) {
  788. SDE_ERROR("failed to get adjusted roi, rc:%d\n", rc);
  789. return rc;
  790. }
  791. rc = _sde_hw_rc_get_merge_mode(hw_cfg, &merge_mode);
  792. if (rc) {
  793. SDE_ERROR("invalid merge_mode, rc:%d\n");
  794. return rc;
  795. }
  796. rc = _sde_hw_rc_program_roi(hw_dspp, rc_mask_cfg,
  797. merge_mode, &rc_roi);
  798. if (rc) {
  799. SDE_ERROR("unable to program rc roi, rc:%d\n", rc);
  800. return rc;
  801. }
  802. rc = _sde_hw_rc_program_data_offset(hw_dspp, rc_mask_cfg);
  803. if (rc) {
  804. SDE_ERROR("unable to program data offsets, rc:%d\n", rc);
  805. return rc;
  806. }
  807. memcpy(RC_STATE(hw_dspp).last_rc_mask_cfg, rc_mask_cfg,
  808. sizeof(struct drm_msm_rc_mask_cfg));
  809. RC_STATE(hw_dspp).mask_programmed = true;
  810. return 0;
  811. }
  812. int sde_hw_rc_setup_data_dma(struct sde_hw_dspp *hw_dspp, void *cfg)
  813. {
  814. int rc = 0;
  815. struct sde_hw_cp_cfg *hw_cfg = cfg;
  816. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  817. if (!hw_dspp || !hw_cfg) {
  818. SDE_ERROR("invalid arguments\n");
  819. return -EINVAL;
  820. }
  821. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  822. SDE_DEBUG("rc feature disabled, skip data programming\n");
  823. return 0;
  824. }
  825. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  826. !hw_cfg->payload) {
  827. SDE_ERROR("invalid payload\n");
  828. return -EINVAL;
  829. }
  830. rc_mask_cfg = hw_cfg->payload;
  831. if (rc_mask_cfg->flags & SDE_HW_RC_SKIP_DATA_PROG) {
  832. SDE_DEBUG("skip data programming\n");
  833. return 0;
  834. }
  835. rc = reg_dmav1_setup_rc_datav1(hw_dspp, cfg);
  836. if (rc) {
  837. SDE_ERROR("unable to setup rc with dma, rc:%d\n", rc);
  838. return rc;
  839. }
  840. return rc;
  841. }
  842. int sde_hw_rc_setup_data_ahb(struct sde_hw_dspp *hw_dspp, void *cfg)
  843. {
  844. int rc = 0, i = 0;
  845. u32 data = 0, cfg_param_07 = 0;
  846. struct sde_hw_cp_cfg *hw_cfg = cfg;
  847. struct drm_msm_rc_mask_cfg *rc_mask_cfg;
  848. if (!hw_dspp || !hw_cfg) {
  849. SDE_ERROR("invalid arguments\n");
  850. return -EINVAL;
  851. }
  852. if ((hw_cfg->len == 0 && hw_cfg->payload == NULL)) {
  853. SDE_DEBUG("rc feature disabled, skip data programming\n");
  854. return 0;
  855. }
  856. if (hw_cfg->len != sizeof(struct drm_msm_rc_mask_cfg) ||
  857. !hw_cfg->payload) {
  858. SDE_ERROR("invalid payload\n");
  859. return -EINVAL;
  860. }
  861. rc_mask_cfg = hw_cfg->payload;
  862. if (rc_mask_cfg->flags & SDE_HW_RC_SKIP_DATA_PROG) {
  863. SDE_DEBUG("skip data programming\n");
  864. return 0;
  865. }
  866. cfg_param_07 = rc_mask_cfg->cfg_param_07;
  867. SDE_DEBUG("cfg_param_07:%u\n", cfg_param_07);
  868. for (i = 0; i < rc_mask_cfg->cfg_param_08; i++) {
  869. SDE_DEBUG("cfg_param_09[%d] = 0x%016lX at %u\n", i,
  870. rc_mask_cfg->cfg_param_09[i], i + cfg_param_07);
  871. data = (i == 0) ? (BIT(30) | (cfg_param_07 << 18)) : 0;
  872. data |= (rc_mask_cfg->cfg_param_09[i] & 0x3FFFF);
  873. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG10, data);
  874. data = ((rc_mask_cfg->cfg_param_09[i] >>
  875. SDE_HW_RC_DATA_REG_SIZE) & 0x3FFFF);
  876. _sde_hw_rc_reg_write(hw_dspp, SDE_HW_RC_REG10, data);
  877. }
  878. return rc;
  879. }
  880. int sde_hw_rc_init(struct sde_hw_dspp *hw_dspp)
  881. {
  882. int rc = 0;
  883. RC_STATE(hw_dspp).last_roi_list = kzalloc(
  884. sizeof(struct msm_roi_list), GFP_KERNEL);
  885. if (!RC_STATE(hw_dspp).last_roi_list)
  886. return -ENOMEM;
  887. RC_STATE(hw_dspp).last_rc_mask_cfg = kzalloc(
  888. sizeof(struct drm_msm_rc_mask_cfg), GFP_KERNEL);
  889. if (!RC_STATE(hw_dspp).last_rc_mask_cfg)
  890. return -ENOMEM;
  891. return rc;
  892. }